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1. INTRODUCTION

The numerical weather predictions models (NWPs)
are outstanding tools to make short term weather
predictions (a few days), but they unfortunately
loose all ability beyond 5 to 10 days. In other
words, it is impossible to predict the day to day
weather for the next season. For example, an
attempt to forecast the exact day of the first fall
frost early in summer would generally fail. Section
2 will present some of our seasonal data over
Canada to further illustrate the non deterministic
nature of seasonal predictions.

Although NWPs do not have skill on seasonal day
to day weather, many studies (Zwiers 1996; Kumar
et al., 1996) have shown that they do have some
predictive ability on seasonal time scale for some
variable e.g. temperature. This predictive skill
comes from the lower boundary forcing anomalies
that varies slowly in time. The best known of these
anomalous forcing is the El Niño-southern
oscillation (ENSO). The predictive skill coming
from such forcing varies for regions to regions over
the globe; it is generally higher in the tropics than
in mid latitudes. There are many places in mid
latitudes where the climate noise (synoptic storms
activity) is so high that the signal induced by ENSO
or other possible similar phenomenon is lost in the
chaos. For these places, ENSO cannot help to
make viable season forecast.

Even though some part of Canada have a good
potential predictability for temperature (Shabbar
and Khandekar, 1995), it is not obvious that the
NWPs will be able to make use of it. To find out
over which part of Canada and the rest of the
world NWPs can make useful seasonal forecasts,
the Historical Forecast Project (HFP) has been
conducted. This project is a joint effort of McGill
University and the following Canadian Government
research and development groups: the Canadian
Centre for Climate modelling and analyses
(CCCma), the Canadian Meteorological Centre

(CMC) and Recherche en Prévision Numérique
(RPN). Two different NWP models have been run
for 26 past years. Results from the HFP will be
presented in section 3.

2. NO DAY TO DAY  SEASONAL FORECASTS

Figure 1 shows a time series of the 1000 to 500
hPa geopotential thickness (DZ). This variable can
be seen as the surface temperature: the thicker the
layer between 1000 and 500 hPa the warmer the
atmosphere and on the same token the warmer
the surface. DZ is used at CMC for our routine
operational seasonal forecast as we will see later
(equation 7).
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Fig. 1. DZ time series for winter 1993 (December
1993, January - February 1994) over Montréal.

The solid line on figure 1 shows the analysed
(observed) DZ at every 12 hours for winter 1993
over Montréal. One can see that there is a lot of
variation in DZ (temperature) with time which is
typical of eastern Canada winters. The dashed line
shows one of our model forecast for the same
variable and for the same period. Figure 2 shows a
zoom of figure 1 on days 0 to 20. One can see that
the forecast is fairly close to the observation up to
about 5 days. After that time the phase is lost:
observed warm periods are forecasted as cold
periods and vice versa.
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Fig. 2. Like figure 1 but zoomed in time between
day 0 and day 20.

If one relies on such a forecast to find out the day
of the season on which the temperature will reach
a certain threshold, in average the skill will be non-
existent past 5 to 10 days. All NWPs in the world
would lead to similar conclusions (Anderson and
van den Dool, 1994). For some situations, a
particular forecast could be good for a longer
period of time depending on the particular weather
pattern or due to pure chance, but in average the
results shown in figure 1 are typical for any mid
latitude region.

Although we cannot hope to forecast daily weather
throughout the season, we can forecast the
seasonal averages with some success over some
region of the globe. This is due to the fact that
averaging a variable results in filtering out some of
the unpredictable climate noise. If there is a signal
induced by ENSO or other phenomenon, it will
better show in the seasonal average than it would
in daily weather. One has to keep in mind that
some unpredictable climate noise will always
contribute, to some degree, to the seasonal
average. So, there will always be some part of the
seasonal average that we won’t be able to predict.
This is the major limitation of the seasonal
forecast. To further clarify this important point, let’s
write the forecast error of model i “Ei“ as the
difference between the forecast seasonal mean Mi

and the observed seasonal mean Mo:

Ei = Mi - Mo (1)

Like we have seen above, the observed seasonal
mean is composed of a predictable signal So and
an unpredictable climate noise No :

Mo = So + No (2)

The seasonal mean Mi is also composed of a
predictable part or signal Si and some noise Ni:

Mi = Si + Ni (3)

By replacing (2) and (3) in (1) we can write the
model error as ,

Ei = Si + Ni - So - No (4)

Let’s suppose that the model gives a perfect
forecast of the signal, so that Si cancels So in (4). In
this case the absolute forecast error is :

Ei ≤ Ni + No (5)

By nature No and Ni are random quantities so, in
general, they do not cancel each other. This is why
we put the absolute operator on Ni and No in (5).
The main effect of the model noise is to increase
the forecast error. A large part of the model noise
can be removed by using an ensemble technique.
Since the noise of individual forecast are randomly
distributed they will tend to average out to 0 as the
ensemble size increases. So, what’s left of the
forecast error by using an ensemble technique is at
least equal to No:

E = No (6)

The error will always depend of the atmospheric
climate noise on which we have no control and
have no hope to forecast. Also since the models
are not perfect, the actual error will be larger or
equal to (6).

3. HISTORICAL FORECASTING PROJECT (HFP)
SETUP AND RESULTS

In order to assess the skill of CMC seasonal
forecast, all seasons in years 1969 to 1994 were
forecasted. The HFP set-up is the same as the
CMC operational set-up. The models use as input,
among other things, sea surface temperature
(SST), sea ice extent (ICE), snow coverage, winds,
temperature, humidity and pressure. All these
fields are global. The SST and ICE data are taken
from the GISST2.2 data set (Parker et al., 1995).
The SST anomaly of the month prior the start of
the integrations is persisted through the 3 months
forecasts. The ICE is initialised with a 30 year
climatology. The snow line is specified from weekly
satellite observations (from NCEP). In the SEF
model, the snow anomaly of the 10 days prior to
the starting time is persisted during the first month
of the run and it is reverted climatology afterwards.



The GCM model was initialised with the observed
snow line and then used a prognostic scheme.

Each model is integrated throughout the season in
an ensemble of 6 in order to filter their climate
noise as explained in section 2. These 6
integrations differ in their starting time that is
lagged by 6 hours (different initial atmospheric
conditions). This leads to 12 seasonal forecasts
per seasons. The CMC issues forecast for 2
variables: the surface air temperature anomalies
and the seasonal accumulated precipitation
anomalies.

The surface air temperature anomaly forecast is
done using the 500-1000hPa thickness (DZ)
anomaly. The DZ variable of the model runs are
output every 12 hours and averaged over the
season. The 2 ensembles of 6 forecasts are
averaged separately for both models. Then a
hybridisation of the 2 DZ forecasts is done using
the BLUE method (Derome et al., 1999). This
method has shown to give better or equivalent
results than a normalised average of the 2 model
outputs for every season. It is currently used at
CMC operations (since Spring 1999). The
hybridised thickness anomaly field (DZa) is then
related to the surface temperature anomalies Ta by
the following “perfect prog” technique :

 Ta =  b DZa. (7)

The coefficient b in (7) was derived at Canadian
stations from analysed DZ (NCEP reanalysis,
Kalnay et al., 1996) and observed T (Vincent,
1998; Vincent and Gullett, 1999) for years 1969 to
1994. There is a different b for every selected
stations and seasons. The values of b range from
about 0.3 to 0.5 [°C/dam]. The temperature
forecast is then compared to the model climatology
in order to produce a 3 category forecast (below
normal, normal and above normal temperature).
The threshold to be different from normal is ±0.43
times the model inter-annual standard deviation.
By design all categories have the same probability
(1/3) to occur, so that a random forecast would be
correct one third of the time in average. Using a
contingency table, the Percent Correct (number of
correct forecasts divide by the total number of
forecasts multiply by 100) was calculated to verify
the categorical forecast.

In figures 3 to 6 (Summer, Winter, Spring and Fall
respectively), the percent correct of the HFP

surface air temperature anomaly forecasts on 50
km grid is presented. The values at 210 Canadian
stations locations are shown. In theory, the PC has
to be higher than 33% to be better than chance.
But since there are only 26 years in the
verifications it is easy to get score higher than 33%
just by chance. With 26 trials a score has to be
greater or equal to  about 46% to be considered
statistically better than the chance (according to
the binomial distribution with a 10% confidence
level). The areas where the PC is higher than 46%
are shaded.

It could be see from figure 3 that there is good skill
in Summer over the centre of Canada. The Winter
skill cover most of the western and central parts of
the country (figure 4). In Spring, the system have
good scores in British Columbia, Yukon and
Nunavut (not shown). In Fall, the skill is mainly
found in Quebec and western Ontario (not shown).

Fig.3. HFP Summer PC for T field during 1969-
1994.

Fig.4. HFP Winter PC for T field during 1969-1994.



Fig.5. HFP Winter PC for PCP field during 1969-
1994.

The precipitation forecast is made using a
normalised average of the 2 model outputs. The
categorical forecast fields were compared to the
observations at more than 340 Canadian stations
described by Mekis and Hogg (1999). The
performance of the models in forecasting this
variable is much lower than for the T forecast
performance. The best results is found in Winter
over British Columbia (figure 5) and in Spring over
Yukon (not shown). Given the small scale nature of
the precipitation field, it is very difficult to obtain
accurate forecasting using coarse grid global
models.

4. CONCLUDING REMARKS

The seasonal forecast is non deterministic in
nature so one should not expect to get daily
weather forecast one season in advance. This is
due to the chaotic nature of the atmosphere. On
the other hand, averaging a quantity like
temperature over a season removes some of the
climate noise that we cannot forecast. If there is a
persistent forcing throughout the season, like
ENSO, the associated anomaly may show through
the remaining climate noise for some places in
Canada. Only this part of the seasonal anomaly
can be predicted by the models (other than the first
5 to 15 days of the season). The Historical
Forecasting Project shows that CMC actual
seasonal forecast set-up has large areas of
statistically significant skill in Summer and in

Winter for the surface air temperature anomaly
field and generally marginal skill for the
precipitation anomaly field.
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