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EXECUTIVE SUMMARY 
 
A high unit-load, relatively poor lubrication, and a harsh environment characterize 
operating conditions for traction motor bearings. Despite proper maintenance and 
condition monitoring, their failures are too frequent and usually result from failure of  
the lubricating system. Improving safe operation of traction motor journal bearings,  
and thus train safety, was the reason for this project. The hope was that a composite 
bearing material could not only perform well when lubricated, but also allow for a certain 
period of safe operation in a case of lack of normal lubricant flow in the bearing gap. 
 
Contemporary composite materials usually consist of thermoplastic matrix and solid 
lubricant with a fiber providing creep resistance and strength. Evaluation of a selection of 
composite bearing materials was carried out on a Falex block-on-ring wear tester, in 
accordance with ASTM Standard G77 (Standard Practice for Ranking Resistance of 
Materials to Sliding Wear Using Block-on-Ring Wear Test). Out of the six materials 
tested, Vespel® SP214X, a polyimide resin filled with graphite, and/or PTFE, and/or 
molybdenum disulfide, was selected for the full-scale experimental investigation. This 
material is made by DuPont de Nemours. 
 
The experimental investigation of the bearing was carried out on a test rig developed by 
National Research Council Canada. The rig accommodates a full-size traction motor 
bearing, has a maximum load capacity of 41,000 lb., and can run at speeds of up to 
600 rpm. The instrumentation included 14 thermocouples monitoring the temperature  
of the tested bearing, eddy current proximity probes, and a force transducer recording 
the changes to the friction torque. As a reference for the Vespel®-lined bearing, data 
were collected from a babbitt-lined bearing, which was tested for a full range of operating 
conditions. These tests also validated the design of the test facility. 
 
Initially, the new traction motor bearings were fabricated using Vespel® in the form  
of 1.25 in. wide rings. The last tested bearing was made from one cylindrical piece  
of Vespel®. The process of bearing fabrication included an elaborate procedure  
for bonding the composite material to the brass substrate. 
 
The tests on the Vespel®-lined bearings were unsuccessful, even in the presence of 
lubricant. The maximum load achieved was 15,000 lb. at a speed of 106 rpm. All of  
the tested bearings experienced severe friction-induced vibration and damage to the 
bearing surface, and eventually seized on the shaft. Changes to the bonding procedure 
and bearing clearance did not improve the situation. In total, four bearings were tested. 
 
It was concluded that the most likely cause for the bearing failures was that the 
material’s thermal properties were insufficient to transfer the large amount of heat 
generated in the bearing. The resulting decrease in oil viscosity and thermal growth  
of the bearing led to the bearing seizure. 
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SOMMAIRE 
 
De fortes charges, une lubrification minimale et un environnement hostile sont les 
conditions caractéristiques dans lesquelles sont exploités les paliers de moteurs de 
traction. Malgré une surveillance et un entretien rigoureux, les paliers sont trop souvent 
défaillants et ces problèmes sont la plupart du temps causés par une panne du système 
de lubrification. Le présent projet visait donc à améliorer la sûreté d’exploitation des 
paliers de moteurs de traction, et, partant, la sûreté des trains. On espérait plus 
précisément trouver un matériau composite qui pourrait non seulement fonctionner 
adéquatement lorsque bien lubrifié, mais aussi offrir une certaine marge de sécurité  
en cas de lubrification insuffisante. 
 
Les nouveaux matériaux composites sont normalement constitués d’une matrice 
thermoplastique et d’un lubrifiant solide en fibres qui allie robustesse et résistance au 
fluage. Divers matériaux composites ont été évalués à l’aide d’un tribomètre à bloc et à 
anneau standard de Falex, conformément à la norme ASTM G77 (Standard Practice for 
Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test). Des 
six matériaux testés, le Vespel® SP214X, une résine polyimide additionnée d’une charge 
de graphite, de PTFE et/ou de disulfure de molybdène, a été retenu pour les essais en 
vraie grandeur. Ce matériau est fabriqué  
par DuPont de Nemours. 
 
L’essai en vraie grandeur a été mené à l’aide d’une installation mise au point par le 
Conseil national de recherches du Canada. Cette installation pouvait mettre à l’essai  
un palier en vraie grandeur sous une charge maximale de 41 000 lb., à des vitesses 
pouvant atteindre 600 tr/min. L’instrumentation comportait 14 thermocouples pour la 
surveillance de la température du palier, des détecteurs de proximité à courant de 
Foucault, et un transducteur de force enregistrant les fluctuations du couple de 
frottement. Un palier à garniture en régule a aussi été mis à l’essai dans une vaste 
gamme de conditions d’exploitation. Ces essais ont permis de valider l’installation 
d’essai et d’obtenir des données de référence pour l’évaluation du palier à garniture  
de Vespel®. 
 
Les premiers paliers de moteur de traction nouveaux étaient fabriqués à partir 
d’anneaux de Vespel® de 1,25 po de largeur. Le dernier palier essayé était constitué 
d’un seul cylindre du même matériau. Le procédé de fabrication des paliers comportait 
une procédure complexe de liaison du matériau composite au support en laiton. 
 
Les essais réalisés sur des paliers à garniture de Vespel® ont échoué, même en 
présence de lubrifiant. La charge maximale acceptée était de 15 000 lb., à une vitesse  
de 106 tr/min. Pour tous les paliers mis à l’essai, les chercheurs ont enregistré des 
vibrations dues au frottement et des dommages à la surface du palier, et, ultimement,  
le grippage du palier sur l’axe. Les changements apportés à la procédure de liaison et 
au jeu palier-axe n’ont pas amélioré la situation. Au total, quatre paliers ont été essayés. 
 
Les chercheurs ont évoqué les piètres propriétés thermiques du matériau comme cause 
la plus probable des défaillances du palier : cette lacune faisait en sorte que la forte 
chaleur produite dans le palier demeurait emprisonnée. Il en résultait une baisse de 
viscosité de l’huile lubrifiante et la dilatation thermique du palier, d’où le grippage. 
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1. INTRODUCTION 
 
Traction motor support bearings operate under difficult and severe operating conditions, 
usually with a limited supply of oil and a high unit-load (p).  At times, the bearings are 
further handicapped by the need to operate at low axle speeds (v).  To minimize the 
number of bearing failures and obtain maximum bearing life, proper maintenance is 
required.  However, statistics [1] show that, between 1994 and 1997, there were 138 
traction motor bearing failures on the Canadian National (CN), Canadian Pacific (CP) 
and VIA railway systems (39 in 1994; 38 in 1995; 39 in 1996 and 22 in 1997).  In some 
cases, the bearing damage was detected at an early stage.  However, other occurrences 
of bearing failure resulted in train derailment and even passenger mortalities.  The 
situation is made worse by the fact that traction motors on locomotives pulling freight 
trains are not equipped with sensors or detectors.  Sensors are fitted to locomotives 
pulling passenger trains, but train crews may not be acquainted with the detection 
system and can ignore early warning signals. 
 
This project’s aim was to assess the feasibility of replacing the conventional babbitt (lead 
alloy)-lined traction motor bearings with composite plastic-lined bearings as a means of 
increasing train safety in cases of lubrication system failure.  In certain applications, 
composite plastics offer superior resistance to friction, heat and wear, and could help to 
minimize bearing failures. 
 
The work included a full scale experimental investigation of both babbitt-and composite 
material-lined traction motor bearings for locomotives, at loads and speeds representing 
the severe operating conditions inherent to rail.  These full-scale tests were carried out 
on a rig developed by National Research Council (NRC) specifically for this project. 
 
The project was performed at NRC.  It was initiated in the Centre for Surface 
Transportation Technology and completed after the Tribology Unit was transferred to the 
Institute for Aerospace Research.   
 
 
2. LITERATURE AND PRACTICE REVIEW 
 
 
2.1 Traction motor bearings 
 
Over the past 30 years, journal bearings in traction motors have been gradually replaced 
by roller bearings [2][3].  However, a significant number of traction motors are still 
equipped with journal bearings [4].  Operating conditions of these bearings are severe, 
and failures of both roller and journal traction motor bearings are frequent causes of 
derailment [5][6]. These severe conditions are the result of [7]:  
 
• Load concentration over a small area of the bearing, as a result of axle deflection 

under locomotive weight and axle misalignment because of gear reaction of the 
overhung pinion 

• Low speed at start-up, with poor lubrication 
• Extremes in ambient temperatures 
• A load vector that is sometimes close to the bearing window or bearing split line  
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Moreover, shock loads from the interaction between wheel and rail can cause the 
bearing clearance to increase.  This may lead to unfavourable conditions of gear 
engagement, and consequently to additional bearing misalignment and load [8].   
 
It often occurs that water accumulates in the oil reservoir of the traction motor, especially 
in winter.  Lane and Dayson [9], and later Dayson [10], investigated ingress of water to 
the lubricant reservoir and its effect on traction motor bearing performance.  They 
concluded that the water supplied to the bearing clearance does not compromise 
bearing operation.  However, a large amount of water in the reservoir can cause an 
excessive oil flow through the bearing clearance.  These authors also showed that the 
wick transports oil not only from the reservoir to the bearing gap, but also in the opposite 
direction.   
 
Because of difficult operating conditions, frequent inspections of the journal and bearing 
surfaces and the felt lubricating wick are essential.  In particular, rounding of the felt wick 
can compromise bearing lubrication.  The presence of dirt or bearing material particles 
deposited on the wick indicates that the bearing should be thoroughly examined.   
 
Avery [11] analyzed the operation of traction motor bearings and emphasized the 
importance of bearing surface finish, because of a very thin oil-film gap between the 
journal and bearing surfaces.   
 
2.2 Application of composite materials to traction motor bearings 
 
Dry or self-lubricated bearings are used when one or more of the following situations 
occur [12][13]: 
 
• A lubricating film cannot be generated or has to be supplemented by a low-friction 

material or a solid lubricant (low speed or oscillatory motion) 
• Extreme operating conditions for the lubricant (contamination, too viscous at low 

temperatures, or decomposition at high temperatures) 
• Lubricant may contaminate the product 
• Difficult to maintain   
 
The first two situations are common to those of the traction motor bearing application.  
Low friction can be achieved by using a solid lubricant such as graphite or molybdenum 
disulphide, or by using the low-friction properties of plastic [14].  However, poor thermal 
conductivity, a high coefficient of thermal expansion and a lack of strength limit straight 
plastics.   
 
Contemporary composite bearing materials consist of a thermoplastic matrix and solid 
lubricants with a fiber added for creep resistance and strength.  Recent progress in 
plastic materials has been reflected in a significant increase in both load and 
temperature capabilities [15].  However, only a few of these new materials stand a 
chance of being used as a replacement for the conventional babbitt-lined traction motor 
bearing.   
 
E.I. Du Pont de Nemours and Company have recently been issued a patent on 
composite journal and thrust bearing systems [16].   
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3.  BENCH TESTS – SELECTION OF BEARING MATERIAL 
 
Traction motor bearings operate at extremely high pv values and only a few of the 
available composite materials can withstand such operating conditions.  They include: 
 
• Vespel® – polyimide resin filled with graphite and/or PTFE and/or molybdenum 

disulphide (by DuPont de Nemours) 
• DU® – steel backing, a layer of sintered bronze impregnated with PTFE-lead mixture, 

and overlay consisted of the same mixture (by Garlock Bearings Inc./Coltec 
Industries)  

• Meldin® 2021 – polyimide resin (by Furon/Dixon Industries Corp.)  
• Torlon – polyimide resin (by Johnston Industrial Plastics, Amoco, and others) 
• FM3000® – carbon reinforced polyimide resine (by ICI Fiberite)  
 
3.1 Determining test conditions 
 
For rubbing surfaces, it is common practice to use the pv factor as an indicator of the 
operating conditions in the bearing.  p is the unit load in the contact area, and is 
determined by W/A, where: 

W load 
A
Wp =

A contact area 
 
and v describes the relative velocity of the two surfaces.   
 
Evaluation of the composite bearing materials was carried out on a Falex block-on-ring 
wear tester (Figure 1), in accordance with ASTM Standard G77 (Standard Practice for 
Ranking Resistance of Materials to Sliding Wear Using Block-on-Ring Wear Test).   
 
A block was mounted in the tester’s holder.  This holder automatically aligns the block to 
the ring and ensures a uniform load over the contact area.  A known weight was applied 
to the hanger, which presses the block against the rotating ring.  The friction force 
between the block and ring was measured using a load cell.   
 
For the purpose of these tests, the ring was made of steel while the block was made of 
the materials to be evaluated.   
 
Performance of the test samples depends strongly on the area of contact.  If the block is 
rectangular then the initial contact is linear, provided that elastic or plastic deformations 
do not occur.   Running-in creates a rectangular contact area that increases as the wear 
of the block progresses.  In such a case, the value of p decreases, and the real pv varies 
as the test progresses (Figure 2).   
 
To provide a constant contact area during the test, the block can be machined to 
conform to the ring surface.  In this case, the pv factor was maintained at a constant 
value throughout the duration of the test.   
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Figure 1 Schematic of the Falex block-on-ring wear tester 
 
 

contact area during test 

 block 

 ring

initial contact area

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Contact area with block-on-ring tests   
 
 
Typically, the pv factor for journal bearing uses a unit load based on the bearing 
projected area (Figure 3a):  

Ld
Wp =

 
where  
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W bearing load 
L bearing width 
d bearing diameter 
 
However, the real contact area is much smaller because of the clearance in the bearing.  
Initially, the contact area corresponds to the elastic and plastic deformations of the block.  
As the test progresses, it may increase because of wear of the block, but it never 
reaches the value of the projected area, L*d  (Figure 3b).   
 
 
 
 
 
 
  
  

b. a. 

 
 
 
 
 
 
 
 
 
 
Figure 3 Contact area in journal bearing    

a. assumed contact area  b. actual contact area 
 
 
The block and ring used in the Falex machine for this study are shown in Figure 4.  
Table 1 shows the selected test parameters and the corresponding traction motor 
bearing operating conditions.  The contact area was assumed to be the cross-sectional 
area of the block.  
 
 
Table 1 Test parameters for the Falex wear tester 
 

TRAIN SPEED PV (total) SHAFT 
SPEED 

BEARING 
LOAD 

RING 
SPEED 

LOAD ON 
SAMPLE 

km/h (mph) MPa*m/s 
(psi*ft/min) 

m/s (ft/min) kN (lb.) rpm kN (lb.) 

24.1 (15) 5.25 (149,935) 1.34 (264) 182(40,900) 732 0.392 (88) 
56.3 (35) 7.64 (218,120) 3.13 (616) 113.5 (25,500) 1,707 0.244 (55)

104.6 (65) 8.96 (255,756) 5.81 (1144) 71.6 (16,100) 3,171 0.154 (35)
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Some manufacturers were not willing to provide NRC with material samples.  For this 
reason, the bench tests were limited to the materials listed in Table 2.   
 
 
Table 2 Composite materials tested 
 

MATERIAL 
 

MANUFACTURER MAX.  pv (dry) 

Vespel® SP21 
Graphite-filled polyimide 

Du Pont de Nemours 200,000-300,000

Vespel® SP214X 
Graphite-filled polyimide 

Du Pont de Nemours 600,000-700,000

FM3000® 
Cellulose and PTFE-filled polymer 

Cytec Fiberite, Inc. 100,000

DU® 
Steel-backed sintered bronze filled with  
a mixture of PTFE and lead 

Garlock Bearings, Inc  
(Glacier) 

100,000

DP4® 
Steel-backed sintered bronze 
impregnated with polymer (acetal resin) 

Garlock Bearings, Inc  
(Glacier) 

80,000

 
 
The test procedure included the following steps: 
 
1. Install the thermocouple in the block. 
2. Clean the block and ring. 
3. Weigh the block. 
4. Mount the block in the tester. 
5. Rotate the ring. 
6. Apply the required load. 
7. Run the test for 33 min. and collect measurements of block temperature and friction 

force. 
8. Stop the test. 
9. Clean the block and ring. 

10. Inspect the block and ring 
11. Weigh the block. 
12. Measure the width of the scar.   
 
To increase the reliability of the measurements, tests on each material were repeated 
once. 
 
3.2 Test results 
 
A summary of the test results is presented in Table 3.  Three of the test materials did not 
perform satisfactorily at all test conditions.  Examples of data collected from the failed 
tests on the DP4 and Vespel® SP21 materials are shown in Figure 5.  Rapid growth of 
both the block’s temperature and friction force terminated the test.   
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Figure 4 The ring and the block for the Falex wear tester 
 
Vespel® SP214X and FM3000 withstood all the test conditions.  Figure 6 illustrates the 
performance of these two materials at the highest pv factor.  A comparison of the results 
from these two materials showed that the Vespel® SP214X was superior, in terms of 
exhibiting significantly lower block temperature, wear and friction coefficient (see Table 2 
and Figure 6).   
 
Vespel® 214X was selected as the candidate material for the full-size bearing tests.   
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Table 3 Block-on-ring bench tests: summary of results 
 

WEAR LOAD SPEED 
WEIGHT VOLUME 

FR.COEFF. TEMP.  

kN (lb.) rpm mg mm^3  oC 
0.392 (88) 732 7.0 3.4 0.10 178 
0.244 (55) 1707 11.7 4.7 0.06 176 Vespel® SP21 
0.154 (35) 3170   
0.392 (88) 732 3.5 2.4 0.04 109 
0.244 (55) 1707 7.0 3.5 0.01 149 Vespel® SP214X 
0.154 (35) 3170 14.2 7.9 0.01 134 
0.392 (88) 732 28.3 19.8 0.10 153 
0.244 (55) 1707 59.2 21.9 0.09 248 FM3000 
0.154 (35) 3170 40.5 10.2 0.06 203 

DU (dark) 0.392 (88) 732 12.0 3.0 0.07 130 
DP4  (red) 0.392 (88) 732   
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Figure 5 Data from the failed tests: Tf - friction force, t - block temperature 

a.  DP4, 0.392 kN (88 lb.), 732 rpm 
b.  Vespel® SP21, 0.154 kN (35 lb.), 3170 rpm 
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Figure 6 Data from the tests at the highest pv factor  
(35 lb., 3170 rpm): Tf - friction force, t - block temperature 
a. FM3000 b. Vespel® SP214X 

 
 
4 NRC BEARING TEST FACILITY 
 
4.1 Test rig 
 
A new experimental facility has been developed at NRC for the testing of full-size 
traction motor bearings under the severe operating conditions inherent in rail.  The test 
rig is based on a design originally used to study the ingress of water into the traction 
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motor bearing [9].  A schematic of this rig is shown in Figure 7.  The rig accommodates a 
full-size traction motor bearing and has a maximum radial load capability of 0.185 MN 
(41,000 lb.).  Hydraulic cylinders that are connected to the bearing housing through 
double flexure pivots generate this load.  The flexures permit measurement of the 
bearing friction torque.  However, the rig design does not allow for an accurate 
measurement of the friction torque absolute value.  Instead, in this report the measured 
friction losses are related to those at a certain operating conditions.   A 110 kW (150 hp) 
variable speed electric motor, driving through a speed reducing belt-pulley system, 
provides shaft speeds up to 10 Hz (600 rpm).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Schematic of the traction motor bearing test facility 
 
4.2 Traction motor bearing 
 
The traction motor suspension bearing comprises a split brass sleeve, approximately 
200 mm (8 in.) in diameter, 310 mm (12.25 in.) long and with a 2.5 mm (0.1 in.) overlay 
of babbitt (lead alloy).  The bearing, shown in Figure 8, is lubricated by a felt wick 
assembly that is held against the journal surface by spring pressure.  The opposite end 
of the wick is immersed up to 100 mm (4 in.) in a 4.5 litre (1 gal.) capacity oil reservoir.   
Capillary action inside the wick draws the oil up from the oil reservoir to the journal.  The 
two brass half shells are clamped in a housing, which is made up from the motor frame 
and the end cap/oil reservoir.  The cover plate of the reservoir supports the spring-
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loaded wick holder.  This presses the top end of the wick against the journal through a 
rectangular window in the wall of the bearing.   
 
The test bearing was lubricated with an oil supplied by VIA Rail.  It had viscosity 
approximately 7cSt at a temperature of 100oC and 43 cST at 40oC (viscosity index of 
105).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 Babbitt-lined traction motor bearing (with Vespel® ring in the 

foreground) 
 
 
4.3 Instrumentation 
 
To monitor bearing temperatures, 12 thermocouples were mounted in the back of the 
bearing, close to the bearing surface (about 0.5 mm).  A further two thermocouples were 
mounted in the brass backing.  The location of these thermocouples is shown in Figure 
9.  Other thermocouples measured wick and oil reservoir temperatures.   
 
Other instrumentation included a load cell to measure bearing friction torque, and a pair 
of proximity probes mounted at each end of the bearing housing to measure the position 
of the bearing with respect to the shaft.  Two probes were mounted in-line with the load 
vector, and two orthogonal to the load vector.  Figure 10 shows a view of the test rig.   
 
 
5.  EXPERIMENTAL STUDY OF THE FULL-SIZE BABBITT-LINED BEARING 
 
The purpose of the tests on the babbitt-lined traction motor bearing was to provide 
baseline data for the investigation of the plastic-lined bearing.  The effect of bearing 
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operating conditions such as speed, load and reservoir oil level on the following was 
investigated: 
• bearing operating temperatures 
• power loss  
• relative displacement between the shaft and bearing (which determines the minimum 

oil-film thickness) 
 
Three reservoir oil levels were chosen based on the GM’s Maintenance Instruction [17].  
In this report the recommended maximum level and minimum levels are referred to as 
normal and low levels, respectively.  The medium level is located between these two.   
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Figure 9 Thermocouple location in the test bearing 
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Figure 10  View of NRC’s traction motor bearing test facility 
 
5.1 Bearing temperatures 
 
Prior to collecting data from the bearing, the oil and bearing temperatures were 
stabilized.  This usually took between 5 and 7 hours, depending on shaft speed and 
load.  Generally, the lower the shaft speed the longer the stabilization time.  Oil level in 
the reservoir had a negligible effect on the stabilization time, as shown in Figure 11.  
Here, reservoir oil temperature is plotted against time for a speed of 538 rpm and a load 
of 16,100 lb.   
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Figure 11  Stabilization of the reservoir oil temperature.  Bearing load  

16,100 lb., shaft speed 538 rpm   
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Reservoir oil temperature was mainly dependent on shaft speed, and varied from 37oC 
at 106 rpm to 54oC at 538 rpm.  This is illustrated in Figure 12.   
 
Consequently, reservoir oil level had little effect on bearing operating temperatures.  
However, bearing temperatures were more sensitive to shaft speed.  A maximum 
bearing surface temperature of 111oC was recorded at 538 rpm and 16,100 lb., with the 
low reservoir oil.  Figure 13 shows the recorded maximum bearing temperature for 
different reservoir oil levels and operating conditions, while Figure 14 compares the 
bearing temperature profiles for different loads and speeds with the normal oil level.  At 
the highest shaft speed of 538 rpm, and the bearing load of 16,100 lb., the maximum 
bearing temperature exceeded 100oC.   
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Figure 12 Effect of bearing operating conditions and reservoir oil level on oil 

reservoir temperature   
 a. 106 rpm/40,900 lb.  b. 295 rpm/25,500 lb. 
 c. 458 rpm/18,100 lb.  d. 538 rpm/16,100 lb. 
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Figure 13 Effect of bearing operating conditions and reservoir oil level on 

maximum bearing temperature   
 a. 106 rpm/40,900 lb.  b. 295 rpm/25,500 lb. 
 c. 458 rpm/18,100 lb.  d. 538 rpm/16,100 lb. 
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Figure 14 Bearing temperature profiles.  Normal reservoir oil level  
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5.2 Power loss 
 
Figure 15 presents a comparison of the experimentally obtained power loss data.  Each 
measured power loss is related to the highest power loss, measured at 538 rpm and 
16,100 lb. with the low oil level in the reservoir.  The data show strong dependence of 
power loss on the operating conditions, and a rather weak dependence on reservoir oil 
level.   
 
5.3 Shaft – bearing displacements 
 
A relatively weak dependence of reservoir oil level on the displacement measurements 
was also observed.  Displacement measurements for both the normal and low oil levels 
are illustrated in Figure 16.  It can be concluded that, within the range of the tests 
conducted in this study, oil level has little or no effect on the thickness of the oil film in 
the bearing.   
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Figure 15 Comparison of bearing power loss for different reservoir oil levels 
  a. normal level  b. medium level c. low level 
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Figure 16 Journal centre location within the bearing clearance circle (10-3 in.) 
 a. normal reservoir oil level b. low reservoir oil level 
 
 
6. EXPERIMENTAL INVESTIGATION OF FULL-SIZE VESPEL®-LINED 

BEARINGS 
 
The Vespel® material was supplied by DuPont in a form of rings of 8.345 in. in inner 
diameter, 8.768 in. in outer diameter, and 1.25 in. in width, as illustrated in Figure 8.   
 
The bearings were fabricated using the following sequence of operations:  

1. Cut Vespel® rings into two halves 
2. Machine bore the brass bearing to 8.346 in. in diameter 
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3. Clean housing surface with MEK and then grit blast using Al-oxide 220 grit and 
dry nitrogen gas 

4. Bond the bearing into the housing using one layer of FM400NA film adhesive 
5. Ultra-sonic C-scan the housing to determine bond integrity 
6. Remove any excess Vespel® from the joints 
7. Machine Vespel® lining to the required bore size 

 
Figure 17 shows one of the bearings in the process of being machined.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17 Machining Vespel®-lined bearing 
 
 
 
6.1 Mark 1 Vespel®-lined bearing 
 
The diameter of the Mark 1 bearing was 8.039+0.002 in.  The nominal diameter of the shaft 
was 8.000 in. thus the radial clearance was 0.020 in.   
 
Tests on the first Vespel®-lined bearing were not concluded successfully.  The bearing 
failed after only 11 minutes of operation, when the shaft speed was 538 rpm and the 
bearing load was 5000 lb.  Figure 18 shows the main test parameters plotted against 
time (friction loss is related to the average loss for the load of 5000 lb.).  At the time of 
the failure, concern was expressed about the large amount of torque applied to the 
housing bolts during the assembly procedure.  This puts a high hoop strain on the 
bearing.  While this is an acceptable practice in the case of the conventional bearing, it 
was speculated that this might have caused the Vespel® rings to separate from the brass 
backing.   
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Figure 18 Test results.  Mark 1 Vespel®-lined bearing  

a. shaft speed    b.  bearing load  
c.   maximum bearing temperature d.  relative friction loss 

 
 
Figure 19 shows the heavily rubbed areas and their location in relation to the load line.  
The shaft after this test is shown in Figure 20.   
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Figure 19  Mark 1 Vespel®-lined bearing after failure 

a.  damaged sites b.  top half c.  bottom half 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20 Shaft after failure of the Mark 1 Vespel®-lined bearing 
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 Figure 21 Centre line temperature profile:  Mark 1 Vespel®-lined bearing 

a.   at time of failure b.   immediately after removing 5000 lb. load 
 
 
Measured centre-line temperature profiles from the Vespel®-lined bearing, just at the 
point of failure and shortly after the load was removed, are shown in Figure 21.  Points of 
interest arising from these plots are as follows: 
 
• The maximum recorded bearing temperature was approximately 110oC.   
• At the time of the failure, a thermocouple in the brass housing, which was very close 

to the location of the maximum bearing temperature, recorded a temperature of 
about 90oC.  However, by the time the load had been removed, this temperature had 
quickly risen to 110 oC (the same temperature as the bearing). 

• At the time of the failure, the maximum temperature was recorded by the 
thermocouple located approximately 155 o from the load line. 

 
6.2 Mark 2 Vespel®-lined bearing 
 
Initially, the Mark 2 bearing had a nominal radial clearance of 0.020 in., which was the 
same as that of the Mark 1 bearing.  In a series of tests involving the Mark 2 Vespel®-
lined bearing, the housing bolts were torqued to a much lower level.   
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Figure 22 Test results:  Mark 2 Vespel®-lined bearing (original clearance)   

a.  shaft speed   b.   bearing load  
c.  maximum bearing temperature d.   relative friction loss 
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The following preliminary tests were conducted on the Mark 2 Vespel®-lined bearing for 
a total running time of 12 hours: 
 
• 5.4 hrs @ 200 rpm, 0 to 5000 lb. 
• 4.25 hrs @ 100 rpm, 0 to 3500 lb. 
• 2 hrs @ 200 rpm, 0 to 6500 lb. 
 
The measured test data are illustrated in Figure 22 (friction loss is related to that for the 
load of 4000 lb.).   
 
Measured bearing center-line temperature profiles from the first and second tests are 
shown in Figure 23. 
 
In the course of each of these tests, very heavy rubbing sounds were heard.   
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Figure 23  Centre line temperature profiles:  Mark 2 Vespel®-lined bearing   

a. 200 rpm, 5000 lb.  b. 100 rpm, 3500 lb. 
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The bearing was removed from the rig and inspected.  It was found that certain areas of 
the bearing bore had sustained quite heavy wear, as shown in Figure 24.  The wear 
pattern became more clearly evident after the bearing had been machined and 0.005 in. 
was removed from the bearing bore.  This damage is mainly confined to three major 
areas, as shown in Figure 25. 
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Figure 24 Damage to the Mark 2 Vespel®-lined bearing prior to rebore  

a.  bottom half  b.   top half 
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Figure 25 Damaged sites (after 0.0025 inch machining operation):  Mark 2 

Vespel®-lined bearing   
a.  damaged sites   b.   area A 
c.  area B    d.   area C 

 
The bearing bore was cleaned up until there were no further signs of damage.  As a 
result, the bore size increased from the design value of 8.039 in. to the re-machined size 
of 8.067 in. (radial clearance of 0.039 in.).  Thus, it may be concluded that some of the 
wear scars were as much as 0.014 in. deep.   
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The re-machined bearing was reinstalled in the test rig, and attempts were made to bring 
the bearing up to the first test condition (538 rpm/16,100 lb.).  After approximately 30 min 
of operation, when the load had reached approximately 12,000 lb. and the shaft speed 
was 500 rpm,  smoke started to issue from the test bearing.  At this time, the test was 
terminated.  The results from this test are shown in Figure 26 (friction loss is related to 
that for the load of 12,000 lb.).  It should be pointed out that quite significant rubbing 
sounds were heard during the course of this test.  The measured bearing centre-line 
temperature profile, just at the point of failure, is shown in Figure 27.   
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Figure 26 Test results:  Mark 2 Vespel®-lined bearing (larger bore)  

a.  shaft speed   b.   bearing load  
  c.  maximum bearing temperature d.   relative friction loss 
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Figure 27 Centre line temperature profile at point of failure 500 rpm, 11,000 lb. 

load:  Mark 2 Vespel®-lined bearing (larger bore)    
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Figure 28  Damaged Mark 2 Vespel®-lined bearing (larger bore) 

a. bottom half b.   top half 
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The bearing was removed from the test rig.  Photos showing the damaged Mark 2 
Vespel®-lined bearing are presented in Figure 28.  The wick and shaft after this test are 
shown in Figure 29.   
 
 

b. 

a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  29 Damaged Mark 2 Vespel®-lined bearing (larger bore) 

a. shaft   b.   wick  
 
6.3 Mark 3 Vespel®-lined bearing 
 
The Mark 3 bearing was made using a modified procedure for bonding the Vespel® to 
the brass substrate:  
 

1. Clean bearing and housing surfaces with MEK and then grit blast using Al-oxide 
220 grit and dry nitrogen gas 

2. Apply a silane (coupling agent) to the housing surface 
3. Apply a BR27 primer onto the housing surface 
4. Bond the bearing into the housing using one layer of FM400NA film adhesive 
5. Ultra-sonic C-scan the housing to determine bond integrity 
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Another important difference was that the high temperature tape used in the Mark 1 and 
2 bearings to prevent the ingress of adhesive between the Vespel® strips during the 
bonding process was not used in the Mark 3 bearing.  There had been concern that this 
tape affected the bond strength between the Vespel® material and the brass substrate. 
 
Following DuPont’s recommendations, the bearing clearance was reduced to 0.020 in. 
diametrally (bearing bore of 8.020 in. diameter).   
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Figure 30 Test results:  Mark 3 Vespel®-lined bearing  

a. shaft speed    b.   bearing load  
c.   maximum bearing temperature  d.   relative friction loss 
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In the first series of tests on the Mark 3 bearing the rig ran at the lowest speed 
conditions, 106 rpm (223 ft/min).  Over a time period of 143 min., the load was slowly 
incremented up to 2,800 lb. (42 psi) in approximately 200 lb. steps.  At these conditions 
the strong rubbing noise and severe fluctuations of the measured friction torque were 
observed, similar to those observed in earlier tests.  The maximum recorded bearing 
temperature in the Vespel® lining was 63oC.  Figure 30 shows the recorded test results 
(friction loss is related to that for the load of 2,800 lb.).   
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Figure 31 Test results, shaft speed 295 rpm:  Mark 3 Vespel®-lined bearing 

a. shaft speed    b.   bearing load  
c.   maximum bearing temperature  d.   relative friction loss 

 

 30



 

The tests on the Mark 3 bearing were also carried out at a speed of 295 rpm  
(621 ft/min).  Figure 31 shows the recorded data for the last 70 min. of the test (friction 
loss has been related to the average for the load of 2,800 lb.).  Over a period of 147 min. 
the load was slowly increased up to 3600 lb.  At this load the bearing experienced 
sudden fluctuation of friction torque and soon seized.   
 
Damage to the bearing was consistent with that obtained in the previous tests, with 
wiping and heat cracking of the Vespel® lining (Figure 32).  However, this time the 
damage was confined to the central portion of the bearing lining, with width of the wiped 
area varying between 1 and 1.5 in., and the wiping extended a full 360o around the 
bearing.  It is likely that such damage occurred due to the tighter bearing clearance.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 b. 

a. 

 
 
Figure 32  Damaged Mark 3 Vespel®-lined bearing  

a.   bottom half b.   top half 
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6.4 Mark 4 Vespel®-lined bearing 
 
The fourth Vespel®-lined bearing was made from a single cylindrical piece of Vespel®, 
instead of multiple rings.  It was expected that this change would improve bearing 
performance, since a long bearing has superior load capacity when compared to that of 
the same length but consisting of multiple shorter bearings.  Additionally, on DuPont’s 
recommendation, the bearing diametral clearance was increased to be between 0.030 
and 0.035 in. (bearing diameter of 8.065 in.).   
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Figure 33 Test results:  Mark 4 Vespel®-lined bearing  

a. shaft speed   b.   bearing load  
c.   maximum bearing temperature d.   relative friction loss 

 32



 

As with the previous test bearings with Vespel® lining, the bond strength between the 
lining and the bronze substrate was checked.   
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Figure 34 Test results.  Mark 4 Vespel®-lined bearing failure   

a. shaft speed   b.   bearing load  
c.   maximum bearing temperature d.   relative friction loss  
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At 106 rpm this version of the bearing achieved a load of 15,000 lb., which was the 
highest load applied to Vespel®-lined bearing.  Figure 33 illustrates the course of this test 
(friction loss is related to the average loss for the load of 15,000 lb.).   
 
However, an attempt to run this bearing with a load of 18,200 lb. was unsuccessful 
(Figure 34, friction loss related to that for 15,000 lb.).   The bearing was damaged, and 
the pattern of failure was the same as that observed in the previous tests.  Figure 35 
shows the damaged Mark 4 bearing.   
 

 
 

b. 

a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35 Mark 4 Vespel®-lined bearing and shaft after the tests 

 a. bearing  b. shaft  
 
 
7. CONCLUSIONS 
 

1. Traction motor bearings operate under difficult and severe conditions, which 
include relatively high unit load, low shaft speed, and limited lubricant supply by 
the wick.  This situation is very demanding for the bearing material.  In the 
presence of sufficient oil supply, babbitt meets the requirements for these 
bearings.   
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2. The applied fabrication process led to good bonding of the Vespel® and brass 

substrate, as well as achieving the designed geometry and quality of the bearing 
surface.   

 
3. In spite of the promising technical specifications and bench test results, the 

tested composite material did not perform well when replacing babbitt in traction 
motor journal bearings.  It can be concluded that the material’s thermal properties 
were insufficient to transfer the large amount of heat generated in the bearing.  
This led to high temperature and low viscosity of oil, as well as to thermal growth, 
which resulted in the bearing seizures.   
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APPENDIX A 
 
Comments from DuPont Engineering Polymers 
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