TP 14161E

EFFECT OF PLATE SURFACE FINISH ON ANTI-ICING ENDURANCE TIME

Prepared for **Transportation Development Centre** on behalf of **Civil Aviation** Transport Canada

June 2001

TP 14161E

EFFECT OF PLATE SURFACE FINISH ON ANTI-ICING ENDURANCE TIME

Prepared by

Arlene Beisswenger Jean-Louis Laforte

Anti-icing Materials International Laboratory (AMIL) UNIVERSITÉ DU QUÉBEC À CHICOUTIMI (UQAC)

June 2001

This report reflects the views of the authors (or the performing organization) and not necessarily those of the Transportation Development Centre of Transport Canada.

The Transportation Development Centre does not endorse products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

Project Team:

Arlene Beisswenger Elizabeth Crook Du Nguyen-Dang Jean-Louis Laforte Martin Truchon

Un sommaire français se trouve avant la table des matières.

1.	Transport Canada Publication No.	2. Project No.		 Recipient's C 	Catalogue No.		
	TP 14161E	5333 (DC 198)					
4.	Title and Subtitle			5. Publication E	Date		
	Effect of Plate Surface Finish on Anti	ne	June 20	001			
				6 Dorforming (Proprietion Docum	ont No.	
				0. Feriorining C		ent No.	
			WH-00-	-35			
7.	Author(s)			8. Transport Ca	anada File No.		
	Arlong Boisswonger and Joan Louis	Laforto		2450 P			
	Allelle Delssweriger and Jean-Louis		2450-BF14				
9.	Performing Organization Name and Address			10. PWGSC File	No.		
	Anti-icing Materials International Lab		MTB-2-	01528			
	Université du Québec à Chicoutimi	,					
	555 boulevard de l'Université			11. PWGSC or 1	Fransport Canada C	ontract No.	
	Chicoutimi, Quebec			T8200-0	022527/001/	/MTB	
	Canada G7H 2B1						
12.	Transportation Development Control			13. Type of Publ	lication and Period C	Jovered	
	800 René Lévesque Blvd. West	(IDC)		Final			
	Suite 600			14. Project Offic	er		
	Montreal, Quebec			Barny B	Myore		
	H3B 1X9			Barry B. Myers			
15.	Supplementary Notes (Funding programs, titles of related pub	lications, etc.)					
16.	Abstract						
	Under contract to the Transportation Development Centre of Transport Canada, the Anti-Icing Materials						
	International Laboratory (AMIL) undertook a study to evaluate the effect of test plate surface finish on anti-icing						
	endurance times of SAE Type I and Type IV de/anti-icing fluids. The objective of these tests was to determine						
	whether the roughness of the test pla	ates had a significant	t effect on the pr	otection time of	the fluids.		
	Five aluminum surface finishes were studied: a mirror nolished surface with an average roughness (Ra) between						
	0.2 and 0.8 µm a plate scratched with grooves along the long axis with an Ra of 1.3 µm a plate scratched with						
	grooves along the short axis with an	Ra of 2.6 µm, a we	athered (oxidize	d) aircraft alumi	num plate w	/ith an Ra of	
	$0.54 \ \mu m$ and the painted flipside of	f this plate. Five flu	ids were studie	ed: two SAE Ty	pe I deicing	g fluids, one	
	propylene glycol-based fluid, one eth	ylene glycol-based	fluid, and one mi	ilitary specificatio	on deicing fl	uid. The test	
	method used was the Water Spray E	ndurance Test (WSI	ET) of Annex A c	of AMS1424 and	AMS1428.		
	Although there were no large or co	onsistent differences	in anti-icing tir	nes ice formed	l earlier on	the rougher	
	plates. However, ice progressed fas	ter along the smoot	her surfaces. Fi	urthermore, ther	e was more	variation in	
	the results on the rougher plates.	A surface roughnes	s of 0.5 μm or	less was seled	cted not onl	ly to ensure	
	repeatability of the test results, but al	so because it is repr	esentative of an	aircraft surface.			
17	KoyWords		18 Distribution Statem	ant			
17.	Deicing fluid anti icing fluid surface (finich WRET	limited num	phor of conjoe a	vailable from	the	
	Water Spray Endurance Test test nl:	ate roughness	Transportat	ion Developmen	t Centre		
		, iouginiooo	ranoportat		Contro		
19.	Security Classification (of this publication)	20. Security Classification (of	this page)	21. Declassification (date)	22. No. of Pages	23. Price	
	Unclassified	Unclassified		—	xiv, 26,	Shipping/	
					app.	панишу	

L

CDT/TDC 79-005 Rev. 96

1.	Nº de la publication de Transports Canada	2. Nº de l'étude		3. N° de ca	talogue du destinataire	
	TP 14161E	5333 (DC 198)				
4	Titre at sous-titre			5 Date de	anublication	
7.	Effect of Plate Surface Finish on Anti-Icing Endurance Time				2001	
				6. N ^o de do	cument de l'organisme	exécutant
				WH-0	00-35	
7.	Auteur(s)			8. Nº de de	ssier - Transports Cana	da
	Arlene Beisswenger et Jean-Louis L	2450	-BP14			
9.	Nom et adresse de l'organisme exécutant			10. N ^o de do	ssier - TPSGC	
	Laboratoire international des matéri Université du Québec à Chicoutimi	aux antigivre		MTB	2-01528	
	555, boulevard de l'Université			11. N° de co	ntrat - TPSGC ou Trans	ports Canada
	Chicoutimi (Québec) Canada G7H 2B1			T820	0-022527/001/	/MTB
12.	Nom et adresse de l'organisme parrain			13. Genre d	e publication et période	visée
	Centre de développement des trans 800, boul. René-Lévesque Ouest	sports (CDT)		Final		
	Bureau 600			14. Agent de	projet	
	H3B 1X9			Barry B. Myers		
15.	Remarques additionnelles (programmes de financement, tit	res de publications connexes, etc.)			
16.	Résumé					
	Dans le cadre d'un marché avec Laboratoire international des matér surface de la plaque d'essai sur la et de type IV de la SAE. Ces ess plaques d'essai influe sur la durée d	c le Centre de dév riaux antigivre (LIMA durée d'efficacité (ou ais avaient pour obj le la protection assur	eloppement des) a entrepris un u endurance) de ectif de détermir rée par les liquide	transports e étude pour liquides de d ner dans que es.	le Transports évaluer l'effet égivrage/antigi lle mesure la	Canada, le de l'état de vre de type l rugosité des
	Cinq états de surfaces en aluminium (Ra) de 0,2 à 0,8 μ m, une plaque p des éraflures transversales (Ra = (oxydée) (Ra = 0,54 μ m) et l'autra étudiés : deux liquides de dégivrage d'éthylène glycol, et un liquide de d'endurance au jet d'eau (WSET, p et AMS1428.	m ont été étudiés : u présentant des éraflu 2,6 μm) une plaqu e face de cette derr e de type I de la SAE dégivrage de spécif our <i>Water Spray Enc</i>	ne surface au po ires longitudinale ue d'aluminium itère plaque, rev , un liquide à bas ication militaire. <i>Jurance Test</i>) exp	li «miroir» off es (Ra = 1,3 µ d'aéronef at êtue de pein se de propylè La méthode posé à l'anne	rant une rugos m), une plaqu îmée par les ture. Cinq liqu ne glycol, un li d'essai utilisée ke A des norm	ité moyenne e présentant intempéries ides ont été quide à base e était le test es AMS1424
	Aucun écart important ou uniforme tendance à apparaître plus tôt su surfaces lisses que sur les surfaces variables. Une rugosité de surface des résultats d'essais, mais aussi p	n'a été constaté dar r les plaques rugue s rugueuses. De plus de 0,5 μm ou moins arce qu'une telle rug	ns les durées d'e uses. Toutefois, , plus la surface a été choisie, no osité est représe	fficacité des il progressa était rugueus on seulement ntative d'une	iquides, mais it plus rapidei e, plus les rés pour assurer l surface d'aéro	le givre avait ment sur les ultats étaient a répétabilité nef.
17.	Mots clés		18. Diffusion			
	Liquide de dégivrage, liquide antigiv test d'endurance au jet d'eau (WSE <i>Endurance Test</i>), plaque d'essai, ru	re, état de surface, T, <i>Water Spray</i> gosité	Le Centre de d'un nombre	e développen e limité d'exer	ient des transp iplaires.	oorts dispose
19.	Classification de sécurité (de cette publication)	20. Classification de sécurité	de cette page)	21. Déclassification	22. Nombre	23. Prix
1	Non classifiée	Non classifiée			xiv, 26,	Port et

manutention

ann.

ACKNOWLEDGEMENTS

The authors would like to thank Anthony Manzo of Air Canada for providing the weathered aircraft plates, and the fluid manufacturers for providing the test fluids. Special thanks to Barry Myers of the Transportation Development Centre of Transport Canada and Charles Masters of the Federal Aviation Administration for suggesting the topic and their support. Finally, we are indebted to the dedicated and competent AMIL testing technical staff, particularly Elizabeth Crook, Gilles Lemire, Du Nguyen-Dang and Martin Truchon.

SUMMARY

Under contract to the Transportation Development Centre of Transport Canada, the Anti-Icing Materials International Laboratory (AMIL) undertook a study to evaluate the effect of test plate surface finish on anti-icing endurance times of SAE Type I and Type IV de/anti-icing fluids. The objective of these tests was to determine whether the roughness of the test plates had a significant effect on the protection time of the fluids.

Five aluminum surface finishes were studied: a mirror polished surface with an average roughness (Ra) between 0.2 and 0.8 μ m, a plate scratched with grooves along the long axis with an Ra of 1.3 μ m, a plate scratched with grooves along the short axis with an Ra of 2.6 μ m, a weathered (oxidized) aircraft aluminum plate with an Ra of 0.54 μ m, and the painted flipside of this plate. Five fluids were studied: two SAE Type I deicing fluids, one propylene glycol-based fluid, one ethylene glycol-based fluid, and one military specification deicing fluid. The test method used was the Water Spray Endurance Test (WSET) of Annex A of AMS1424 and AMS1428.

Although there were no large or consistent differences in anti-icing times, ice formed earlier on the rougher plates. However, ice progressed faster along the smoother surfaces. Furthermore, there was more variation in the results on the rougher plates. A surface roughness of 0.5 μ m or less was selected not only to ensure repeatability of the test results, but also because it is representative of an aircraft surface.

SOMMAIRE

Dans le cadre d'un marché avec le Centre de développement des transports de Transports Canada, le Laboratoire international des matériaux antigivre (LIMA) a entrepris une étude pour évaluer l'effet de l'état de surface de la plaque d'essai sur la durée d'efficacité (ou endurance) de liquides de dégivrage/antigivre de type I et de type IV de la SAE. Ces essais avaient pour objectif de déterminer dans quelle mesure la rugosité des plaques d'essai influe sur la durée de la protection assurée par les liquides.

Cinq états de surfaces en aluminium ont été étudiés : une surface au poli «miroir» offrant une rugosité moyenne (Ra) de 0,2 à 0,8 μ m, une plaque présentant des éraflures longitudinales (Ra = 1,3 μ m), une plaque présentant des éraflures transversales (Ra = 2,6 μ m) une plaque d'aluminium d'aéronef abîmée par les intempéries (oxydée) (Ra = 0,54 μ m) et l'autre face de cette dernière plaque, revêtue de peinture. Cinq liquides ont été étudiés : deux liquides de dégivrage de type I de la SAE, un liquide à base de propylène glycol, un liquide à base d'éthylène glycol, et un liquide de dégivrage de spécification militaire. La méthode d'essai utilisée était le test d'endurance au jet d'eau (WSET, pour *Water Spray Endurance Test*) exposé à l'annexe A des normes AMS1424 et AMS1428.

Aucun écart important ou uniforme n'a été constaté dans les durées d'efficacité des liquides, mais le givre avait tendance à apparaître plus tôt sur les plaques rugueuses. Toutefois, il progressait plus rapidement sur les surfaces lisses que sur les surfaces rugueuses. De plus, plus la surface était rugueuse, plus les résultats étaient variables. Une rugosité de surface de $0,5 \mu m$ ou moins a été choisie, non seulement pour assurer la répétabilité des résultats d'essais, mais aussi parce qu'une telle rugosité est représentative d'une surface d'aéronef.

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Objective	1
1.2 Background	2
2. TEST DESCRIPTION	3
2.1 Test Method	3
2.1.1 Water Spray Endurance Test	3
2.1.2 Calibration	4
2.1.3 Modification to the Water Spray Endurance Test	6
2.2 Test Plates	7
2.2.1 Roughness Measurement of the Test Plates	8
2.2.1.1 Surface Profile	8
2.2.1.2 Apparatus	9
2.3 Fluids	9
3. TEST RESULTS	11
3.1 Test Presentation	11
3.2 Calibration	11
3.3 Water Spray Endurance Test	11
3.4 Water Spray Endurance Test Results	14
3.5 Test Plate Roughness	16
4. COMPARISONS	17
4.1 Type I Propylene Glycol	17
4.2 Type I Ethylene Glycol	17
4.3 MIL Fluid	18
4.4 Type IV Ethylene Glycol	19
4.5 Type IV Propylene Glycol	19

5. DISCUSSION AND COMPARISONS	21
6. CONCLUSIONS AND RECOMMENDATIONS	23
REFERENCES	

APPENDIX A: Test Data Sheets with Air and Plate Temperature Recording

LIST OF TABLES

Table 1 - Measured Experimental Test Parameters	5
Table 2 - Fluid Identification	10
Table 3 - Calibration Test Results (g/dm²/h)	12
Table 4 - Climatic Chamber Test Identification	13
Table 5 - Type IV PG	14
Table 6 - Type IV EG	14
Table 7 - Type I PG, 50/50 dilution	15
Table 8 - Type I EG, neat	15
Table 9 - MIL, 50/50 dilution	16
Table 10 - Surface roughness	16
Table 11 - Comparison of Water Spray Endurance Times of Type I PG on the Different Surface Finishes	17
Table 12 - Comparison of Water Spray Endurance Times of Type I EG on the Different Surface Finishes	18
Table 13 - Comparison of Water Spray Endurance Times of the MIL Fluid on the Different Surface Finishes	18
Table 14 - Comparison of Water Spray Endurance Times of Type IV EG on the Different Surface Finishes	19
Table 15 - Comparison of Water Spray Endurance Times of Type IV PG on the Different Surface Finishes	20
Table 16 - Comparison of the Different Fluids on the Different Surfaces	21

LIST OF FIGURES

Figure 1 - WSET Experimental Set-up	4
Figure 2 - Small Plate Position on Support	5
Figure 3 - Droplet Diameter Distribution in WSET	6
Figure 4 - Usual WSET Test Plate Set-up	7
Figure 5 - Plate Set-up for Comparison Tests of Type IV over Type I	7
Figure 6 - Plates Polished with Grooves (a) Along the Long Axis and (b) Along	
the Short Axis	8

LIST OF SYMBOLS

FIE	First Ice Event: period of elapsed time for first ice crystal to reach the 25 mm line (minutes and seconds)
MIL	Military fluid MIL-A8243D
MIT	Mean Icing Time: period of elapsed time to have a mean ice front at the 25 mm line (minutes and seconds)
Pa	Air pressure of the spraying nozzle (kPa)
P_W	Water pressure of the spraying nozzle (kPa)
Ra	Average roughness
Rh	Relative humidity (%)
T _a	Temperature of the cold room (°C)
Tp	Temperature of the plates on the refrigerated units (°C)
TI-EG	Type I fluid, ethylene glycol-based
TI-PG	Type I fluid, propylene glycol-based
TIV-EG	Type IV fluid, ethylene glycol-based
TIV-PG	Type IV fluid, propylene glycol-based
WFR	Water Flow Rate from the nozzle (mL/min)
WSET	Water Spray Endurance Test

This page left blank.

1. INTRODUCTION

De/anti-icing fluids are commonly used during the winter to remove and prevent aircraft contamination created by frozen deposits on the wing while the aircraft is on the ground. The fluids are able to protect the aircraft for a time period that depends on environmental conditions such as the nature of the precipitation, the outside air temperature and the precipitation intensity.

The Transportation Development Centre of Transport Canada continues to support research and related efforts directed toward the improvement of aircraft deicing methods and practices. One such effort is the standardization of Anti-icing Endurance Time (AET) testing to produce Holdover Time (HOT) guidelines for de/anti-icing fluids. This task has largely been carried out through the combined efforts of the SAE G-12 Holdover Time and Fluids subcommittees, and has led to the adaptation of the concept of an Aerospace Standard, AS5485 [1] that is currently in draft form. The AET tests consist of evaluating the time that a fluid can protect an aluminum flat plate from a prescribed amount of freezing contamination under various conditions of freezing precipitation. One of the issues needing resolution in order to adopt this standard is the determination of the condition of the test plate surface on which the fluids should be tested.

1.1 Objective

The objective of this study was to determine the effect of the aluminum test plate surface finish on the protection time of anti-icing fluids by comparing AETs on different surfaces. Fluid comparisons were not part of this study.

1.2 Background

Until now, the tests run to produce the HOT tables have had no requirement regarding the surface finish. For standard tests, some requirement must be in place to ensure reproducible tests.

For a fluid to be qualified, it is currently tested using the Water Spray Endurance Test (WSET) as part of AMS 1424 or AMS 1428 [2]. These tests are run on mirror polished plates with an average roughness (Ra) of 0.1 to 0.2 μ m to test the ability of the candidate fluid to wet the surface. The question arose in the SAE groups as to whether the AET tests should be run on these mirror polished plates to confirm wettability on a presumably worst case plate, or whether they should be run on rougher test plates more representative of real airplane surfaces.

2. TEST DESCRIPTION

2.1 Test Method

The test selected to investigate the surface effects was the Water Spray Endurance Test (WSET) in accordance with Annex A of AMS 1424 and AMS 1428 [2]. This test was chosen because it is a normalized test whose procedure is well documented and because AMIL has ten years' experience running the test according to specification.

2.1.1 Water Spray Endurance Test

This test is designed to simulate freezing fog exposure of an aircraft when the temperature is below 0°C. During a WSET, a 10 cm x 30 cm aluminum plate is coated with a film of the candidate fluid. The plate is positioned with a downward slope of 10° and cooled to -5° C. It is then subjected to supercooled droplets at a prescribed average icing intensity of 5.0 ± 0.2 g/dm²/h. The WSET set-up used is shown in Figure 1. The water spray is generated by a nozzle centred on a support at a height of 130 cm and oscillating at $\pm 30^{\circ}$ at 3 cycles per minute. Experimental parameters and specifications are detailed in Table 1 and the droplet diameter distribution is shown in Figure 3.

Fluid performance in a WSET is evaluated from visual observations of the ice front position. Parameters measured during the test are:

- 1. Anti-icing endurance, WSET time or *First Ice Event* (FIE), which corresponds to the period when the ice front first reaches the line at 25 mm from the top of the plate; and
- 2. *Mean Ice Time* (MIT), which corresponds to the icing time required to have an average 25 mm length of ice deposit on top of the test plate.

2.1.2 Calibration

By AMS 1424 and AMS 1428 requirement, the icing rate during WSET is 5.0 ± 0.2 g/dm²/h. To provide several simultaneous measurements, the refrigerated support accommodates six 10 cm x 30 cm plates. The support consists of a refrigerated unit as shown in Figure 1. The variation in icing intensity as a function of the plate position is evaluated using calibration tests performed prior to standard tests. These calibration tests correspond to standard tests without fluid. The mass of ice accumulated on each plate is measured after 30 minutes to evaluate the distribution of the ice on the 10 cm x 30 cm test plates. Eighteen smaller ice catch plates, 10 cm x 10 cm, are used to cover the entire support area. Figure 2 shows the position of the small plates on the refrigerated support.

Figure 1 - WSET Experimental Set-up

1P2	2P2	3P2	4P2	5P2	6P2
1P3	2P3	3P3	4P3	5P3	6P3
P 1	P 2	P 3	P 4	P 5	P 6

Figure 2 - Small Plate Position on Support

PARAMETER	SETTING
Air Pressure (Pa)	270 kPa
Air Temperature (T _{a)}	-5.0 ± 0.3°C
Droplet size distribution	50% between 15 μm and 35 μm
Droplet volume average	20 ± 5 μm
Icing intensity	5.0 ± 0.2 g/dm²/h
Plate material	Al alloy 2024
Roughness of the surface finish	Ra < 0.2 μm
Support Temperature (T _{p)}	-5.0 ± 0.5°C
Water conductivity	85 ± 5 μScm
Water Flow Rate (WFR)	62 mL/min
Water pH level	6.8 ± 0.2
Water Pressure (P _{W)}	190 kPa

 Table 1 - Measured Experimental Test Parameters

Figure 3 - Droplet Diameter Distribution in WSET

2.1.3 Modification to the Water Spray Endurance Time Test

The WSET, according to Annex A of AMS 1424 and 1428 [2], specifies one fluid per test run. To accelerate testing, the set-up was modified to accommodate two fluids per test run. Normally one fluid is tested on three plates intercalated with the ice catch plates as shown in Figure 4.

Ice catch		Ice catch		Ice catch	
Ice catch	Candidate Fluid	Ice catch	Candidate Fluid	Ice catch	Candidate Fluid
Ice catch		Ice catch		Ice catch	
P1	P2	P3	P4	Р5	P6

Figure 4 - Usual WSET Test Plate Set-up

However, for some of the tests in this study the test set-up shown in Figure 5 was used. This allowed for two fluids per test run, while still providing replicas of tests.

Figure 5 - Plate Set-up for Comparison Tests of Type IV over Type I

2.2 Test Plates

Since the object of this test was to compare the effect of surface finish, five different test plate surface finishes were studied during the WSET tests:

The normally used standard polished plates required by AMS 1424 and 1428
 [2], which have been polished to an average roughness (Ra) of 0.2 μm.

- 2) Plates polished with grooves made along the long axis, to obtain a texture similar to brushed steel (Figure 6a).
- 3) Plates polished with grooves made along the short axis, again to obtain a texture similar to brushed steel (Figure 6b).
- 4) Plates made of weathered (oxidized) aircraft aluminum, provided by Anthony Manzo of Air Canada.
- 5) The flipside of the aircraft aluminum plate, which was painted.

Figure 6 - Plates Polished with Grooves (a) Along the Long Axis (b) Along the Short Axis

2.2.1 Roughness Measurement of the Test Plates

Since the objective of this study was to compare anti-icing times on different surfaces, the roughness of the surfaces was measured.

2.2.1.1 Surface Profile

The roughness of the studied surfaces was measured using a surface profilometer. The roughness is expressed in terms of its Ra, which is defined as the arithmetic mean of the profile deviation according to ISO 4287 [3].

2.2.1.2 Apparatus

- Main unit: UBM company, type: 2025, No = 92 M001
- Software: UBSOFT, version 1.9

The apparatus used was a profilometer, which uses a laser coupled with an optical lens system that eliminates all physical contact with the studied surface. It detects optical changes induced by the varying distance between the source and the surface trace in two or three dimensions. Different factors of roughness were calculated from the surface profile, including the Ra.

2.3 Fluids

Originally, four fluids were selected for the test set: two Type IV anti-icing fluids (one propylene glycol-based and one ethylene glycol-based) and two Type I fluids (again, one propylene glycol-based and one ethylene glycol-based). Both Type IVs were tested in neat form (undiluted). The Type I propylene glycol-based fluid was tested in a 50/50 concentration (diluted with hard water) and the ethylene glycol-based fluid was tested neat (in its concentrate form). The hard water used for dilution purposes was prepared as per AMS 1424 [2].

Type of Glycol	Fluid Type Dilution (fluid/water)	AMIL Label	Recep. Date	Reference
Propylene Glycol	Type IV neat	C317	99-03-03	TIV-PG
Ethylene Glycol	Type IV neat	C709	00-03-24	TIV-EG
Propylene Glycol	Type I 50/50	C612	00-01-05	TI-PG
Ethylene Glycol	Type I neat	C293	99-02-01	TI-EG
Propylene Glycol	MIL-A-8243D 50/50	M030	00-03-13	50/50MIL

Table 2 - Fluid Identification

The purpose of the study was to compare the surface finishes of the plates and not the fluids. Therefore, since all the fluids were certified fluids, the Type I fluids had WSET times in excess of 3 minutes on polished plates, and the Type IVs had WSET times of longer than 80 minutes. They all adequately wet polished plates to pass the test. If these fluids can wet a polished plate (and this is considered a worst case) they will also probably wet an unpolished plate. Therefore, another fluid was added to the test set: a 50/50 dilution of the military fluid MIL-A8243D. This fluid did not pass the WSET since it does not adequately wet the polished test plate surface. This fluid was added to the test set is time since it may be an easier surface to wet. This could lead to an unacceptable fluid appearing acceptable, or comparable to, a certified fluid.

3. TEST RESULTS

3.1 Test Presentation

Fluid sample identification is presented in Table 2 and the identification of the tests is presented in Table 4. All the fluids were sheared within two hours of the beginning of the test – the Type I's at 7500 rpm for 10 minutes and the Type IVs at 3500 rpm for 5 minutes, using the Brookfield counter rotator as specified in AMS 1424 and 1428 [2]. Air and plate temperatures for individual tests are shown in Appendix A.

3.2 Calibration

Calibration tests, as defined in section 2.4, were performed prior to standard tests. The results are presented in Table 3. According to the specification, the system is considered adequately calibrated if the icing intensity is within the prescribed margin of 5 ± 0.2 g/dm²/h for the WSET for each small plate. Accordingly, in the WSET calibration data presented in Table 3, all icing intensities are equal to 5 g/dm²/h within a range of ± 0.2 g/dm²/h.

3.3 Water Spray Endurance Test

FIE (First Icing Event) and MIT (Mean Icing Time) values, as defined in section 2.3, are listed for each test run in Table 5 through 9 with identification of the plate positions and the mass of ice collected on the blank plates. Standard WSET is considered acceptable if the average icing intensity for each blank plate is equal to 5.0 g/dm²/h within a range of \pm 0.2 g/dm²/h. This is validated as shown in Table 5 through 9.

TEST	PLATE	P 1	P 2	P 3	P 4	P 5	P 6	OVERALL AVERAGE
WSC-2015	1	5.14	5.12	5.10	5.08	4.92	4.92	
99-09-20	2	5.08	5.10	5.06	5.08	5.04	4.96	
30 minutes	3	4.92	4.92	4.94	4.90	4.88	4.88	
	Average							5.00

 Table 3 - Calibration Test Results (g/dm²/h)

NUMBER	DATE	FLUID	TEST PLATE
WSC2015	99-09-20	Calibration 30 minutes	N/A
WS1873	99-03-16	C317	Polished
WS1875	99-03-17	C317	Polished
WS2412	00-03-03	C317	Scratched long and short axes
WS2494	00-07-10	C317	Oxidized and painted
WS2427	00-05-11	C709	Polished
WS2426	00-05-10	C709	Polished
WS2513	00-07-19	C709	Scratched long and short axis
WS2516	00-07-20	C709	Oxidized and painted
WS2296	00-01-12	C612	Polished
WS2418	00-05-15	C612	Scratched short and long axis and polished
WS2413	00-05-03	C612	Scratched long and short axis
WS2495	00-07-10	C612	Oxidized and painted
WS2739	01-04-03	C293	Polished
WS2514	00-07-20	C293	Scratched long and short axis
WS2515	00-07-20	C293	Oxidized and painted
WS2394	00-04-06	M030	Polished
WS2478	00-07-05	M030	Scratched long and short axis
WS2478	00-07-05	M030	Oxidized and painted

Table 4 - Climatic Chamber Test Identification

3.4 Water Spray Endurance Test Results

For each fluid, three to four test sessions were required to test all five surface finishes. The results for each fluid are presented in Tables 5 through 9.

FLUID	TEST	DATE	IC	CE DATA		FLUID DA	АТА	
LABEL	CODE	y-m-d	Plate	Intensity		Plate	FIE	MIT
				g/dm²/h	#	finish	min	min
C317	WS1873	99-03-16	P1	5.08 ± 0.07	P2	Polished	95	100
			P3	5.08 ± 0.08	P4	Polished	98	104
			P5	5.04 ± 0.08	P6	Polished	97	103
	WS1875	99-03-17	P2	5.01 ± 0.09	P1	Polished	97	106
			P4	5.01 ± 0.10	P3	Polished	102	107
			P6	5.05 ± 0.07	P5	Polished	105	108
	WS2412	00-03-03	P1	5.11 ± 0.04	P2	Short axis	94	95
					P3	Long axis	93	99
			P4	5.08 ± 0.04	P5	Short axis	92	95
					P6	Long axis	92	94
	WS2494	00-07-10	P1	5.07 ± 0.01	P2	Painted	86	87
					P3	Oxidized	83	87
			P4	5.06 ± 0.05	P5	Painted	54	65
					P6	Oxidized	83	87

Table 5 – Type IV-PG

Table 6 – Type IV-EG

FLUID	TEST	DATE	IC	CE DATA		FLUID	DATA	
LABEL	CODE	y-m-d	Plate	Intensity	Plate		FIE	MIT
				g/dm²/h	#	finish	min	min
C709	WS2427	00-05-11	P1	5.08 ± 0.03	P1	Polished	122	>126
			P3	4.98 ± 0.03	P4	Polished	125	>126
			P5	4.93 ± 0.05	P6	Polished	122	>126
	WS2426	00-05-10	P2	4.87 ± 0.03	P1	Polished	125	>126
			P4	4.86 ± 0.02	P3	Polished	122	>126
			P6	4.89 ± 0.04	P5	Polished	123	>126
	WS2513	00-07-19	P1	5.01 ± 0.02	P2	Short axis	95	>96
					P3	Long axis	93	>96
			P4	5.08 ± 0.03	P4	Short axis	94	>96
					P5	Long axis	96	>96
	WS2516	00-07-20	P1	5.07 ± 0.06	P2	Oxidized	114	>120
					P4	Painted	107	>120
			P4	5.07 ± 0.11	P5	Oxidized	109	>120
					P6	Painted	118	>120

FLUID	TEST	DATE	I	CE DATA		FLUII) DATA	
LABEL	CODE	y-m-d	Plate	Intensity		Plate	FIE	MIT
				g/dm²/h	#	finish	Min:sec	min
C612	WS2296	00-01-12	P1	4.91 ± 0.03	P1	Polished	5:00	6:15
			P3	4.95 ± 0.07	P4	Polished	5:15	6:20
			P5	4.95 ± 0.08	P6	Polished	5:20	6:20
	WS2418	00-05-15	P3	5.04 ± 0.06	P1	Short axis	3:15	5:50
					P3	Polished	3:40	5:55
			P6	5.07 ± 0.11	P4	Long axis	4:20	5:50
					P5	Polished	4:10	5:30
	WS2413	00-05-03	P1	5.01 ± 0.05	P2	Short axis	2:30	4:25
					P3	Long axis	2:30	4:05
			P4	5.05 ± 0.07	P4	Short axis	2:30	3:55
					P5	Long axis	2:30	3:30
	WS2495	00-07-10	P1	4.94 ± 0.02	P2	Painted	3:30	6:00
					P4	Oxidized	2:30	6:00
			P4	4.93 ± 0.03	P5	Painted	2:30	6:00
					P6	Oxidized	2:30	6:00

Table 7 – Type I-PG, 50/50 dilution

Table 8 – Type I-EG, neat

FLUID	TEST	DATE	Ι	CE DATA		FLUID DATA			
LABEL	CODE	y-m-d	Plate	Intensity	Plate		FIE	MIT	
				g/dm²/h	#	finish	Min:sec	min	
C612	WS2739	01-04-03	P2	5.01 ± 0.07	P1	Polished	6:55	8:10	
			P4	5.09 ± 0.03	P4	Polished	7:30	7:30	
			P6	5.11 ± 0.02	P6	Polished	7:10	7:10	
	WS2514	00-07-20	P1	5.01 ± 0.07	P1	Long axis	3:50	7:50	
					P3	Short axis	5:45	7:50	
			P4	5.03 ± 0.03	P4	Long axis	6:10	7:50	
					P5	Short axis	6:20	7:50	
	WS2515	00-07-20	P1	4.97 ± 0.04	P2	Oxidized	6:50	7:20	
					P3	Painted	6:00	7:10	
			P4	5.07 ± 0.07	P4	Oxidized	6:55	7:20	
					P5	Painted	6:30	7:30	

FLUID	TEST	DATE	I	CE DATA		FLUID DATA			
LABEL	CODE	y-m-d	Plate	Intensity	Plate		FIE	MIT	
				g/dm²/h	#	finish	Min:sec	min	
M030	WS2394	00-04-06	P1	4.99 ± 0.09	P2	Polished	2:05	2:10	
			P4	4.91 ± 0.05	P5	Polished	2:05	2:10	
	WS2488	00-07-05	P1	4.91 ± 0.03	P2	Short axis	1:25	4:00	
					P3	Long axis	2:30	4:00	
			P4	4.91 ± 0.03	P5	Short axis	1:25	4:00	
					P6	Long axis	2:30	4:00	
	WS2478	00-07-05	P1	4.93 ± 0.07	P2	Painted	2:50	2:50	
					P3	Oxidized	2:30	2:30	
			P4	4.98 ± 0.05	P4	Painted	2:45	2:45	
					P5	Oxidized	2:30	2:30	

Table 9 - MIL, 50/50 dilution

3.5 Test Plate Roughness

The roughness of certain surfaces was measured using a profilometer as described in section 2.2.1.1. The results are summarized in Table 10.

Test plate	Ra (µm)	Ra (µm)	Ra (µm)	avg
Polished plate - new	0.21	0.25	0.18	0.21
Polished plate - after 2 years	0.97	0.72	0.58	0.76
Aircraft plate (oxidized)	0.55	0.54	0.54	0.54
Scratched - long axis	1.19	1.19	1.56	1.31
Scratched – short axis	3.02	1.82	3.02	2.62

Table 10 - Surface Roughness

For each test plate, three 1 mm profiles were measured at three different places on the test plate. The test plates examined were the two scratched plates, the aircraft aluminum, and two polished plates (one a freshly polished plate that had not yet been used for testing, and the other a well-used test plate after two years of use). The table shows that polished test plates used in this test had an average roughness (Ra) between 0.21 and 0.76 μ m; the scratched plates had an Ra of 1.3 (long-axis) and 2.6 (short-axis); and the aircraft aluminum had an average roughness between the polished and scratched plates. Note that the surface profile measures a 1 mm length and therefore occasional deep scratches in the plates were not taken into consideration.

4. COMPARISONS

4.1 Type I Propylene Glycol

A summary of the WSET results of the propylene glycol-based fluid on the different test surfaces is presented in Table 11. This table summarizes both the First Icing Event (FIE), also known as the WSET time, which is the time that the first ice crystal from the downward moving ice front reaches a line drawn 25 mm from the top of the plate, and the Mean Icing Time (MIT), which is the time at which the average ice front reaches the 25 mm line. When the FIE is the result of edges or spikes in the ice front reaching the 25 mm line long before the average front, the results may appear unnecessarily short or inconsistent. Therefore, for comparison, both the FIE and MIT are reported. The standard deviation is compared as well, since a test surface that provides repeatable results, or low standard deviation, would be most desirable for normalized tests.

Table 11 - Comparison of WSET Times of Type I PGon the Different Surface Finishes

Fluid	Test Plate	WSET (FIE)	std dev	МІТ	Std dev
TI-PG	Polished	04:41	00:44	05:53	00:04
	Scratched - long axis	03:07	01:04	04:28	01:13
	Scratched - short axis	02:45	00:26	04:43	01:00
	Oxidized	02:30	0	06:00	0
	Painted	02:30	0	06:00	0

Table 11 shows that for the Type I propylene glycol-based fluid, the FIE time is longest on the standard WSET polished plates, and shortest on the oxidized and painted plates. The most variation is seen on the plates scratched along the long axis. For the MIT, the polished, oxidized and painted plates have the longest times, with the most variation seen on both scratched plates.

4.2 Type I Ethylene Glycol

A comparison of the WSET times for the ethylene glycol-based Type I fluid is presented in Table 12. The table shows that the longest FIE times were observed

on the polished and oxidized plates, while the shortest times were found on both scratched plates, which also showed the most variation. In general, the MITs are the same for all fluids. However, slightly longer MITs were observed on both the scratched plates. The short FIE and long MIT seen on the scratched plates is the result of ice prematurely forming along the edges of the test plates, reducing the FIE with respect to the MITs.

Fluid	Test Plate	WSET (FIE)	std dev	MIT	std dev
TI-EG	Polished	07:11	00:17	07:36	00:30
	Scratched - long axis	06:10	01:39	07:50	00:00
	Scratched - short axis	06:02	00:24	07:50	00:00
	Oxidized	06:52	00:03	07:20	00:00
	Painted	06:15	00:21	07:20	00:14

Table 12 - Comparison of WSET Times of Type I EGon the Different Surface Finishes

4.3 MIL Fluid

A summary of the results of the Military fluid is presented in Table 13. The table shows that in all cases the FIE time is inferior to the minimum 3 minutes for an SAE Type I fluid. This shows that the fluid is uncertifiable, regardless of the test surface. The standard deviation in all cases is zero, implying the same measured value for each test: this may be due, in part, to the fact that only two test plates were tested for all conditions.

Table 13 - Comparison of WSET Times of the MIL Fluid on the Different Surface Finishes

Fluid	Test Plate	WSET (FIE)	std dev	MIT	std dev
50/50 MIL	Polished	2:05	0	2:10	0
	Scratched – long axis	2:30	0	4:00	0
	Scratched – short axis	2:15	0	4:00	0
	Oxidized	2:30	0	2:30	0
	Painted	2:45	0	2:40	0

Table 13 shows that the FIE is relatively the same for all test surfaces. For the MIT, the scratched plates have the longest time. As with the Type I EG, this is the result of a failure along the edges of the scratched plates.

4.4 Type IV Ethylene Glycol

A summary of the WSET results of the ethylene glycol-based Type IV fluid is presented in Table 14. The table shows that the longest FIE times were observed on the polished plates, while the shortest were seen on the scratched plates. The most variation, as expressed by the high standard deviation, was seen on the oxidized and painted plates. All the tests were stopped shortly after the FIE was reached and consequently the MIT was not measured.

Table 14 - Comparison of WSET Times of Type IV EGon the Different Surface Finishes

Fluid	Test Plate	WSET (FIE)	Std dev	MIT
TIV-EG	Polished	123:10	1:28	>126
	Scratched - long axis	94:30	2:07	>96
	Scratched - short axis	94:30	0:43	>96
	Oxidized	111:30	3:32	>120
	Painted	112:30	7:47	>120

4.5 Type IV Propylene Glycol

A summary of the WSET results on the different surfaces for the propylene glycolbased Type IV fluid is presented in Table 15. The table shows that the longest FIE times were observed on the polished plates, and the shortest times on the oxidized and painted plates. The most variation was seen in the FIE results on the painted plate, which had a large variation in results.

Fluid	Test Plate	WSET (FIE)	Std dev	MIT	Std dev
TIV-PG	Polished	96:40	1:32	104:40	0:57
	Scratched - long axis	92:30	0:42	96:30	3:32
	Scratched – short axis	93:00	1:25	97:00	2:50
	Oxidized	83:00	0	87:00	0
	Painted	70:10	22:38	76:00	15:33

Table 15 - Comparison of WSET Times of Type IV PGon the Different Surface Finishes

The polished plate had the longest MITs, while the painted plate had the shortest. As with the FIE, the standard deviation was the highest on the painted plate.

5. DISCUSSION AND COMPARISONS

Table 16 summarizes the results of all fluids on all five surfaces by comparing the longest and shortest WSET times for each test surface. The table shows that for most fluids the longest FIE times were seen on the polished plates now used for the WSET, which have the lowest roughness. The scratched plates usually had the longest MITs and the highest roughness.

Table 16 - Comparison of the Different Fluidson the Different Surfaces

	FIE-longest	FIE-shortest	MIT-longest	MIT-shortest
TI-PG	Polished	Oxidized, painted	Same	Same
TI-EG	Polished	Scratched	Scratched	Oxidized, painted
50/50 MIL	Same	Same	Scratched	Polished
TIV-PG	Polished, scratched	Oxidized, painted	Polished, scratched	Oxidized, painted
TIV-EG	Polished	Scratched	N/A	N/A

In all cases, no noticeable difference was seen between the two scratched plates. There was little or no difference in the WSET times regardless of whether the scratched plates were in the direction of the gravitational fluid flow (scratched along the long axis) or against it (scratched along the short axis). This suggests that the scratches neither hinder nor accelerate the accumulation of frozen contamination on the plate. However, in general the scratched plates showed the most variation in WSET times, which renders them the least effective for providing a reproducible test.

The standard polished plates have the longest FIE times. This is probably due to the fact that having no scratch marks allows for the fluid to evenly descend the plate, allowing for no additional nucleation sites. This page left blank.

6. CONCLUSIONS AND RECOMMENDATIONS

Although there were no large or consistent differences in anti-icing times, it was on the rougher plates that the ice first appeared. However, the smoother surfaces were covered with ice more quickly. Also, there was more variation in the results with the rougher plates.

Therefore, an average surface roughness of $0.5 \,\mu\text{m}$ or less would be most desirable in a test plate, since this would provide the most repeatable results, while being approximely the same roughness as an aircraft wing.

This page left blank.

7. REFERENCES

[1] 24 March 2000 Draft of Aerospace Standard 5485. Endurance Time Testing For Aircraft Deicing/Anti-icing Fluids SAE Type I, II, III, and IV.

[2] Aerospace Material Specifications De/Anti-icing Fluid Aircraft, AMS 1424C Newtonian SAE Type I (November, 1999) and AMS 1428C Non Newtonian pseudo-plastic SAE Type II, Type III and Type IV (October, 1998).

[3] ISO 4287, 1997 – Geometrical Product Specifications (GPS) – Surface Texture: Profile Method: Terms, definitions and surface texture parameters.

This page left blank.

APPENDIX A

TEST DATA SHEETS WITH AIR AND PLATE TEMPERATURE RECORDING

Fluid	Plate	Reference, dilution	Test #	Page #
Calibrat	ion 30 minutes		WSC-2015	p. A-1
C317	Polished	TIV-PG, neat	WS1873	p. A-2
C317	Polished	TIV-PG, neat	WS1875	p. A-3
C317	Scratched, long and short axis	TIV-PG, neat	WS2412	p. A-4
C317	Painted and oxidized	TIV-PG, neat	WS2494	p. A-5
C709	Polished	TIV-EG, neat	WS2427	p. A-6
C709	Polished	TIV-EG, neat	WS2426	p. A-7
C709	Scratched, long and short axis	TIV-EG, neat	WS2513	p. A-8
C709	Painted and oxidized	TIV-EG, neat	WS2516	p. A-9
C612	Polished	TI-PG, 50/50	WS2296	p. A-10
C612	Polished and scratched short and long axes	TI-PG, 50/50	WS2418	p. A-11
C612	Scratched, long and short axis	TI-PG, 50/50	WS2413	p. A-12
C612	Painted and oxidized	TI-PG, 50/50	WS2495	p. A-13
C293	Polished	TI-EG, neat	WS2739	p. A-14
C293	Scratched, long and short axis	TI-EG, neat	WS2514	p. A-15
C293	Painted and oxidized	TI-EG, neat	WS2515	p. A-16
M030	Polished	Mil, 50/50	WS2394	p. A-17
M030	Scratched, long and short axis	Mil, 50/50	WS2488	p. A-18
M030	Painted and oxidized	Mil, 50/50	WS2478	p. A-19

This page left blank.

TEST: WSC-2015 DATE: 99-09-20 DURATION: 30 minutes

0mm						
²⁵ mm_	l: 5.14 g/dm²h	l: 5.12 g/dm²h	l: 5.10 g/dm²h	l: 5.08 g/dm²h	l: 4.92 g/dm²h	l: 4.92 g/dm²h
150 mm	l: 5.08 g/dm²h	l: 5.10 g/dm²h	l: 5.06 g/dm²h	l: 5.08 g/dm²h	l: 5.04 g/dm²h	l: 4.96 g/dm²h
300 mm	l: 4.92 g/dm²h	l: 4.92 g/dm²h	l: 4.94 g/dm²h	l: 4.90 g/dm²h	l: 4.88 g/dm²h	l: 4.88 g/dm²h
_	l _{av} :5.05 σ:0.09	l _{av} :5.05 σ:0.09	l _{av} :5.03 σ:0.07	l _{av} :5.02 σ:0.08	l _{av} :4.95 σ:0.07	l _{av} :4.92 σ:0.03
	P1	P2	P3	P4	P5	P6

Comments:

 $T_a: -5.0 \pm 0.0^{\circ}C$ $T_p: -5.2 \pm 0.3^{\circ}C$ Rh: $\pm \%$ Ave. king Int.: $5.07 \pm 0.08g/dm^2/h$

DELAY between shearing and test : 35 minutes

TEST: WS1075 DATE: 99-03-17 DURATION: 100 MINUL	TEST:	WS1875	DATE:	99-03-17	DURATION:	108 minut
---	-------	--------	-------	----------	-----------	-----------

 $T_a: -5.0 \pm 0.0^{\circ} C \quad T_p: -5.0 \pm 0.0^{\circ} C \quad Rh: \ 64.1 \pm 3.1\% \quad Ave. \ \text{lcing Int:} \quad 5.03 \pm 0.09 \ \text{g/dm²/h}$

DELAY between shearing and test : 60 minutes

TEST: WS2412 DATE: 00-03-03 DURATION: 100 minu
--

 $T_a: -5.0 \pm 0.1 \,^{\circ} C \quad T_p: -5.0 \pm 0.1 \,^{\circ} C \quad Rh: \ 65.4 \pm 2.8 \,\% \quad Ave. \ \text{lcing Int:} \qquad 5.10 \pm 0.05 \, g/dm^2/h$

DELAY between shearing and test : 20min

DELAY between shearing and test :

 $T_a: -5.0 \pm 0.0^{\circ}C$ $T_p: -5.0 \pm 0.1^{\circ}C$ Rh: $66.1 \pm 32\%$ Ave. king lnt: 5.00 ± 0.07 g/dm²/h DELAY between shearing and test : 50 minutes

TEST:	WS2426	DATE:	00-05-10	DURATION:	126 minutes
-------	--------	-------	----------	-----------	-------------

 $T_a: -5.0 \pm 0.0^{\circ} C \quad T_p: -5.0 \pm 0.1^{\circ} C \quad Rh: \ 64.4 \pm 3.6\% \quad Ave. \ \text{lcing Int:} \quad 4.87 \pm 0.03 \ \text{g/dm²/h}$

DELAY between shearing and test : 95 minutes

TEST: WS2513 DATE: 00-07-19 DURATION: 96 min	minutes
--	---------

T_a: -5.0 ± 0.1 °C T_p: -5.0 ± 0.1 °C Rh: 64.9 ± 2.0 % Ave. king lnt: 5.05 ± 0.04 g/dm²/h DELAY between shearing and test :

Comments: TIV-EG

- failure as peaks

TEST: WS2516 DATE: 00-07-20 DURATION: 120 min

T_a: -5.0 \pm 0.0°C T_p: -5.0 \pm 0.1 °C Rh: 65.7 \pm 2.2% Ave. king lnt: 5.07 \pm 0.09 g/dm²/h DELAY between shearing and test :

 $T_a: -5.0 \pm 0.0^{\circ}C$ $T_p: -5.0 \pm 0.1^{\circ}C$ Rh: $60.1 \pm 22^{\circ}$ Ave. king lnt: 4.94 ± 0.07 g/dm²/h DELAY between shearing and test : 50 minutes

TEST:	WS2418	DATE:	00-05-15	DURATION:	30 minutes

 $T_a: -5.0 \pm 0.1^{\circ} C \quad T_p: -4.9 \pm 0.1^{\circ} C \quad Rh: \ 60.4 \pm 2.8 \,\% \quad Ave. \ \text{lcing Int.} \qquad 5.05 \pm 0.09 \, \text{g/dm²/h}$

DELAY between shearing and test : 30min

TEST: WS2413 DATE: 00-05-03 DURATION: 30 minu	TEST:	WS2413	DATE:	00-05-03	DURATION:	30 minut
---	-------	--------	-------	----------	-----------	----------

 $T_a: -5.0 \pm 0.0 \degree C$ $T_p: -4.9 \pm 0.0 \degree C$ Rh: $\pm \%$ Ave. loing lnt: 5.02 ± 0.06 g/dm²/h

DELAY between shearing and test : 30 min

TEST: WS2495 DATE: 00-07-10 DURATION: 30	minutes
--	---------

T_a: -5.0 \pm 0.1 °C T_p: -5.0 \pm 0.1 °C Rh: 624 \pm 2.5% Ave. loing Int: 4.94 \pm 0.02 g/dm²/h DELAY between shearing and test : 20min

 $T_a: \ \ \, \text{-5.0} \pm 0.1\,^\circ \text{C} \quad T_p: \ \ \, \text{-5.0} \pm 0.1\,^\circ \text{C} \quad \text{Rh}: \ \ \, \text{62.5} \pm 2.0\,\% \quad \text{Ave. lcing Int.} \quad \ \, \text{5.07} \pm 0.06\,\text{g/dm^2/h}$

DELAY between shearing and test : 70 min

TEST: WS2514 DATE: 00-07-20 DURATION: 30	minutes
--	---------

T_a: -5.0 \pm 0.0 °C T_p: -5.0 \pm 0.1 °C Rh: 59.8 \pm 3.8 % Ave. king Int: 5.02 \pm 0.05 g/dm?/h DELAY between shearing and test : EG-TI neat

TEST. W32515 DATE. 00-07-20 DORATION. 50 IIIIIule	TEST:	WS2515	DATE:	00-07-20	DURATION:	30 minutes
---	-------	--------	-------	----------	-----------	------------

T_a: -5.0 \pm 0.0 °C T_p: -4.9 \pm 0.0 °C Rh: 64.3 \pm 1.1 % Ave. king lnt: 5.02 \pm 0.08 g/dm?/h DELAY between shearing and test :

 $T_a: -4.9 \pm 0.2 \,^{\circ}{\rm C}$ $T_p: -4.9 \pm 0.1 \,^{\circ}{\rm C}$ Rh: 59.9 ± 3.5 % Ave. loing Int: 4.95 ± 0.09 g/dm²/h

DELAY between shearing and test : 30min

Comments: mil fluid

TEST:	WS2488	DATE:	00-07-05	DURATION:	30 minutes
-------	--------	-------	----------	-----------	------------

 $T_a: -5.0 \pm 0.0 \,^{\circ}\text{C}$ $T_p: -5.0 \pm 0.1 \,^{\circ}\text{C}$ Rh: 61.9 ± 2.8% Ave. loing lnt: 4.91 ± 0.02 g/dm²/h

DELAY between shearing and test : 30min

Comments: mil fluid

TEST: WS2478 DATE: 00-07-05 DURATION: 30	0 minutes
--	-----------

T_a: -5.0 ±0.0 °C T_p: -4.9 ±0.0 °C Rh: 64.2±1.5% Ave.lcing Int: 4.95±0.07 g/dm²/h DELAY between shearing and test : 75min

Comments: Mil fluid