NASA WALLOPS TIRE/RUNWAY FRICTION WORKSHOPS 1993-2002

Prepared for National Aeronautics and Space Administration (NASA) Transportation Development Centre (TDC) of Transport Canada (TC) Federal Aviation Administration (FAA)

by

1911 East College Avenue P.O. Box 1277 Sate College, PA 16804 USA

September 2002

NASA WALLOPS TIRE/RUNWAY FRICTION WORKSHOPS 1993-2002

by James C. Wambold, Ph.D., Consultant J. J. Henry, Ph.D., Consultant

1911 East College Avenue P.O. Box 1277 Sate College, PA 16804 USA

September 2002

This report reflects the views of the authors and not necessarily those of the National Aeronautics and Space Administration (NASA) nor of the Transportation Development Centre (TDC) of Transport Canada.

Neither NASA nor TDC endorses products or manufacturers. Trade or manufacturers' names appear in this report only because they are essential to its objectives.

Project Team

James C. Wambold, Ph.D., Consultant J. J. Henry, Ph.D., Consultant

Un sommaire français se trouve avant la table des matières.

PUBLICATION DATA FORM

1.	Transport Canada Publication No.	2. Project No.		3.	Recipient's (Catalogue No.		
	TP 14190E	5349						
4.	Title and Subtitle			5.	Publication [Date		
	NASA WallopsTire/Runway Friction	Workshops: 1993-20	002		Septerr	nber 2002		
		·			•			
				6.	Performing (Organization Docu	ment No.	
7.	Author(s)			8.	Transport Ca	anada File No.		
	J.C. Wambold and J.J. Henry				2450-B	P-14		
9.	Performing Organization Name and Address			10.	PWGSC File	e No.		
	CDRM Inc.				MTB-2-	01655		
	1911 East College Avenue			11	DW/CCC at	Transnart Canada	Contract No	
	P.U. Box 12/7			11.				
	State College, PA				T8200-	022539/00	1/MTB	
12	Sponsoring Agency Name and Address			13	Type of Pub	lication and Perior	Covered	
	Transportation Development Centre			10.				
	800 René Lévesque Blvd. West	(100)			Final			
	Suite 600			14.	Project Offic	er		
	Montreal, Quebec							
	H3B 1X9			A. Boccantuso				
15.	15. Supplementary Notes (Funding programs, titles of related publications, etc.)							
	Co-sponsored by NASA the FAA and	d the Aerodrome Saf	ety Branch of Tr	ransnort	Canada	a		
				ransport	Ganada	A		
16.	Abstract							
	and Harmonize Friction and Texture Belgium and Spain were assembled with other devices that were not used was collected with ground vehicles o Tire/Runway Friction Workshops. Th the average values of repeat runs ma	Measurements. The at the NASA Wallops d in Europe. Each Ma n the test surfaces at is extensive databas ade on each site by e	following May, s facility. Measur ay for the next ca t the NASA Wall e has been com each device.	some of rements onsecuti lops Flig piled int	the devi were al ve nine ht Facili o spread	ices used ir so made at years (199 ty during th dsheets su	n the tests in Wallops 4-2002) data le annual mmarizing	
15								
17.	Rey words	anal Friatian	18. Distribution Statem		onice a	voilable fre	m tha	
	Index IEL International Runway Frict	tion Index IRFI		tion Deve	Jonmer	valiable II 0	n the	
	much, in i, international Kunway Filot		ransportat		Jopiner	it Centre		
19.	Security Classification (of this publication)	20. Security Classification (of t	his page)	21. Declas	sification	22. No. of	23. Price	
	Unclassified	Unclassified		(date)	-	xviii, 46,	Shipping/	
						apps	Handling	
CDT/T Rev. 9	DC 79-005 6	iii					Canadä	

FORMULE DE DONNÉES POUR PUBLICATION

Canadä

Ţ,						
1.	N° de la publication de Transports Canada	2. N° de l'étude		3. N° de catalog	gue du destinataire	
	TP 14190E	5349				
4.	Titre et sous-titre			5. Date de la pu	Iblication	
	NASA WallopsTire/Runway Friction	Workshops: 1993-20	002			
				6. N ^o de docum	ent de l'organisme e	xécutant
7.	Auteur(s)			8. N ^o de dossie	r - Transports Canad	la
	J.C. Wambold et J.J. Henry			2450-BF	P-14	
9.	Nom et adresse de l'organisme exécutant			10. Nº de dossie	r - TPSGC	
	CDRM Inc. 1911 East College Avenue			MTB-2-0	01655	
	P.O. Box 1277			11. N° de contrat	- TPSGC ou Trans	ports Canada
	State College, PA USA 16804			Т8200-0)22539/001/	МТВ
12.	Nom et adresse de l'organisme parrain			13. Genre de put	blication et période v	visée
	Centre de développement des trans 800, boul, René-Lévesque Quest	ports (CDT)		Final		
	Bureau 600			14. Agent de pro	jet	
	Montréal (Québec)			A. Bocc	anfuso	
	H3B 1X9					
15.	Projet coparrainé par la NASA, la FA	A et la Direction de	a sécurité des a	érodromes de T	ransports Ca	anada
16.	Résumé					
	À l'automne 1992, des données or internationale menée par l'AIPCR (A mesures du frottement et de la textu la NASA sur les îles Wallops. Quelq y étaient réunis, de même que d'aut neuf années suivantes (de 1994 à campagnes d'essais mettant en jeu avec les ateliers annuels sur l'adhé mené à des tableaux de moyennes d'essais répétés.	nt été recueillies en Association mondiale ure des chaussées. E ues-uns des appare res appareils qui n'a 2002), se sont ten des véhicules de m erence pneu-chausse représentant les rés	Belgique et en de la Route) da fin mai 1993, d'a ls utilisés l'autor vaient pas servi ues, au Centre esure du frottem te. La base de o sultats obtenus s	Espagne dans l ans le but de con utres essais ont nne précédent e en Europe. Puis de vols spatiaux ient au sol. Ces données conside sur chaque site p	le cadre de nparer et ha eu lieu à l'in en Belgique e , en mai de e x des îles V campagnes érable ainsi par chaque a	l'expérience rmoniser les istallation de et en Europe chacune des Vallops, des coïncidaient constituée a appareil, lors
17.	Mots clés		18. Diffusion			
	Frottement, texture, rugosité, Indice glissance, IFI, Indice international de pistes, IRFI	international de la la glissance des	Le Centre d d'un nombre	e développemer e limité d'exempl	nt des transp aires.	orts dispose
19.	Classification de sécurité (de cette publication)	20. Classification de sécurité (de cette page)	21. Déclassification	22. Nombre	23. Prix
	Non classifiée	Non classifiée		(date)	xviii, 46, ann.	Port et manutention

ACKNOWLEDGEMENTS

The authors wish to thank the personnel of National Aeronautics and Space Administration (NASA), the Transportation Development Centre of Transport Canada, the Aerodrome Safety Branch of Transport Canada, and the Federal Aviation Administration (FAA) for their continued support in this study and their participation in the NASA Wallops Runway Friction Workshops. Special thanks to Thomas J. Yager for his support and leadership in conducting the NASA Wallops Runway Friction Workshops.

EXECUTIVE SUMMARY

In the fall of 1992, data was collected in Belgium and Spain for the PIARC International Experiment to compare and Harmonize Friction and Texture Measurements. The following May, some of the devices used in the tests in Belgium and Spain were assembled at the NASA Wallops facility. Measurements were also made at Wallops with other devices that were not used in Europe. Each May for the next consecutive nine years (1994-2002) data was collected with ground vehicles on the test surfaces at the NASA Wallops Flight Facility during the annual Tire/Runway Friction Workshops. These differed from the 1993 program in that one day was set aside for presentations by vendors and other interested parties. The actual test programs for these workshops were similar to the 1993 program. This extensive database has been compiled into spreadsheets summarizing the average values of repeat runs made on each site by each device and has been added to the JWRFMP database. In most cases the high-speed testers performed measurements at several speeds ranging form 32 to 96 km/h. The following information is given in the appendices:

Site descriptions and surface photographs Friction versus speed by site for 1999 Friction versus speed by year Friction history Texture history Comparison of devices (reproducibility) Group pictures for each year Photographs of the texture devices Photographs of the fiction devices Photographs of the various profiling devices Photographs of the various profiling devices Photographs Other device photographs

Below is a summary of the equipment was used over the years. In the report, the devices are listed for each year along with tables of their measurements.

Texture Devices used to take measurements included:

Circular Track Meter (CT Meter) - Japan FHWA British Pendulum Tester (BPN) - USA FHWA Outflow Meter, ROSAN (MPD, ETD), Texture Van, and Outflow Meter - USA NASA Volumetric Texture Depth, Glass beads and Grease - USA PTI Volumetric Texture Depth, Glass beads and British Pendulum Tester (BPN) - USA Skiddabrader Outflow Meter - USA Virginia DOT British Pendulum Tester (BPN) and Circular Track Meter (CT Meter) - USA VTI Laser Texture System (MPD, ETD, RMS) - Sweden

Friction Devices used to take measurements included:

Dynamic Friction Tester (DF Tester) - Japan FAA BV-11, MuMeter, and Surface Friction Tester (SFT) - USA GripTester - NASA and USAF - USA GripTester - Scotland GripTester - USAF (Push mode only) IMAG and IRV (International Reference Vehicle) - France International Cybernetics E-274 Locked Wheel Tester (SNB and SNR) - USA JBI Decelerometer - USA K. J. Law E-274 Locked Wheel Tester (SNR) and Runway Friction Tester - USA Maryland DOT E-274 Locked Wheel Tester (SNR) - USA NASA Diagonal Braked Vehicle - USA Norsemeter OSCAR, ROAR, RUNAR, and SALTAR (variable slip testers) - Norway Penn State E-274 Locked Wheel Tester (SNB and SNR) - USA Pennsylvania DOT E-274 Locked Wheel Tester - USA Surface Friction Tester (SFT) - Sweden Transport Canada ERD Blazer and Surface Friction Testers (TC79 and TC85) - Canada U.S. Navy Slip Meter - USA

US Surface Friction Tester (USFT) - USA Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA VTI BV-14 - Sweden

Roughness measuring systems used to take measurements included:

ARP Auto Rod & Level - USA Dynatest Profiler - USA DYNVIA - Czech Republic Greenwood High Speed Profiler - DK MD DOT High Speed Profiler and Light Weight Profiler - USA PA DOT ARRB Walker and ICC Light Weight Profiler - USA Rod and Level VA DOT FACE Dipstick, ICC High Speed Profile, and profilometer - USA YSI Roadpro - USA

Site Descriptions

Х

А

<u>Site</u>		<u>Surface</u>	Description
А		CC	CANVAS BELT-FINISH
В		CC	GROOVED 1X1/4X1/4 IN.
С		CC	GROOVED 1X1/4X1/4 IN. (Different aggregate)
D		CC	BURLAP DRAG-FINISH
Е		AC	SMALL AGGREGATE
F		AC	GROOVE 2X1/4X1/4 IN.
G		AC	SMALL AGGREGATE
K		ST	JENNITE SEAL
K0		AC	UNTREATED AREA ADJACENT TO SITE K
L		AC	MEDIUM AGGREGATE
MS0		AC	SURFACE ADJACENT TO MICROSURFACE
			SITES
MS1		ST	MICROSURFACE
MS2		ST	MICROSURFACE
MS3		ST	MICROSURFACE
MS4		ST	ANTI-SKID OVERLAY
Р		Р	ALUMINUM PLATE
S0		CC	UNTREATED AREA ADJACENT TO
			SKIDABRADER SITES
S1		CC	SKIDABRADER LOW TEXTURE
S2		CC	SKIDABRADER MEDIUM TEXTURE
S3		CC	SKIDABRADER HIGH TEXTURE
S4		CC	SKIDABRADER VERY HIGH TEXTURE
S5		CC	SKIDABRADER MEDIUM TEXTURE
S6		CC	SKIDABRADER MEDIUM TEXTURE
WHITE	Ξ	Р	WHITE PANEL WITH FINE ABRASIVE
RED		Р	RED PANEL WITH MEDIUM ABRASIVE
BLUE		Р	BLUE PANEL WITH COARSE ABRASIVE
SMTH	WH	Р	SMOOTH WHITE PANEL
KEY:	AC CC ST P	ASPHALT CONCRETE PORTLAND CEMENT CONCI SURFACE TREATMENT METAL PANEL	RETE

Some of the systems that were used in the PIARC Experiment were also used at the NASA Wallops tests starting in 1993. Those systems were calibrated to the IFI using the European data. Unfortunately some of the devices were altered after the PIARC Experiment or used different measuring tires.

The most data for the calculation of the IFI for the Wallops Flight Facility sites through the six-year period from 1993 to 1998 was the combination of MTD (Volumetric Texture Depth using glass beads) and the

BPN (British Pendulum Number). The history of the IFI of the Wallops surfaces, where data is available, is given in the report.

Profiling is a relatively new addition to the workshop. In 1999 the first real data was recorded and a comparison of the dipstick, ARP, RoadPro and a rod and level measurement was shown. The data was in good agreement. The data from 2000 was not recorded, the equipment was only demonstrated. In 2002 there were a number of devices and the data as submitted was put onto a CD; however, much of the data was in the devices' own codes and still needs to be converted into common files so that accuracy and repeatability can be calculated. It is recommended that rod and level data be taken in May 2003 and more profiling activity be attempted, including a fourth site similar to site three.

The Annual NASA Wallops Runway Friction Workshop is considered to be an excellent workshop and are well liked by the friction measuring industries, both aviation and highway. Attendance continues to be well representative of the industry and the workshop always includes an audience from all over the world. One can see by the equipment that is brought to the workshop year after year the effort and importance that many organizations place on these workshops, and all at their own expense. NASA is to be commended for conducting these workshops, which have proven to contribute to the safety of the aviation and highway industry. It is hoped that these workshops continue for many years.

SOMMAIRE

À l'automne 1992, des données ont été recueillies en Belgique et en Espagne dans le cadre de l'expérience internationale menée par l'AIPCR (Association mondiale de la Route) dans le but de comparer et harmoniser les mesures du frottement et de la texture des chaussées. En mai 1993, d'autres essais ont eu lieu à l'installation de la NASA sur les îles Wallops. Quelques-uns des appareils utilisés l'automne précédent en Belgique et en Espagne y étaient réunis, de même que d'autres appareils qui n'avaient pas servi en Europe. Puis, en mai de chacune des neuf années suivantes (de 1994 à 2002), se sont tenues, au Centre de vols spatiaux des îles Wallops, des campagnes d'essais mettant en jeu des véhicules de mesure du frottement au sol. Ces campagnes, qui coïncidaient avec les ateliers annuels sur l'adhérence pneu-chaussée, étaient essentiellement les mêmes qu'en 1993, à ceci près qu'une journée était consacrée à des présentations par des fournisseurs et d'autres organismes concernés. La base de données considérable ainsi constituée a mené à des tableaux de moyennes représentant les résultats obtenus sur chaque site par chaque appareil, lors d'essais répétés, et a été ajoutée à celle du PCRGCAH. Dans la plupart des cas, les appareils prenaient des mesures à plusieurs vitesses variant de 32 à 96 km/h. On trouvera en annexe au rapport les rubriques suivantes :

Description des sites et photographies des surfaces Glissance en fonction de la vitesse, par site, pour 1999 Glissance en fonction de la vitesse, par année Données historiques sur la glissance Données historiques sur la texture Comparaisons des appareils (reproductibilité) Photographies de l'ensemble des appareils utilisés chaque année Photographies des appareils de mesure de la texture Photographies des appareils de mesure du frottement Photographies de divers appareils de profilométrie Photographies de l'opération de profilométrie Photographies d'autres dispositifs

Voici une liste des appareils qui ont servi aux essais (toutes années confondues). On trouvera dans le rapport la liste des appareils utilisés chaque année, ainsi que les tableaux des résultats obtenus avec chacun.

Appareils utilisés pour la mesure de la texture :

CT Meter (*Circular Track Meter*) – Japon Pendule SRT (*Skid Resistance Tester*) de la FHWA – É.-U. Drainomètre, ROSAN (MPD, ETD), véhicule de mesure de la texture de la FHWA – É.-U. Épaisseur de texture volumétrique - billes de verre et graisse, NASA – É.-U. Épaisseur de texture volumétrique - billes de verre et pendule SRT (*Skid Resistance Tester*), PTI – É.-U. Drainomètre Skidabrader – É.-U. Pendule SRT (*Skid Resistance Tester*) et CT Meter (*Circular Track Meter*) du DOT de Virginie – É.-U. Système laser VTI d'analyse de la texture (MPD, ETD, RMS) – Suède

Appareils utilisés pour la mesure du frottement :

Appareil de mesure du frottement dynamique (DF Tester) – Japon FAA BV-11, MuMeter et glissancemètre (SFT) – É.-U. GripTester – NASA et USAF – É.-U. GripTester – Écosse GripTester – USAF (en mode «pousser» seulement) IMAG et IRV (Véhicule international de référence) – France Appareil d'essai de la roue bloquée E-274 de International Cybernetics (SNB et SNR) – É.-U. Décéléromètre JBI – É.-U. Appareil d'essai de la roue bloquée E-274 de K. J. Law (SNR) et glissancemètre – É.-U. Appareil d'essai de la roue bloquée E-274 du DOT du Maryland (SNR) – É.-U. Véhicule à freinage diagonal de la NASA – É.-U. OSCAR, ROAR, RUNAR et SALTAR de Norsemeter (glissancemètres à taux variable) –Norvège Appareil d'essai de la roue bloquée E-274 de la Pennsylvanie (SNB et SNR) – É.-U.
Appareil d'essai de la roue bloquée E-274 du DOT de la Pennsylvanie – É.-U.
Glissancemètre (SFT) – Suède
Glissancemètres (TC79 et TC85) et décéléromètre à enregistrement électronique (ERD) et Blazer de Transports Canada – Canada
Glissancemètre de la U.S. Navy – É.-U.
Glissancemètre USFT – É.-U.
Appareil d'essai de la roue bloquée E-274 (SNB et SNR) du DOT de Virginie – É.-U.
VTI BV-14 – Suède

Systèmes utilisés pour la mesure de la rugosité :

Baguette et niveau ARP – É.-U.
Profilomètre Dynatest – É.-U.
DYNVIA – République tchèque
Profilomètre rapide Greenwood – Danemark
Profilomètre rapide et profilomètre léger du DOT du Maryland – É.-U.
Profilomètre léger ICC et ARRB Walker du DOT de Pennsylvanie – É.-U.
Baguette et niveau
Jauge graduée FACE, profilomètre rapide ICC et APL (analyseur de profil en long) du DOT de Virginie – É.-U.
YSI Roadpro – É.-U.

Description des sites

Site	<u>Surface</u>	Description
A	CC	FINITION À LA COURROIE DE CANEVAS
В	CC	RAINURES DE ¼ po x ¼ po ESPACÉES DE 1 po
С	CC	RAINURES DE 1/4 po x 1/4 po ESPACÉES DE 1 po (granulats
		différents)
D	CC	FINITION PAR PASSAGE D'UNE TOILE DE JUTE
E	AC	PETITS GRANULATS
F	AC	RAINURES DE ¼ po x ¼ po ESPACÉES DE 2 po
G	AC	PETITS GRANULATS
Κ	ST	COUCHE DE SCELLEMENT JENNITE
K0	AC	ZONE NON TRAITÉE ADJACENTE AU SITE K
L	AC	GRANULATS MOYENS
MS0	AC	SURFACE ADJACENTE AUX SITES
		DE MICROSURFAÇAGE
MS1	ST	MICROSURFAÇAGE
MS2	ST	MICROSURFAÇAGE
MS3	ST	MICROSURFAÇAGE
MS4	ST	REVÊTEMENT ANTIDÉRAPANT
Р	Р	TÔLE D'ALUMINIUM
S0	CC	ZONE NON TRAITÉE ADJACENTE AUX SITES TRAITÉS AU
S1	00	SKIDABRADER – TEXTURE FAIBLE
S2	00	SKIDABRADER – TEXTURE MOYENNE
S3	00	SKIDABRADER – TEXTURE FORTE
S4	00	SKIDABRADER – TEXTURE TRÈS FORTE
S5	00	SKIDABRADER – TEXTURE MOYENNE
S6	00	SKIDABRADER – TEXTURE MOYENNE
P BLANC	00	PANNEAU BLANC REVÊTU D'UN ABRASIE FIN
P ROUGE		PANNEAU ROUGE REVÊTU D'UN ABRASIE MOYEN
PRIFU		PANNEAU BI EU REVÊTU D'UN ABRASIE GROSSIER
P BL LISSE		

LÉGENDE :

- AC BÉTON D'ASPHALTE
- CC BÉTON DE CIMENT PORTLAND
- ST REVÊTEMENT SUPERFICIEL
- P PANNEAU MÉTALLIQUE

Certains des systèmes utilisés pour l'expérience de l'AIPCR ont aussi servi aux essais réalisés aux installations de la NASA sur les îles Wallops, à partir de 1993. Ces systèmes avaient été étalonnés à l'aide des données européennes. Malheureusement, après l'expérience de l'AIPCR, certains des appareils ont été modifiés ou équipés de pneumatiques différents.

Pendant les six années d'essais (de 1993 à 1998) réalisés aux sites des îles Wallops, la plupart des données recueillies aux fins du calcul de l'IFI avaient trait à la valeur MTD (épaisseur de texture volumétrique mesurée à l'aide de billes de verre) et à l'indice de glissance BPN (pour *British Pendulum Number*). Les tableaux 1 et 2 donnent l'historique des indices IFI qui ont pu être établis pour les surfaces des îles Wallops.

La profilométrie est un ajout assez récent aux essais. En 1999, les premières données ont été enregistrées en conditions réelles, et le rapport a donné les résultats obtenus à l'aide de divers instruments de mesure (jauge graduée, ARP, RoadPro, baguette et niveau). On note une bonne concordance entre les données. En 2000, aucune donnée n'a été enregistrée : le matériel n'a servi qu'à des fins de démonstration. En 2002, quelques appareils ont été mis en oeuvre et les données brutes ont été enregistrées sur CD; mais beaucoup des données étaient exprimées dans le code particulier de l'appareil et il reste à les convertir pour pouvoir les intégrer dans des fichiers communs et établir leur précision et leur répétabilité. Pour mai 2003, il est recommandé de prendre des mesures à l'aide de la baguette et du niveau, et d'intensifier la profilométrie, notamment en ajoutant un quatrième site semblable au site trois.

Les ateliers annuels d'étude de l'adhérence pneu-chaussée tenus par la NASA aux îles Wallops jouissent d'une renommée enviable auprès de l'industrie de la mesure du frottement des chaussées, autant aéronautiques que routières. Ils réussissent encore à attirer, aux quatre coins du monde, un auditoire bien représentatif de l'industrie. D'ailleurs, tout le matériel qu'y apportent, année après année, les nombreuses organisations participantes (à leurs frais, faut-il le souligner) témoigne bien de l'engagement de celles-ci et de l'importance qu'elles accordent à ces ateliers.

Il y a lieu de féliciter la NASA pour la tenue de ces ateliers, qui ont un apport inestimable à la sûreté du transport aérien et du transport routier. Il faut espérer que ces ateliers existeront encore longtemps.

1.0 INTRODUCTION	1
1.1 Test Surface Description and History	4
1.2 Site Locations	5
1.3 IFI Analysis and History	7
2.0 NASA TIRE/RUNWAY FRICTION WORKSHOPS	9
2.1 1993: Continuation of the PIARC International Experiment	9
2.2 1994: The First NASA Tire/Runway Friction Workshop	.12
2.3 1995: The Second NASA Tire/Runway Friction Workshop	.14
2.4 1996: The Third NASA Tire/Runway Friction Workshop	.17
2.5 1997: The Fourth NASA Tire/Runway Friction Workshop	. 20
2.6 1998: The Fifth NASA Tire/Runway Friction Workshop	.22
2.7 1999: The Sixth NASA Tire/Runway Friction Workshop	.26
2.8 2000: The Seventh NASA Tire/Runway Friction Workshop	. 33
2.9 2001: The Eighth NASA Tire/Runway Friction Workshop	.37
2.10 2002: The Ninth NASA Tire/Runway Friction Workshop	.40
3.0 DATA ANALYSIS	.43
3.1 Friction vs. Speed for Sites A - F in 1999	.43
3.2 Friction vs. Speed for Years 1993 - 1999	.43
3.3 Friction History of Sites A - F	.43
3.4 Texture History of Sites A - F	.43
3.5 Device Reproducibility	.44
3.6 Profiling	.44
4.0 CONCLUSIONS AND RECOMMENDATIONS	.45
REFERENCES	.46
APPENDIX A: SITE DESCRIPTIONS AND SURFACE PHOTOGRAPHS	
APPENDIX B: FRICTION VERSUS SPEED BY SITE FOR 1999	
APPENDIX C: FRICTION VERSUS SPEED BY YEAR FOR THE VADUT E-2/4 TRAILER WITH	

APPENDIX F: COMPARISON OF DEVICES (REPRODUCIBILITY)

APPENDIX G: GROUP PHOTOGRAPHS

APPENDIX H: TEXTURE DEVICES USED IN THE NASA WALLOPS FRICTION WORKSHOPS

APPENDIX I: FRICTION DEVICES USED IN THE NASA WALLOPS FRICTION WORKSHOPS

APPENDIX J: ROUGHNESS MEASURING SYSTEMS USED IN THE NASA WALLOPS FRICTION WORKSHOPS

APPENDIX K: PROFILING SITES

APPENDIX L: OTHER PHOTOGRAPHS

LIST OF FIGURES

Figure 1.	Overview Photograph of the NASA Wallops Flight Facility	5
Figure 2.	Test Sites on Runway 4/22	5
Figure 3.	Test Site 2 on Taxiway ECHO	6
Figure 4.	Test Sites on Taxiway ALPHA	6
Figure 5.	Profiles of the Walkers versus Rod and Level	2
Figure 6.	Three Repeats of a High Speed Profiler	2
0		

LIST OF TABLES

Table 1.	Tires with Corresponding Pressure and Water Thickness	2
Table 2.	History of F60	7
Table 3.	History of Sp	8
Table 4.	1993 Data	.10
Table 5	1994 Data	.13
Table 6.	1995 Data	.15
Table 7.	1996 Data	.18
Table 8.	1997 Data	.21
Table 9.	1998 Data	.23
Table 10	1999 Data	. 27
Table 11	2000 Data	. 34
Table 12	2001 Data	. 38
Table 13	2002 Data	.41
Table 13	Device Reproducibility	.44

NOMENCLATURE

ACI	Airports Council International
ALPA	Air Line Pilots Association
ASFT	Airport Surface Friction Tester
ASTM	ASTN International
ATA	Air Transport Association
BPN	British Pendulum Number
BPT	PTI British Pendulum Tester (BPN) - USA
CT-Meter	Circular Track Meter - Japan
DBV	NASA Diagonal Braked Vehicle - USA
DF Tester	Dynamic Friction Tester- Japan
DOT	Department of Transportation
ETD	Estimated Texture Depth
FAA	Federal Aviation Administration, USA
FAA-MU	FAA MuMeter - USA
FAA-RFT	FAA Runway Friction Tester - USA
FAA-SET	FAA Surface Friction Tester (SET) - USA
FHW/A	Federal Highway Administration 11SA
	FHWA Texture Van (MPD)- USA
	EHWA British Pendulum Tester (BPN) - USA
	EHWA Outflow Meter LISA
	GrinTester Scotland
	Baro Ico
	International Civil Aviation Organization
	International Cybernetics E 274 Locked Wheel Tester (SNB and SND) USA
	the International Eederation of Air Line Dilote
	International Friction Index
IMAG	
IRFI	Joint Winter Runway Friction Measurement Program
	Integrated Tire Test Vehicle
ΙΔΔ	Integrated file rest vehicle
IRI	James Brake Index
IWREMP	Joint Winter Runway Friction Measurement Program
MPD	Mean Profile Denth
MTD	Mean Texture Depth
NASA	National Aeronautics and Space Administration
	NASA Volumetric Texture Denth Grease - USA
	NASA Volumetric Texture Depth, Glass heads - USA
	National Research Council Canada
	World Doads Association
	Donn State DTI Pritish Dondulum Tester (PDN) LISA
	Penn State DTLE 27/ Locked Wheel Tester (SNB and SND) LISA
	Penn State PTI Volumetric Texture Denth Glass heads - USA
	K L Law Punway Friction Tester LISA
	International Reference Vehicle
ROAR	The Norsemeter ROAR (Norway) variable slip tester - Norway
	The Norsemeter PUNAP Norway
	The Norsemeter SALTAR - Norway
SB	Bare Compacted Snow
SD	Compacted Snow with a layer of loose snow
SET	Surface Friction Tester (SET) - Sweden
TC	Transnort Canada
	Virginia DOT British Pendulum Tester (RPN) - USA
VA-RPT	Virginia DOT British Pendulum Tester (RPN) - USA
VΔ-F274	Virginia DOT F-274 Locked Wheel Tester (SNR and SNR) - USA
VTIIacer	VTI Laser Texture System (MPD) – Sweden

1.0 INTRODUCTION

In fall 1992, data was collected in Belgium and Spain for the PIARC International Experiment to compare and Harmonize Friction and Texture Measurements [1]. The following May, some of the devices used in the tests in Belgium and Spain were assembled at the NASA facility. Measurements were made with other devices that were not used in Europe. Each May for the next consecutive nine years (1994 – 2002) data was collected with ground vehicles on the test surfaces at the NASA Wallops Flight Facility during the annual Tire/Runway Friction Workshops. These differed from the 1993 program in that one day was set aside for presentations by vendors and other interested parties. The actual test programs for these workshops were similar to the 1993 program. This extensive database has been compiled into spreadsheets summarizing the average values of repeat runs made on each site by each device. In most cases the high-speed testers performed measurements at several speeds ranging from 32 to 96 km/h. Appendies A through F supply the following information:

Appendix A: site descriptions and surface photographs Appendix B: friction versus speed by site for 1999 Appendix C: friction versus speed by year Appendix D: friction history Appendix E: texture history Appendix F: comparison of devices (reproducibility)

Below is a summary of the equipment used over the years. Appendix G holds group pictures for each year. Appendix H holds photographs of texture devices. Appendix I holds photographs of friction devices. Appendix J holds photographs of various profiling devices. Appendix K holds photographs of profiling sites. Appendix L holds photographs of other devices. In the report, the devices are listed for each year, along with tables displaying the corresponding measurements.

Texture Devices that took part in the measurements are:

Circular Track Meter (CT Meter) - Japan FHWA British Pendulum Tester (BPN) - USA FHWA Outflow Meter – USA FHWA ROSAN (MPD, ETD) – USA FHWA Texture Van - USA NASA Outflow Meter - USA NASA Volumetric Texture Depth, Glass beads - USA NASA Volumetric Texture Depth, Glass beads – USA PSU Volumetric Texture Depth, Glass beads – USA PSU Volumetric Texture Depth, Glass beads – USA PSU Volumetric Texture Depth, Glass beads – USA Vill British Pendulum Tester (BPN) – USA Skiddabrader Outflow Meter – USA Virginia DOT British Pendulum Tester (BPN) – USA Circular Track Meter (CT Meter) – Virginia VTI Laser Texture System (MPD, ETD, RMS) - Sweden

All of the texture devices were operated according to the manufacturer's procedures. In addition the Volumetric tests with glass beads, the Skidabrader outflow meter, the British Pendulum Tester, and the Circular Track Meter were operated as specified in their ASTM standards.

Friction Devices used to collect measurements included:

Dynamic Friction Tester (DF Tester) - Japan FAA BV-11 – USA FAA MuMeter - USA FAA Surface Friction Tester (SFT) - USA GripTester – NASA GripTester – Scotland GripTester – USAF GripTester – USAF (Push mode only IMAG – France International Cybernetics E-274 Locked Wheel Tester (SNB and SNR) – USA IRV - International Reference Vehicle - France JBI Decelerometer – USA K. J. Law E-274 Locked Wheel Tester (SNR) - USA K. J. Law Runway Friction Tester - USA Maryland DOT E-274 Locked Wheel Tester (SNR) - USA NASA Diagonal Braked Vehicle - USA Norsemeter OSCAR (variable slip tester) – Norway Norsemeter ROAR (variable slip tester) – Norway Norsemeter RUNAR (variable slip tester) – Norway Norsemeter SALTAR - Norway Penn State E-274 Locked Wheel Tester (SNB and SNR) - USA Pennsylvania DOT E-274 Locked Wheel Tester - USA Surface Friction Tester (SFT) - Sweden Transport Canada ERD Blazer - Canada Transport Canada Surface Friction Tester (TC79) - Canada Transport Canada Surface Friction Tester (TC85) - Canada U.S. Navy Slip Meter – USA US Surface Friction Tester (USFT) - USA Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA VTI BV-14 – Sweden

All friction devices were operated in their normal mode with their standard tires, unless otherwise noted in the data tabulations. Other modes included non-standard conditions for devices: slip speeds, water film thickness, tire types, inflation pressure, and normal load. For the self-wetting devices, runs were made in the same track and operated consecutively. To minimize the effects of water film thickness variations, one set of runs was generally made by all devices to pre-wet the surfaces. The diagonally braked vehicle and decelerometers were operated on pre-wetted surfaces with water supplied by a tank truck. Table 1 is a list of the normally used tires, pressure and water thickness.

Device	Owner	Tire	Tire Pressure kPa	Water Film MM
BV-11	FAA	ASTM E-501	689	1
BV-14	VTI	Trelleborg	689	unknown
DVB	NASA	ASTM E-501	165	external
DFTester	Japan	Slider	Solid Rubber	n/a
E-274 Trailer	ICC	ASTM E-524	165	0.5
E-274 Trailer	Dynatest	ASTM E-524	165	0.5
E-274 Trailer	MD DOT	ASTM E-524	165	0.5
E-274 Trailer	PSU	ASTM E-524	165	0.5
E-274 Trailer	VA DOT	ASTM E-524	165	0.5
ERD	TC	Automotive	unknown	external
GripTester	NASA	ASTM E-1844	138	1
GripTester	Scotland	ASTM E-1844	138	1
GripTester	UFAF	ASTM E-1844	138	1

Table 1. Tires with Corresponding Pressure and Water Thickness

l able 1.	Table 1. Tires with Corresponding Pressure and Water Thickness (Continued)							
IMAG	STBA	PIARC Smooth		1				
IRV	STBA	PIARC Smooth		1				
JBI	NASA	Automotive	unknown	external				
Decelerometer		Automotive		external				
MuMeter	FAA	ASTM E670	69	1				
OSCAR	Norway	ASTM E-524	165	0.5				
RFT	FAA	ASTM E-1551	207	1				
RUNAR	Norway	ASTM E-1551	207	0.5				
SALTAR	Norway	ASTM E-1551	207	external				
SFT	FAA	ASTM E-1551	207	1				
SFT	Sweden	Trelleborg	689	0.5				
SFT TC79	TC	ASTM E-1551	689	0.5				
SFT TC85	TC	ASTM E-1551	689	0.5				
Slip Meter	US Navy	Skider	Rubber	External				
USFT	ASFT	ASTM E-1551	207	0.5				

.... 1 14/-4-This -1\ 10

Roughness measuring systems that took part in the measurements are:

ARP Auto Rod & Level-USA **Dynatest Profiler-USA** DYNVIA -Czech Republic Greenwood High Speed Profiler-DK MD DOT High Speed Profiler-USA MD DOT Light Weight Profiler-USA PA DOT ARRB Walker PA DOT ICC Light Weight Profiler-USA Rod and Level VA DOT FACE Dipstick -USA VA DOT ICC High Speed Profiler-USA Virginia DOT profilometer-USA YSI Roadpro-USA

Appendix A gives the surface characteristics of each site followed by photographs of each surface.

1.1 Test Surface Description and History

SITE DESCRIPTIONS

SITE	SURFACE	DESCRIPTION
SITE A B C D E F G K K0 L MS0 MS1 MS2 MS3 MS4 P S0 S1 S2 S3 S4 S5 S6	SURFACE CC CC CC CC AC AC AC AC AC AC AC ST ST ST ST ST ST ST ST CC CC CC CC CC CC CC CC CC CC CC CC CC	DESCRIPTION CANVAS BELT-FINISH GROOVED 1X1/4X1/4 in. GROOVED 1X1/4X1/4 in. (Different aggregate) BURLAP DRAG-FINISH SMALL AGGREGATE GROOVE 2X1/4X1/4 in. SMALL AGGREGATE JENNITE SEAL UNTREATED AREA ADJACENT TO SITE K MEDIUM AGGREGATE SURFACE ADJACENT TO MICROSURFACE SITES MICROSURFACE MICROSURFACE MICROSURFACE ANTI-SKID OVERLAY ALUMINUM PLATE UNTREATED AREA ADJACENT TO SKIDABRADER SITES SKIDABRADER LOW TEXTURE SKIDABRADER HIGH TEXTURE SKIDABRADER MEDIUM TEXTURE
S6	CC	SKIDABRADER MEDIUM TEXTURE
S6	CC	
	P D	
	F D	RED PANEL WITH MEDIUM ADRASIVE
SMTH WH	P	SMOOTH WHITE PANEL
		NONODETE

- AC CC ST KEY:
 - ASPHALT CONCRETE PORTLAND CEMENT CONCRETE
 - SURFACE TREATMENT
 - Р METAL PANEL

1.2 Site Locations

Figure 1 is an overall photograph of the NASA Wallops Flight Facility. Figures 2, 3, and 4 are diagrams of the three test locations showing the location of each test surface.

Figure 1. Overview Photograph of the NASA Wallops Flight Facility.

Figure 2. Test Sites on Runway 4/22

Figure 3. Test Site 2 on Taxiway ECHO

Figure 4. Test Sites on Taxiway ALPHA

1.3 IFI Analysis and History

Some of the systems that took part in the PIARC Experiment also took part at the NASA Wallops tests starting in 1993. Those systems were calibrated to the IFI using the European data. Unfortunately some of the devices were altered after the PIARC Experiment or used different measuring tires.

Most of the data used in the calculation of the IFI for the Wallops Flight Facility sites through the six year period from 1993 to 1998 is the combination of MTD (Volumetric Texture Depth using glass beads) and the BPN (British Pendulum Number). Tables 2 and 3 give the history of the IFI of the Wallops surfaces where data is available.

The relationships for predicting the IFI from MTD and BPN are as found in the PIARC Experiment:

S_p = 113.6 MTD - 11.59 F60 = 0.0079 BPN + .0778

The other devices took part in the measurements in Europe and Wallops were the DF Tester and the GripTester. In addition an ASTM Locked Wheel Trailer took part in the PIARC Experiment and several different ASTM trailers have been involved in the NASA workshops.

The best correlations for DF Tester in the PIARC Experiment were the values at 20 km/h. The relationship for predicting F60 from that experiment was:

 $F60 = 0.081 + 0.732 \text{ DFT20 exp} (-40/S_p)$

where S_p is calculated from MTD as above. The history of the F60 for the Wallops surfaces using the DF Tester data is given in Table 2.

Table 2. History of F60

DFT	F60							
SITE		1994	1996	1997	1998	1999	2001	2002
А	0.271	0.271	0.227		0.236	0.232	0.259	0.312
В	0.460	0.468	0.290		0.411	0.411	0.530	0.465
С			0.341		0.437	0.403	0.513	0.472
D	0.369	0.354	0.272		0.263	0.291	0.262	0.320
Е	0.457	0.451	0.351		0.374	0.420	0.479	0.492
F	0.509				0.440	0.474	0.550	0.550
K	0.257				0.186	0.210	0.172	0.177
K0					0.348	0.347	0.361	0.320
Р	0.081						0.081	
S0	0.276				0.249			
S1	0.405	0.396	0.335	0.325	0.347	0.365		0.352
S2	0.480	0.405	0.361	0.330	0.344	0.374		0.377
S3	0.562	0.472	0.433	0.409	0.459	0.463		0.433
S4		0.607	0.461	0.497	0.540	0.533		0.502
S5			0.500	0.435	0.521	0.488		0.422
S6				0.475	0.506		0.464	0.496

NOTE F60=0.0811+.732[DFT20/exp(40/Sp)] 1995 - no data 2000 - no DFTester data

Table 3. History of Sp

	Sp	Sp 1994	Sp 1996	Sp 1997	Sp 1998	Sp 1999	Sp 2000	Sp 2001	Sp 2002
А	47.6	52.3	46.3		41.8	41.8	53.2	42.2	58.2
В	206.0	206.1	95.2		172.4	195.2	238.0	280.2	187.2
С			117.9		209.9	213.3	256.7	243.7	213.2
D	81.2	68.3	56.6		52.0	56.6	67.9	48.8	62.1
Е	131.1	109.4	98.6		103.1	129.3	165.9	138.5	175.0
F	198.1				188.3	191.8	225.0	200.5	207.1
K	45.8				42.9	40.7	58.2	44.4	39.9
K0					70.2	63.4	67.3	69.8	55.4
Р	6.6					2.4		1.2	
S0	49.4				45.2				
S1	70.8	68.2	62.3	53.2	71.3	63.4	70.2		62.6
S2	98.3	66.7	71.3	60.0	67.9	67.9	88.7		72.6
S3	169.4	106.3	115.6	107.7	105.4	108.8	120.7		98.1
S4		260.1	132.7	234.9	262.2	248.6	240.8		197.2
S5			162.2	95.2	137.2	123.1	118.1		80.4
S6				124.7	106.6		155.4	94.2	114.1

NOTE 1993-1999 Sp derived from MTD where Sp=113.6MTD-11.69 2000-2002 Sp derived from CTMeter where Sp=110.72MPD-1.02

2.0 NASA TIRE/RUNWAY FRICTION WORKSHOPS

Every May for ten years (1993 – 2002) data has been collected with ground vehicles on the test surfaces at the NASA Wallops Flight Facility. This extensive database has been compiled into spreadsheets summarizing the average values of repeat runs made on each site by each device. In most cases the high-speed testers performed measurements at several speeds ranging form 32 to 96 km/h.¹

2.1 1993: Continuation of the PIARC International Experiment

In the fall of 1992 data was collected in Belgium and Spain for the PIARC International Experiment to compare and Harmonize Friction and Texture Measurements [1]. The following May some of the devices that took part in the tests in Belgium and Spain assembled at the NASA facility and made measurements with other devices that did not take part in Europe. Measurements were made on 14 sites with a wide range of texture and friction characteristics. The devices that took part in May 1993 were as follows:

Devices that also took part in the measurements in Europe:

Dynamic Friction Tester (DF Tester) - Japan VTI Laser Texture System (MPD, ETD, RMS) - Sweden FHWA Texture Van - USA PTI British Pendulum Tester (BPN) - USA GripTester - Scotland

Devices that took part at Wallops but did not take part in Europe

K. J. Law Runway Friction Tester - USA Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA* NASA Volumetric Texture Depth, Glass beads - USA* NASA Volumetric Texture Depth, Grease - USA FHWA Outflow Meter - USA* FAA MuMeter - USA NASA Diagonal Braked Vehicle - USA

* A similar device took part in Europe, but the equipment and operator were not the same.

¹ In all of the tables of data that follow the friction is expressed as 0.XXX. It is customary to express Skid Numbers (SNR, SNB) and British Pendulum Numbers (BPN) as XX.X, but for consistency and for comparison of data the former form is used for these data as well.

			DFTester			Runway Friction Tester				
	20	30	40	68	80	32	64	96		
SITE	Km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h		
А	0.602	0.602	0.602	0.611	0.637	0.730	0.560	0.363		
В	0.628	0.644	0.682	0.637	0.677	0.770	0.748	0.695		
D	0.643	0.639	0.636	0.642	0.660	0.745	0.583	0.383		
Е	0.697	0.693	0.665	0.647	0.660	0.800	0.753	0.590		
F	0.716	0.707	0.692	0.671	0.709	0.818	0.783	0.718		
K	0.577	0.533	0.505	0.480	0.472	0.833	0.568	0.353		
L	0.722	0.711	0.696	0.691	0.713	0.898	0.823	0.693		
Р	0.114	0.103	0.103	0.103	0.062	0.123	0.050	0.038		
SO	0.600	0.603	0.606	0.620	0.640	0.763	0.585	0.378		
S1	0.780	0.760	0.740	0.713	0.705	0.925	0.680	0.485		
S2	0.818	0.796	0.765	0.728	0.713	0.940	0.770	0.535		
S3	0.833	0.813	0.766	0.723	0.725	0.915	0.825	0.638		

					Mear	n Texture		
		GripT	ester		C	epth	Profile depth	
	64	96	64	96	MTD	GREASE	MPD	ETD
	Km/h	km/h	km/h	km/h	NASA	NASA	VTI	VTI
	F4-11	F4-11	A2-01	A2-01				
SITE	Tire	Tire	Tire	Tire	mm	mm	mm	mm
А	0.478	0.258	0.520	0.308	0.521	0.20	0.32	0.23
В	0.652	0.538	0.688	0.575	1.915	1.75	1.62	1.58
D	0.533	0.330	0.560	0.365	0.817	0.23	0.42	0.27
Е	0.652	0.521	0.707	0.563	1.256	0.34	1.01	0.87
F	0.683	0.595	0.750	0.657	1.846	1.09	1.71	1.69
K	0.493	0.363	0.503	0.317	0.505	0.10	0.62	0.45
L	0.718	0.695	0.797	0.620	1.175	0.38	0.92	0.76
Р	0.063	0.088	0.047	0.040	0.160	0.00	0.12	0.20
SO					0.537	0.40		
S1					0.725	0.58		
S2					0.967	0.78		
S3					1.593	1.13		

			VA	DOT E27	4 Trailer				Outflow	/ Meter
		E	-524 Tire			E-501 Tire				
	32	48	64	80	96	32	64	96	FHWA	PSU
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	sec	sec
Α	0.434	0.346	0.261	0.190	0.175	0.557	0.490	0.408	11.30	10.14
В	0.522	0.532	0.502	0.501	0.480	0.593	0.527	0.527	1.16	1.26
D	0.494	0.366	0.314	0.236	0.220	0.609	0.513	0.412	7.72	5.43
E	0.598	0.521	0.505	0.417	0.417	0.673	0.591	0.507	3.86	2.34
F	0.610	0.540	0.542	0.478	0.453	0.677	0.599	0.516	1.67	1.24
K	0.481		0.277		0.195	0.584	0.457	0.325	14.61	11.29
L	0.632	0.558	0.521	0.420	0.407	0.729	0.607	0.531	3.01	3.12
Р	0.093	0.062	0.033	0.044	0.032	0.200	0.112	0.065	Infinite	Infinite
SO	0.446		0.233		0.177	0.586	0.527	0.465	12.14	10.81
S1	0.581		0.355		0.249	0.755	0.571	0.433	6.59	6.39
S2	0.617					0.749	0.577	0.435	4.20	4.19
S3	0.650		0.460		0.334	0.731	0.590	0.456	3.08	2.26
S4	0.723		0.602		0.504					

Table 4. 1993 Data (Continued)

		RMS	BPN	Diagona	Diagonal Braked Vehicle			MuMeter		
	VTI	FHwA Van	PSU	32	64	96	32	64	96	
SITE	mm	mm		km/h	km/h	km/h	km/h	km/h	km/h	
А	0.24	0.157	0.658	0.45	0.25	0.11		0.44	0.35	
В	1.92	2.010	0.893	0.69	0.55	0.42		0.68	0.64	
D	0.30	0.208	0.681	0.44	0.30	0.19		0.47	0.41	
E	0.67	0.640	0.752	0.67	0.42	0.21		0.63	0.63	
F	1.57	1.702	0.875					0.71	0.70	
K	0.37	0.345	0.750	0.43	0.26	0.14	0.69	0.58		
L	0.49	0.498	0.793				0.79	0.78		
Р	0.06	0.236	0.364	0.21	0.12	0.06	0.17	0.11		
SO		0.183	0.689	0.53	0.28	0.13		0.46	0.34	
S1		0.323	0.802	0.61	0.34	0.19		0.70	0.56	
S2		0.411	0.791					0.63	0.46	
S3		0.477	0.839					0.59	0.40	
S4				0.71	0.52	0.32				

2.2 1994: The First NASA Tire/Runway Friction Workshop

In May 1994 NASA began sponsorship of the Tire/Runway Friction Workshops. These differ from the 1993 program in that one day was set aside for presentations by vendors and other interested parties. The actual test programs for these workshops are similar to the 1993 program. In 1994, the following devices made measurements on 12 surfaces:

Dynamic Friction Tester (DF Tester) - Japan Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA PTI British Pendulum Tester (BPN) - USA Virginia DOT British Pendulum Tester (BPN) - USA GripTester - Scotland FAA MuMeter - USA FHWA Texture Van – USA FHWA Outflow Meter - USA PSU Volumetric Texture Depth, Glass beads - USA

Table	5.	1994	Data
-------	----	------	------

		DF	Tester		VADOT E-274 Trailer				
					E-524 Tire E-501				
	20	30	40	60	64	96	64		
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h		
А	0.559	0.600	0.602	0.612	0.306	0.297	0.501		
В	0.642	0.656	0.691	0.674	0.509	0.515	0.505		
D	0.670	0.672	0.674	0.691	0.386	0.288	0.523		
Е	0.729	0.720	0.694	0.679	0.475	0.490	0.466		
Р	0.035	0.035	0.035	0.040	0.030	0.022	0.071		
S1	0.775	0.748	0.731	0.714	0.420	0.349	0.559		
S2	0.807	0.771	0.739	0.706					
S3	0.779	0.741	0.710	0.680					
S4	0.838	0.804	0.778	0.758	0.493	0.460	0.507		

	B	PN	MuMeter	GripTester	MTD	Outflow	RMS
	PSU	VADOT	64	64	PSU	FHwA	FHwA Van
SITE			km/h	km/h	mm	sec	mm
А	0.621	0.660	0.408	0.512	0.562	12.38	0.302
В	0.857	1.042	0.646	0.684	1.916	1.08	1.885
D	0.645	0.722	0.454	0.552	0.703	7.22	
Е	0.668	0.758	0.644	0.700	1.065	5.02	
F			0.706	0.744			
K			0.427	0.503			
L			0.737	0.797			
Р	0.273	0.388	0.100	0.047			0.157
S1	0.713	0.810			0.702		
S2	0.706	0.815			0.689		
S3	0.760	0.869			1.038		
S4	0.799	0.881			2.392		

2.3 1995: The Second NASA Tire/Runway Friction Workshop

The second workshop took place in May 1995. Some metal reference panels were added to the test surfaces. Although these surfaces were not sufficiently long for some of the high-speed equipment, they extended the range of texture and friction levels. Also an additional Skidabrader surface was added to the four that were prepared in 1993. Altogether 17 surfaces were subjected to measurement during the second workshop by the following devices:

Dynamic Friction Tester (DF Tester) - Japan Penn State E-274 Locked Wheel Tester (SNB and SNR) - USA FHWA Texture Van - USA FHWA Outflow Meter - USA NASA Volumetric Texture Depth, Grease - USA Surface Friction Tester (SFT) - Sweden IMAG - France U.S. Navy Slip Meter - USA JBI Decelerometer - USA

The GripTester (Scotland) also took part at Wallops, but the data is unavailable.

	RMS	Texture Depth	James	Brake Ind	ex (.IBI)		Navy Sli	n Meter	
•	FHwA	Dopui	Garriee	20%	60%		riary on		
	Van	GREASE	Dry	Wet	Wet	Dry	Wet	Dry	Wet
SITE	mm	mm				Navy R	lubber	ASTM	Rubber
А	0.221	0.200	0.590		0.580		0.80		0.96
В	2.159		0.555		0.548				
С	3.114		0.575		0.540				
D	0.206	0.280	0.670		0.560				
Е	0.719	0.490							
F	1.016						0.82		0.99
S0	0.292								
S1	0.196	0.200		0.633			0.88		1.08
S2	0.236	0.260		0.615			0.86		1.07
S3	0.345	0.290		0.601			0.85		1.06
S4	0.861	0.850		0.590			0.92		1.08
S5	0.462	0.380							
WHITE	0.069				0.628	0.84	0.73	1.06	0.98
RED	0.241						0.83		1.00
BLUE	0.411					1.04	0.95	1.02	1.11

		DFTest	er		PSU E-2	74 Trailer	IM	٩G
					E-524	E-501		
					Tire	Tire	PIAR	C Tire
	20	40	60	80	64	64	64	96
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
Α					0.238	0.554	0.483	0.317
В					0.533	0.543	0.564	0.494
С					0.525	0.531	0.509	0.357
D					0.258	0.526	0.547	0.450
Е					0.398	0.566		
F					0.513	0.512		
S1	0.815	0.758	0.708	0.694			0.550	0.414
S2	0.789	0.719	0.669	0.65			0.585	0.471
S3	0.808	0.716	0.666	0.651			0.608	0.516
S4	0.825	0.736	0.698	0.701			0.653	0.569
S5	0.821	0.719	0.662	0.632				
WHITE	0.252	0.204	0.184	0.179				
RED	0.416	0.342	0.311	0.316				
BLUE	0.786	0.649	0.606	0.639				

	FAA SFT										
	ASTN	/I Tire	AERO	D Tire	T520 Tire						
	64 96		64	96	64	96					
SITE	km/h	km/h	km/h	km/h	km/h	km/h					
А	0.527	0.323	0.683	0.534	0.690	0.612					
В	0.847	0.732	0.713	0.652	0.727	0.700					
С	0.841	0.722	0.697	0.626	0.710	0.688					
D	0.501	0.347	0.660	0.512	0.675	0.583					
Е	0.739	0.663	0.692	0.626	0.725	0.690					
F	0.822	0.753	0.702	0.608	0.728	0.710					
Р	0.010		0.038								
S1	0.613	0.440	0.590	0.495	0.673						
S2	0.648	0.480	0.607	0.513	0.687						
S3	0.750	0.631	0.633	0.558	0.703						
S4	0.855	0.790	0.635	0.582	0.697						
S5	0.832	0.699	0.683	0.642	0.780						

Table 6. 1995 Data (Continued)
2.4 1996: The Third NASA Tire/Runway Friction Workshop

Three new micro surface treatments were added to the surfaces available for testing for the third workshop. The following devices took part in the third workshop:

Dynamic Friction Tester (DF Tester) - Japan [Two systems] Penn State E-274 Locked Wheel Tester (SNB and SNR) - USA International Cybernetics E-274 Locked Wheel Tester (SNB and SNR) - USA Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA PSU Volumetric Texture Depth, Glass beads - USA PTI British Pendulum Tester (BPN) - USA

The GripTester (Scotland) also took part, but the data is unavailable.

Table 7. 1996 Data

	Pe	enn State	e DFTest	er		Japan D	FTester		PS	SU
						-			MTD	BPN
	20	40	60	80	20	40	60	80		
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	mm	
А	0.495	0.494	0.495	0.548	0.473	0.482	0.490	0.530	0.510	0.582
В	0.490	0.562	0.541	0.583	0.435	0.511	0.481	0.511	0.940	0.653
С	0.506	0.561	0.521	0.574	0.498	0.575	0.539	0.565	1.140	0.609
D	0.527	0.526	0.531	0.584	0.530	0.525	0.523	0.533	0.600	0.578
E	0.586	0.581	0.551	0.609	0.553	0.554	0.532	0.556	0.970	0.647
R2					0.689	0.639	0.594	0.566		
S1	0.673	0.644	0.614	0.610	0.660	0.629	0.609	0.583	0.650	0.716
S2	0.692	0.642	0.602	0.604	0.670	0.627	0.596	0.578	0.730	0.705
S3	0.717	0.657	0.621	0.616	0.680	0.620	0.598	0.583	1.120	0.717
S4	0.695	0.654	0.643	0.724	0.702	0.669	0.673	0.665	1.270	0.715
S5	0.757	0.662	0.619	0.622	0.732	0.640	0.594	0.566	1.530	0.745
MS1					0.758	0.732	0.724	0.688	1.130	0.806
MS2					0.757	0.741	0.735	0.704	1.460	0.812
MS3					0.806	0.791	0.706	0.778	1.350	0.826
SMOOTH	0.127	0.101	0.107	0.135	0.065	0.049	0.041	0.040		
WHITE	0.246	0.216	0.216	0.229	0.190	0.175	0.168	0.169		0.288
RED	0.346	0.290	0.282	0.301	0.254	0.212	0.203	0.225		0.479
BLUE	0.646	0.529	0.496	0.525	0.617	0.508	0.484	0.490		0.684

		VA	OOT E	274 Trai	ler			ICC E-	274 Trai	iler (No \	Nater)	
	E	E-524 Tir	е	E	E-501 Tir	е	E	-524 Tir	е	E	-501 Tir	e
	64	80	96	64	80	96	64	80	96	64	80	96
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.257	0.236	0.162	0.559	0.526	0.457	0.579	0.597	0.564	0.574	0.668	0.605
В	0.594	0.561	0.533	0.590	0.601	0.581	0.599	0.587	0.585	0.608	0.610	0.622
С	0.320	0.405	0.542	0.548	0.558	0.591	0.600	0.601	0.590	0.610	0.605	0.583
D	0.328	0.247	0.263	0.570	0.517	0.465	0.564	0.567	0.494	0.565	0.534	0.487
Е	0.578	0.535	0.468	0.614	0.557	0.551	0.593	0.574	0.576	0.609	0.583	0.627
Р	0.074	0.031	0.065	0.130	0.118	0.064				0.143	0.107	0.095
S1	0.477	0.447	0.315									
S2	0.393	0.511	0.399									
S3	0.441	0.490	0.306									
S4	0.541	0.505	0.531									
S5	0.515	0.481	0.440	0.631	0.608	0.546						
MS1	0.806	0.681	0.681	0.807	0.703	0.685	0.789	0.727	0.671			
MS2	0.749	0.617	0.608	0.822	0.775	0.744	0.842	0.769	0.707			
MS3	0.696	0.593	0.560	0.836	0.718	0.663	0.851	0.726	0.752			

Table 7. 1996 Data (Continued)

	PSI	J MARK	III E-274	Trailer (E-501 Tire)				
	0.5	mm wate	rfilm	1.0 r	nm wate	rfilm		
	64	80	96	64	80	96		
SITE	km/h	km/h	Km/h	km/h	km/h	km/h		
А	0.660	0.580	0.490	0.620	0.500	0.420		
В	0.790	0.810	0.770	0.780	0.730	0.710		
С	0.800	0.780	0.740	0.770	0.730	0.690		
D	0.660	0.580	0.490	0.660	0.530	0.460		
E	0.840	0.790	0.750	0.760	0.700	0.630		
Р				0.050		0.030		
S5				0.840	0.760	0.700		
MS1				0.980	0.990	0.970		
MS2				0.970	0.900	0.900		
MS3				0.990	0.980	0.960		

2.5 1997: The Fourth NASA Tire/Runway Friction Workshop

An additional longer metal panel, sufficiently long for the high-speed devices to obtain data, was added to the surfaces available for testing in 1997. Also an additional Skidabrader surface was added bring the number of those surfaces to six. The following devices took part in the fourth workshop:

Dynamic Friction Tester (DF Tester) - Japan Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA PSU Volumetric Texture Depth, Glass beads - USA PTI British Pendulum Tester (BPN) - USA FHWA British Pendulum Tester (BPN) - USA Virginia DOT British Pendulum Tester (BPN) - USA K. J. Law Runway Friction Tester - USA FHWA ROSAN (MPD, ETD) – USA

The GripTester (Scotland) also took part, but the data is unavailable.

A new system from Sweden, the BV-14 also took part, however it was unable to distinguish the difference between sites A through F. It showed greater differences between the left and right measuring wheel than between surfaces and the friction levels reported for the sites A - F, although they varied slightly, were inconsistent with all other devices.

The Norsemeter ROAR (Norway) variable slip tester also took part and the vendor provided some partial data noted as preliminary.

A limited number of tests were performed on flooded and dry surfaces.

Several roughness measuring systems also took part in the fourth workshop. These included the DYNVIA (Czech Republic) and the Virginia DOT profilometer.

Table 8. 1997 Data

	MTD	DFTester		BPN		ROS	SAN
	PSU		PSU	FHWA	VA DOT	MPD	ETD
		20					
SITE	mm	km/h				mm	mm
А						0.24	0.19
В						1.52	1.88
С						1.52	1.88
D						0.30	0.31
E						0.46	0.64
F						0.88	1.09
S1	0.57	0.71				0.28	0.25
S2	0.63	0.66				0.34	0.39
S3	1.05	0.65	0.703	0.801	0.823	0.52	0.76
S4	2.17	0.67				1.10	1.98
S5	0.94	0.74	0.744	0.834	0.794	0.51	0.75
S6	1.20	0.74	0.875	0.848	0.932	0.55	0.84
MS0			0.741				
MS1	1.25	0.81	0.782	0.865	0.866	0.41	0.54
MS2	1.23	0.77	0.834			0.41	0.54
MS3	1.55	0.74	0.844	0.849	0.873	0.47	0.66
SMOOTH		0.43	0.584	0.814	0.710		
WHITE		0.25					
RED		0.35					
BLUE		0.60					

	VADC)T E-274 Tr	ailer	Runway Friction Tester			
	E	E-524 Tire		AE	RO Tire 100) psi	
	32	64	96	30	65	95	
SITE	km/h	km/h	km/h	km/h	km/h	km/h	
А	0.455	0.242	0.217	0.85	0.75	0.71	
В	0.579	0.512	0.518				
С	0.559	0.485	0.501				
D	0.485	0.259	0.259				
E	0.590	0.480	0.449				
F	0.588	0.521	0.500				
Р	0.122	0.042	0.038	0.18	0.08		
S1	0.489	0.721	0.674				
S2	0.758	0.680	0.597				
S3	0.760	0.681	0.601				
LONG RED	0.324	0.205	0.222				
A-SELF							
WATER	0.544	0.354	0.225	0.84	0.79	0.84	
A-FLOODED	0.503	0.586	0.437	0.84	0.70	0.58	
A-DRY				0.89	0.81	0.88	

2.6 1998: The Fifth NASA Tire/Runway Friction Workshop

Two new surfaces were prepared for the fifth workshop: a micro surface treatment from Germany and a Jennite surface. The following devices took part at Wallops in the May 1998 tests:

Dynamic Friction Tester (DF Tester) - Japan Circular Track Meter (CT Meter) - Japan Virginia DOT E-274 Locked Wheel Tester (SNB) - USA International Cybernetics E-274 Locked Wheel Tester (SNR) - USA K. J. Law E-274 Locked Wheel Tester (SNR) - USA GripTester - Scotland NASA Volumetric Texture Depth, Grease - USA NASA Volumetric Texture Depth, Glass beads - USA PSU Volumetric Texture Depth, Glass beads - USA PTI British Pendulum Tester (BPN) - USA FAA Runway Friction Tester - USA FAA Surface Friction Tester (SFT) - USA IMAG - France

The GripTester, Surface Friction Tester and the Runway Friction Tester performed measurements with both low pressure (30 psi) and high pressure (100 psi) tires.

The Norsemeter RUNAR (Norway) also took part but the data is unavailable.

A new device for measuring profile depth was introduced in 1998. This was the CT Meter from Japan that produced data which is highly correlated to the volumetric method using glass beads (Mean Texture Depth).

		DFT	ester		MPD	Μ	TD	Texture	BPN
					CTMeter	PSU	NASA	GREASE	PSU
	20	40	60	80					
SITE	km/h	km/h	km/h	km/h	mm	mm	mm	(mm)	
А	0.55	0.56	0.57	0.63	0.50	0.47	0.62	0.59	0.53
В	0.57	0.65	0.60	0.67	1.82	1.62	2.13	2.35	0.65
С	0.59	0.65	0.60	0.65	2.11	1.95	3.34	3.99	0.66
D	0.54	0.54	0.55	0.59	0.68	0.56	0.97	1.64	0.51
Е	0.59	0.56	0.56	0.58	1.11	1.01	1.45	1.63	0.54
F	0.61	0.62	0.62	0.65	2.01	1.76	2.18	2.84	0.65
G	0.63	0.67	0.68	0.67	2.70	2.21	2.71	3.57	0.66
K	0.36	0.28	0.25	0.24	0.65	0.48	0.48	0.30	0.43
K0	0.65	0.64	0.65	0.71	0.89	0.72			0.56
S0	0.56	0.57	0.57	0.63	0.48	0.50	0.54	0.51	0.54
S1	0.64	0.62	0.61	0.64	0.65	0.73	0.68	0.60	0.65
S2	0.65	0.63	0.63	0.66	0.82	0.70	0.39	0.70	0.64
S3	0.76	0.71	0.68	0.68	1.19	1.03	1.04	0.83	0.63
S4	0.73	0.70	0.69	0.74	2.43	2.29	1.24	1.30	0.66
S5	0.81	0.74	0.71	0.72	1.29	1.31	1.31	0.98	0.67
S6	0.85	0.74	0.69	0.69	1.15	1.04	1.24	1.00	0.70
MS1	0.62	0.58	0.54	0.55	0.57	0.47	0.48	0.71	0.62
MS2	0.71	0.69	0.66	0.67	0.69	0.52	0.56	0.81	0.63
MS3	0.55	0.47	0.44	0.44	0.62	0.50	0.65	0.56	0.50
MS4	0.92	0.84	0.80	0.86	1.44	1.55	1.62	1.82	0.74
WHITE	0.21	0.18	0.18	0.18	0.31	0.27			0.32
RED	0.32	0.28	0.28	0.30	0.50	0.44			0.45
BLUE	0.66	0.59	0.59	0.63	0.58	0.64			0.67

Table 9. 1998 Data

	ICC E	<u>-274</u>								
	Tra	ailer			VADOT	E-274 Traile	er			
	E-50	1 Tire			E-	524 Tire				
	64	96	48	56	64	72	80	96		
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h		
А	0.475	0.500	0.529	0.330	0.332	0.251	0.233			
В	0.485	0.545	0.571	0.509	0.515	0.492	0.489			
С	0.475	0.542	0.499	0.445	0.505	0.484	0.483			
D	0.454	0.480	0.367	0.297	0.275	0.244	0.199			
Е	0.440	0.483	0.531	0.478	0.463	0.401	0.406			
F	0.441	0.509	0.560	0.528	0.515	0.499	0.473			
S5	0.512	0.502			0.404			0.309		
S6	0.507	0.517			0.512			0.373		

Table 9. 1998 Data (Continued)

		K. J.	Law E-274 1	Frailer E-50 ⁻	1 Tire	
	48	56	64	72	80	96
SITE	km/h	km/h	km/h	km/h	km/h	km/h
А	0.618	0.59	0.528	0.504	0.444	0.508
В	0.588	0.561	0.547	0.562	0.537	0.474
С	0.594	0.561	0.53	0.538	0.518	0.441
D	0.578	0.545	0.505	0.494	0.466	0.444
Е	0.59	0.57	0.506	0.534	0.52	0.474
F	0.608	0.598	0.515	0.55	0.499	0.447
•						

	FAA	Runway Fric	ction Tester ((RFT)	GripTester					
	30 psi tire	e pressure	100 psi tire pressure		A-Serie	es Tire	S-Seri	es Tire		
	64	96 64		96	65	95	65	95		
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h		
А	0.64	0.45	0.57	0.35	0.48	0.27	0.52	0.42		
В	0.74	0.69	0.80	0.75	0.66	0.55	0.64	0.57		
С	0.72	0.69	0.79	0.73	0.63	0.54	0.63	0.57		
D	0.64	0.47	0.55	0.38	0.51	0.34	0.52	0.42		
Е	0.71	0.63	0.70	0.62	0.58	0.51	0.56	0.54		
F	0.74	0.68	0.76	0.70	0.60	0.56	0.58	0.57		
S5	0.80	0.64	0.71	0.50	0.63	0.48	0.63	0.53		
S6	0.83	0.65	0.72	0.56	0.66	0.56	0.65	0.57		

			IM	٩G		
		FORCE			TORQUE	
	48	64	96	48	64	96
SITE	km/h	km/h	km/h	km/h	km/h	km/h
Α		0.537	0.355		0.456	0.266
В		0.608	0.584		0.547	0.526
С		0.622	0.584		0.544	0.516
D		0.535	0.394		0.455	0.309
Е		0.575	0.526		0.506	0.455
F		0.584	0.569		0.518	0.500
S5		0.647			0.593	
S6			0.576			0.504
MS1	0.667	0.508	0.299	0.587	0.439	0.226
MS2	0.653	0.560	0.349	0.570	0.489	0.284
MS3	0.637	0.533	0.307	0.553	0.448	0.236
MS4		0.696	0.610		0.622	0.538
RED		0.696	0.610		0.622	0.538

Table 9 1998 Data (Continued)

		FAA SFT									
			100 psi tire								
	29 psi tire	pressure	pressure								
	64	96	64	96							
SITE	km/h	km/h	km/h	km/h							
А	0.627	0.393	0.583	0.367							
В	0.810	0.717	0.827	0.700							
С	0.787	0.700	0.827	0.687							
D	0.600	0.413	0.540	0.320							
Е	0.747	0.633	0.678	0.527							
F	0.787	0.710	0.750	0.650							
S5	0.763	0.607	0.673	0.513							
S6	0.783	0.660	0.690	0.547							

2.7 1999: The Sixth NASA Tire/Runway Friction Workshop

The sixth annual workshop took place on May 10 - 14, 1999. A second series of testing was performed with the CT Meter, MTD and three Outflow Meters on August 9 - 12, 1999.

Dynamic Friction Tester (DF Tester) - Japan Circular Track Meter (CT Meter) - Japan Virginia DOT E-274 Locked Wheel Tester (SNB) - USA Transport Canada Surface Friction Tester (TC79) - Canada US Surface Friction Tester (USFT) - USA MuMeter - USA SALTAR - Norway GripTester - Scotland NASA Diagonal Braked Vehicle (DBV) - USA PSU Volumetric Texture Depth, Glass beads (MTD) - USA PTI British Pendulum Tester (BPN) - USA FHWA British Pendulum Tester (BPN) - USA VA DOT British Pendulum Tester (BPN) - USA FAA BV-11 - USA FAA Runway Friction Tester - USA FAA Surface Friction Tester (SFT) - USA IMAG - France FHWA Outflow Meter - USA Skiddabrader Outflow Meter - USA NASA Outflow Meter - USA

In this workshop, an additional track was laid out for evaluating longitudinal profiling devices. This track was in front of the N159 Hangar and extended out over the apron covering 58 slabs or 785 feet. The following devices took part:

VA DOT Dipstick -USA YSI Roadpro-USA ARP Auto Rod & Level-USA VA DOT ICC High Speed Profiler-USA Rod and Level

		BPN			BV-11		DFTe	ester	MTD	MPD
				BV11	BV11	BV11				
	PSU	FHwA	VDOT	30	50	65	Japan	PSU	PSU	CTMeter
				30	50	65	20	20		
SITE				km/h	km/h	km/h	km/h	km/h	mm	mm
А	0.598		0.66	0.700	0.603	0.590	0.536	0.495	0.50	0.47
В	0.763		1.04	0.800	0.767	0.753	0.553	0.490	2.07	2.15
С	0.635			0.827	0.803	0.750	0.531	0.506	1.88	2.04
D	0.603		0.72	0.700	0.647	0.607	0.581	0.527	0.57	0.53
Е	0.653		0.76	0.743	0.730	0.723	0.631	0.586	1.48	1.75
F	0.765			0.770	0.760	0.730	0.662		1.79	1.88
G	0.660						0.630			
K	0.590						0.470		0.46	0.49
K0	0.675						0.684		0.64	0.64
MS1	0.795	0.87	0.87	0.940	0.930	0.900	0.691		1.18	1.16
MS2	0.820			0.970	0.910	0.930	0.748		1.33	1.26
MS3	0.835	0.85	0.87	0.980	0.960	0.970	0.699		1.27	1.12
MS4							0.920		1.58	1.40
S0	0.615						0.643		0.70	0.57
S1	0.720		0.81				0.730	0.673	0.60	0.64
S2	0.710		0.81				0.722	0.692	0.74	0.88
S3	0.730	0.80	0.85				0.754	0.717	1.19	1.29
S4	0.710		0.88				0.725	0.695	1.97	2.36
S5	0.717	0.83	0.79				0.770	0.757	1.06	1.02
S6	0.790	0.85	0.93				0.794		1.04	1.05

Table	10.	1999	Data
1 4 5 1 5			Data

				F	AA SFT				
	1551	tire 30	1551 t	ire 100					
	р	si	р	si	AERO ti	re 30 psi	T520 Tir	T520 Tire 30 psi	
	65	95	65	95	65	95	65	95	
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	
А	0.602	0.376	0.583	0.367	0.683	0.530	0.690	0.610	
В	0.804	0.721	0.827	0.700	0.710	0.650	0.730	0.700	
С	0.776	0.714	0.827	0.687	0.700	0.630	0.710	0.690	
D	0.575	0.397	0.540	0.320	0.660	0.510	0.680	0.580	
Е	0.745	0.641	0.677	0.527	0.690	0.630	0.730	0.690	
F	0.796	0.721	0.750	0.650	0.700	0.610	0.730	0.710	
S1	0.610	0.440			0.590	0.500	0.670		
S2	0.650	0.480			0.610	0.510	0.690		
S3	0.750	0.630			0.630	0.560	0.700		
S4	0.860	0.790			0.640	0.580	0.700		
S5	0.735	0.580			0.680	0.640	0.780		

Table 10. 1999 Data (Continued)

			Gri	ptester			
	ASTM Tire		STD Tire	A211	l Tire	F11 Tire	
	65	95	65	65	95	65	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.480	0.270	0.51	0.51	0.31	0.48	0.26
В	0.663	0.547	0.68	0.69	0.58	0.65	0.54
С	0.630	0.537					
D	0.523	0.336	0.55	0.56	0.37	0.53	0.33
Е	0.577	0.507	0.70	0.71	0.56	0.65	0.52
F	0.597	0.560	0.74	0.75	0.66	0.68	0.60
K			0.50	0.50	0.32	0.49	0.36
K0			0.80	0.80	0.62	0.72	0.70
S6	0.655	0.563					

		FAA Runway Friction Tester (RFT)										
	1551 tire	e 100 psi		1551 tire 3	0 psi		Ae	ro Tire 30	psi			
	65	95	32	48	65	95	32	65	95			
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h			
А	0.570	0.353	0.783	0.677	0.607	0.428	0.730	0.560	0.360			
В	0.800	0.743	0.890	0.883	0.776	0.694						
С	0.793	0.733	0.880	0.867	0.777	0.687						
D	0.547	0.377	0.773	0.667	0.620	0.446						
Е	0.700	0.623	0.830	0.790	0.732	0.620						
F	0.763	0.700	0.845	0.820	0.770	0.690						
K			0.830		0.570	0.350						
K0			0.900	0.820	0.690							
MS1			0.980	0.940	0.920							
MS2			0.980	0.950	0.910							
MS3			1.030	1.030	0.940							
S0			0.760		0.590	0.380						
S1			0.930		0.680	0.490						
S2			0.940		0.770	0.540						
S3			0.920		0.830	0.640						
S5					0.757	0.568						

Table 10.	1999	Data	(Continued)
-----------	------	------	-------------

	IM	٩G	Diagon	al Braked	Vehicle		MuMeter	
			Ū				MUM	MUM
	Force	Force	DBV 32	DBV 64	DBV 96	MUM 32	65	95
	65	95	32	65	95	32	65	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.510	0.336	0.45	0.25	0.11		0.424	0.35
В	0.586	0.539	0.69	0.55	0.42		0.618	0.64
С	0.566	0.471						
D	0.522	0.376	0.44	0.30	0.19		0.462	0.41
Е	0.561	0.488	0.67	0.42	0.21		0.637	0.63
F	0.584	0.569					0.710	0.70
K			0.43	0.26	0.14	0.69	0.504	
K0						0.79	0.759	
MS1	0.510	0.300						
MS2	0.560	0.350						
MS3	0.530	0.310						
MS4	0.700	0.610						
S0			0.53	0.28	0.13		0.460	0.34
S1	0.550	0.410	0.61	0.34	0.19		0.700	0.56
S2	0.590	0.470					0.630	0.46
S3	0.610	0.520					0.590	0.40
S4	0.650	0.570	0.71	0.52	0.32			
S5	0.650	0.580						

		SALTAR		TC SFT79 – DRY				
	32	48	64	32	50	65		
SITE	km/h	km/h	km/h	km/h	km/h	km/h		
А	0.565	0.784	0.859	0.957	0.823	0.753		
В	0.699	0.933	0.866	0.970	0.937	0.923		
С	0.586	0.841	0.853	0.960	0.940	0.923		
D	0.612	0.689	0.862	0.907	0.820	0.773		
Е	0.536	0.747	0.774	0.917	0.867	0.860		
F	0.591	0.643	0.833	0.933	0.877	0.840		
K0	0.555	0.707	0.901					
MS1	0.720	0.670	0.960					
MS2	0.510	0.660	0.780	0.990	0.990	0.980		
MS3	0.900	0.680	0.780	0.990	0.990	0.990		
MS4				1.000	1.000	0.990		

Table 10. 1999 Data (Continued)

	VADO	JIE-274 I	raller E-50	J1 tire
	32	65	80	95
SITE	km/h	km/h	km/h	km/h
А	0.56	0.518	0.597	0.500
В	0.50	0.534	0.606	0.532
С		0.522	0.582	0.516
D	0.61	0.507	0.526	0.459
Е	0.67	0.516	0.570	0.506
F	0.68	0.499		0.483
K	0.58	0.460		0.330
K0	0.73	0.610		0.530
MS1		0.798	0.715	0.678
MS2		0.832	0.772	0.726
MS3		0.844	0.722	0.708
S1	0.75	0.565		0.430
S2	0.75	0.580		0.430
S3	0.73	0.590		0.460
S4		0.510		
S5		0.542	0.610	0.513
S6		0.507		0.517

			VADOT E-2	274 Trailer	E-524 tire		
	32	48	56	65	72	80	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.458	0.409	0.33	0.292	0.25	0.220	0.168
В	0.540	0.544	0.51	0.528	0.40	0.534	0.528
С	0.535	0.494	0.41	0.475	0.48	0.496	0.566
D	0.477	0.370	0.30	0.304	0.24	0.227	0.257
Е	0.570	0.521	0.48	0.489	0.40	0.483	0.488
F	0.581	0.537	0.53	0.506	0.50	0.476	0.450
K	0.480			0.280			0.190
K0	0.630	0.560		0.520		0.420	0.410
MS1	0.710	0.650		0.690		0.680	0.680
MS2	0.720	0.670		0.685		0.620	0.610
MS3	0.760			0.665		0.590	0.560
S1	0.534			0.493		0.450	0.304
S2	0.689			0.537		0.510	0.400
S3	0.705			0.527		0.490	0.320
S4	0.720			0.545		0.510	0.498
S5				0.460		0.480	0.375
S6				0.512			0.373

Table 10. 1999 Data (Continued)

		USFT									
		1551 Tire		Aero Tire							
	50	65	80	32	50	65					
SITE	km/h	km/h	km/h	km/h	km/h	km/h					
А	0.690	0.628	0.530	0.660	0.613	0.586					
В	0.750	0.732	0.735	0.690	0.657	0.640					
С	0.755	0.746	0.725	0.677	0.643	0.643					
D	0.685	0.655	0.590	0.653	0.620	0.597					
Е	0.745	0.722	0.670	0.633	0.613	0.607					
F	0.785	0.762	0.725	0.657	0.603	0.597					
K0	0.520	0.477									
MS1	0.780	0.734	0.685	0.690	0.680	0.660					
MS2				0.710	0.690	0.680					
MS3				0.730	0.740	0.720					
MS4	0.810	0.763	0.705								

						ADDITIONAL TEXTURE -		
		ADDITION	AL TEXT	URE - AUGUST		MAY		
	MTD	MPD		Outflow Meter		MTD	MPD	
	PSU	CTMeter	FHwA	Skidabrader	NASA	PSU	CTMeter	
SITE	mm	mm	sec	sec	sec	mm	mm	
А	0.47	0.395	9.2	21.7	16.0			
В	1.82	1.839	1.09	2.0	2.3			
С	1.98	2.019	0.94	2.0	1.7			
D	0.60	0.601	4.96	9.3	9.3			
Е	1.24	1.405	1.93	3.7	2.7			
F	1.79	1.976	1.2	2.0	2.3			
K	0.46	0.541	7.35	12.3	13.0			
K0	0.66	0.674	4.74	7.7	7.0			
MS0						0.51	0.44	
Р						0.08	0.02	
R0						0.54	0.46	
R1						0.54	0.48	
R2						0.51	0.52	
S1	0.66	0.614	4.61	8.7	9.3			
S2	0.70	0.780	4.03	9.0	8.3			
S3	1.06	1.070	1.82	3.3	3.0			
S4	2.29	2.172	0.56	0.7	1.0			
S5	1.19	1.186	1.86	3.3	3.0			
SMOOTH						0.15	0.04	
WHITE						0.22	0.14	
RED						0.44	0.34	
BLUE						0.61	0.50	
Long								
White						0.24	0.18	
Long Red						0.54	0.42	

Figure 5 shows the walkers profiles versus the rod and level and Figure 6 shows the high speed profiler.

High Speed

Figure 6. Three Repeats of a High Speed Profiler

2.8 2000: The Seventh NASA Tire/Runway Friction Workshop

The seventh annual workshop took place on May 15 – 18, 2000. The following friction and texture measuring devices took part:

Circular Track Meter (CT Meter) - Japan Transport Canada Surface Friction Tester (TC79) - Canada GripTester – FAA (Push mode only) FAA BV-11 - USA FAA Runway Friction Tester - USA FAA Surface Friction Tester (SFT) - USA IRV – International Reference Vehicle - France Skiddabrader Outflow Meter - USA

In addition in this workshop a track was laid out for evaluating longitudinal profiling devices. This track was in front of the N159 Hangar and extended out over the apron covering 58 slabs or 785 feet. A second track was laid out perpendicular to the other track along the end of the apron. The following devices took part:

VA DOT FACE Dipstick -USA YSI Roadpro-USA ARP Auto Rod & Level-USA VA DOT ICC High Speed Profiler-USA PA DOT ICC Light Weight Profiler-USA

Because of the amount of data, profiles are available on a CD from NASA.

		SF	Г79		IRV			
		1551 Sm	ooth Tire			PIARC Sn	nooth Tire	
	Fo	rce	Torque		Fo	rce	Torque	
	65	95	65	95	65	95	65	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.60	0.47	0.48	0.37	0.35	0.32	0.20	0.15
В	0.90	0.85	0.78	0.73	0.61	0.60	0.58	0.56
С	0.87	0.81	0.74	0.68	0.60	0.58	0.56	0.53
D	0.58	0.47	0.47	0.37	0.35	0.31	0.23	0.18
Е	0.84	0.81	0.72	0.69	0.53	0.52	0.46	0.44
F	0.87	0.84	0.75	0.72	0.59	0.58	0.55	0.55
K	0.46	0.25	0.35	0.15	0.26	0.24	0.18	0.16
MS0	0.95	0.93	0.83	0.79	0.63	0.51	0.61	0.48
MS2	0.75	0.55	0.61	0.43	0.40	0.19	0.36	0.15
MS4	0.97	0.97	0.87	0.84	0.68	0.66	0.62	0.60
Р	0.08	0.05	0.01	0.01	0.07	0.07	0.05	0.05
R1	0.71	0.52	0.58	0.40	0.45	0.44	0.23	0.21
R2	0.61	0.40	0.49	0.30	0.42	0.41	0.29	0.28
R3	0.79	0.57	0.65	0.46	0.39	0.38	0.21	0.19
S2	0.99	0.85	0.89	0.73	0.67	0.65	0.42	0.39
S5	0.85		0.72		0.56	0.54		
Red								
Panel	0.51	0.41	0.38	0.30	0.38	0.37	0.26	0.24

Table 11. 2000 Data

Table 11.	2000	Data	(Continued)
-----------	------	------	-------------

I			1				
	- • •				DET	Outflow	
	FAA	BV11	CIMeter	FAA	KF I	Meter	Griplester
	1551 SI	моотн	MPD	1551 SI	моотн		
	<u>c</u> e	05		C.F.	00		Push
	05 Ivree /In	95 Luna //h		60 Ivres /In	90 Luna //n		mode
SILE	Km/n	<u>km/n</u>	mm	km/n	<u>km/n</u>	sec	0.75
A	0.55	0.44	0.489	0.57	0.37	18.077	0.75
В	0.71	0.69	2.158	0.80	0.73	2.353	0.70
C	0.70	0.67	2.328	0.76	0.67	1.931	0.74
D	0.53	0.42	0.623	0.55	0.39	11.180	0.74
E	0.67	0.65	1.508	0.72	0.61	4.309	0.66
F	0.70	0.72	2.042	0.76	0.69	2.911	0.63
K	0.28	0.17	0.535	0.31	0.23		
K0	0.49	0.35	0.617	0.59	0.38		
MS1			1.248				
MS2			1.421				
MS3			1.161				
Р	0.03	0.03	0.031	0.03	0.03		
R1	0.46	0.22	0.629	0.56	0.42		
R2	0.63	0.42	0.743	0.73	0.53		
R3	0.53	0.22	0.509	0.61	0.40		
R4	0.85	0.81	1.434	0.86	0.71		
S1			0.644			10.301	0.81
S2	0.81	0.71	0.810	0.84	0.75	9.887	0.80
S3			1.099			9.524	0.76
S4			2.184			1.786	0.68
S5			1.076			5.320	0.78
S6			1.413			3.140	0.86
WHITE			0.193				
RED			0.379				
BLUE			0.479				
Red Pnl	0.36	0.42	0.450	0.49	0.36		
SMOOTH			0.185				

Table 11. 2000 Data (Continued)

IRV TIRE TESTS AT 15% SLIP ON SITES A - F

		PIARC Sr	nooth tire		PIARC Ribbed tire				
	Force		Torque		Fo	rce	Torque		
	65	95	65	95	65	95	65	95	
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	
А	0.35	0.32	0.20	0.15	0.65	0.65	0.62	0.60	
В	0.61	0.60	0.58	0.56	0.65	0.65	0.65	0.63	
С	0.60	0.58	0.56	0.53	0.63	0.62	0.61	0.60	
D	0.35	0.31	0.23	0.18	0.62	0.62	0.61	0.59	
Е	0.53	0.52	0.46	0.44	0.63	0.62	0.62	0.61	
F	0.59	0.58	0.55	0.55	0.63	0.62	0.62	0.61	

	PI	ARC Smoo	th tire - 19	90	Aircraft Tire				
	Force		Torque		Fo	rce	Torque		
	65	95	65	95	65	95	65	95	
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	
А	0.52	0.51	0.43	0.40	0.52	0.50	0.45	0.42	
В	0.61	0.61	0.58	0.57	0.56	0.55	0.55	0.53	
С	0.59	0.58	0.56	0.55	0.55	0.53	0.54	0.52	
D	0.52	0.51	0.42	0.39	0.48	0.46	0.41	0.39	
Е	0.55	0.55	0.52	0.51	0.49	0.48	0.46	0.44	
F	0.56	0.56	0.53	0.53	0.50	0.50	0.49	0.47	

IRV SLIP TESTS WITH THE PIARC SMOOTH TIRE ON SITE $\ensuremath{\mathsf{S2}}$

	Fo	rce	Torque		
	65	95	65	95	
SLIP	km/h	km/h	km/h	km/h	
15%	0.67	0.65	0.42	0.39	
30%	0.57	0.55	0.60	0.57	
60%	0.55	0.52	0.58	0.55	

2.9 2001: The Eighth NASA Tire/Runway Friction Workshop

The Eighth Annual Workshop took place on May 14 – 17, 2001. The following friction and texture measuring devices took part:

Dynamic Friction Tester (DF Tester) - Japan Circular Track Meter (CT Meter) - Japan Circular Track Meter (CT Meter) - Virginia Virginia DOT E-274 Locked Wheel Tester - USA Pennsylvania DOT E-274 Locked Wheel Tester - USA Transport Canada Surface Friction Tester (TC85) - Canada GripTester - NASA GripTester - USAF FAA BV-11 - USA FAA Runway Friction Tester - USA FAA Surface Friction Tester - USA IMAG - France Skiddabrader Outflow Meter – USA

In addition in this workshop a track was laid out for evaluating longitudinal profiling devices. This track was laid out on taxiway Alpha to be 1024 feet long with a 300 foot lead-in. The following devices took part:

VA DOT FACE Dipstick -USA YSI Roadpro-USA ARP Auto Rod & Level-USA PA DOT ARRB Walker MD DOT Light Weight Profiler-USA PA DOT ICC Light Weight Profiler-USA VA DOT ICC High Speed Profiler-USA MD DOT High Speed Profiler-USA Dynatest Profiler-USA Greenwood High Speed Profiler-DK

All Light Weights and High Speed Profilers made ten repeat runs on the taxiway alpha site in the same direction. In addition many made a single run on the runway 4-22. Walking profilers made from one to ten runs, some making left and right wheel tracks. All data was collected by Dynatest and is available on CD from NASA or CDRM

		DFT	ester		CTMeter	r - Japan	CTMeter	-Virginia	OFT
	20	40	60	80	MPD	RMS	MPD	RMS	
SITE	km/h	km/h	km/h	km/h	mm	mm	mm	mm	sec
А	0.629	0.616	0.638	0.656	0.39	0.28			14.299
В	0.708	0.767	0.730	0.695	2.54	3.06			2.585
С	0.696	0.767	0.698	0.672	2.21	2.43			2.260
D	0.560	0.572	0.607	0.638	0.45	0.33			9.757
Е	0.725	0.697	0.690	0.661	1.26	0.94			
F	0.782	0.765	0.806	0.747	1.82	1.65			
K	0.306	0.235	0.219	0.232	0.41	0.43	0.37	0.44	10.357
K0	0.678	0.660	0.676	0.649	0.59	0.60			11.635
L									15.171
MS0	0.751	0.690	0.661	0.624	0.47	0.44	0.42	0.35	25.252
MS1	0.781	0.775	0.784	0.746	1.21	1.04	1.11	0.95	3.157
MS2	0.791	0.797	0.818	0.771	1.18	0.70	1.12	0.81	2.750
MS3	0.876	0.872	0.899	0.782	1.01	0.81	0.93	0.78	4.288
MS4	0.920	0.887	0.883	0.785	1.10	0.83	1.12	0.72	3.592
Р	0.101	0.075	0.072	0.076	0.02	0.23	0.02	0.12	
R1	0.656	0.581	0.545	0.541	0.45	0.40	0.41	0.36	32.037
R2							0.47	0.42	32.295
R3	0.635	0.567	0.531	0.540	0.50	0.54			
S6	0.800	0.733	0.710	0.662	0.86	0.45			
Long Red	0.478	0.420	0.417	0.467	0.35	0.23	0.29	0.36	16.523
Long White	0.019	0.019	0.021	0.026	0.03	0.23			
White	0.166	0.152	0.153	0.158	0.14	0.21	0.10	0.14	
Red	0.311	0.273	0.270	0.296	0.30	0.22	0.28	0.21	20.326
Blue	0.692	0.647	0.656	0.652	0.39	0.18			13.374

Table 12. 2001 Data

	TC S	FT85	USAF GT		NAS	A GT	FAA SFT		
	65	90	65	95	65	95	40	65	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.721	0.576	0.496	0.301	0.50	0.33	0.777	0.586	0.465
В	0.883		0.633	0.552	0.71	0.59	0.793	0.744	
С	0.735		0.624	0.544	0.69	0.56	0.770	0.723	
D	0.744		0.518	0.386	0.56	0.46	0.753	0.603	
Е	0.760		0.571	0.539	0.65	0.63	0.760	0.679	
F	0.807		0.581	0.560	0.68	0.63	0.777	0.718	
K	0.360		0.331		0.33			0.382	
K0	0.476		0.472		0.52			0.660	
L			0.516		0.60			0.750	
MS2			0.693		0.84			0.846	
Р			0.050		0.04			0.037	
S2	0.734	0.643	0.624	0.540			0.797	0.732	0.618

Table 12	2001	Data	(Continued)
----------	------	------	------------	---

		IR	V			FAA RFT	
	Fo	rce	Tor	que			
	65	95	65	95	40	65	95
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h
А	0.420	0.286	0.388	0.255	0.71	0.49	0.365
В	0.656	0.626	0.626	0.596	0.84	0.78	
С	0.640	0.598	0.610	0.568	0.84	0.74	
D	0.436	0.346	0.405	0.315	0.73	0.48	
Е	0.590	0.565	0.560	0.535	0.79	0.69	
F	0.631	0.612	0.601	0.582	0.83	0.74	
K	0.282		0.248			0.29	
K0	0.422		0.394			0.45	
L	0.396		0.373			0.59	
MS2	0.676		0.656			0.79	
Р	0.048		0.02			0.11	
S2	0.600	0.546	0.578	0.524	0.75	0.65	0.522

	FAA E	3V-11	E	-274 VADC	T	E-274 PADOT			
	65	95	40	65	95	40	65	95	
SITE	km/h	km/h	km/h	km/h	km/h	km/h	km/h	km/h	
А	0.578	0.465	0.362	0.253	0.177	0.370	0.274	0.191	
В	0.856		0.574						
С	0.837		0.587						
D	0.570		0.395	0.300	0.230		0.304		
Е	0.715		0.562	0.495	0.421		0.475		
F	0.776		0.569				0.496		
K				0.151			0.160		
K0				0.252			0.276		
L	0.576			0.343			0.393		
MS2	0.813			0.602			0.589		
Р	0.044			0.016			0.056		
S2	0.635	0.611	0.556	0.446	0.313	0.550	0.441	0.345	

2.10 2002: The Ninth NASA Tire/Runway Friction Workshop

The ninth annual workshop took place on May 13 - 16, 2002. The following friction and texture measuring devices took part:

Dynamic Friction Tester (DF Tester) - Japan Circular Track Meter (CT Meter) - Japan Circular Track Meter (CT Meter) - Virginia Virginia DOT E-274 Locked Wheel Tester - USA *Transport Canada Surface Friction Tester (TC85) - Canada *GripTester - NASA FAA BV-11 - USA FAA Runway Friction Tester - USA *FAA Surface Friction Tester (SFT) - USA IMAG - France Skiddabrader Outflow Meter - USA

* The data for these devices has not been received in reduced form.

	CTM	eter - Jap	ban	CTN	/leter - Vir	ginia	DFTester			
	MPD	RMS	MTD	MPD	RMS	MTD	20	40	60	80
SITE	mm	mm	mm	mm	mm	mm	km/h	km/h	km/h	km/h
А	0.54	0.34	0.61	0.53	0.41	0.60	0.628	0.625	0.641	0.637
В	1.69	2.02	1.70	1.71	2.01	1.72	0.650	0.710	0.673	0.627
С	1.75	2.01	1.76	2.12	2.41	2.11	0.644	0.692	0.634	0.605
D	0.57	0.54	0.63	0.57	0.54	0.63	0.622	0.615	0.617	0.598
Е	1.55	1.18	1.57	1.63	1.47	1.64	0.705	0.711	0.715	0.658
F	1.88	1.58	1.88	1.88	1.58	1.88	0.777	0.772	0.807	0.680
K0	0.53	0.57	0.60	0.49	0.51	0.56	0.671	0.664	0.673	0.641
K	0.37	0.49	0.44	0.37	0.50	0.44	0.358	0.275	0.252	0.268
MS0	0.52	0.50	0.59	0.42	0.44	0.49	0.756	0.714	0.670	0.624
MS1	1.04	0.76	1.08	1.04	0.72	1.08	0.892	0.887	0.911	0.772
MS2	1.22	0.78	1.25	1.16	0.79	1.20	0.849	0.840	0.862	0.739
MS3	1.20	0.77	1.23	1.19	0.75	1.22	0.842	0.831	0.853	0.748
MS4	1.11	0.77	1.15	1.18	0.76	1.21	0.935	0.891	0.870	0.763
MS6							0.823	0.821	0.833	0.720
R1	0.42	0.47	0.49	0.41	0.40	0.48	0.683	0.904	0.554	0.535
R2	0.61	0.48	0.67	0.58	0.42	0.64	0.781	0.729	0.701	0.653
R3	0.52	0.49	0.59	0.59	0.58	0.65	0.701	0.627	0.578	0.548
S1	0.57	0.36	0.63	0.58	0.72	0.64	0.701	0.686	0.685	0.660
S2	0.66	0.38	0.72	0.67	0.72	0.73	0.701	0.678	0.668	0.629
S3	0.90	0.66	0.95	0.89	0.71	0.94	0.723	0.695	0.678	0.639
S4	1.77	1.53	1.78	1.81	1.42	1.81	0.705	0.670	0.643	0.626
S5	0.76	0.60	0.81	0.71	0.73	0.77	0.767	0.724	0.711	0.650
S6	1.03	0.85	1.07	1.05	1.09	1.09	0.804	0.749	0.734	0.691

Table 13. 2002 Data

	OutFlow Meter
SITE	sec
А	9.576
В	2.625
С	1.841
D	10.926
Е	2.737
F	1.788
S1	7.843
S2	6.771
S3	3.510
S4	1.123
S6	2.723

Table 13. 2002 Data (Continued)

REPEATABILITY TESTS AT 65 km/h

SITE	BV-11 - FAA				RFT - FAA	A
		n	STD DEV		n	ST DEV
А	0.700	5	0.054	0.522	19	0.081
В	0.876	5	0.037	0.790	19	0.026
С	0.804	5	0.052	0.758	19	0.032
D	0.746	5	0.045	0.507	19	0.067
Е	0.838	5	0.048	0.677	19	0.034
F	0.822	5	0.021	0.747	19	0.041
•	0.022	0	0.021	0.747	10	, c

	IRV					
	Force				Torque	
SITE		n	ST DEV		n	ST DEV
А	0.423	25	0.039	0.396	25	0.050
В	0.602	25	0.054	0.583	25	0.099
С	0.588	25	0.046	0.561	25	0.087
D	0.411	25	0.040	0.387	25	0.061
Е	0.571	25	0.036	0.545	25	0.056
F	0.588	25	0.026	0.563	25	0.048
K0	0.41	14	0.041	0.39	14	0.049
К	0.31	14	0.031	0.29	14	0.036

	VADOT E-274 Trailer					
	E-524 Tire			E-501 Tire		
						STD
SITE		n	STD DEV		n	DEV
А	0.235	10	0.012	0.291	9	0.030
В	0.530	10	0.020	0.561	9	0.022
С	0.511	10	0.016	0.550	9	0.029
D	0.278	10	0.010	0.342	9	0.067
Е	0.439	10	0.012	0.482	9	0.014
F	0.479	10	0.010	0.538	9	0.013

3.0 DATA ANALYSIS

Presentation of selected data is given in Appendices B through F. Friction and Texture data on sites A through F are given for those cases where sufficient data is available for presentation. For example, when data is available for three or more speeds the friction vs. speed can be plotted (see Appendices B and C). If data is available for three or more years with the same device the friction or texture histories can be plotted (see Appendices D and E). Where data is available for two similar devices the reproducibility can be demonstrated (see Appendix F). All plots of the friction data are scaled from zero to one so comparisons of sensitivity can be readily made.

3.1 Friction vs. Speed for Sites A - F in 1999

Nine friction tests run in 1999 were performed at three or more speeds. These data are plotted for Sites A - F in Appendix B. Note that the measurements with smooth tires and high slips produce the steepest gradients. Tests with ribbed or patterned tires (Figures B.3 and B.9) distinguish the differences between the sites much less than tests with smooth tires.

There are some anomalies. The SALTAR data show an increase of friction with speed (Figure B.6). This may be due to a decrease in the water depth with increasing speed. The Runway Friction Tester (Figure B.1) and the Diagonal Braked Vehicle (Figure B.4) show similar gradients for all sites including the grooved sites.

3.2 Friction vs. Speed for Years 1993 - 1999

Figures C.1 to C.6 show the history of Friction vs. Speed for Sites A – F as measured with the Virginia ASTM E-274 Trailer with a smooth ASTM E-524 Tire. The same device was used for tests in 1993, 1996, 1997, 1998, and 1999. There are relatively small differences over time. This can also be seen in Figures C.4 to C.10 where the first year (1993) and the last year (1999) are compared for sites A, B, D, E and F (Site C was not run in 1993).

One anomaly appears in the data: Site C in 1996 (Figure C.2). The friction increases with speed. This must be regarded as an outlier in the data.

3.3 Friction History of Sites A - F

Four devices have reported friction at 65 km/h at the NASA Friction Workshops for three years or more. Two of these devices reported two sets of data: The E-274 Trailer measured with both the smooth E-524 tire and the ribbed E-501 tire. The IMAG (which was replaced in 2001 with IRV, a similar device) reports friction based on both force and torque. The friction histories at each site for a total of six data sets are presented in bar charts in Figures D.1 to D.6.

3.4 Texture History of Sites A - F

Five texture measurements have been performed at the NASA Friction Workshops for three or more years. Two of these are actually friction devices, but are often used as surrogates for microtexture: The British Pendulum Tester and the 20 km/h data from the DFTester. The histories of these five data sets are shown in bar charts in Figures E.1 to E.5. The texture is relatively consistent, but since these measurements are all spot measurements, there is some difference in the data due to the measurements being made at different locations over the years. This is particularly true for the sites with grooved surfaces.

3.5 Device Reproducibility

At some of the workshops there were two devices of the same type that collected data at approximately the same time and under the same conditions. These tests provided the opportunity to evaluate the reproducibility of those devices. Reproducibility requires a least squares fit of the data from two devices in which the intercept is near zero and the coefficient is close to 1.0 as well as a high correlation coefficient. The results are summarized in Table 14.

Table 14 Device Reproducibility

Device 1 Device 2		Coefficient	Intercept	R-Squared
BPN VADOT	BPN PSU	0.982	0.114	0.837
BPN VADOT	BPN FHwA	1.496	-0.407	0.308
DFTESTER JAPAN	DFTESTER PSU	1.005	0	0.946
CTMETER JAPAN	CTMETER VADOT	1.005	0	0.991
MTD NASA	MTD PSU	1.465	-0.016	0.901
OFT NASA	OFT SKIDABRADER	0.800	0.796	0.942
VADOT SN65B	PSU SN65B	0.985	0	0.978
VADOT SN65R	PSU SN65R	0.254	0.396	0.927

Although the VADOT BPN and the BPN PSU are fairly highly correlated the intercept is very large (in reported BPN units the intercept is 11.4). The BPN VADOT showed little relationship with the BPN FHwA.

The DFTester and the CTMeter have very high reproducibility with a coefficient nearly 1.0. The intercept was forced to zero for these two correlations at little effect on the correlation coefficient. Forcing the intercept reduced the R^2 value to 0.955 for the DFTester and to 0.992 for the CTMeter.

The MTD data shows that the operator has a significant influence on the result. The two outflow meters may have had a different geometry which affected the reproducibility, although the correlation was good.

The ASTM E-274 Trailers with the smooth E-524 Tire showed good reproducibility. In this case also the intercept was forced to zero reducing the R^2 value from 0.989 to 0.978. There was very little data for the case of the E-274 Trailers with the ribbed E-501 Tire which probably is the reason for the poor result.

3.6 Profiling

Profiling is a relatively new addition to the workshop. In 1999 the first real data was recorded and section 2.7 shows a comparison of the dipstick, ARP, RoadPro and a rod and level measurement. The data was in good agreement. The data from 200 was not recorded, the equipment was only demonstrated. In 2002 there were a number of devices and the data as submitted was put onto a CD; however, much of the data was in the device's own code and still needs to be converted into common files so that accuracy and repeatability can be calculated. Rod and level data never was taken to provide a reference. In 2002 no profiling activity took place. It is recommended that rod and level data be taken in May 2003 and more profiling activity be attempted, including a fourth site similar to site three. Also, the 2001 data should be processed if it can be converted to a common file type.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The Annual NASA Wallops Runway Friction Workshops are considered to be an excellent workshop and well liked by the friction measuring industry, both aviation and highway. Attendance continues to be well representative of the industry and always enjoys a worldwide audience. One can see by the equipment that is brought to the workshop year after year the effort and importance that many organizations have placed on these workshops, all at their own expense. NASA is to be commended for hosting and conducting these workshops, which have proven to be a contributor to the safety of the aviation and highway industry. It is hoped that these workshops continue for many years.

Rod and level never was taken to provide a reference. In 2002, no profiling activity took place. It is recommended that rod and level data be taken in May 2003 and more profiling activity be attempted, including a fourth site similar to site three. Also, the 2001 data should be processed if it can be converted to a common file type

REFERENCES

- 1. ASTM E 1960-98, "Standard Practice for Calculating International Friction Index of a Pavement Surface".
- 2. ASTM E 965-01, "Standard Test Method for Measuring Pavement Macrotexture Depth Using the British Pendulum Tester".
- 3. ASTM E 303-98, "Standard Test Method for Measuring Surface Frictional Properties Using the British Pendulum Tester".
- J. C. Wambold, C. E. Antel, J. J. Henry, and Z. Rado, "International PIARC Experiment to Compare and Harmonize Texture and Skid Resistance Measurements", Final Report, World Road Association (PIARC), Paris, 1995.
- 5. ASTM E 1911-02, "Standard Test Method for Measuring Paved Surface Frictional Properties Using the Dynamic Friction Tester".
- 6. ASTM E 274-97, "Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire".
- 7. ASTM E 303-98, "Standard Test Method for Measuring Pavement Macrotexture Properties Using the Circular Track Meter".
- 8. ASTM E 1845-96, "Standard Test Practice for Calculating Pavment Macrotexture Mean Profile Depth".

Appendix A: SITE DESCRIPTIONS AND SURFACE PHOTOGRAPHS

TABLE A.1 SITE DESCRIPTIONS	A-2
Figure A.1 Site A	A-3
Figure A. 2 Site B	A-3
Figure A.3 Site C	A-4
Figure A.4 Site D	A-4
Figure A.5 Site E	A-5
Figure A.6 Site F	A-5
Figure A.7 Site K	A-6
Figure A.8 Site K0	A-6
Figure A.9 Site L	A-7
Figure A.10 Site MS0	A-7
Figure A.11 Site MS1	A-8
Figure A.12 Site MS2	A-8
Figure A.13 Site MS3	A-9
Figure A.14 Site MS4	A-9
Figure A.15 Site P	A-10
Figure A.16 Site R1	A-10
Figure A.17 Site R2	A-11
Figure A.18 Site R3	A-11
Figure A.19 Site S0	A-12
Figure A.20 Site S1	A-12
Figure A.21 Site S2	A-13
Figure A.22 Site S3	A-13
Figure A.23 Site S4	A-14
Figure A.24 Site S5	A-14
Figure A.25 Site S6	A-15
Figure A.26 White Panel	A-15
Figure A.27 Red Panel	A-16
Figure A.28 Blue Panel	A-16
Figure A.29 Long Red Panel	A-17

TABLE A.1 SITE DESCRIPTIONS

SITE	LOCATION	WIDTH	LENGTH	SURFACE DESCRIPTION
		ft	Ft	
А	R/W 4/22	50	350	Ungrooved canvas belt-finished concrete
В	R/W 4/22	50	350	Grooved 1x1/4x1/4 inch canvas belt concrete
С	R/W 4/22	50	350	Grooved 1x1/4x1/4 inch burlap drag-finished
D	R/W 4/22	50	350	Ungrooved burlap drag-finished concrete
E	R/W 4/22	50	1000	Ungrooved small aggregate asphalt
F	R/W 4/22	50	350	Grooved 2x1/4x1/4 inch small aggregate asphalt
G	R/W 4/22	50	250	Grooved 1x1/4x1/4 inch small aggregate asphalt
Н	R/W 4/22	50	100	Grooved 1x1/4x1/4 inch latex modified asphalt
I	R/W 4/22	50	200	Ungrooved latex modified asphalt
K	T/W 10/28	10	280	Driveway sealer (w/o sand) on concrete
K0	T/W 10/28	10	280	Ungrooved float finished concrete
L	T/W 4/22	10	300	Ungrooved medium aggregate asphalt
MS0	T/W 4/22	10	300	Small aggregate asphalt without slurry seal overlay
MS1	T/W 4/22	10	300	Slurry seal overlay on sm. aggr. asph. SAA (1995)
MS2	T/W 4/22	10	300	Micro-surfacing, single overlay on SAA (1995)
MS3	T/W 4/22	10	300	Micro-surfacing, double overlay on SAA (1995)
MS4	T/W 4/22	4	188	Anti-skid overlay surface on SAA (1999)
MS5	T/W 10/28	10	300	Slurry seal overlay on float finished concrete
MS6	T/W 10/28	10	300	M-2 micro-surfacing single overlay on concrete
MS7	T/W 10/28	10	300	M-3 micro-surfacing double overlay on concrete
Р	T/W 4/22	4	216	Aluminum panels
R1	T/W 4/22	10	300	Rejuvenated asphalt without sand
R2	T/W 4/22	10	300	Small aggregate asphalt
R3	T/W 4/22	10	300	Rejuvenated asphalt with sand
S0	R/W 4/22	12	900	Ungrooved concrete near runway east shoulder
S1	R/W 4/22	12	200	Skidabrader light textured S0 (1994 installed)
S2	R/W 4/22	12	200	Skidabrader medium textured S0 (1994 installed)
S3	R/W 4/22	12	200	Skidabrader high textured S0 (1994 installed)
S4	R/W 4/22	12	300	Skidabrader very high textured S0 (1994 installed)
S5	R/W 4/22	12	900	Skidabrader medium textured S0 (1995 installed)
S6	R/W 4/22	12	600	Skidabrader medium textured S0 (1997 installed)
WHITE	T/W 4/22	4	8	Reference panel, low texture
RED	T/W 4/22	4	8	Reference panel, medium texture
BLUE	T/W 4/22	4	8	Reference panel high texture
LONG RED	T/W 4/22	4	156	Medium Texture Panel
LONG WHITE	T/W 4/22	4	156	Smooth Painted Aluminum Panel

Figure A.1 Site A

Figure A.3 Site C

Figure A.4 Site D

Figure A.5 Site E

Figure A.6 Site F

Figure A.7 Site K

Figure A.8 Site K0

Figure A.9 Site L

Figure A.10 Site MS0

Figure A.11 Site MS1

Figure A.12 Site MS2

Figure A.13 Site MS3

Figure A.14 Site MS4

Figure A.15 Site P

Figure A.16 Site R1

Figure A.17 Site R2

Figure A.18 Site R3

Figure A.19 Site S0

Figure A.20 Site S1

Figure A.21 Site S2

Figure A.22 Site S3

Figure A.23 Site S4

Figure A.24 Site S5

Figure A.25 Site S6

Figure A.26 White Panel

Figure A.27 Red Panel

Figure A.28 Blue Panel

Figure A.29 Long Red Panel

APPENDIX B: FRICTION VERSUS SPEED BY SITE FOR 1999

Figure B.1	FAA Runway Friction Tester E-1551 Tire	. B-2
Figure B.2	VADOT E-274 Trailer E-524 Tire	. B-2
Figure B.3	VADOT E-274 Trailer E-501 Tire	. B-3
Figure B.4	NASA Diagonal Braked Vehicle	. B-3
Figure B.5	FAA BV-11	. B-4
Figure B.6	SALTAR	. B-4
Figure B.7	TC SFT 79 on Dry Pavement	. B-5
Figure B.8	USFT E-1551 Tire	. B-5
Figure B.9	USFT Aero Tire	. B-6

Friction vs Speed Sites A - F 1999

Figure B.2 VADOT E-274 Trailer E-524 Tire

Figure B.3 VADOT E-274 Trailer E-501 Tire

Friction vs Speed Sites A, B, D, and E 1999

Figure B.6 SALTAR

Figure B.8 USFT E-1551 Tire

Friction vs Speed Sites A - F 1999

Figure B.9 USFT Aero Tire

APPENDIX C: FRICTION VERSUS SPEED BY YEAR FOR THE VADOT E-274 TRAILER WITH THE E-524 TIRE

Sites A – F for 1993	2
Sites A – F for 1996	2
Sites A – F for 1997	3
Sites A – F for 1998	3
Sites A – F for 1999	4
Site A for 1993 and 1999	4
Site B for 1993 and 1999	5
Site D for 1993 and 1999	5
Site E for 1993 and 1999	6
Site F for 1993 and 1999	6
	Sites $A - F$ for 1993. Sites $A - F$ for 1996. Sites $A - F$ for 1997. Sites $A - F$ for 1998. Sites $A - F$ for 1998. Sites $A - F$ for 1999. Site A for 1993 and 1999. Site B for 1993 and 1999. Site D for 1993 and 1999. Site E for 1993 and 1999. Site F for 1993 and 1999.

Figure C.1 Sites A – F for 1993

Figure C.2 Sites A – F for 1996

Figure C.4 Sites A – F for 1998

VADOT E-274 Trailer (E-524 Tire)

Figure C.6 Site A for 1993 and 1999

Figure C.7 Site B for 1993 and 1999

Figure C.8 Site D for 1993 and 1999

Figure C.10 Site F for 1993 and 1999

APPENDIX D: FRICTION HISTORY

Friction at 65 km/h vs Year Sites A - F

Figure D.1	VADOT E-274 Trailer (E-524 Tire)	D-2
Figure D.2	VADOT E-274 Trailer (E-501 Tire)	D-2
Figure D.3	IMAG/IRV Force	D-3
Figure D.4	IMAG/IRV Torque	D-3
Figure D.5	FAA Runway Friction Tester	D-4
Figure D.6	GripTester	D-4

Friction at 65 km/h vs Year Sites A - F

Figure D.2 VADOT E-274 Trailer (E-501 Tire)

Friction at 65 km/h vs Year Sites A - F

Figure D.6 GripTester

Appendix E: TEXTURE HISTORY

Figure E.1 DFTester at 20 km/h vs Year Sites A - F	E-2
Figure E.2 CTMeter MPD vs Year Sites A – F	E-2
Figure E.3 MTD (Sandpatch) vs Year Sits A – F	E-3
Figure E.4 Skidabrader Outflow Meter vs Year Sites A - F	E-3
Figure E.5 PSU BPN vs Year Sites A – F	E-4

Figure E.1 DFTester at 20 km/h vs Year Sites A - F

Figure E.2 CTMeter MPD vs Year Sites A – F

MTD (mm)

Figure E.3 MTD (Sandpatch) vs Year Sits A – F

Figure E.4 Skidabrader Outflow Meter vs Year Sites A - F

Figure E.5 PSU BPN vs Year Sites A – F

APPENDIX F: COMPARISON OF DEVICES (REPRODUCIBILITY)

Figure F.1	BPN VADOT vs. BPN PSU for 1994, 1997, and 1999	F-2
Figure F.2	BPN VADOT vs BPN FHwA for 1997 & 1999	F-2
Figure F.3	DFT 20 1996 & 1999 for two DFTesters	F-3
Figure F.4	MPD 2001 & 2002 Data for two CTMeters	F-3
Figure F.5	MTD 1998 Data for two Sandpatch Operators	F-4
Figure F.6	OFT 1999 Data for two Outflow Meters	F-4
Figure F.7	SNR65 1996 Data for two E-274 Trailers with E-501 Tires	F-5
Figure F.8	SNB65 2001 Data for two E-274 Trailers with E-524 Tires	F-5

Figure F.2 BPN VADOT vs BPN FHwA for 1997 & 1999

MPD VADOT CTMETER (mm)

Figure F.4 MPD 2001 & 2002 Data for two CTMeters

NASA MTD (mm)

Figure F.6 OFT 1999 Data for two Outflow Meters

Figure F.7 SNR65 1996 Data for two E-274 Trailers with E-501 Tires

Figure F.8 SNB65 2001 Data for two E-274 Trailers with E-524 Tires

APPENDIX G: GROUP PHOTOGRAPHS

Figure G.1 Photograph of NASA Wallops Friction Workshop Briefing Meeting before	
Testing	G-2
Figure G.2 Second Photograph of NASA Wallops Friction Workshop Briefing Meeting	
before Testing	G-2
Figure G.3 Group Photograph for 1993 NASA PIARC EXTENSION	G-3
Figure G.4 Group Photograph for 1994 NASA Wallops Friction Workshop	G-3
Figure G.5 Group Photograph for 1995 NASA Wallops Friction Workshop	G-4
Figure G.6 Group Photograph for 1996 NASA Wallops Friction Workshop	G-4
Figure G.7 Group Photograph for 1999 NASA Wallops Friction Workshop	G-5
Figure G.8 Group Photograph for 2000 NASA Wallops Friction Workshop	G-6

Figure G.1 Photograph of NASA Wallops Friction Workshop Briefing Meeting before Testing

Figure G.2 Second Photograph of NASA Wallops Friction Workshop Briefing Meeting before Testing

Figure G.3 Group Photograph for 1993 NASA PIARC EXTENSION

Figure G.4 Group Photograph for 1994 NASA Wallops Friction Workshop

Figure G.5 Group Photograph for 1995 NASA Wallops Friction Workshop

Figure G.6 Group Photograph for 1996 NASA Wallops Friction Workshop

Group Photographs for 1997 and 1999 NASA Wallops Friction Workshops were not taken.

Figure G.7 Group Photograph for 1999 NASA Wallops Friction Workshop

Figure G.8 Group Photograph for 2000 NASA Wallops Friction Workshop

Group photographs for 2001 and 2002 NASA Wallops Friction Workshops were not taken.

APPENDIX H: TEXTURE DEVICES USED IN THE NASA WALLOPS FRICTION WORKSHOPS

Figure H.1 Circular Track Meter (CT Meter) – Japan	H-2
Figure H.2 PTI and FHWA British Pendulum Tester (BPN) - USA	H-2
Figure H.3 FHWA AND PTI Outflow Meter – USA	H-3
Figure H.4 FHWA ROSAN (MPD, ETD) – USA	H-3
Figure H.5 FHWA Texture Van – USA	H-4
Figure H.6 NASA Volumetric Texture Depth, Glass beads - USA	H-4
Figure H.7 NASA Volumetric Texture Depth, Grease – USA	H-5
Figure H.8 PSU Volumetric Texture Depth, Glass beads - USA	H-5
Figure H.9 NASA British Pendulum Tester (BPN) – USA	H-6
Figure H.10 Skiddabrader Outflow Meter – USA	H-6
Figure H.11 Virginia DOT British Pendulum Tester (BPN) – USA	H-7
Figure H.12 Virginia DOT Laser Texture Meter-USA	H-7
Figure H.13 Virginia DOT Circular Track Meter (CT Meter)-USA	H-8
Figure H.14 VTI Laser Texture System (MPD, ETD, RMS) - Sweden	H-8
Figure H.15 Mini Texture Meter-UK	H-9

Figure H.1 Circular Track Meter (CT Meter) – Japan

Figure H.2 PTI and FHWA British Pendulum Tester (BPN) – USA

Figure H.3 FHWA AND PTI Outflow Meter – USA

Figure H.4 FHWA ROSAN (MPD, ETD) – USA

Figure H.5 FHWA Texture Van – USA

Figure H.6 NASA Volumetric Texture Depth, Glass beads - USA

Figure H.7 NASA Volumetric Texture Depth, Grease – USA

Figure H.8 PSU Volumetric Texture Depth, Glass beads – USA

Figure H.9 NASA British Pendulum Tester (BPN) – USA

Figure H.10 Skiddabrader Outflow Meter – USA

Figure H.11 Virginia DOT British Pendulum Tester (BPN) – USA

Figure H.12 Virginia DOT Laser Texture Meter-USA

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 11:05:45 VDOT Texture Meter

Figure H.13 Virginia DOT Circular Track Meter (CT Meter)-USA

Figure H.14 VTI Laser Texture System (MPD, ETD, RMS) – Sweden

Figure H.15 Mini Texture Meter-UK

APPENDIX I: FRICTION DEVICES USED IN THE NASA WALLOPS FRICTION WORKSHOPS

Figure I.1 Dynamic Friction Tester (DF Tester) – Japan	. I-2
Figure I.2 FAA BV-11 – USA	. I-2
Figure I.3 FAA MuMeter - USA	. I-3
Figure I.4 FAA Surface Friction Tester (SFT) – USA	. I-3
Figure I.5 GripTester – NASA	. I-4
Figure I.6 GripTester – Scotland	. I-4
Figure I.7 GripTester – USAF	. I-5
Figure I.8 GripTester –(Push mode)	. I-5
Figure I.9 IMAG – France	. I-6
Figure I.10 International Cybernetics E-274 Locked Wheel Tester (SNB and SNR) –	
USA	. I-6
Figure I.11 IRV – International Reference Vehicle – France	. I-7
Figure I.12 JBI Decelerometer – USA	. I-7
Figure I.13 PTI K. J. Law E-274 Locked Wheel Tester (SNR) – USA	. I-8
Figure I.14 FAA K. J. Law Runway Friction Tester – USA	. I-8
Figure I.15 MD DOT E274 Locked Wheel Tester (SNR) – USA	. I-9
Figure I.16 NASA Diagonal Braked Vehicle – USA	. I-9
Figure I.17 Norsemeter ROAR (variable slip tester)-Norway	-10
Figure I.18 Norsemeter RUNAR (variable slip tester)-Norway	-10
Figure I.19 Norsemeter OSCAR (variable slip tester)-Norway	-11
Figure I.20 Norsemeter SALTAR – Norway	-11
Figure I.21 Penn State E-274 Locked Wheel Tester (SNB and SNR) – USA	-12
Figure I.22 Pennsylvania DOT E-274 Locked Wheel Tester – USA	-12
Figure I.23 Surface Friction Tester (USFT) – Sweden	-13
Figure I.24 Transport Canada Surface Friction Tester (TC79) - Canada	-13
Figure I.25 Transport Canada Surface Friction Tester (TC85) - Canada	-14
Figure I.26 Transport Canada ERD Blazer – Canada	-14
Figure I.27 U.S. Navy Slip Meter - USA	-15
Figure I.28 US Surface Friction Tester (USFT) - USA	-15
Figure I.29 Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA	-16
Figure I.30 VTI BV-14-Sweden	-16

Friction Workshop, NASA Wallops Flight Facility Date: 5/14/02 Time: 14:03:38 Circular Texture Meter and Outflow Meter

Figure I.1 Dynamic Friction Tester (DF Tester) – Japan

Figure I.3 FAA MuMeter - USA

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 15:36:46 FAA SAAB Friction Tester

Figure I.4 FAA Surface Friction Tester (SFT) – USA

Figure I.5 GripTester – NASA

Figure I.6 GripTester – Scotland

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 12:05 USAF Grip Tester

Figure I.7 GripTester – USAF

Figure I.8 GripTester –(Push mode)

Figure I.9 IMAG – France

Figure I.10 International Cybernetics E-274 Locked Wheel Tester (SNB and SNR) – USA

Friction Workshop, NASA Wallops Flight Facility Date: 5/16/02 Time: 11:47:00 IRV

Figure I.11 IRV – International Reference Vehicle – France

Figure I.12 JBI Decelerometer – USA

Figure I.13 PTI K. J. Law E-274 Locked Wheel Tester (SNR) – USA

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 12:05:30 FAA Runway Friction Tester

Figure I.14 FAA K. J. Law Runway Friction Tester – USA

Figure I.15 MD DOT E274 Locked Wheel Tester (SNR) – USA

Figure I.16 NASA Diagonal Braked Vehicle – USA

Figure I.17 Norsemeter ROAR (variable slip tester)-Norway

Figure I.18 Norsemeter RUNAR (variable slip tester)-Norway

Figure I.19 Norsemeter OSCAR (variable slip tester)-Norway

Figure I.20 Norsemeter SALTAR – Norway

Figure I.21 Penn State E-274 Locked Wheel Tester (SNB and SNR) – USA

Figure I.22 Pennsylvania DOT E-274 Locked Wheel Tester – USA

Figure I.23 Surface Friction Tester (USFT) – Sweden

Figure I.24 Transport Canada Surface Friction Tester (TC79) – Canada

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 12:06:00 TC SAAB Friction Tester

Figure I.25 Transport Canada Surface Friction Tester (TC85) – Canada

Figure I.26 Transport Canada ERD Blazer – Canada

Figure I.27 U.S. Navy Slip Meter – USA

Figure I.28 US Surface Friction Tester (USFT) - USA

Friction Workshop, NASA Wallops Flight Facility Date: 5/15/02 Time: 15:36 E274 Skid Trailer

Figure I.29 Virginia DOT E-274 Locked Wheel Tester (SNB and SNR) - USA

Figure I.30 VTI BV-14-Sweden

APPENDIX J: ROUGHNESS MEASURING SYSTEMS USED IN THE NASA WALLOPS FRICTION WORKSHOPS

Figure J.1 ARP Auto Rod & Level-USA	J-2
Figure J.2 Digital Profilite 300-Canada	J-2
Figure J.3 Dynatest Profiler-USA	J-3
Figure J.4 DYNVIA -Czech Republic	J-3
Figure J.5 Greenwood High Speed Profiler-DK	J-4
Figure J.6 MD DOT High Speed Profiler-USA	J-4
Figure J.7 MD DOT Light Weight Profiler-USA	J-5
Figure J.8 PA DOT ARRB Walker	J-5
Figure J.9 PA DOT ICC Light Weight Profiler-USA	J-6
Figure J.10 VA DOT FACE Dipstick –USA	J-6
Figure J.11 VA DOT ICC High Speed Profiler-USA	J-7
Figure J.12 YSI Roadpro-USA	J-7

Figure J.1 ARP Auto Rod & Level-USA

Figure J.2 Digital Profilite 300-Canada

Figure J.3 Dynatest Profiler-USA

Figure J.4 DYNVIA -Czech Republic

Figure J.5 Greenwood High Speed Profiler-DK

Figure J.6 MD DOT High Speed Profiler-USA

Figure J.7 MD DOT Light Weight Profiler-USA

Figure J.8 PA DOT ARRB Walker

Figure J.9 PA DOT ICC Light Weight Profiler-USA

Figure J.10 VA DOT FACE Dipstick –USA

Figure J.11 VA DOT ICC High Speed Profiler-USA

Figure J.12 YSI Roadpro-USA

APPENDIX K: PROFILING SITES

Figure K.1 Profiling site 1 on South side of Hanger N159K-2 Figure K.2 Profiling site 2 in front of Hanger N159 on Runway 4/22 Side – East Side.K-2

Figure K.1 Profiling site 1 on South side of Hanger N159

Figure K.2 Profiling site 2 in front of Hanger N159 on Runway 4/22 Side – East Side

APPENDIX L: OTHER PHOTOGRAPHS

Figure L-1 Skidabrader	L-2
Figure L-2 Wallops Water Truck 26 and Test Crews	L-2
Figure L-3 Wallops Water Truck 2	L-3
Figure L-4 T. Yager Demonstrating the Grease Patch	L-3

Figure L-1 Skidabrader

Figure L-2 Wallops Water Truck 26 and Test Crews

Friction Workshop, NASA Wallops Flight Facility Date: 5/16/02 Time: 11:57:24 IRV Filling Up

Figure L-3 Wallops Water Truck 2

Figure L-4 T. Yager Demonstrating the Grease Patch