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EXECUTIVE SUMMARY

This report describes a three-dimensional, time transient computational fluid dynamics
(CFD) analysis of liquefied petroleum gas tanks with various types of local heating by
fire. The analysis, conducted using the commercial CFD code by Fluent Inc., was
performed as part of a larger study of the effects of thermal protection defects.

Thermal protection systems are used to protect dangerous goods tank-cars from accidental
fire impingement. They are designed so that a tank will not rupture for 100 minutes in a
defined engulfing fire, or 30 minutes in a defined torching fire. Recent inspections have
shown that some tanks have significant defects in these thermal protection systems. If a
tank has thermal protection defects, it will heat up more rapidly in a fire. This means the
tank will experience higher wall temperatures, lading temperatures and tank pressure, all
of which increase the risk of tank failure.

Testing shows that when a tank is heated in a fire, the liquid near the wall is heated first.
This warm liquid then rises to the liquid surface, where it generates vapour to pressurize
the tank. This rising of the warm liquid is called temperature stratification. The CFD
analysis was conducted to quantify this process for the case of local tank heating due to
thermal protection defects.

The CFD analysis was used to study the effect of defect size and location on the transient
heating of the liquid lading in the tank. The results show that heating near the tank ends or
near the liquid level on the tank sides causes the most rapid rise in liquid temperatures on
the liquid surface. Heating near the tank bottom results in the slowest rise in liquid surface
temperature.

The following conclusions were made based on the CFD study:
i) The CFD simulations compare reasonably well with RAX 201 fire test results.
ii) Simulations show how the heated liquid rises to the liquid surface, where it

stays due to buoyancy.
iii) Heating near the tank top and ends causes the largest temperature rise on the

liquid surface.
iv) Heating near the tank bottom generates the lowest heating of the tank surface.
v) The larger the heated area, the hotter the liquid surface.

As liquid surface temperature is believed to be closely related to the tank pressure, the
above trends should also apply to tank pressurization.
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SOMMAIRE

Le rapport rend compte d’une analyse tridimensionnelle et chronologique, par la méthode
de simulation numérique en mécanique des fluides (CFD, computational fluid dynamics),
de citernes de GPL (gaz de pétrole liquéfié) soumises à divers types de chauffage localisé
causé par des flammes. L’analyse, réalisée par Fluent Inc. à l’aide du code CFD offert sur
le marché, faisait partie d’une vaste étude portant sur les effets des défauts de protection
thermique.

Les systèmes de protection thermique sont conçus pour protéger les wagons-citernes
transportant des marchandises dangereuses contre un feu avec flammes enveloppantes
susceptible de survenir lors d’un accident. Ils sont conçus de façon à empêcher une citerne
de se rompre pendant 100 minutes lorsqu’elle est soumise à un feu en nappe, et pendant
30 minutes lorsqu’elle est soumise à une flamme de chalumeau. Des inspections récentes
ont révélé que les systèmes de protection thermique de certaines citernes présentent des
défauts importants. Or, une citerne dont la protection thermique est défectueuse chauffera
plus rapidement si elle est en contact avec des flammes. Cela signifie que les parois de la
citerne et son contenu, de même que sa pression interne, atteindront des valeurs plus
élevées, ce qui accentuera le risque de rupture de la citerne.

Les essais révèlent que lorsque des flammes sont appliquées à une citerne, le liquide
adjacent à la paroi se réchauffe d’abord. Puis, ce liquide chaud monte à la surface du
liquide, où il génère des vapeurs qui mettent la citerne en pression. Cette montée du
liquide chaud entraîne ce que l’on appelle la stratification des températures. L’analyse par
CFD avait pour but d’établir les paramètres de ce processus dans le cas où le chauffage
localisé d’une citerne est attribuable à des défauts de la protection thermique.

Cette analyse a permis d’étudier l’effet de l’étendue et de l’emplacement du défaut sur la
montée en température du contenu de la citerne. Les résultats indiquent que l’application
de chaleur près des extrémités de la citerne ou sur les parois, près du niveau de
remplissage, entraîne le réchauffement le plus rapide de la surface du liquide. À l’inverse,
c’est lorsque la chaleur est appliquée dans la partie inférieure de la citerne que la
température de la surface du liquide monte le plus lentement.

Les travaux ont mené aux conclusions suivantes :
i) Les résultats des simulations CFD se comparent raisonnablement bien aux

résultats des essais RAX 201.
ii) Les simulations montrent comment le liquide chauffé monte à la surface, où la

poussée hydrostatique le maintient.
iii) L’application de la chaleur près du sommet et des extrémités de la citerne

entraîne le plus fort réchauffement de la surface du liquide.
iv) L’application de la chaleur près de la partie inférieure de la citerne entraîne le

plus faible réchauffement de la surface du liquide.
v) Plus la zone chauffée est étendue, plus la température de la surface du liquide

est élevée.
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Comme on croit que la température à la surface du liquide est étroitement reliée à la
pression interne de la citerne, les tendances constatées ci-dessus devraient aussi
s’appliquer à la mise en pression de la citerne.
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1.  INTRODUCTION

This report describes a three-dimensional, time transient computational fluid dynamics
(CFD) analysis of a liquefied petroleum gas (LPG) tank-car with various types of local
heating by fire. This report is intended for specialists interested in modeling thermally
protected tank-cars in fires.

This work has been done as part of the overall study of defects in thermal protection
systems of rail tank-cars conducted for the Transportation Development Centre of
Transport Canada.

This work was done to study the effects of thermal protection defects, more specifically,
the effect of defect size and location on the transient heating of the liquid lading. This
CFD analysis was carried out to provide some much needed data on how the liquid in a
tank-car heats up when the tank is only heated in local areas, as opposed to being 100%
engulfed in fire.

1.1 Background

This CFD analysis was part of an overall program to study thermal protection system
defects in rail tank-cars.

Certain dangerous goods tank-cars must be thermally protected so they can survive
accidental fire impingement. The requirement for thermal protection systems for pressure
tank-cars is specified in CAN/CGSB-43.147-2002, section 15.8, which states:

If a thermal protection system is specified by this standard, the system must be capable of
preventing the release of any dangerous goods from the tank car, except release through
the pressure relief device, when subjected to the following conditions:

(1) A pool fire for 100 min, and
(2) A torch fire for 30 min.

It is known from field surveys that some operating dangerous goods tank-cars have
defective thermal protection systems.  With the size of the North American fleet of tank-
cars, it is not feasible to fix all of these defects immediately, due to both cost and logistical
reasons. This research program was intended to help identify which tanks need immediate
attention.

Several published reports have been prepared by A.M. Birk and his team in connection
with this issue [1-5].

The work has led us to the point where a computer model has been developed to predict
critical thermal protection defect sizes on tank-cars. This thermal model requires some
additional data and final validation before it can be used to assess defects in the field.
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The following data is needed to further support the theoretical work.

i) Obtain high temperature stress-rupture data (by test) of tank steels, including both
old steels and new (to cover the true condition of the tank-car fleet).

ii) Conduct a CFD study to obtain predictions for the pressurization of tanks with fire
heating of localized thermal protection defects.

iii) Obtain medium-scale fire test data of tanks with defective thermal protection for
final validation of failure times.

This report presents the results of the CFD study only. Reports on the stress-rupture
testing and the fire testing of medium-scale propane tanks with thermal protection defects
will be published separately.

1.2 Objectives and Scope

The objective of this work was to model local heating of a propane tank to study the
internal convection currents in the liquid space of the tank. This was done to estimate the
liquid temperature on the top of the liquid. From this temperature the tank pressure can be
estimated.

The scope was limited to computer modeling only using a commercial CFD code. The
results will be used to formulate and validate a computer model of the complete tank and
thermal protection system.

The reader is cautioned that this was a limited scope study, and the results are
approximate only. The results should be considered preliminary and for discussion
purposes only. A full CFD study of this problem would require considerable resources.

1.3 Summary

It is known from experiments and analytical studies that tanks heated in fires have
complex internal flows, including:

i) Free convection in vapour space
ii) Free convection and boiling in liquid space
iii) Liquid and vapour temperature stratification

The liquid temperature in the boundary layer and at the liquid/vapour interface dictates the
tank pressure.

This study involved a 3D transient CFD study of the free convection currents in the liquid
space of a locally heated railway tank-car. Several different local heating conditions were
considered, including top heating, side heating, bottom heating and end heating. From this
data a summary graph was produced that showed, in relative terms, the liquid surface
temperature rise rate as a function of heating location and the size of heated area as a
fraction of the liquid wetted wall area.
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The results show that the liquid surface heats up faster if the tank is heated on its ends or
near the liquid/vapour interface. This is in general agreement with experiments involving
propane tanks heated by fire.
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2.  METHODOLOGY

The CFD study was conducted using the commercial CFD code by Fluent Inc. This is a
finite volume type solver and is well known around the world for being a general purpose
CFD analysis package.

The CFD code solves the pressure, velocity and temperature fields in the 3D solution
domain by integrating the conservation equations (mass, momentum and energy). In this
study we are interested in the free convection flow and temperature patterns that are
generated by local heating at the tank wall. The heating rates are similar to what we would
expect from a thermal protection defect engulfed in a hydrocarbon pool fire.

The CFD solver works by dividing the domain into finite volumes. The properties in the
volumes are then solved simultaneously for all the volumes defined. This is a transient
analysis that marches through time. This required that we define a starting point in time or
initial condition. At time = 0, the heat flux is applied and the solution is determined at
each time step.

2.1 Problem Definition

We want to estimate how quickly a thermally protected tank-car, with thermal protection
defects, will pressurize when it is engulfed in fire. We will model this case as a tank-car
that has locally heated areas.

The problem was defined as follows:

i) Horizontal cylinder (D = 3 m, L = 18 m)
ii) 2:1 elliptical ends
iii) Filled partially (about 95%) with liquid propane
iv) Remainder of  tank filled with propane vapour
v) Tank is heated in local areas below the liquid level
vi) PRV (pressure relief valve) is closed
vii) In defect areas the wall heat flux is assumed to be 54,000 W/m2

viii) In non defect areas the heat flux is assumed to be 0 W/m2

This is the extreme case of a perfectly thermally protected tank with defects.

We want to determine how the liquid is heated. We know the liquid near the heated wall
will rise to the liquid surface where it will remain due to buoyancy. This warm liquid will
then spread over the liquid surface. It is believed that this warm layer drives the pressure
in the tank.  We want to determine the average liquid surface temperature over time so we
can estimate the pressure in the tank as a function of time from when the heating began.
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2.2 Analysis Approach

The thermal protection defects were modeled as local heated areas on the tank-car primary
shell surface. No attempt has been made here to model the details of the steel jacket,
thermal insulation and steel wall.  A heat flux was applied on the tank surface where a
defect was assumed to be. Where there was no defect, the surface was assumed to be
adiabatic (perfectly insulated). The applied heat flux is approximately what we would
expect in the area of a thermal protection defect.

We were only interested in the brief period of time before the PRV is activated. This is
about 2-3 minutes for an unprotected tank and is expected to be about 20-40 minutes for a
thermally protected tank.

For a 95% full tank, the mass transfer from the liquid to the vapour space before the PRV
is opened is negligible compared to the total liquid mass. Therefore we have ignored this
mass transfer. We have also ignored the energy transfer from the liquid to the vapour
space since it too is negligible compared to the energy transferred to the liquid.

In this study we have only considered the liquid volume. We ignored the effect of the
vapour space on the liquid flow patterns.  The liquid surface was assumed to be insulated
from the vapour space.

2.3 Solution Steps

The following steps were followed in conducting the analysis:

i) Define domain geometry (i.e. the tank geometry).
ii) Divide the domain into finite volumes (i.e. generate grid)
iii) Assign boundary conditions (heat transfer).
iv) Assign initial conditions (temperature).
v) Define material properties (equation of state, viscosity, thermal conductivity,

etc.)
vi) Select fluid model type (viscous).
vii) Define solution time step.
viii) Define convergence criteria (for mass, momentum and energy).
ix) Run solution.
x) Post process solution (plot results).

All of the above were done using the commercial codes by Fluent Inc.

2.4 CFD Model

The geometry of the modeled LPG tank car is shown in Figure 1.  A symmetric part of the
tank domain (half tank) was used for most of the CFD calculations and the mesh



generated in the symmetric part was 220,000 volumes as shown in Figure 2. The full
model contains 592,225 volumes as shown in Figure 2B. The positions of experimentally
measured transient temperatures measured in the RAX 201 fire test are shown in Figure 3.
These are compared with CFD results in section 3.

Figu

Figure 

Figure 2
Vapour Space of Propane
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3.  CFD VALIDATION

The following is a partial and approximate validation of the method. We did not have
detailed fire and temperature data to do a full validation. The validation case for the CFD
was the RAX 201 full-scale fire test of a 33,000 gal. tank-car filled with propane [7].

The features of the RAX 201 tank are as follows:

i) 125,000 L propane tank, filled to 95% of liquid propane
ii) ID=3 m, ends 2:1 elliptical
iii) Tank L/D = 6
iv) Initial temperature, T = 294°K
v) Steel wall thickness 16.5 mm

For this simulation the heat flux to the liquid was assumed to be 54 kW/m2. This is about
half the expected heat flux for a fully engulfing fire. We are modeling only the first
180 seconds of the heating and it is known that it took a few minutes to get the fire going
in the test. If we assume the fire went from 0% to 100% in three minutes, then the average
flux would be on the order of 54 kW/m2. This is obviously an estimate of the fire
condition and is for comparison purposes only.

The CFD predictions for the liquid temperatures at the tank section 4.64 m from the mid
plain at various distances y from the tank centre are shown in Figure 4. The CFD appears
to do a good job for the liquid below the tank centreline. The predictions are not as good
above the centreline and near the liquid surface before about 100 seconds. After that the
predictions are reasonable. Once again the reader is reminded that we did not have any
accurate data on the actual heat flux for the first 180 seconds so we are presenting this
data for discussion only.

Three-dimensional temperature distributions on tank wall and on symmetric planes are
shown in Appendix C.

The time transient CFD calculations have simulated the free convection and temperature
stratification in liquid and vapour space.  The CFD results with turbulence appear to give
the best predictions.
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Figure 4: Comparisons of Temperatures Measured and Calculated at Various
Liquid Points on the Cross Section of Tank at 4.64 m from Symmetric Axis
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4. CFD RESULTS

In this section we model a range of local heating conditions. The following has been
assumed:

i) Same tank geometry
ii) 97% fill
iii) Turbulence is modeled
iv) 54 kW/m2 used for the local heating
v) All other areas assumed insulated

4.1 CFD Study Cases

It total 18 heating cases were considered. They involve heated cells of different size and
location. The various cases are summarized in Figures 5 through 8 and Tables 1 and 2.

Figure 5: Cross Section of Tank Showing H
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Table 2: Heating cells on CFD study cases of end heating

cell
case 13 14 15

16 x
17 x x
18 x x x

Figure 6 shows the local heating cells whose combinations were used in the CFD study.
The cases include top heating, side heating and bottom heating of the liquid space wall as
shown in Table 1.  There are also end heating cases of 10%, 20%, and 50%, which are
shown in Figure 7 and their cell combinations are in Table 2.

Configuration of each CFD study case is displayed in Figures 8 through 11.

                   Case 1 (2 m×1.57 m)                                                Case 2 (4 m×1.57 m)

      
                   Case 3 (4 m×1.57 m)                                                Case 4 (8 m×1.57 m)

      
                   Case 5 (16.68 m×1.57 m)

Figure 8:  Top Heating Cases
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                   Case 6 (2 m×1.57 m)                                                Case 7 (4 m×1.57 m)

      
                   Case 8 (4 m×1.57 m)                                                Case 9 (8 m×1.57 m)

      
                   Case 10 (16.68 m×1.57 m)

Figure 9: Side Heating Cases

                   Case 11 (2 m×1.57 m)                                                Case 12 (4 m×1.57 m)

      
                   Case 13 (4 m×1.57 m)                                                Case 14 (8 m×1.57 m)

      
                   Case 15 (16.68 m×1.57 m)

Figure 10: Bottom Heating Cases

                     Case 16 (10%)                                                         Case 17 (20%)

      
                     Case 18 (50%)

Figure 11: End Heating Cases



4.2 CFD Temperature Results

Sample points on the liquid surface are identified in Figure 12. Sample temperatures vs
time are presented in Figure 13 for various run cases. Temperature distributions on the
tank liquid wetted wall and liquid surface and on a tank cross section are displayed
graphically in Appendix D.
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Figure 13: Temporal Variation of Temperatures at Specified Points on Liquid Surface of To
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Figure 13:  Temporal Variation of Temperatures at Specified Points on Liquid Surface of Top, Side, a

Figure 14: Temporal Variations of Temperatures at Specified Points on Liquid Surface of 10%, 
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4.3 CFD Result Summary

In this work we are interested in how a tank will pressurize when local areas on the tank
surface are heated. We will estimate the tank pressurization rate from the average liquid
surface temperature. The CFD analysis allows us to compare the different heating cases
in terms of the liquid surface temperature. The temperature ratio β is defined as follows:

tinitdefectfull

initlocaldefect

TT
TT













−

−
= −

..

β

where

T = average liquid surface temperature at time t
defect local = local defect case (i.e. 54 kW/m2)
full defect = 100% defect = entire tank liquid wetted surface has defect (i.e. 54 kW/m2)
init = initial condition

The CFD results of the 18 local heating cases shown in Figure 13 and 14 are shown in
Figure 15.  The ratio β relates the predicted surface temperature for the various heating
cases relative to 100% heating case. A β = 0.5 means the temperature on the surface rises
half as fast as the 100% defect case.  From this we believe that the tank pressure also
rises half as fast as the 100% defect case.

We see the following in Figure 15.

i) The larger the area of tank insulation defects, the higher the average liquid
surface temperature at 180 s.

ii) The closer the heating is to the free surface, the higher the surface
temperature. This makes sense because the liquid boundary layer has the
shortest distance to rise before it reaches the liquid surface.

iii) End heating is similar to heating near the liquid surface.
iv) The lowest liquid surface temperature is achieved with heating at the tank

bottom. This makes sense because the liquid plume rises though the liquid
core and the heat is mixed more into the liquid core.

These trends agree with observations from fire tests of 500 gal. tanks by Birk et al. [8].
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Figure 15: Liquid Surface Temperature Ratio as a Function of Locally Heated Area

4.4 Use of Results

These results are approximate only and have not been validated. We have used them to
make crude estimates of tank pressurization with thermal protection defects.

As an example, let us consider the case of a tank with 15% thermal protection defect that
covers the tank side from bottom to top. From the graph we see β = 0.26 for 15% side
heating. This means the liquid temperature at the surface rises about 26% as fast as the
100% defect case.

We now assume this also applies to pressure. We know an unprotected tank filled to 95%
capacity with propane will pop its PRV in about 2-3 minutes. The same tank covered
with jacket only (100% defect) should pop its PRV in about 4-9 minutes because the
jacket reduces the heat flux by about half. With β = 0.26 we would expect the PRV to
pop in about (4 to 9)/0.26 = 15 to 35 minutes.

This is obviously an extrapolation and is an estimate only. We do not have data to
confirm this for a tank-car.

Insulation Defect Size (% of defect area relative
to the liquid portion of tank surface area)
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5.  CONCLUSIONS

The following conclusions were made based on the CFD study:

i) The CFD simulations compare reasonably well with RAX 201 fire test results.
ii) Simulations show how the heated liquid rises to the liquid surface where it

stays due to buoyancy.
iii) Heating near the tank top and ends causes the largest and fastest temperature

rise on the liquid surface.
iv) Heating near the tank bottom generates the lowest heating of the tank surface.
v) The larger the heated area the hotter the liquid surface.

It is believed that the liquid surface temperature drives the tank pressure. Therefore the
above trends should also apply to tank pressurization.

These results appear to agree with the results from fire tests of 500 gal. tanks by Birk et
al. [8]. In those tests, tanks heated by fire near the liquid surface pressurized faster than
tanks heated near the tank bottom.

Further work is needed to verify that these results are generally applicable to tank-cars.
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Appendix A:  Temperature Dependent Physical Properties of Liquid
   and Vapour Propane

Physical Property = C0 + C1T + C2T2 + C3T3

1. Liquid Propane

C0 C1 C2 C3

Density,
ρ [kg/m3] 5648.3 -49.8 0.165018 -0.00018782

Specific heat,
Cp [J/kg-K] -565457 5610.275 -18.4481 0.0202061

Thermal
conductivity,
k [W/m⋅K]

0.960851 -0.007497 2.26E-5 -2.41336E-8

Viscosity,
µ [kg/m⋅s] 0.001828 -1.4E-5 3.91711E-8 -3.88228E-11

2. Vapour Propane

C0 C1 C2 C3

Density,
ρ [kg/m3] -5278.7 53.275 -0.179943 0.000204196

Specific heat,
Cp [J/kg-K] -1018629 10062.27 -33.01038 0.036043065

Thermal
conductivity,
k [W/m⋅K]

-2.078094 0.020729 -6.86135E-
5 7.60771E-8

Viscosity,
µ [kg/m⋅s]

-3.83308E-
4 3.87667E-6 -1.28864E-

8 1.43879E-11

*  Temperatures in above formula are used in Kelvin.

AA - 1
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Appendix B:  Mesh Configuration

Mesh configuration on tank cross section

Longitudinal mesh configuration

AB - 1
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Appendix C:  Temperature Distribution in an Engulfing Fire
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