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Reconnaissant le besoin d’un système amélioré de détection en bordure de voie des roulements défectueux,
l’AAR (Association of American Railroads) a lancé en 1993 un programme de recherche axé sur le
développement de systèmes acoustiques. Invité par l’AAR, le Conseil national de recherches du Canada a
participé aux deux premières phases du programme : les expériences en laboratoire et les essais sur le terrain.
Ce rapport présente l’analyse des données issues des expériences en laboratoire, qui visait à déterminer si la
détection acoustique en bordure de voie était réalisable et donnerait des résultats fiables.

Le protocole d’essai prévoyait le contrôle aussi bien de roulements en bon état que de roulements à réformer.
L’analyse des signaux acoustiques visait à repérer les roulements défectueux et les classer par type de défaut.
Les chercheurs ont également examiné des techniques de diagnostic fondées sur l’analyse typologique de
paramètres statistiques. Partant de signaux obtenus par microphone unique, ils ont mis au point une technique
d’analyse typologique permettant de repérer et de différencier six défauts courants chez les roulements de bogies
marchandises. Lors des essais, cette technique a permis d’identifier un défaut «mystère», c’est-à-dire un défaut
dont on ne connaissait pas la nature en partant. Des signaux acquis au moyen de deux microphones ont
débouché sur une méthode à indices composites. Cette méthode a permis de reconnaître les défauts dans des
conditions de vitesse variable et charge constante. Un système à interface utilisateur graphique fondé sur cette
méthode a été mis au point.
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Executive Summary

Defective bearings cause many accidents affecting the safety of railway
operations. The railway industry is concerned with reliable methods for wayside
monitoring of wheel axle bearings in moving freight cars. Recognizing the need
for an improved wayside monitoring system, the Association of American
Railroads (AAR) embarked on the Improved Wayside Research Project in 1993.
AAR invited all parties interested in developing a better system with improved
detection accuracy. At the invitation of AAR, NRC’s Innovation Centre
participated in the test program with the intention of developing techniques to
identify and classify bearing defects, eventually leading to a commercial system.
The Transportation Development Centre provided partial program funding for
1996-98.

The AAR Wayside Railway Bearing Detection Program comprised two phases:

•  Laboratory investigation to determine whether acoustic techniques can be
reliably used in wayside fault detection.

•  Field tests using a moving test train composed of a locomotive and several
test cars with defective bearings to identify the defects investigated in the
laboratory.

This report describes the data analysis from the first phase’s laboratory
investigations. The tests were carried out at the AAR Transportation Test Facility
in Pueblo, Colorado, from December 1995 to April 1996, using the AAR roller
bearing test rig. A set of baseline measurements was obtained using a bearing
with no defects, prior to testing with defective bearings. Several bearings with
known faults were tested at speeds and loads typically experienced by bearings
in moving freight cars. The faulty bearings included condemnable ones with
single cup spall, multiple cone spall, water etching, multiple cup spall, multiple
cone spall, and some remanufactured bearings. A mystery bearing was included
in the tests to validate the techniques in diagnosing unknown faults.

Acoustic signals were recorded in two directions, using two microphones close to
the test rig, mounted at 45 degree angles to each other. This arrangement
covers an extended range of wheel rotation, anywhere from 0.5 to 1.0 rotation of
the wheel, depending on the speed of the train.

A bearing diagnostic method based on pattern recognition of statistical
parameters was investigated. This method was based on one-microphone
signals. Using a combination of bearing acoustic signal energy and impulse
parameters, techniques to classify and identify six commonly occurring freight
car bearing defects were developed. The six statistical parameters considered
were peak, rms, crest factor, Kurtosis, impulse factor, and shape factor. Using
trend analysis, the dimension of the feature space was reduced to two vectors, a
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combination of the six parameters. When tested, this technique successfully
identified the unknown (mystery) defect.

Using signals from the two-microphone arrangement, a combined index method
was developed to identify bearing defects. A linear model to calculate an index
consists of the sum of the two amplitudes of the defect frequency and their
correlation coefficient. For the purpose of increasing the clustering effect of each
defect under different operating conditions, the weighting factors were
determined by using the intraclass transformation. The combined index method
was used to diagnose the defects of the roller bearings from the data obtained
from the laboratory tests. Five classes of bearing conditions were considered:
the good bearing, and those with single cone spall, single cup spall, multiple cup
spall, and a broken roller.

A graphic interface based on the combined index method was developed.
It provides the capability to capture microphone signals and store them in
ASCI11 or binary files. The user can then perform individual statistical and signal
analysis functions on the acoustic data or run them through a bearing
diagnostics algorithm. The bearing diagnosis will highlight the most likely defect
exhibited by the bearing.

To develop a viable commercial system, further work is required to examine
these techniques using field data.
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Sommaire

Les roulements défectueux sont à l’origine de nombreux accidents ferroviaires.
L’industrie du transport ferroviaire cherche des moyens fiables de détection des
paliers d’essieux défectueux, utilisables en bordure de voie pour repérer les
wagons à risque. Reconnaissant le besoin d’un système amélioré de détection
en bordure de voie des roulements défectueux, l’AAR (Association of American
Railroads) a lancé en 1993 un programme de recherche axé sur le
développement de systèmes acoustiques. Cette association a invité à participer
à son programme toutes les parties intéressées au développement d’un système
perfectionné à capacité de détection précise améliorée. Le Centre d’innovation
du Conseil national de recherches du Canada a participé au programme
d’essais, visant à mettre au point des techniques de repérage et de classification
des roulements défectueux que l’on pourrait éventuellement intégrer à un
système opérationnel. Le Centre de développement des transports a contribué
au financement des travaux entre 1996 et 1998.

Le Wayside Railway Bearing Detection Program (Programme de recherche sur
la détection en bordure de voie des roulements défectueux) de l’AAR comprenait
deux phases :

•  Une phase d’expérimentations en laboratoire destinées à déterminer si la
détection acoustique en bordure de voie était réalisable et donnerait des
résultats fiables.

•  Une phase d’essais sur le terrain mettant en oeuvre un train formé d’une
locomotive et de plusieurs wagons équipés de roulements défectueux et
visant à repérer les défauts étudiés en laboratoire.

Ce rapport présente l’analyse des données issues des expériences en
laboratoire menées au cours de la phase I. Les essais ont été réalisés au
Transportation Test Facility de l’AAR à Pueblo, Colorado, entre décembre 1995
et avril 1996, au moyen du banc d’essais de roulements qui s’y trouve. On a
d’abord obtenu une série de données de référence caractérisant un roulement
en bon état, avant de passer aux essais avec roulements défectueux. Ainsi,
plusieurs roulements présentant des défauts connus ont été soumis à des
vitesses et charges représentatives des conditions rencontrées en service
marchandises normal. Les roulements défectueux comprenaient des roulements
à réformer qui présentaient un écaillage localisé sur bague extérieure, un
écaillage multipoints sur bague intérieure, des traces de corrosion, un écaillage
multipoints sur bague extérieure, ainsi que quelques roulements réusinés. Un
roulement «mystère» a été intégré aux essais pour vérifier si la technique
permettait de reconnaître des défauts inconnus.

Les signaux acoustiques ont été enregistrés de deux points différents, au moyen
de deux microphones disposés à proximité du banc d’essai, à 45 degrés l’un par
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rapport à l’autre. Ce montage permet de contrôler une plage étendue de rotation
des roues, allant de 0,5 rotation à un tour complet, selon la vitesse du train.

Les chercheurs ont étudié une méthode de diagnostic des roulements fondée
sur une analyse typologique de différents paramètres statistiques. Cette
méthode exploite des signaux enregistrés par un seul microphone. Partant d’une
combinaison de signaux d’énergie acoustique et de paramètres d’impulsion, les
chercheurs ont mis au point des techniques d’identification et de différenciation
de six défauts courants sur les roulements de bogies marchandises. Les six
paramètres statistiques retenus étaient les valeurs maximales, les valeurs
efficaces, les facteurs de crête, l’aplatissement, les coefficients d’impulsion et les
coefficients de forme. Une analyse de tendances a permis de réduire l’espace
des attributs à deux vecteurs, soit une combinaison des six paramètres.
À l’expérimentation de cette technique, les chercheurs ont réussi à identifier le
défaut «mystère», dont la nature était inconnue.

À l’aide des signaux provenant du montage à deux microphones, les chercheurs
ont par la suite développé une méthode d’identification des défauts de
roulements faisant appel à des indices composites. Un modèle linéaire utilisé
pour calculer un indice composite repose sur la somme des deux amplitudes de
la fréquence caractéristique du défaut et sur leur coefficient de corrélation. Afin
d’accentuer l’effet de regroupement de chaque défaut dans différentes
conditions de fonctionnement, les coefficients de pondération ont été déterminés
par transformation intra-classe. La méthode à indices composites a été mise en
oeuvre pour diagnostiquer les défauts des roulements à partir des données
issues des essais en laboratoire. Cinq classes d’état ont été prises en compte :
un roulement sain, des roulements présentant un écaillage localisé de la bague
intérieure, un écaillage localisé de la bague extérieure ou un écaillage
multipoints de la bague extérieure, ainsi qu’un roulement ayant un rouleau
cassé.

Les chercheurs ont mis au point une interface utilisateur graphique, fondée sur
la méthode à indices composites, qui permet de capter les signaux acoustiques
et les conserver dans des fichiers ASCI11 ou binaires. L’utilisateur peut alors
soumettre les données acoustiques à différentes analyses statistiques ou
différents traitements du signal, isolément, ou encore alimenter un algorithme de
diagnostic. Cet algorithme mettra en évidence le défaut le plus probable du
roulement.

Pour arriver à mettre au point un système opérationnel viable, il faudra étudier
plus avant ces techniques en utilisant des données acquises sur le terrain.
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RAILWAY BEARING DIAGNOSTICS: LABORATORY DATA ANALYSIS

1.0 Introduction

Defective bearings cause many accidents affecting the safety of railway
operations. Consequently the railway industry is concerned with reliable methods
for wayside monitoring of wheel axle bearings in moving freight cars. The alarm
accuracy of the two existing wayside monitoring systems, “hot bearing detector”
(HBD) and “acoustic bearing detector” (ABD), is unsatisfactory.   Both systems
are giving many false alarms resulting in costly removal of the bearings without
the need for a safety improvement. The HBD uses wayside infrared transducers
to monitor bearing temperatures as the train passes by the detector by
intercepting a portion of the infrared radiation from each bearing.  It issues an
alarm if the bearing exceeds the preset user-programmable limits.  The ABD is
designed to detect bearing flaws before the overheated condition occurs, using
wayside microphones to monitor acoustic radiation from the train as it passes.

Recognizing the need for an improved wayside monitoring system, the
Association of American Railways (AAR) embarked on the Improved Wayside
Research Project in 1993.  They invited all participants who were interested in
developing a better system with improved detection accuracy. At the invitation of
AAR, NRC’s Innovation Centre participated in the first two phases of the test
program with the intent of developing techniques to identify and classify bearing
defects leading to a commercial system. The Transportation Development Centre
provided partial program funding for 1996-98.

Initially, the AAR Wayside Railway Bearing Detection Program was comprised of
two phases:

• Laboratory investigation to determine whether acoustic techniques can be
reliably used in wayside bearing fault detection.

• Field tests using a moving test train composed of a locomotive and several
test cars with defective bearings to identify the defects investigated in the
laboratory phase.

The tests of both phases of the program were carried out at the AAR
Transportation Test Facility in Pueblo, Colorado. Using a wheel axle bearing test
rig, the laboratory tests were carried out during 1995-96 on condemnable
defective bearings that were removed from operating cars in service. The field
test phase of the program was implemented during the summer of 1997.  Based
on the success of these tests, in February 1998, AAR arrived at a plan for the
third phase of the program to be implemented in the summer/fall 1998.  The tests
under this program are aimed at examining the possibility of reliably using the
proposed acoustic techniques in a simulated revenue service.  These tests also
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provide an opportunity to conduct more experiments with additional
instrumentation to acquire acoustic signals for further development of the
techniques.

During the two years 1996-98, with funding support from TDC, NRC’s Innovation
Centre developed signal processing and analysis techniques to detect and
classify bearing faults based on the laboratory test data under AAR Phase I
program, and developed some very limited analysis techniques for the track data
under Phase II.
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2 Overview of Freight Car Bearing Assembly

The most common bearing configuration found in North American freight cars
today is the grease lubricated, double row tapered type, as shown in Figure 1.
The stationary raceways are located in the outer ring, which is commonly
referred to as the “cup”.  The rotating raceways are located in the inner ring, and
are referred to as “cones”.  The roller elements ride on the rotating raceways,
and the cage assembly separates each roller element from its adjacent rollers.
The cone diameter is manufactured to be 0.0025 inch to 0.0045 inch smaller than
the axle journal, which results in an interference fit between the cones and the
journal when the bearing is mounted.  The two cones are separated by a spacer
ring, which sets the amount of bearing endplay.  Two grease seals, which press
into the cup and ride on the wear rings, act to retain the bearing lubricant and
prevent lubricant contamination. The bearing is held on the main axle journal by
an end assembly, which includes three cap screws.



4

3 AAR Test Plan

In 1993, AAR, under contract from the Federal Railroad Administration, invited all
interested participants to discuss their test plans for developing a reliable system
of wayside monitoring of wheel axle bearings using acoustic techniques. They
provided an overview of the railroad bearing design, defect classification, failure
mechanisms, and current defective bearing wayside techniques employed by the
railroad industry.

The two mechanisms believed to cause the majority of bearing failures are cone
slippage and bearing seizure.  Cone slippage occurs when the interference
between the cone bore and the axle journal becomes degraded due to a variety
of factors.  Bearing seizures occur when the rotating and stationary raceways
become locked together.

The AAR’s program objectives were:

• define the capabilities of the current acoustic bearing technology,
• conduct laboratory and on-track tests to determine whether acoustic

techniques can be reliably used to identify the following conditions:

1. spun cone condition in the absence of spalling
2. broken roller element
3. broken cage condition
4. AAR condemnable cone spall defect
5. AAR non-condemnable cone spall defect
6. AAR condemnable cup spall defect
7. AAR non-condemnable cup spall defect
8. AAR condemnable cup Brinnel defect
9. AAR non-condemnable cup Brinnel defect

• conduct laboratory and on-track tests to identify improvements to acoustic
signal processing currently in use and to determine improved processing
techniques,

• develop an outline for investigating alternative strategies or techniques to
identify such defective frequencies should acoustic techniques be unable to
detect any of the above defective conditions.

The program objectives were to be addressed in three separate subtasks:

• Subtask A – laboratory investigations
• Subtask B – on-track investigations
• Subtask C – alternative method of investigation

Subtask A is discussed in section 4.
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4 Laboratory Investigations

The objective of the laboratory investigations was to evaluate the feasibility of
using acoustic detection techniques to identify bearing defects.  A set of baseline
measurements was to be obtained using a bearing with no defects prior to
conducting the tests with defective bearings.

The laboratory tests were conducted at the AAR Transportation Test Facility in
Pueblo, Colorado, during December 1995-April 1996.  The tests were carried out
using the roller bearing test rig shown in Figure 2.

The various details pertaining to test set-up and instrumentation details are given
in Appendix 1.  The loads on the test bearings corresponded to those carried by
the freight car during its operations, namely 8K, 27K, and 33K lb.  The laboratory
tests included 15 separate bearings tested at speeds corresponding to 25, 30,
40, 50, 60, 70, and 80 mph.  Bearings were run up and down over the speed
range.  Acoustic signals were recorded in two directions by using two
microphones mounted at 45° angles to each other, as shown in Figure 3.

For the track investigation, a similar two-microphone arrangement will cover an
extended range of wheel rotation.  This may vary anywhere from 0.5 to 1.0
rotation of the wheel, depending on the speed of the train.

The test bearings with the various examined defect conditions are listed in
Tables 1 and 2.

Table 1. Defect Signals from CD #1

Test Number
(CD#1)

Defect (Class F bearings)

1. Remanufactured ‘good bearing’
2. Condemnable single cup spall
3. Condemnable multiple connecting cone spall
4. Condemnable water etching
5. Condemnable multiple connecting cup spall
6. Broken roller
7. Mystery bearing (blind test sample bearing)
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Table 2. Defect Signals from CD #2

Test Number
(CD#2)

Defect (Class E bearings)

1. Remanufactured 1/8 inch cup spall
2. Condemnable multiple connecting cone spall
3. Condemnable water etching
4. Remanufactured good bearing
5. Small repaired single cup spall
6. Single cone spall
7. Simulated broken roller in outboard cone
8. Mystery bearing (blind test sample bearing)

Figures 4 to 10 show the photographs of defective bearings.
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5 Bearing Diagnostics Techniques Using Vibration and Acoustic
Analysis

The subject of roller bearing diagnostics has been studied over the last twenty-
five years because they are used in all rotating machinery from small to large
size (Rao, 1996). Common failures of bearing assemblies include spalling,
corrosion, and brinelling. These defects induce repetitive vibrations when roller
bearing elements encounter them (McFadden and Smith, 1984a,b.) The
objective of bearing diagnostics is to identify the type of defects using the
technologies that measure and process these defect-induced vibration signals.

Vibration analysis is a reliable technique that is used extensively for condition
monitoring and diagnostics by the users and operators of machinery. Vibrating
surfaces generate sound; therefore, diagnostic techniques developed for
vibration signals are equally applicable for acoustic signals. Most bearing
monitoring techniques involve significant signal processing and analysis to
extract the characteristics of the signals associated with various conditions of the
machinery.  Analyses can be performed in the time domain, frequency domain,
or time-frequency domains. Through time domain analysis, statistical
parameters, such as peak levels, rms, crest factor, kurtosis, impulse factor, and
shape factor (Howard, 1994) can be calculated and compared. Frequency
domain analysis or spectrum analysis, transforms the time-domain data into the
frequency domain and makes comparisons of the results at known defect
frequencies. Other analysis methods incorporating elements of frequency domain
analysis include envelope analysis and cepstrum analysis.  Time-frequency
domain analysis is used for processing transient and non-stationary signals using
the short-time Fourier transform, Wigner-Ville distribution, and wavelets.

In practice, spectrum analysis is the most common method, used with trend
analysis, for bearing diagnostics. This method detects the frequencies of the
repetitive impulses generated by the bearing defects. The method is effective for
detecting single defects which exhibit distinct defect frequencies. However, it
becomes less effective when defect frequencies are not distinct, as is the case
with multiple defects. Time domain analysis may overcome this weakness of
spectrum analysis, as statistical parameters can provide information such as the
shape of the amplitude probability distribution and the energy level of the
vibration signals. Much research (Braun, 1986; Howard, 1994; and Rao, 1996)
has been done using these parameters individually to detect the bearing defects,
and the results have shown that each parameter is only effective for certain
defects. For example, spikiness of vibration signals, indicated by crest factor and
kurtosis, implies incipient defects, while the rms and peak parameters indicate
the high energy levels associated with severe defects.
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6 Pattern Recognition of Statistical Parameters

An intuitive idea is to combine the six common statistical parameters mentioned
above into a weighted index to differentiate between different defects (classes of
data). The pattern recognition problem can be described as transformations of
four spaces, namely from the measurement space, to the pattern space, to the
feature space, and finally, to the classification space. Successive transformations
accentuate the differences between the classes and make the results more
readable. Based on trend analysis of the statistical parameters, some or all of
them can be selected to form a pattern space. A feature space is then formulated
by a nonlinear transformation from the pattern space, and it has dimension of two
for the purpose of displaying the results on a plane. The intraclass transformation
can also be used at this point to cluster the data of different bearing defects into
different regions. Classification of bearing defects is done by the discriminant
function, which is generated through a supervised learning process. The
discriminant function relates different bearing defects to different regions in the
classification space. Testing the proposed method involves first training the
classification space using the data from the bearings with known seeded defects
and then using the classification space to diagnose the unknown bearings.

6.1 Rudiments of Pattern Recognition

The subject of pattern recognition may be briefly stated as the identification of
classifiable patterns from measurement data. This subject has been studied for
many years in different applications, and the methods in the literature can be
categorized as heuristic, linguistic, and mathematic (Andrews, 1972.) The
technique adopted in this paper is the latter.  In this section, the rudiments of
mathematical pattern recognition are discussed. The reader can refer to the book
by Andrews (1972) for details.

As illustrated in Figure 11, we describe the mathematical pattern recognition as
identifying classifiable patterns through mathematical transformations of four
spaces: measurement space, M, to the pattern space, P, to the feature space, F,
and finally, to the classification space, C.

CFPM →→→

Note that this description is different from that given by Andrews (1972) in that
the measurement space is included.  As will be discussed in the following sub-
section, this allows construction of the pattern space by means of some analysis
methods, such as statistics, rather than just using the measured data.

The measurement space is constructed from measurement data and its
dimension is denoted by N, so we consider the following column data vector

s = [s1, s2, …  si, … , sN]T
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i.e. a digitized data sample with N data points. Hence the measurement space is
formed by N axes and a vector s represents a point in the space. To establish
the classifiable patterns, learning techniques should be applied. The one adopted
here is supervised learning, which uses prototype data for each class that we
wish to identify to establish classifiable patterns. For each class, we may need a
set of prototype data vectors. So the data vector of the mth prototype
corresponding to class k is expressed as

qm (k) = [q1m
(k), q2m

(k), … , qNm
(k)]T

where m = 1,… ,Mk and Mk denotes the number of prototype data vectors for the
kth class. Given K classes, the total number of data sets, Nd, is given as

∑
=

=
K

k
kd MN

1

(1)

6.1.1 Pattern Space

According to Andrews (1972), the pattern space was simply represented by
measurement data.  We extend this so that it can be defined by certain methods
of analysis such as statistics. Therefore, after this process, the data vector, s, will
become the following new vector

xp = [xp1, xp2, … , xpi, … , xpR]T

where the subscript p indicates the pattern space. The dimension of the pattern
space is denoted by R, where R ≤ N. A prototype in the pattern space is given by
the following vector.

ypm
(k) = [yp1m

(k), yp2m
(k), … , ypRm

(k)]T

The problem with pattern recognition lies in correctly classifying the known
prototypes and acquiring some degree of confidence based on certain criteria.
The solution is based on the assumption that the pattern space forms a metric
space that satisfies the following conditions (Andrews, 1972):

1. d(a,b) = d(b,a)
2. d(a,b) ≤ d(a,c) + d(b,c)
3. d(a,b) ≥ 0
4. d(a,b) = 0 iff a = b

where d denotes a distance function, and a, b, and c represent three vectors in
the pattern space. In terms of the metric space, the similarity of a point xp to the
kth class can be measured by
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{ }( ) ( ))(2

1

)( ,
1

, k
pmp

M

mk

k
pmp yxd

M
yxS

k

∑
=

= (2)

This similarity measure is an average of the squared distance between the point
x and the set of prototypes, ypm

(k). To ensure that we compare vectors with the
same unit, normalization of measurement data is required, which is referred to as
squaring up the pattern space. A simple way to do this is to divide the
measurement data by its variance, known as variance normalization.
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6.1.2 Feature Space

The feature space is the intermediate domain between the pattern space and the
classification space, with its dimension denoted as L. The data vector xf and the
prototype vector yfm

(k) in the feature space are defined as

xf = [xf1, xf2, … , xfi, … , xfL]T

and
yfm

(k) = [yf1m
(k), yf2m

(k), … , yfLm
(k)]T

where the subscript f denotes feature space.

This space has a reduced dimension that serves two purposes. First, a
classification algorithm can be efficiently computed and the results readily
presented. Second, classification characteristics can be extracted. The process
of selecting a feature space involves finding a transformation, either linear or
nonlinear, to reduce the dimension of the pattern space yet maintain
discriminatory characteristics for classification purposes. There are a number of
transformation methods. The one adopted in the paper is the intraclass
transformation, which will be discussed later.

6.1.3 Classification Space

The classification space is essentially the feature space but with separating
surfaces introduced between classes. The classification algorithm defines the
space partitions in the L dimensional feature space, with each disjoint region
being associated with one class. For K classes, there will be K-1 separating
surfaces, and for an L dimensional feature space, these surfaces are
hyperplanes with L-1 dimension(s). The separation is a point on a line for L=1, a
line on a plane for L=2, and a plane in a volume for L=3. Since the data is usually
not linearly separable, space partition generally results in nonlinear surfaces. For
example, the boundaries in the classification space for L=2 may be formed by
curves.
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7 Analysis of Data Based on One-Microphone Signals

Pattern recognition analysis was done on the one-microphone signals. The raw
data is a series of numbers representing the amplitude of signals at discrete
times. The first step in the analysis is to construct the pattern space based on a
statistical analysis of the signals (the measurement space). In sub-section 7.1 we
describe how to select the statistical parameters to form the pattern space. In
addition, this section describes the selection and formation of feature space and
classification space.

7.1 Selection of Pattern Space

Six commonly used statistical parameters for bearing diagnosis (Howard, 1994)
are Peak, RMS, CrestFactor, Kurtosis, ImpulseFactor, and ShapeFactor, which
are considered here to form the pattern space. In terms of the sampling data
vector, s, these parameters can be defined as follows:

Peak s si i= (  ) - ( ))
1
2

max( min                                                         (3)

RMS
N

s sii

N
= ( )

=

1 2
1

−∑                                                            (4)

  CrestFactor
Peak
RMS

=                                                                     (5)

Kurtosis N
s s

RMS

ii

N

=
( )

1 4
1

4

−=∑
                                                         (6)

ImpulseFactor
Peak

N sii

N
=

( / )1
1=∑

                                                   (7)

and

ShapeFactor
RMS

N sii

N
=

( )1
1

/
=∑

                                                      (8)

where s  denotes the mean value of the time domain signal.

It has been shown in the literature (Howard, 1994) that Peak and RMS values
directly reflect the energy level of the vibration signals. Since the localized
bearing defects result in structural vibrations, these two parameters are generally
used to indicate the presence and severity of the defects. CrestFactor and
Kurtosis are less dependent on the vibration level but are sensitive to the
spikiness of the vibration signals. As such, they can provide early indication of
significant changes in the vibration signals. However, as the damage increases,
the vibration signals become more random, and the values of CrestFactor and
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Kurtosis can decrease to the undamaged level. ImpulseFactor and ShapeFactor
have similar properties to those of CrestFactor and Kurtosis.

Note that Peak and RMS have a unit, while the other four parameters are
dimensionless. As the normalization factor for these two parameters, we used
the RMS value of the undamaged bearing data, denoted by RMSo. Its calculation
considered all possible loads and rotating speeds for the bearing under study.
Through our experiments, we found that RMSo can improve the robustness of the
energy level parameters (Peak and RMS) against variation in the bearing
operating conditions. In terms of RMSo we can rewrite eqns. (3) to (8) and define
the following normalized vector z.

z =

z
z
z
z
z
z

Peak / RMS
RMS / RMS
CrestFactor

Kurtosis
ImpulseFactor
ShapeFactor

o

o

1

2

3

4

5

6

























=

























(9)

7.2 Trend Analysis

Since the statistical parameters of bearing vibration signals are affected by the
bearing operating conditions, e.g. the rotating speed and load, trend analysis is
conducted to investigate the effect of these operating conditions on the statistical
parameters. We intend to use the two energy level parameters, z1 and z2, while
examining the similarity among the other four parameters z3 to z6, which pertain
to spikiness.

Figure 12(a) shows the variation of the four parameters, z3 to z6, with the rotating
speed for light loading, and Figure 12(b) shows this variation for heavy loading.
In the figures, the lines with “∗” represent the undamaged bearings while the lines
with “+” represent bearings with a single spall on the outer race. It can be
observed from Figure 12(a) that CrestFactor and Kurtosis have a similar trend;
whereas ImpulseFactor and ShapeFactor share another similar trend.
Furthermore, these parameters are calculated for the same bearings under two
different loads, and Figure 12(b) shows that all four parameters have a similar
trend corresponding to the different loading conditions under the same speed. A
similar trend was found in our study for other types of bearing defects. Table 3
summarizes the trend analysis.
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Table 3. Summary of Trend Analysis

Variable Speed Load
z3 + *
z4 + *
z5 # *
z6 # *

+, #, and ∗ indicate the similarity

Based on the trend analysis, we choose Kurtosis (z4) against CrestFactor (z3),
and ImpulseFactor (z5) against ShapeFactor (z6.) Note that Peak/RMSo (z1) is
similar to CrestFactor, and based on our numerical experiment, we use the latter
instead of the former. Hence, we define the following vector xp to form the pattern
space

x =p

p

p

p

p

ox
x
x
x

RMS / RMS
Kurtosis

CrestFactor
ImpulseFactor

1

2

3

4





















=



















(10)

The dimension of our pattern space is four, i.e. R=4.

7.3 Selection of Feature Space

Probably the most important aspect of pattern recognition is the selection of the
feature space. Proper and efficient feature extraction allows large dimension
reduction yet, as much as possible, retains the useful information. Constructing a
feature space so that the data form a planar image is especially advantageous,
because a planar image can be readily perceived and analyzed by a human
observer. Consequently, it is desirable to extract two indices from our
aforementioned four parameters.

We consider two key characteristics that statistical parameters might give us
about the bearing vibration signals. One is the spikiness and the other is the
energy including the shape of the amplitude distribution density and the energy
level of the vibration. The first is straightforward and can be provided by Crest
Factor, Kurtosis, or Impulse Factor. We choose Kurtosis in view of its robustness
against variation with the operating conditions, as indicated in Figures 10(a) and
10(b). Based on the studies reported in the literature (Howard, 1994), the shape
of the amplitude density distribution can be reflected by the statistical parameters
pertinent to the impulsiveness of the signal, that is, CrestFactor, Kurtosis, and
ImpulseFactor. Therefore, the second feature, with some trial and error, is
selected as:
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RMS
RMS

CrestFactor
Kurtosis

ImpulseFactor
0

⋅ +                              (11)

By substituting eqn. (5) for Crest Factor into eqn. (11) and using a logarithmic
scale for the second feature, the vector defining the feature space is given as
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The dimension of our feature space is two, i.e. L=2. Accordingly, the prototype
vector representing a sample for the kth class of bearing defect is defined as
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( )      (13)

Note that the actual statistical parameters used in the computation of our
approach are Peak, RMSo, Kurtosis, and ImpulseFactor.

Figure 13 shows the feature space constructed using eqn. (12) when considering
both incipient and later-stage defects with a range of operating speeds and load
condition. It can be seen that samples representing different groups are scattered
and overlapped. This imposes difficulties in classification. For this reason, the
intraclass transformation is applied to introduce clustering effects on the samples
within each class.

7.4  Intraclass Transformation

The intraclass transformation is designed to increase the clustering of prototypes
within the same class. This is realized through minimization of a metric between
the points defining the class. For the kth class, there are a total of Mk prototypes,
ym

k( ) , each being a point in the two-dimensional feature space. The intraclass
transform in the feature space is defined as:

′ =y W yfm
k k

fm
k( ) ( )( )  (14)

where the apostrophe indicates the result of the intraclass transformation.
Denoting  σ 1

2  and σ 2
2  as being the variances of the two variables in the feature

space, W(k) is defined by the following diagonal matrix

W ( )k =
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Variances σ 1
2  and σ 2

2  are determined respectively by the first and second row of
the following data matrix Y(k) formed by Mk prototypes

Y ( )k f
k

f Mk
k

f
k

f Mk
k

y y
y y

=












11 1

21 2

( ) ( )

,
( ) ( )

, L

L
     (16)

Through the intraclass transformation, the mean square intraset distance of the
kth class is minimized (Andrews, 1972). It can be seen from eqn. (15) that the
two coordinate dimensions are inversely proportional to the variance of their own
dimension. This can be interpreted as stating that a small weight is to be given to
those coordinates with large variances because these particular coordinates
have little in common over the prototypes of the kth class. For those dimensions
with near constant values, the variance is small, which implies large weighting.
Figure 14 shows the effects of the intraclass transformation on the same set of
data used to obtain Figure 13. Clearly, the samples belonging to the same class
are clustered.

For bearing diagnostics, the vector xf, after the intraclass transformation,
becomes

x’f = W xf (17)

where W is defined in the same way as eqn. (15), except in this case, the
variance will be determined based on xf spanning a number of samples.

7.5  Formation of Classification Space

Recall that the object of forming the classification space is to partition the feature
space into K given regions, S S Sk K1 , , . ,K K . Mathematically, this problem lies in
finding a function that can measure each point in the feature space in terms of its
degree of membership to a given class. In pattern recognition, this function is
called the discriminant function and is defined such that for all points xf in the
feature space, within the region describing Sk , there exists a function gk ( )x  such
that

g g S and k jk f j f f k( ) > ( )         x x x∀ ∈ ∀ ≠                                       (18)
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In other words, within the region Sk , the kth discriminant function will have the
largest value.

The piecewise linear discriminant function is used, which can approximate the
nonlinear boundaries separating the different class regions. This function is
defined by the minimum distance between a point xf and the prototype points in
class Sk .

d S df k m Mk
f fm

k( ) = { ( )}( )x x y, min ,
, ,=1K

                                                (19)

Point xf  belongs to class Sk if the distance is minimum. The classification then
becomes a task to determine the smallest distance between all of the prototypes
of Sk  and the unknown xf. Mathematically, this can be written as

x x xf k f k k f kS if d S d S∈       ( ) =  ( ), min ,                                       (20)

Through mathematical manipulation (Andrews, 1972), the piecewise linear
discriminant function can be given as

gk f m Mk
f
T

fm
k

f
k

f
k( ) = { -

1
2

}( ) ( ) T ( )x x y y ym mmax
, ,=1K

                                        (21)

The boundaries separating the different class regions are determined by the
following equation

g gk f j f(x ) - (x ) =  0                                                 (22)

Figure 14 shows the boundaries determined by eqn. (19), illustrating very distinct
partitioning of the space into a different class region for each bearing defect.
.
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8 Bearing Diagnostics and Classification Based on One-Microphone
Signals

The bearing conditions examined are given in the following table.

Table 4. Bearing Damage Conditions

Class Symbol Condition
C1 1 undamaged
C2 2 single spall on outer race
C3 3 multiple spall on outer race
C4 4 single spall on inner race
C5 5 multiple spall on inner race
C6 6 broken roller

Bearing diagnostics was carried out using a program written in MATLAB
according to the computation procedure summarized in Figure 11. From the
prototype data of the six classes, first the statistical parameters were calculated
using eqns. (3)-(8). Each sample was then located in the feature space according
to eqn. (12); this is shown in Figure 13. Through the intraclass transformation
(eqn. (14)), the prototypes were then clustered in the feature space, as illustrated
in Figure 14. Lastly, we constructed the six linear discriminant functions using
eqn. (21) and determined the classification space, as shown in Figure15.

To test the effectiveness of this method, we took a set of data with an unknown
type of defect. We used our program and located the test data in the region of
broken rollers, as shown in Figure 16 with a “+” symbol. The result was verified
by checking the bearing, and it did, indeed, have a broken roller defect.
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9 Combined Index Method Using Two-Microphone Signa ls

Figure 3 shows the two-microphone measurement system that is proposed in this
paper for the diagnosis of tapered bearing defects. A linear model to calculate an
index consisting of the two signals and their correlation is as follows:

I = W1 A1 + W2 A2 + W3 C12         (23)

where I denotes a defect index; A1 and A2, represent the amplitudes at the
defect frequency of microphone 1 and 2 signals respectively; C12 is the
correlation coefficient of the two signals; and W1, W2, and W3 are weighting
factors.

For the purpose of bearing diagnostics, we want to obtain a distinct index value
for each defect. In other words, we intend to use the proposed index as a
descriptor to identify different defects.

The determination of A1, A2 and C12 is straightforward. The first two can be
obtained by the FFT and the third by correlation analysis. To ensure that we
compare three variables with the same unit, they should all be normalized.
Determination of the weighting factors is discussed in the following section.

9.1 Determination of Weighting Factors

For the purpose of increasing the clustering effect of each defect under different
operating conditions, it is proposed here to use the intraclass transformation from
pattern recognition to determine the weighting factors. In line with pattern
recognition and prior to describing the intraclass transformation, we need to
define the following vector representing the features under consideration.

x = [x1, ..., xi, ..., xn]T     (24)

In this case, we consider three features, namely, x1 = A1, x2 = A2, and x3 = C12,
and n =3.

The similarity of x to the kth class can be measured by the following equation
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p xxd
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where S stands for the similarity measure, and d represents a distance function
given as
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The similarity measure given in eqn. (23) is an average of the squared distance
between x and the set of prototypes.

Assuming that a class is likely generated equally by each prototype for that class,
the mean square intraset distance for the kth class can be given as
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M M
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To minimize Dk
2 , meaning to increase the clustering effect of the prototypes

under the same defect, weighting factors Wi are introduced to eqn. (27), that is
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Equation (28) can be considered as being equivalent to multiplying the feature
vector by the diagonal matrix defined as diag( Wi), which is referred to as the
intraclass transformation. In this study we, in fact, define eqn. (23) as the dot
product of the weighting factors with the feature vector

I = [W1, W2, W3 ] • [ A1, A2, C12 ]T (29)

For non-trivial solutions, constraint must be applied. There are two standard
constraints. The first one is the constant sum

Wi
i

n

=
∑ =
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1 (30)

and the second is the constant volume

Wi
i

n

=
∏ =

1

1     (31)

By using of the method of Lagrange multipliers, minimization of Dk
2  leads to the

following weighting factors, for the constant sum
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and for the volume constraint,
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where σi is the variance of the prototypes for the ith dimension of the feature
vector.

The essence of the clustering is to bunch the prototypes of a class around their
mean value. Since the variance represents the deviation from the mean value,
dividing the feature vector by the variance, as in eqns. (32) and (33), will reduce
the distance to the mean (i.e. increasing the clustering effect.) This, in turn, helps
to create the distinct values of the proposed index for different defects.

In summary, the procedure to obtain the proposed index is as follows:
• select features;
• obtain prototypes of the selected features from measurement data samples;
• determine the variance for each dimension;
• determine the weighting factors and the index.
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10 Bearing Diagnosis Using Combined Index Meth od

This method has been employed to diagnose the defects of the tapered roller
bearings from the data obtained from the laboratory tests.  As in the previous
analysis based on one-microphone measurements, analysis was done on the
data from two types of railway bearings, F (under loads of 8K lb. and 33K lb.) and
E (8K and 27.5K lb.), and at speeds ranging from 30 mph to 80 mph.

10.1 Prototype Data Processing

The combined index method was used to process the prototype data for the
purpose of establishing the relationship between the values of the index and the
different bearing defects. Five classes were considered, including the good
bearing, and the bearings with single cone (inner race) spall, single cup (outer
race) spall, multiple cup spall, and broken roller.

10.2 Weighting Factors Considering Speed Variation

FFT and correlation analyses for each defect class were performed to generate
the prototype data, with the results for different speeds given in Tables 5 to 9.
Note that in the case of the good bearing, we select A1 and A2 at the shaft
rotation frequency, as there is no defect frequency. For the defect bearings, we
select A1 and A2 at the analytical defect frequency. For each of the five defect
classes given in Tables 5-9, we calculate their respective weighting factors.  To do
this, first we calculate the variance of column values in each table, and then the
weighting factors using eqn. (28). Table 10 lists the weighting factors for the five
defect cases under the constant sum constraint.

Table 5. Prototype for Good Bearing

Speed
(mph)

A1 A2 C12

30 0.0541 8.93 0.34
40 0.0477 7.78 0.63
50 0.018 0.5025 0.72
60 0.0179 3.33 0.67
70 0.031 3.97 0.65
80 0.0089 5.938 0.66
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Table 6. Prototypes for the Single Cone Spall

Speed
(mph)

A1 A2 C12

30 0.077 0.99 0.57
40 0.126 1.097 0.39
50 0.214 0.43 0.55
60 0.455 0.825 0.55
70 0.235 1.333 0.55
80 0.497 0.8735 0.43

Table 7. Prototypes for the Single Cup Spall

Speed
(mph)

A1 A2 C12

30 0.0865 0.8734 0.7
40 0.1283 0.9411 0.76
50 0.2775 0.3343 0.8
60 0.197 0.2447 0.81
70 0.2254 0.283 0.8
80 0.3376 0.249 0.82

Table 8. Prototypes for the Multiple Cup Spall

Speed
(mph)

A1 A2 C12

30 0.125 0.2481 0.86
40 0.2556 0.2759 0.76
50 0.2394 0.18 0.79
60 0.51 0.17 0.82
70 0.0878 0.06 0.84
80 0.0953 0.0375 0.82

Table 9. Prototypes for the Broken Rollers

Speed
(mph)

A1 A2 C12

30 0.0637 2.592 0.53
40 0.1132 1.4798 0.62
50 0.1673 2.6274 0.72
60 0.1374 1.0491 0.67
70 0.1852 1.0115 0.65
80 0.1852 1.1037 0.67
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Table 10. Weighting Factor under the Constant Sum Constraint

Class W1 W2 W3

Good condition 0.9828 0.0000 0.0172
Single cone spall 0.1563 0.0502 0.7935
Single cup spall 0.1865 0.015 0.7984
Multiple cup spall 0.0423 0.1008 0.8568
Broken roller 0.6445 0.0025 0.353

By using the weighting factors, the index for each defect class of bearing under
different speeds is determined with the results presented in Figure 3.

It can be seen from Figure 17 that the values of the index determined from the
constant sum constraint fall into distinct ranges for different defects. This gives
rise to the possibility of using this index for bearing diagnostics. The good
bearing has values within the range of 0-1, which is clearly separated from other
defect classes. The broken roller has values within the range of 2-3.5; the single
cone spall class within the range of 3.5-5.5; the single cup spall within the range
of 5.6-7.5; and the multiple cup spall within the range of 6.5-7.5.  There is some
overlapping between the different defect classes, as shown in Figure 18. Further
study is needed to establish clearly distinct indexes for bearing fault diagnosis.

For comparison purposes, we also tried the constant volume constraint to
determine the weighting factors. However, as illustrated in Figure 19, this
constraint does not give as distinct a classification as the constant sum
constraint.

10.3 Weighting Factors Considering Loading Variation

On the test rig, two loading conditions were examined: 8K lb. and 27.5K lb.
simulating 70 and 100 ton freight car capacities. The prototypes presented in
Tables 5-9 were obtained under 27.5K lb. To consider the effects of load
variation, the prototypes were obtained for 8K lb. for the same speed range, 30 to
80 mph, and they were added to Tables 5-9 to form augmented prototypes. The
resulting weighting factors are listed in the Table 11, and the resulting index for
each defect class under the different speeds and loads is shown in Figure 20.

A different approach is tried based on the covariance between the two prototypes
under the two different loading conditions. Table 12 lists the weighting factors
and Figure 21 shows the index. A difference in the two approaches is not
obvious.
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Table 11. Weighting Factors Considering Two Different Loading Conditions

Class W1 W2 W3

Good condition 0.9856 0.0000 0.0143
Single cone spall 0.1794 0.0261 0.7945
Single cup spall 0.1820 0.0235 0.7946
Multiple cup spall 0.0506 0.1178 0.8316
Broken roller 0.4681 0.0035 0.5285

Table 12. Weighting Factors Based on the Covariance of Two Loading
Conditions

Class W1 W2 W3

Good condition 0.9977 0.0000 0.0024
Single cone spall 0.2472 0.0467 0.7061
Single cup spall 0.2678 0.1625 0.5697
Multiple cup spall 1.1063 -0.046 -0.06
Broken roller 0.729 0.0214 0.2496

10.4 Graphic User Interface

A graphic user interface based on the combined index method has been
developed and described in the accompanying report (Reference.)  This interface
provides the capability to capture microphone signals and store these signals in
ASCII or binary files. The user can then perform individual statistical and signal
analysis functions on the acoustic data or run it through a bearing diagnostics
algorithm. The bearing diagnosis will highlight the most likely defect exhibited by
that bearing. Figure 22 illustrates the user’s front panel when performing bearing
diagnostics.
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11.      Conclusions

Bearing diagnostic methods based on pattern recognition of statistical
parameters were investigated.

Based on one-microphone signals, using a combination of bearing energy and
impulse parameters, a pattern recognition technique to classify and identify six
commonly occurring freight car bearing defects was developed. Two-dimensional
feature space was selected to classify the defects. The pattern recognition
technique was tested, and it successfully identified an unknown (mystery) defect.

For diagnosing roller, railway bearings, the combined index method was
developed to process the signals from a two-microphone arrangement. The idea
was introduced to use the intraclass transformation to determine the weighting
factors through a clustering effect. Both speed and loading variations were
considered. Based on the constant sum constraint, the determined indexes are
effective for identifying the bearing defects with a variation of speeds under
constant loading. A graphic user interface system based on this method was
developed.
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Figure 1: Freight Car Bearing Assembly

Figure 2: Bearing Test Rig
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Figure 3: Two-microphone Measurement System

Figure 4: Single Cup Spall

Figure 5: Multiple Cone (inner race) Spalling

Microphone 1

Microphone 2
Tapered
bearing
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Figure 6: Water Etching

Figure 7: Multiple Cup (outer race) Spalling
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Figure 8: Broken Roller

Figure 9: Single Cone Spall
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Figure 10: Spun Cone

Figure 11: Mathematical Transformations of Four Spaces
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Figure 12(a): Variation of the Four Parameters, z 3 to z6, with Speed for Light
Loading.

Figure 12(b): Variation of the Four Parameters with Heavy Loading.
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Figure 13: Feature Space without Intraclass Transformation

Figure 14: Feature Space with Intraclass Transformation
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Figure 15: Classification Space

Figure 16: Identification of Unknown Bearing Fault
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Figure 17: Index of Different Defect Classes under the Constant Sum Constraint

Figure 18: Index Overlapping between Different Defect Classes
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Figure 19: Index of Different Defect Classes under the Volume Constraint

Figure 20: Index of Different Defect Classes Considering Two Loading
Conditions
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Figure 21: Index of Different Defect Classes Based on the Covariance of Two
Loading Conditions

Figure 22: Picture of the Developed Software
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Appendix A: Test Set-Up and Instrumentation

Experimental Conditions
Load on Bearings (K lbs.) 8 (class E & F), 27 (class E), 33 (class F)
Speeds (mph) 25, 30, 40, 50, 60, 70, 80

Bearing Class E
Size (inches)                           6 x 11
# of Rollers (N)                24
Roller Length (inches)                   1.55720
Roller Diameter (inches)               0.70470
Roller Pitch Diameter (inches)          7.09460
Cone Bore Diameter (inches)           5.68700
Cup Outside Diameter (inches)           8.68750
Bearing Width (inches)                  6.12500
1/2 Included Cup Angle (deg)        10
Standard Wheel Diameter (inches)         35.89

Bearing Class F
Size (inches)                           6 1/2 x 12
# of Rollers (N)                23
Roller Diameter (inches)                0.84235
Roller Pitch Diameter (inches)          7.99057
Cone Bore Diameter (inches)            6.18700
Cup Outside Diameter (inches)           9.93750
Bearing Width (inches)                  7.00000
1/2 Included Cup Angle (deg)         10
Standard Wheel Diameter         35.89

Instrumentation (typical values)
Number of data points: 522875
Digitization rate (Hz) 261436 
Data sampling duration (sec) 2.000


