

TP 13888E

MAXIMIZATION OF SHIP DRAFT IN THE ST. LAWRENCE SEAWAY

VOLUME 2: IN-DEPTH ANALYSIS OF SQUAT AND UKC

Prepared for

Transportation Development Centre of Transport Canada

and

The St. Lawrence Seaway Management Corporation

by

Université Laval

October 2002

MAXIMIZATION OF SHIP DRAFT IN THE ST. LAWRENCE SEAWAY

VOLUME 2: IN-DEPTH ANALYSIS OF SQUAT AND UKC

by

Brian Morse, Stéphanie Michaud and Jimmy Siles Department of Civil Engineering, Université Laval, Québec, Québec and members of GEOIDE (centres of excellence in Geomatics)

October 2002

This report reflects of the views the authors and not necessarily those of the Transportation Development Centre of Transport Canada or the sponsoring organizations.

The Transportation Development Centre of Transport Canada does not endorse products or manufacturers. Trade manufacturers' names appear in this report only because they are essential to its objectives.

Project team

Brian Morse, Stéphanie Michaud and Jimmy Siles Department of Civil Engineering, Université Laval, Québec, Québec and members of GEOIDE (centres of excellence in Geomatics)

Un sommaire français se trouve avant la table des matières.

1.	Transport Canada Publication No.	2. Project No.		Recipient's C	Catalogue No.	
	TP 13888E	9883				
4.	Title and Subtitle			5. Publication D	Date	
	Maximization of Ship Draft in the St. I	awrence Seaway:		Octobo	~ 2002	
	Volume 2, In-Depth Analysis of Squa			October	2002	
	volume 2, m-Depin Analysis of Squat and ONO			6. Performing C	Organization Docume	ent No.
				Ũ	0	
7.	Author(s)			8. Transport Ca	anada File No.	
	Prion Moroo, Stéphonio Michaud, and	limmy Cilco		70024	50 C 406	
	Brian Morse, Stéphanie Michaud, and	Jimmy Siles		20024:	50-C-406	
9.	Performing Organization Name and Address			10. PWGSC File	No.	
	Université Laval			NI/A		
	Department of Civil Engineering and			N/A		
	Quebec City, Quebec	GEOIDE		11. PWGSC or 1	ransport Canada C	ontract No.
	Canada G1K 7P4					
				N/A		
12.	Sponsoring Agency Name and Address			13. Type of Publ	ication and Period C	Covered
	Transportation Development Centre	(TDC)		Final		
	800 René Lévesque Blvd. West	(120)		Filla		
	Suite 600			14. Project Office	er	
	Montreal, Quebec			A. Tasc	horoou	
	H3B 1X9			A. Tasc	nereau	
15.	Supplementary Notes (Funding programs, titles of related put	plications, etc.)				
	Co-sponsored by the St. Lawrence Seaw	av Managament Corne	viation the St. La	wronco Soaway D	ovolonmont (orporation
	the Canadian Shipowners Association, a			wience Seaway D	evelopment C	orporation,
	Volume 1 – Maximization of Ship Draft in					
16.	Abstract					
	This volume presents an in-depth analysis of the squat behaviour and under-keel clearance (UKC) data for the St.					
	Lawrence Seaway presented in Volume 1. The performance of the Tuck, Barrass 2 and Simard squat equations, and the effect of vessel speed and channel blockage are statistically quantified.					
	and the effect of vessel speed and ch	hannel blockage are	statistically quan	itified.		
	In addition to classical squat, water s	surges contribute a s	significant dynan	nic reduction to	vessel UKC.	To account
	for both classical squat and water level					
	and channel section. Although vess					
	results show that there is little basis for distinguishing between vessel types.					
	The observed UKC of vessels for 31 transits is also examined in depth. Vessels are travelling very close to the					
	channel bottom, but because the bathymetric data has not yet been fully "cleaned", it is as yet impossible to know for sure how close.					
	After careful review, it was determined that the negative UKC values reported in Volume 1 are probably all					
	fictitious. Recommendations are m	ade for improving	the water level	network and I	bathymetric	survey and
	information system.					
17	Key Words		18. Distribution Statem	ont		
17.		anco LIKC			vailable from	tho
	Squat, ship sinkage, under-keel clear			her of copies av		ule
	dynamic squat equation, St. Lawrenc	e Seaway	ransponal	ion Developmen	Centre	
19.	Security Classification (of this publication)	20. Security Classification (of	this page)	21. Declassification	22. No. of	23. Price
	Unclassified	Unclassified		(date)	Pages xiv, 48,	Shipping/
		Choladomea			apps	Handling

FORMULE DE DONNÉES POUR PUBLICATION

1.	Nº de la publication de Transports Canada	2. N° de l'étude		3. N° de catalog	jue du destinataire			
	TP 13888E	9883						
-	Titre et sous-titre			5 Data da la su	blication			
4.	Maximization of Ship Draft in the St.	Lawrence Seaway:		5. Date de la pu				
	Volume 2, In-Depth Analysis of Squa			Octobre	2002			
				6. N ^o de docum	ent de l'organisme e	xécutant		
7.	Auteur(s)			8. N ^o de dossie	r - Transports Canad	la		
	Brian Morse, Stéphanie Michaud et J	Jimmv Siles		ZCD245	50-C-406			
_	•	,						
9.	Nom et adresse de l'organisme exécutant			10. N° de dossie	r - TPSGC			
	Université Laval Département de génie civil et GEOIE)E		s/o				
	Québec, Québec			11. Nº de contrat - TPSGC ou Transports Canada				
	Canada G1K 7P4			s/o				
12.	Nom et adresse de l'organisme parrain			13. Genre de pul	plication et période	visée		
	Centre de développement des trans	ports (CDT)		Final				
	800, boul. René-Lévesque Ouest							
	Bureau 600 Montréal (Québec)			14. Agent de pro				
	H3B 1X9			A. Tasc	hereau			
15.	Remarques additionnelles (programmes de financement, titre	es de publications connexes, etc.)						
	Coparrainé par la Corporation de gestion de la Voie maritime du Saint-Laurent, la Corporation de développement de la Voie maritime du Saint-Laurent, l'Association des armateurs canadiens, la Fédération maritime du Canada. Volume 1 – Maximization of Ship Draft in the St. Lawrence Seaway: Squat Study							
16.	Résumé	Tille St. Lawrence Sea	way. Squat Study					
	Ce volume propose une analyse détaillée des données relatives à l'enfoncement (ou <i>squat</i>) et à la profondeur d'eau sous quille pour la navigation dans la Voie maritime du Saint-Laurent, présentées dans le volume 1. Il présente également les résultats d'une quantification, par des méthodes statistiques, de l'efficacité des équations d'enfoncement Tuck, Barrass 2 et Simard, et des effets de la vitesse du navire et de l'obstruction du chenal.							
	Outre l'enfoncement classique, d'importantes fluctuations subites du niveau de l'eau entraînent une réduction dynamique de la profondeur d'eau sous quille du navire. Pour tenir compte à la fois de l'enfoncement classique et de la dynamique du niveau de l'eau, des «enveloppes d'enfoncement dynamique» sont calculées pour chaque type de navire et chaque section du chenal. Malgré un enfoncement relativement moindre dans le lac Saint-Louis que dans le canal de la Rive-Sud, les résultats ne permettent pas d'établir de critère net pour différencier les types de navires.							
	L'analyse porte également sur la profondeur d'eau sous quille observée pour 31 transits. Les navires s'approchent très près du fond, mais comme les données bathymétriques n'ont pas encore été complètement «épurées», il n'est pas encore possible de savoir précisément à quel point ils s'en approchent.							
	Après un examen minutieux, il a été déterminé que les valeurs négatives de profondeur d'eau sous quille dont il est fait état dans le volume 1 sont probablement toutes fictives. Des recommandations sont formulées visant l'amélioration du réseau d'enregistreurs de niveaux d'eau et les levés bathymétriques, et le système d'information connexe.							
17.	Mots clés							
	Enfoncement, squat, profondeur d'ea équation d'enfoncement dynamique, du navire, voie maritime du Saint-Lau	enfoncement	Le Centre de développement des transports dispose d'un nombre limité d'exemplaires.					
19.	Classification de sécurité (de cette publication)	20. Classification de sécurité (de cette page)	21. Déclassification (date)	22. Nombre de pages	23. Prix		
	Non classifiée	Non classifiée		(udic)	xiv, 48, ann.	Port et manutention		

ACKNOWLEDGEMENTS

The authors would like to thank the St. Lawrence Seaway Management Corporation for inviting us to take part in this project; and André Taschereau, Transportation Development Centre, Transport Canada, who provided leadership throughout the project and technical input on a continuous basis.

We would also like to thank Rock Santerre and R. B. Langley, who are the leaders of Project ENV#14 of GEOIDE (part of the Network of Centres of Excellence in Geomatics), for their guidance and technical input. We thank GEOIDE for its financial support.

We also acknowledge the monumental task of data collection, reduction and analysis carried out by Fleet Technology Limited, Waterway Simulation Technology Inc. and Géolocation Inc. We thank them for their full support and collaboration.

EXECUTIVE SUMMARY

To optimize vessel draft and ensure secure marine navigation, the overall study objective is to determine the magnitude of squat and under-keel clearance (UKC) of commercial vessels transiting the shallow waterways of the St. Lawrence Seaway (South Shore Canal, Lake St. Louis, Lake St. Francis and Wiley-Dondero Canal). The primary study was conducted by Fleet Technology Limited, Waterway Simulation Technology Inc., and Géolocation Inc. (F-W-G), which performed all the principal work and whose report is contained in Volume 1.

Volume 2 reports the findings of the Université Laval complementary study. The work was mandated and managed by the Transportation Development Centre (TDC), on behalf of the St. Lawrence Seaway Management Corporation (SLSMC) and its partners. TDC also contributed significantly at the technical level. The work was also sponsored by GEOIDE (centres of excellence in geomatics). Volume 2 is divided into four sections.

Section 1 (classical squat equations) studies the behaviour of ship squat. Specific emphasis is placed on the statistical quality of the Barrass 2, Tuck and Simard equations. There is little to distinguish between their respective accuracy.

Section 2 (dynamic squat equations) addresses data precision and reliability, and recommends the use of two simple equations to evaluate total ship sinkage due to squat and other dynamic effects. Regarding precision, the repeatability of measured squat values between two sailings of the same ship is assessed; the consistency of measured squat values of all ships within each type is evaluated; and it is determined whether each ship type has its own squat behaviour or whether there are trends between ship types. The conclusion is that all ship transits have a *qualitatively similar but statistically different squat behaviour,* regardless of whether the transit is the same ship on a repeat voyage, a ship of the same type or a ship of a different type (with the exception of Traditional Lakers, which seem to squat a little less than other ships).

During this analysis a second significant finding emerged: in addition to the mean value of ship squat (represented by a given squat equation), there are other important phenomena (such as water level fluctuations) that decrease the available UKC. Therefore, an alternative way of looking at the data was developed based on determining an equation that describes the maximum envelope of the measured squat values as a function of ship speed through water. This envelope is called the "dynamic squat equation". As a result, the dynamic squat equation takes into account not only the squat itself, but also the dynamic effects that are difficult to separate from the squat. Using this approach, it may be unnecessary to make a distinction between ship types. Therefore, the equation that encompasses all ship types for the South Shore Canal is:

Canal Dynamic squat = 0.0001763 V⁴ + 0.000407 V³ - 0.0065785 V² + 0.0821755 V

And the envelope for all ships passing through Lake St. Louis is:

Lake Dynamic squat = $-0.0000229 V^4 + 0.0017472 V^3 - 0.016011 V^2 + 0.0768478 V$

where "Dynamic squat" is the maximum total sinkage envelope value (expressed in metres) and V is speed through water (expressed in knots). The equations are only valid for V not exceeding 8 kn in the South Shore Canal and V not exceeding 12 kn in Lake St. Louis. For example, in the South Shore Canal a ship going 6 kn normally "squats" about 30 cm, but according to the

envelope equation, it may occasionally squat a total dynamic value of 58 cm. At 8 kn, a ship may occasionally dynamically squat 116 cm. In Lake St. Louis, the same ship would only squat a maximum dynamic value of 39 cm at 8 kn but may reach 116 cm at 12 kn.

Section 3 is an investigation into the anomalous UKC values reported in Volume 1. The first objective is to identify all the critical sections of the Seaway where negative UKC values were identified by F-W-G. They are located either in the South Shore Canal or at the entrance of Beauharnois lock (none were found in Lake St. Louis per se). The second objective is to verify whether critical computed UKC values have a real physical significance. This is done by analysing whether critical UKC values coincide with a physical reality (shoal areas, excessive vessel speed, ship-meeting situations, water level fluctuations, etc.) or whether they can be attributed to errors (GPS, keel elevation, channel bottom elevation, water level, computational methods, etc.). The conclusion is that, although vessels were often very close to the Seaway bottom, the computed negative UKC values are probably all fictitious. They are a result principally of contaminated bathymetric data, although it seems that some stem from a "bug" that appears from time to time in F-W-G's UKC calculation algorithm. Vessels were close to the bottom because of excessive speeds and significant water level fluctuations. Some bathymetric data are contaminated because they originate from files that as yet had not been adequately processed to remove spikes from the surveys' raw data.

Section 4 provides recommendations to optimize bathymetric data gathering and reduction. The SLSMC survey team currently performs these surveys. Based on a site visit, recommendations are given regarding technical improvements that could be added to the team's operations. It is recommended that a specific project be set up to provide systematically dependable, accurate and effective bathymetric surveys and water level information.

SOMMAIRE

La présente étude vise à déterminer les valeurs d'enfoncement et de profondeur d'eau sous quille des navires commerciaux qui transitent dans les eaux peu profondes de la voie maritime du Saint-Laurent (canal de la Rive-Sud, lac Saint-Louis, lac Saint-François et canal Wiley-Dondero), l'objectif ultime étant d'optimiser le tirant d'eau des navires et de garantir la sûreté de la navigation. L'étude principale a été menée par Fleet Technology Limited, Waterway Simulation Technology Inc. et Géolocation Inc. (F-W-G). Leur rapport est contenu dans le volume 1.

Le volume 2 présente les résultats de l'étude complémentaire réalisée par l'Université Laval, étude commandée par le Centre de développement des transports (CDT) au nom de la Corporation de gestion de la Voie maritime du Saint-Laurent (CGVMSL) et de ses partenaires. En plus d'assurer la gestion des travaux, le CDT y a largement contribué sur le plan technique. Enfin, le réseau de centres d'excellence en géomatique GEOIDE a participé au financement de l'étude. Le volume 2 est divisé en quatre parties.

La partie 1 (équations d'enfoncement classique) analyse le comportement d'enfoncement du navire. Elle se penche plus particulièrement sur la qualité statistique des équations Barrass 2, Tuck et Simard, lesquelles sont jugées d'une précision à peu près équivalente.

La partie 2 (équations d'enfoncement dynamique) porte sur la précision et la fiabilité des données, et recommande le recours à deux équations simples pour évaluer l'enfoncement total du navire dû au squat et à d'autres effets dynamiques. En ce qui a trait à la précision, les paramètres suivant sont analysés : la répétabilité des valeurs d'enfoncement mesurées pendant deux transits du même navire; la cohérence entre les valeurs d'enfoncement mesurées chez tous les navires d'un même type; l'existence de particularités propres à chaque type de navire, ou, au contraire, de tendances générales transcendant tous les types de navires en ce qui concerne l'enfoncement. La conclusion est que tous les transits de navires ont un *comportement d'enfoncement semblable, du point de vue qualitatif, mais différent, du point de vue statistique*, peu importe s'il s'agit de transits effectués par un même navire à deux occasions différentes, ou de navires du même type ou de types de navires (à l'exception des laquiers classiques, qui semblent moins s'enfoncer que les autres types de navires).

L'analyse a mis en évidence un deuxième résultat marquant : en plus de la valeur moyenne d'enfoncement du navire (calculée à l'aide d'une équation d'enfoncement), il faut tenir compte d'autres phénomènes importants (comme les fluctuations du niveau de l'eau), qui diminuent la profondeur d'eau sous quille disponible. Les chercheurs ont donc élaboré une nouvelle formule qui décrit l'enveloppe maximale des valeurs d'enfoncement mesurées en fonction de la vitesse de déplacement du navire. Cette enveloppe est appelée «équation d'enfoncement dynamique». Donc, l'équation d'enfoncement dynamique tient compte non seulement de l'enfoncement dû au squat comme tel, mais aussi des effets dynamiques qui sont difficiles à isoler du squat. Avec cette approche, il devient superflu de faire une distinction entre les types de navires. Voici donc l'équation qui vaut pour tous les types de navires transitant dans le canal de la Rive-Sud :

Enfoncement dynamique (canal) = $0.0001763 V^4 + 0.000407 V^3 - 0.0065785 V^2 + 0.0821755 V$

L'enveloppe pour tous les navires qui transitent dans le lac Saint-Louis est la suivante :

Enfoncement dynamique (lac) = $-0.0000229 V^4 + 0.0017472 V^3 - 0.016011 V^2 + 0.0768478 V$,

où «enfoncement dynamique» est l'enveloppe d'enfoncement totale maximale (exprimée en mètres) et «V» la vitesse vraie du navire (exprimée en noeuds). Les équations ne sont valides que pour une valeur V maximale de 8 kt dans le canal de la Rive-Sud et de 12 kt dans le lac Saint-Louis. Par exemple, dans le canal de la Rive-Sud, l'enfoncement d'un navire qui transite à une vitesse de 6 kt est normalement de 30 cm environ, mais selon l'équation servant à déterminer l'enveloppe d'enfoncement, il peut occasionnellement présenter un enfoncement total dynamique de 58 cm. À 8 kt, un navire peut occasionnellement afficher un enfoncement dynamique de 116 cm. Dans le lac Saint-Louis, pour le même navire, l'enfoncement dynamique maximal peut atteindre à peine 39 cm à 8 kt, mais 116 cm à 12 kt.

La partie 3 se penche sur les valeurs anormales de profondeur d'eau sous quille dont il est fait état dans le volume 1. Le premier objectif est de cerner toutes les sections critiques de la Voie maritime où des valeurs négatives de profondeur d'eau sous guille ont été établies par F-W-G. Celles-ci sont situées soit dans le canal de la Rive-Sud, soit à l'entrée de l'écluse de Beauharnois (aucune n'est située dans le lac Saint-Louis comme tel). Le deuxième objectif est de vérifier si les valeurs critiques de profondeur d'eau sous quille signifient quelque chose dans la réalité. Pour cela, il faut déterminer si ces valeurs critiques sont liées à des conditions particulières (zones de haut-fond, vitesse excessive du navire, situations de croisement de navires, fluctuations du niveau de l'eau, etc.) ou si elles peuvent être attribuées à des erreurs (GPS, élévation de la quille, élévation du fond du chenal, niveau de l'eau, méthodes de calcul, etc.). La conclusion est que, même si les navires venaient souvent très près de heurter le fond, les valeurs négatives calculées sont probablement toutes fictives. Elles résultent principalement de données bathymétriques contaminées, même si certaines, semble-t-il, sont dues à un «bogue» qui apparaît de temps à autre dans l'algorithme de calcul de la profondeur d'eau sous quille de F-W-G. Les navires s'approchaient du fond en raison de leur vitesse excessive et de fluctuations importantes du niveau de l'eau. Certaines données bathymétriques sont contaminées parce qu'elles viennent de fichiers dont les pics n'ont pas encore été éliminés dans les données brutes des levés.

La partie 4 formule des recommandations pour optimiser la collecte et la réduction des données bathymétriques. Les levés sont faits par une équipe de la CGVMSL. Après une visite sur place, les chercheurs ont recommandé des perfectionnements techniques dont pourrait bénéficier l'équipe. Il est notamment recommandé qu'un projet soit créé en vue de la fourniture systématique de levés bathymétriques et de données sur le niveau de l'eau fiables, précis et efficaces.

TABLE OF CONTENTS

1.	INTRODUCTION OF CLASSICAL SQUAT EQUATIONS	1
	1.1 Performance of Classical Squat: Qualitative Analysis	3
	1.2 Classical Squat: Qualitative Analysis – Findings	. 12
	1.4 Classical Squat: Quantitative Analysis – Findings	. 16
	1.5 Classical Squat: Repeatability Tests	. 16
	1.6 Classical Squat: Repeatability Tests – Findings	. 18
	1.7 Classical Squat: Conclusions	
2.	INTRODUCTION OF DYNAMIC SQUAT EQUATIONS	. 20
	2.1 Dynamic Squat Equation for All Ship Types (South Shore Canal)	
	2.2 Dynamic Squat Equation for Traditional Laker Type (South Shore Canal)	
	2.3 Dynamic Squat Equation for Chemical Tanker Type (South Shore Canal)	
	2.4 Dynamic Squat Equation for Salty Laker Type (South Shore Canal)	
	2.5 Dynamic Squat Equation for Salty Bulker Type (South Shore Canal)	
	2.6 Dynamic Squat Equation for All Ship Types (Lake St. Louis)	
	2.7 Dynamic Squat Equation for New Laker Type (Lake St. Louis)	
	2.8 Dynamic Squat Equation for Traditional Laker Type (Lake St. Louis)	
	2.9 Dynamic Squat Equation for Salty Laker Type (Lake St. Louis)	
	2.10 Dynamic Squat: Conclusion	
3.	UNDER-KEEL CLEARANCE	
	3.1 Locating Negative UKC Values	
	3.2 Reliability of UKC Values – Do They Have Physical Significance?	
	3.3 UKC Computation of a Complete Ship Transit	
	3.4 Under-Keel Clearance: Conclusions	
	3.5 Under-Keel Clearance: Recommendations	
4.	STRENGTHENING THE WATER LEVEL NETWORK AND BATHYMETRIC SURVEYS	
	4.1 Management Options for Strengthening the Water Level Network	
	4.2 Regarding Bathymetric Soundings	. 46

Apppendices

A. STATISTICS FOR SOUTH SHORE CANAL

- **B. STATISTICS FOR LAKE ST. LOUIS**
- C. STATISTICS FOR LAKE ST. FRANCIS

D. STATISTICS FOR WILEY-DONDERO CANAL

- E. RESULTS OF STATISTICAL ANALYSIS FOR SOUTH SHORE CANAL
- F. RESULTS OF STATISTICAL ANALYSIS FOR LAKE ST. LOUIS
- G. RESULTS OF STATISTICAL ANALYSIS FOR LAKE ST. FRANCIS
- H. RESULTS OF STATISTICAL ANALYSIS FOR WILEY-DONDERO CANAL
- I. LIST OF NEGATIVE UKC LOCATIONS BETWEEN ST. LAMBERT AND BEAUHARNOIS

LIST OF FIGURES

Figure 1 Squat measured as a function of speed through water for ship <i>Algosar</i> , South Shore	_
	3
Figure 2 Squat measured as a function of channel station for ship Algosar, South Shore Canal.	4
Figure 3 Squat measured as a function of channel station for ship <i>Rt. Hon. Paul Martin</i> , South	
Shore Canal.	•
Figure 4 Squat modified for the cross-section area ratio as a function of speed through water fo	or
	5
Figure 5 Measured and predicted squat, Simard model, <i>Algosar</i> , day 303, South Shore Canal.	7
Figure 6 Measured and predicted squat, Simard model, Algosar, day 303, Lake St. Louis	
Figure 7 Difference between measured squat and squat predicted by Simard model as a	
function of speed through water for two sailings of ship <i>Algosar</i> , South Shore Canal	8
Figure 8 Measured and predicted squat, Tuck model, <i>Algosar,</i> day 303, South Shore Canal	
Figure 9 Measured and predicted squat, Tuck model, <i>Algosar</i> , day 303, Lake St. Louis	
Figure 10 Difference between measured squat and squat predicted by Tuck model as a	3
•	^
function of speed through water for two sailings of ship <i>Algosar</i> , South Shore Canal 1	U
Figure 11 Measured and predicted squat, Barrass 2 model, <i>Algosar</i> , day 303, South Shore	
	1
Figure 12 Measured and predicted squat, Barrass 2 model, Algosar, day 303, Lake St. Louis. 1	1
Figure 13 Difference between measured squat and squat predicted by Barrass 2 model as a	_
function of speed through water for two sailings of Algosar, South Shore Canal	2
Figure 14 Four speed classes for the measured squat of two sailings of ship CSL Niagara,	_
South Shore Canal1	-
Figure 15 Dynamic squat values with the equation for all types, South Shore Canal2	
Figure 16 Dynamic squat values with the equation for Traditional Lakers, South Shore Canal. 2	
Figure 17 Dynamic squat values with the equation for Chemical Tankers, South Shore Canal. 2	:3
Figure 18 Dynamic squat values with the equation for Salty Lakers, South Shore Canal 2	:4
Figure 19 Dynamic squat values with the equation for Salty Bulkers, South Shore Canal 2	25
Figure 20 Dynamic squat values with the equation for all types, Lake St. Louis	26
Figure 21 Dynamic squat values with the equation for New Lakers, Lake St. Louis	27
Figure 22 Dynamic squat values with the equation for Traditional Lakers, Lake St. Louis 2	
Figure 23 Dynamic squat values with the equation for Salty Lakers, Lake St. Louis	
Figure 24 Anomalous GPS elevation behaviour for Lake Carling near Mercier Bridge at station	
23200	
Figure 25 Apparent jump in GPS elevation for <i>Mariupol</i> at station 22918, some 350 m	•
•	33
Figure 26 Transit trajectories for ships showing negative UKC values near Beauharnois lock3	
Figure 27 Comparison of UKC values, <i>Lake Carling</i> , near Beauharnois lock – Year 2000	U
bathymetric data	0
Figure 28 Comparison of UKC values, <i>Lake Carling,</i> near Beauharnois lock – Year 1999	9
	0
bathymetric data	9
Figure 29 ULaval and F-W-G <i>Lake Carling</i> UKC values between St. Lambert and Cote St.	~
Catherine locks	U
Figure 30 ULaval and F-W-G Lake Carling UKC values between Cote St. Catherine lock and	~
Lake St. Louis	
Figure 31 Bathymetry of high spot at station 24869 (where UKC = -1.29 m)	
Figure 32 Bathymetry of high spot at station 19782 (where UKC = -1.19 m)4	2

LIST OF TABLES

h
ıd
5
h
ıd
15
17
30
d
31

1. INTRODUCTION OF CLASSICAL SQUAT EQUATIONS

The Transportation Development Centre of Transport Canada, on behalf of the St. Lawrence Seaway Management Corporation and its partners, mandated Université Laval (ULaval) to pursue data analysis based on data treated by Fleet Technology Limited, Waterway Simulation Technology Inc., and Géolocation Inc. (F-W-G). The objectives of this section are as follows:

- 1) Assess the repeatability of squat between two sailings of one ship.
- 2) Assess the repeatability of squat between ships of one type.
- 3) Determine whether each ship type has its own squat behaviour or whether there are trends between ship types.

The squat phenomenon is defined as the increase in ship's draft due to combined sinkage and pitch. The sinkage is first defined amidships and then the pitch is applied to determine the squat at the lowest point of the ship. The methodology developed by F-W-G to measure the squat is explained in the report entitled Maximization of Ship Draft in the St. Lawrence Seaway: Volume 1, Squat Study (TP 13888E) and will not be summarized herein. However, what is important to understand is that the measurement of squat is not easy to perform and is obviously affected by errors. The important sources of errors are the following. First, a reference elevation for Global Positioning System (GPS) antennas on board the ship was determined in locks (the "zero" procedure) because there is no squat when the ship is at rest. Then, squat values were measured when the ship was in motion using the elevation of GPS antennas with respect to these reference elevations. The "zero" procedure is not easy to conduct successfully since the ship has a vertical movement inside the locks. Therefore, errors on the "zero" affect systematically all squats measured using this vertical reference. This error can easily reach 10 cm or more. A second source of errors is the change in water level. Of course, a correction for the water surface slope between Beauharnois lock and the upstream end of the South Shore Canal was applied. However, there is no way to account for local variations of water level, such as surges, that move the entire ship up or down. The average change of water level in one day for a fixed location in the Seaway is about 20 cm. The "measured" squat values are in fact the maximum squat values of the ship: Sinkage at the midpoint of the ship from the elevation of GPS antennas is first computed and then the squat of the lowest point of the ship is calculated using pitch and roll values. So there may be small numerical errors (difficult to assess) associated with the associated algorithms. Last, there can be some errors of a few centimetres in the elevation measured by GPS antennas on board the ship. Indeed, the accuracy of GPS elevation was estimated at ±10 cm for a 95 percent probability. The addition of all these errors introduces a non-negligible uncertainty associated with the determined squat value.

To assess the repeatability of squat between two sailings of one ship, the four ships that sailed twice were:

- 1) Algosar, days 303 and 316;
- 2) CSL Niagara, days 315 and 320;
- 3) John Baird, days 306 and 314;
- 4) Rt. Hon. Paul Martin, days 299 and 310.

The analysis was performed only for the South Shore Canal and Lake St. Louis sections since these ships were monitored twice only in these two sections of the Seaway; in Lake St. Francis and Wiley-Dondero Canal, there were no ships monitored that sailed twice.

To assess the repeatability of squat between ships of one type, the 23 ships with squat and UKC results supplied by F-W-G were classified according to type:

New Laker (5 passages)

- 1) Rt. Hon. Paul Martin (PMA299 & PMA310)
- 2) Algoville (ALV316)
- 3) CSL Niagara (CNI315 & CNI320)

Traditional Laker (3 passages)

- 1) Canadian Voyager (CAV305)
- 2) Manitoulin (MAN301)
- 3) SS Halifax (HAL308)

Chemical Tanker (3 passages)

- 1) Algosar (ALS303 & ALS316)
- 2) Turid Knutson (TUK317)

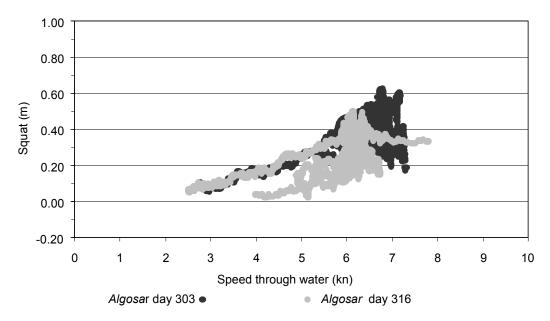
Salty Laker (5 passages)

- 1) Federal Fugi (FEF298)
- 2) Federal Saguenay (FSA301)
- 3) John B. Aird (JBA306 & JBA314)
- 4) Atlantic Erie (ATE313)

Salty Bulker (7 passages)

- 1) Mariupol (MAR297)
- 2) Zoitsa S (ZOS302)
- 3) Blade Runner (BLR304)
- 4) Fossnes (FOS304)
- 5) Clipper Eagle (CLE307)
- 6) *Millenium Raptor* (MIR311)
- 7) Lake Carling (LAC315)

The analysis was also performed only for South Shore Canal and Lake St. Louis sections. For the Lake St. Francis and Wiley-Dondero Canal sections, only four ships were monitored and they were four different types.


To determine whether there are trends between ship types - i.e. comparing ship types - all ships of each type were grouped together for each of the five types. The analysis was performed for all four sections of the Seaway.

The methodology developed to achieve these objectives is the same for all three objectives and is explained in sections 1.1, 1.3 and 1.5. It includes qualitative and quantitative analyses, and findings are presented in sections 1.2, 1.4, and 1.6. Conclusions are stated in section 1.7.

1.1 Performance of Classical Squat: Qualitative Analysis

To explain the steps comprising the qualitative analysis, we start by applying it to the first objective – assess the repeatability of squat between the two sailings of a ship.

We know that the factor that affects squat the most is the speed of the ship through water. For that reason, we first plotted the squat values as a function of ship speed through water and qualitatively compared the plots of the two sailings of one ship. These elements were extracted from F-W-G's squat and under-keel clearance spreadsheets. An example with the ship *Algosar* is given in Figure 1. Even if the range of the squat plotted for each sailing is large (e.g. for ship *Algosar* for day 316 at 6 kn, the squat spreads from about 15 to 50 cm), we can see that they are similar.

Figure 1 Squat measured as a function of speed through water for ship *Algosar*, South Shore Canal.

However, this comparison is independent of the position of the ship along the channel. In fact, the position of the ship along the channel is important because the squat is also affected by the ratio of the immersed ship cross-section area to the cross-section area of the channel. After the ship's speed, this is the second most important factor that affects squat. To compare the squat measured when the ship is at the same place in the channel, we plotted the squat values as a function of channel station. The channel station is a distance measured along the centreline of the channel from Montreal Harbour: The station is about 2,100 m at St. Lambert lock, 15,600 m at Cote St. Catherine lock, and 48,000 m at Beauharnois lock. An example of the squat as a function of channel station is given in Figure 2. With this kind of plot, the first problem encountered was the difficulty in comparing the squat at a given channel station when the speed of each run was different (i.e. as in Figure 2). Second, for some ships, there were no squat data for the same sectors in the channel (e.g. Figure 3). For these two reasons, we decided to continue our comparisons with the squat as a function of speed through water only.

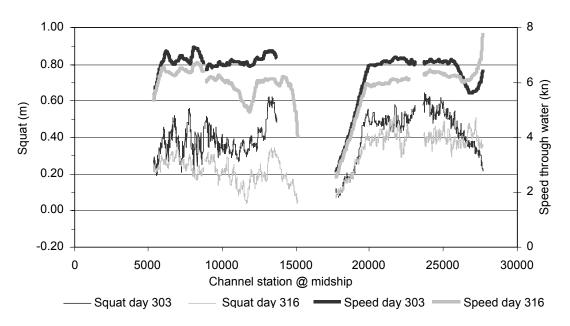


Figure 2 Squat measured as a function of channel station for ship *Algosar*, South Shore Canal.

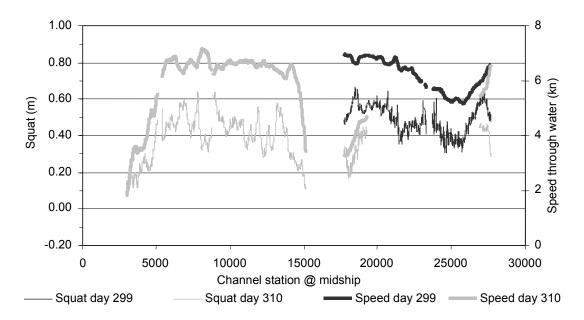


Figure 3 Squat measured as a function of channel station for ship *Rt. Hon. Paul Martin*, South Shore Canal.

We thought that the comparison of squat values as a function of speed could be improved by normalizing the effect of the cross-section area ratio A_{ship}/A_{canal} on squat. This would leave the ship's speed to be the factor that most influences the squat phenomenon. To compute the squat modified for cross-section area ratio, squat was divided by the factor $\left(\frac{A_{immersed ship} * A_{canal standard}}{A_{canal}}\right)$, where "A" denotes the cross-section area. The coefficient $(A_{canal standard}/A_{ship standard})$ was used only to normalize the data about the mean squat value. Canal

cross-section area was computed using the average of the five channel bottom elevations under the ship, whereas ship's cross-section area was computed using the average draft and does not take into account the increase in draft when the ship is under way. These two cross-section areas were extracted from F-W-G's spreadsheets. The ship's standard cross-section area was the same for all Seaway sections (width = 23.2 m, draft = 7.75 m, midship section coefficient = 0.98; area = $23.2 \times 7.75 \times 0.98 = 176 \text{ m}^2$). The channel standard cross-section area was 850 m² for South Shore Canal, 2,200 m² for Lake St. Louis, 2,000 m² for Lake St. Francis, and 1,700 m² for Wiley-Dondero Canal. An example of the squat modified for the cross-section area ratio is given in Figure 4.

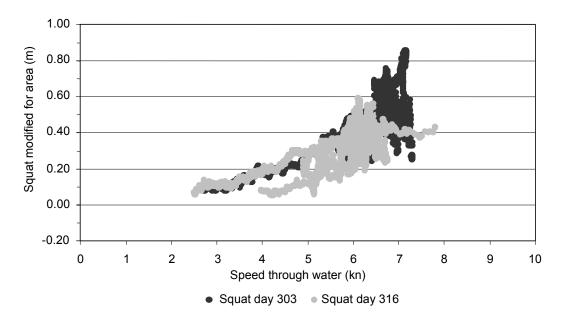


Figure 4 Squat modified for the cross-section area ratio as a function of speed through water for ship *Algosar*, South Shore Canal.

Before plotting the modified squat values, we thought that removing the effect of the crosssection area ratio would narrow the plots (e.g. for ship *Algosar* for day 316 at 6 kn, the squat would spread from 25 to 40 cm instead of 15 to 50 cm). However, the opposite often happened. The modified squat values spread wider than the measured squat values for the same speeds. Moreover, the spreading phenomenon is more important for higher speeds. We know that the ship travels at low speeds only when approaching and leaving locks, and travels at a higher and rather constant speed the rest of the time. Therefore, we have few squat values at low speeds and many squat values at higher speeds. This element, added to the errors in the computed channel cross-section area (e.g. inadequate width or depth, shallow open water in the neighbourhood not taken into account) and to the model's simplification used to remove the cross-section area ratio from the squat, could explain some of the increase of the spread in modified squat values at higher speeds.

Since we were not entirely satisfied with these results, we decided to compare the measured squat with the squat predicted from known models. Each of the three models chosen takes into account the ship's speed and the cross-section area ratio, among others. For each sailing of a ship, the difference between the measured squat and the predicted squat is computed. If the difference is positive, the squat is underestimated by the model; if the difference is negative, the squat is overestimated. The difference between the measured and the predicted squat and the predicted squat is computed.

comes from the errors in the measured squat, the simplicity of the model and real phenomena not accounted for by the model. The Simard, Tuck, and Barrass 2 models were chosen because they predict squat values close to the measured squat values for the South Shore Canal sector most of the time. In addition, they model the ship's speed and the cross-section area ratio differently.

As we examined the models tested by F-W-G in their work, we realized that none of them was giving a good prediction of the squat for all ships and in all four Seaway sectors. For this reason, we tested another model named "Simard". The Simard squat model is the following:

$$S_{max} = h F_{nh}^2 L$$
 (1.1)

where

S_{max}: maximum squat (m)

- h : water depth (m)
- F_{nh} : Froude number = V/ \sqrt{gh}
- V : ship speed through water (m/s)
- g : acceleration of gravity = 9.81 m/s^2

L : channel blockage factor =
$$0.5 \left\{ \left[\frac{1.01}{1 - \text{TB/hW}} \right]^2 - 0.8 \right\}$$

- T : ship static draft (m)
- B : ship beam (m)
- W : channel width (m)

An example of the squat predicted by the Simard model is given in Figure 5 for South Shore Canal and in Figure 6 for Lake St. Louis.

As can be seen in Figure 6, the Simard model is almost always conservative for the prediction of squat in Lake St. Louis (note that in Figure 5, as everywhere else in this report, the terms "squat" and "maximum squat" mean the same thing because the measured squat is always given for the lowest corner of the ship). In Figure 5, we see that the Simard model usually gives good results for the South Shore Canal sector, although it has more difficulty modelling the squat in the channel between St. Lambert lock and Cote St. Catherine lock (i.e. between channel stations 2100 and 15600). This problem also appears with the Tuck and Barrass 2 squat models, and with the other models tested by F-W-G in their work. In this section of the Seaway, there is an alternation of small islands and shallow open water areas along the channel. This variation in the channel morphology is not accounted for in the computation of the cross-section area of the channel, so the variation does not appear in the predicted squat. Since the ship follows the same path in the channel at a rather constant speed, the same channel morphology errors in the prediction are encountered in each sailing. Therefore, we can compare the two sailings by plotting the differences as a function of ship speed, as in Figure 7. The two plots should be similar if there is repeatability between the two sailings of a ship.

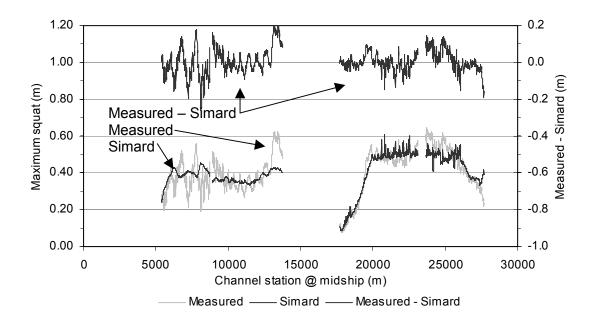


Figure 5 Measured and predicted squat, Simard model, *Algosar*, day 303, South Shore Canal.

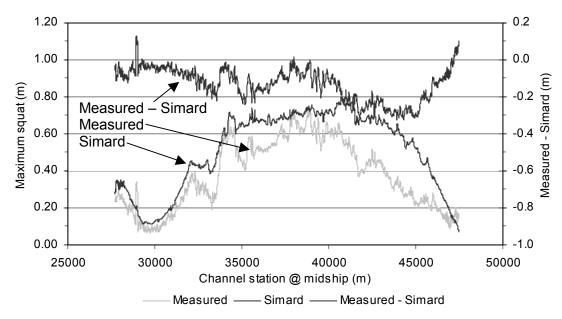
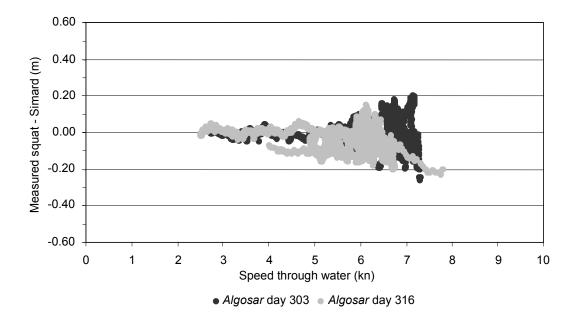



Figure 6 Measured and predicted squat, Simard model, *Algosar*, day 303, Lake St. Louis.

Figure 7 Difference between measured squat and squat predicted by Simard model as a function of speed through water for two sailings of ship *Algosar*, South Shore Canal.

The Tuck model was the second model used to predict squat and to compare two sailings of the same ship. The Tuck squat model is the following:

$$S_{b} = 1.46 \frac{\nabla}{L_{pp}^{2}} \frac{F_{nh}^{2}}{\sqrt{1 - F_{nh}^{2}}} K_{s} + 0.5L_{pp} \sin(\frac{\nabla}{L_{pp}^{3}} \frac{F_{nh}^{2}}{\sqrt{1 - F_{nh}^{2}}} K_{s})$$
(1.2)

where

 S_b : sinkage at the bow (m)

: ship volumetric displacement (m³) ∇ L_{pp} : ship length between perpendiculars (m) F_{nh} : Froude number = V/ \sqrt{gh} V : ship speed through water (m/s) : water depth (m) h : acceleration of gravity = 9.81 m/s^2 g K۹ $= 7.45 S_i + 0.76$ for $S_i > 0.03$ Ks = 1 for $S_i \leq 0.03$ $= A_s / A_c / K_i$ Si = 1 Channel-type parameter for canal with no overbanks K

An example of the squat predicted by the Tuck model is given in Figure 8 for South Shore Canal and in Figure 9 for Lake St. Louis.

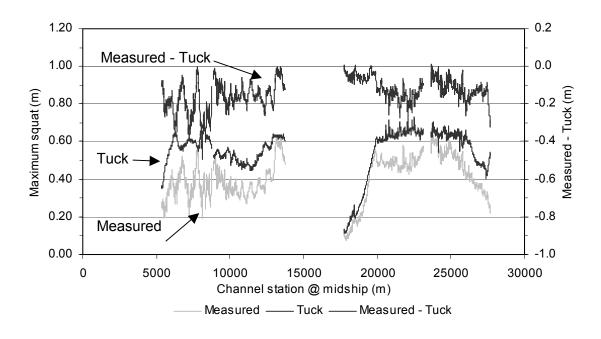


Figure 8 Measured and predicted squat, Tuck model, *Algosar,* day 303, South Shore Canal.

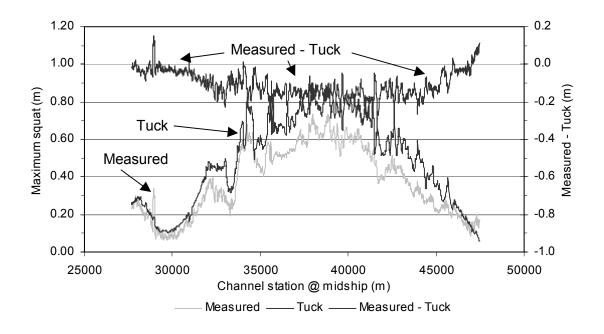
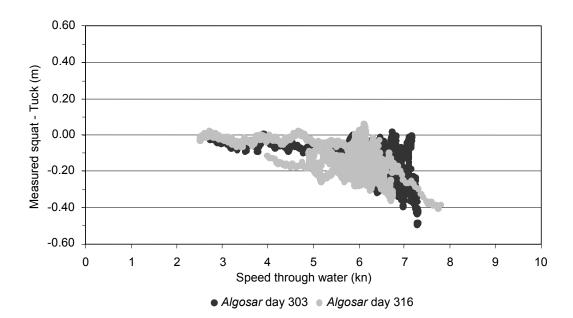



Figure 9 Measured and predicted squat, Tuck model, *Algosar*, day 303, Lake St. Louis.

As can be seen, the Tuck model produces conservative squat values for both the South Shore Canal and the Lake St. Louis sectors. As was previously explained with the Simard model, the comparison of two sailings of a ship is done by plotting the differences between the measured squat and the squat predicted by the Tuck model as a function of ship speed. An example is given in Figure 10 for the South Shore Canal sector.

Figure 10 Difference between measured squat and squat predicted by Tuck model as a function of speed through water for two sailings of ship *Algosar*, South Shore Canal.

The third squat model used to predict squat to compare two sailings of the same ship was the Barrass 2 model. This squat model is the following:

$$S_{max} = \frac{C_b S_2^{2/3} V_k^{2.08}}{30}$$
(1.3)

where

- S_{max}: squat (m)
- C_b : ship block coefficient
- S_2° : channel blockage = A_s / A_w
- A_s : ship underwater cross-sectional area
- A_{c} : channel cross-sectional area
- A_w : net underwater channel cross-sectional area = $A_c A_s$
- V_k : ship speed (kn)

An example of the squat predicted by the Barrass 2 model is given in Figure 11 for South Shore Canal and in Figure 12 for Lake St. Louis.

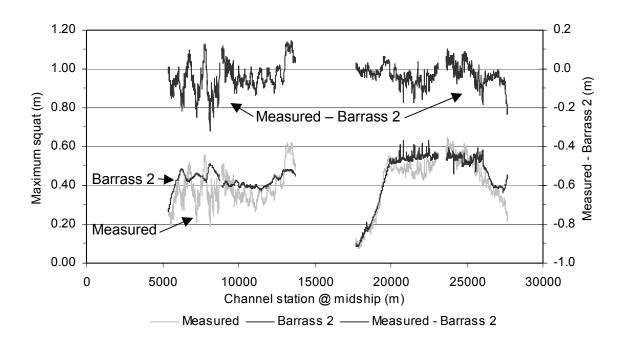


Figure 11 Measured and predicted squat, Barrass 2 model, *Algosar*, day 303, South Shore Canal.

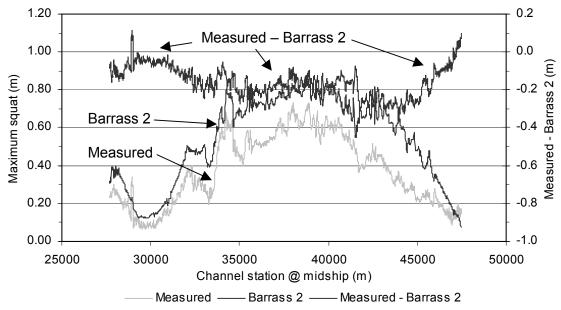
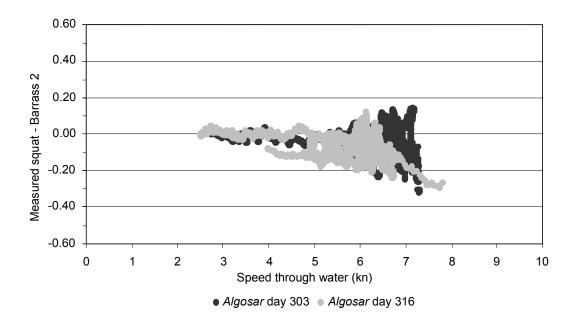



Figure 12 Measured and predicted squat, Barrass 2 model, *Algosar*, day 303, Lake St. Louis.

Squat values predicted by the Barrass 2 model are more conservative in Lake St. Louis than in South Shore Canal. Figure 13 presents the differences between the measured squat and the squat predicted by the Barrass 2 model as a function of ship speed to compare two sailings of a ship.

Figure 13 Difference between measured squat and squat predicted by Barrass 2 model as a function of speed through water for two sailings of *Algosar*, South Shore Canal.

As mentioned previously, all these steps were first performed to qualitatively assess the repeatability of squat between two sailings of one ship. The same methodology was used to assess the repeatability of squat between the ships of one type. Finally, the qualitative analysis was performed to determine whether there are trends between ship types. Graphs of results obtained for these two last objectives are not presented in this report, but they virtually identical to those obtained for the first objective (two sailings of the same ship). The findings of this qualitative analysis for these three objectives are presented below.

1.2 Classical Squat: Qualitative Analysis – Findings

All squat data analysed indicate that GPS data used to derive squat is coherent. In other words, the precision of GPS data is sufficient to discern the trend of squat phenomenon and to draw conclusions on its behaviour. Furthermore, F-W-G's data reduction seems to be consistent and appropriate.

For some squat data subsets, theoretical equations (Tuck, Barrass 2 and Simard) tested within this study are in agreement with the measured squat values. As stated in these equations, squat increases as a function of the vessel speed squared and vessel constriction in the channel.

For other squat data subsets, there is a significant difference between predicted and measured squat values. The difference has a systematic behaviour but one that is virtually impossible to describe and/or explain. There seem to be dynamic phenomena that come into play from time to time. These phenomena are related to water level transients discussed further in section 2.

The difference between measured squat and predicted squat with theoretical equations increases as a function of speed (e.g. Figures 7, 10 and 13).

Within the limits mentioned above, our conclusion of the qualitative analysis is that for a specific ship travelling at the same speed through the same sections and on different days, measured squat seems to be the same. In other words, squat behaviour is similar for all the sailings of a ship.

Likewise, ships within the same type have a similar squat behaviour.

Last, ships of different types also have a similar squat behaviour. The only type that could be considered to produce slightly lower squat values than the other types is the Traditional Laker, especially in Lake St. Louis.

1.3 Classical Squat: Quantitative Analysis

In the previous section, we concluded that all the ships' squat behaviours were qualitatively similar from one sailing to the other. However, we needed to quantify this assumption with a systematic analysis. This was done using a standard statistical test on the average. We based our comparison of two ship transits on five elements related to the measured squat:

- 1) the measured squat as provided by F-W-G (named "raw" in the tests);
- 2) the squat modified for cross-section area ratio (named "area");
- the difference between measured squat and squat predicted by the Tuck equation (named "Tuck");
- 4) the difference between measured squat and squat predicted by the Barrass 2 equation (named "Barrass 2");
- 5) the difference between measured squat and squat predicted by the Simard equation (named "Simard").

These five elements were expressed as a function of speed through water. The reasons to make the analysis as a function of speed through water were previously mentioned in the description of each element. We decided to use these five elements in our statistical tests to take advantage of the strengths of each one.

The ship's speed through water at each epoch is used to separate each element in one of the four speed classes (e.g. Figure 14). For each of the four Seaway sections, the four speed classes are:

- 1) South Shore Canal: 0 to 5 kn, 5 to 6 kn, 6 to 7 kn, 7 kn and over
- 2) Lake St. Louis: 0 to 7 kn, 7 to 9 kn, 9 to 11 kn, 11 kn and over
- 3) Lake St. Francis: 0 to 8 kn, 8 to 9 kn, 9 to 10 kn, 10 kn and over; in Lake St. Francis, there were no speeds under 6 kn
- 4) Wiley-Dondero Canal: 0 to 6 kn, 6 to 8 kn, 8 to 10 kn, 10 kn and over.

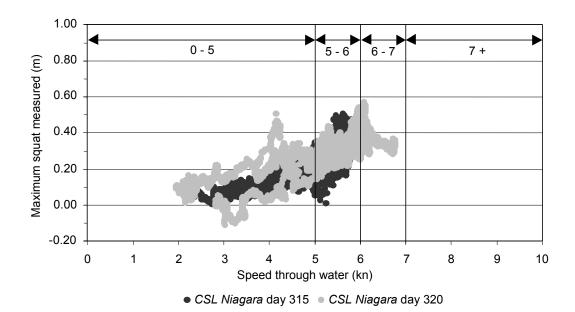


Figure 14 Four speed classes for the measured squat of two sailings of ship *CSL Niagara*, South Shore Canal.

For each ship transit, element and speed class, the average value, standard deviation and sample size were computed (see Tables 1 and 2 for examples). These statistics appear in the following sections of the appendices: A.1 (South Shore Canal) and B.1 (Lake St. Louis) for the assessment of ships passing twice, A.2 (South Shore Canal) and B.2 (Lake St. Louis) for the assessment of ships of the same types, and A.3 (South Shore Canal), B.3 (Lake St. Louis), C.1 (Lake St. Francis) and D.1 (Wiley-Dondero Canal) for the assessment of trends between ship types.

Table 1 Average (avg), standard deviation (std) and sample size (nb) values computed for each speed class for each element for day 303 of ship *Algosar*, South Shore Canal. Average and standard deviation are expressed in metres.

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.15	avg = 0.34	avg = 0.44	avg = 0.43
raw	std = 0.05	std = 0.05	std = 0.09	std = 0.12
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = 0.15	avg = 0.35	avg = 0.52	avg = 0.59
area	std = 0.05	std = 0.04	std = 0.08	std = 0.17
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.05	avg = -0.11	avg = -0.15	avg = -0.20
Tuck	std = 0.02	std = 0.04	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.03	avg = -0.04	avg = -0.05
Barrass 2	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.01	avg = 0.01	avg = 0.01
Simard	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217

Table 2 Average (avg), standard deviation (std) and sample size (nb) values computed for each speed class for each element for day 316 of ship *Algosar*, South Shore Canal. Average and standard deviation are expressed in metres.

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.15	avg = 0.25	avg = 0.32	avg = 0.35
raw	std = 0.06	std = 0.12	std = 0.09	std = 0.01
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = 0.16	avg = 0.30	avg = 0.38	avg = 0.40
area	std = 0.07	std = 0.10	std = 0.07	std = 0.01
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.04	avg = -0.12	avg = -0.16	avg = -0.33
Tuck	std = 0.04	std = 0.07	std = 0.07	std = 0.05
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.01	avg = -0.07	avg = -0.08	avg = -0.24
Barrass 2	std = 0.04	std = 0.06	std = 0.06	std = 0.04
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.00	avg = -0.04	avg = -0.04	avg = -0.19
Simard	std = 0.03	std = 0.07	std = 0.06	std = 0.04
	nb = 413	nb = 771	nb = 1787	nb = 15

1.4 Classical Squat: Quantitative Analysis – Findings

In most cases, the standard deviation of each sample of an element increases as a function of speed class. For instance, the standard deviation of speed class "7 +" is superior than "0 - 5" for each of the five elements related to measured squat.

Generally, removing the effect of the cross-section area ratio from the measured squat produces no significant gain on the standard deviation of each sample.

The three squat models (Tuck, Barrass 2 and Simard) used in this study were considered to be the most adequate models. These statistics show that they perform equally well (i.e. none of these models is significantly superior to the two others in terms of their standard deviation of the residuals).

The use of these equations to model squat diminishes standard deviations by up to 30 to 50 percent with respect to measured squat. However, because of unmodelled phenomena (particularly at high speeds), the residuals still have relatively high standard deviations of up to 12 to 15 cm.

1.5 Classical Squat: Repeatability Tests

Once the basic statistics (average (\overline{X}), standard deviation (s) and sample size (n)) of each separate sailing were determined, tests were performed using the two sets. The objective of the statistical tests was to determine whether two samples have statistically the same average: i.e. whether they come from the same population ($\mu_1 - \mu_2 = 0$; μ is the average of the population), or whether they are different. This enables us to state, for instance, whether ship *Algosar* is considered to have had the same squat behaviour for its two sailings or whether the squat behaviour is considered different. The test on average is always done between two transits on each of the five squat-related elements for each speed class separately. The relationship used to state whether two averages are the same or different is the following:

$$Z_{exp} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$
(1.4)

where the starting hypothesis is H_0 : $\mu_1 - \mu_2 = 0$ ("pass") and the alternative hypothesis is H_1 : $\mu_1 - \mu_2 \neq 0$ ("fail")

The Z_{exp} value is then compared to the known values of the Normal distribution for a 95 percent probability. The starting hypothesis – i.e. the two averages come from the same population – is accepted if $-1.96 \le Z_{exp} \le 1.96$ and rejected otherwise. In that case, the alternative hypothesis states that the two averages are not statistically the same and do not come from the same population. The further Z_{exp} is from the [-1.96, 1.96] interval, the more different the averages are from each other. (For these tests, there must be at least 30 observations.)

Table 3 is an example of the results obtained for the statistical test of two sailings (days 303 and 316) of ship *Algosar*. The Z_{exp} value of the test is given with a "pass" or "fail" success result. The average, standard deviation and sample size values used to compute Z_{exp} with Equation 1.4 are the ones presented in Tables 1 and 2. Three examples are given below for better understanding of the results shown in Table 3.

First, the statistical test performed on the measured squat (raw) of speed class 0 - 5 kn between sailings of days 303 and 316 of ship *Algosar* gives "0.25 pass" as a result, which is the value computed for Z_{exp} using the average, standard deviation and sample size of raw and 0 - 5 kn of sailings 303 and 316 of ship *Algosar*. The term "pass" means that Z_{exp} was inside the limits [-1.96, 1.96], so the starting hypothesis is accepted and the test is successful for the speed class 0 - 5 kn of raw squat. Second, for the speed class 7 + kn, it is written "n<30" instead of the results of the statistical tests. As mentioned previously, there must be at least 30 observations in each sample to perform the test. When one of the samples is smaller than 30, the note "n<30" appears instead of the result of Z_{exp} . Third, the statistical test done on the difference between the measured squat and the prediction from the Barrass 2 equation (Barrass 2) of speed class 6 - 7 kn between the two sailings gives "19.30 fail" as result. Since $Z_{exp} = 19.30$ is outside the limits [-1.96, 1.96], the starting hypothesis is rejected for the speed class 6 - 7 kn of Barrass 2 element and the test fails. If the starting hypothesis is rejected for the speed class 6 - 7 kn of sail the same squat values for two sailings under the same operating conditions.

		0 - 5	5 - 6	6 - 7	7 +
als303 &	raw	0.25 pass	17.78 fail	39.79 fail	n<30
als316	area	-2.58 fail	11.01 fail	53.33 fail	n<30
	Tuck	-5.12 fail	4.41 fail	6.52 fail	n<30
	Barrass 2	-2.76 fail	11.14 fail	19.30 fail	n<30
	Simard	-3.02 fail	11.68 fail	25.73 fail	n<30

Table 3 Results of statistical tests on the average between days 303 and 316 of ship *Algosar*, South Shore Canal.

The results of the statistical analysis performed to assess the repeatability of squat between two sailings of one ship are presented in the following sections of the appendices: E.1 for South Shore Canal and F.1 for Lake St. Louis.

The statistical analysis was also performed for each ship type to assess the repeatability of squat between ships of one type. The results are presented in the following sections of the appendices: E.2 for South Shore Canal and F.2 for Lake St. Louis. The statistical test on averages is performed with two ships at the same time, so all ship combinations within one type appear in the results.

Finally, the statistical analysis was performed to determine whether there are trends between ship types – i.e. comparing ship types. The analysis was done for the four sections of the Seaway: South Shore Canal (section E.3), Lake St. Louis (section F.3), Lake St. Francis (section G.1), and Wiley-Dondero Canal (section H.1).

1.6 Classical Squat: Repeatability Tests – Findings

When we apply standard statistical tests to compare one ship sailing to another, the finding is virtually always the same; from a statistical point of view, the squat phenomenon of each transit is unique. In other words, squat behaviour from one sailing to the next is always different. This regardless of whether it is the same ship passing on different days, two ships of the same type passing on the same day, or two ships of different types.

How can we explain this result when, qualitatively (section 1.1), we found that the squat behaviour from one sailing to the next (with a possible exception for Traditional Lakers) is very similar? There are two important factors:

- The first is numerical. The statistical test on the average values uses the sample size of each sample in its calculation (see Equation 1.4). Since each sample size is often large – e.g. over 200 observations – it leads to a small number at the denominator of Z_{exp}. Consequently, the average of each sample must be the same within a few millimetres to obtain Z_{exp} inside [-1.96,1.96] and thus a successful result.
- 2) The second relates to systematic errors. As discussed at the beginning of section 1, the precision of squat values used in this project is degraded by errors that may be undetected. These errors can be the zero determination of the antennas from one sailing to the next; the change in water slope and/or elevations from one sailing to the next; ship buoyancy characteristics from one sailing to the next; or GPS satellite and antenna configuration, ionosphere degradation and data reduction from one sailing to the next. These systematic errors are small enough not to affect the general trend of squat values. Nevertheless, they are significant enough to affect the average values used in the statistical test and therefore the result of the test.

1.7 Classical Squat: Conclusions

Qualitatively speaking, squat behaviour seems similar from one sailing to the next (with the possible exception of Traditional Lakers). Statistically speaking, it is the opposite – i.e. each sailing is dissimilar. However, both points of view agree on one thing: there is some systematic and unexplained behaviour going on. It shows up as a function of speed in both the standard deviation and the average. Therefore, the conclusions for the objectives stated at the beginning are:

- 1) Repeatability of squat between two sailings of the same ship: squat behaviour is *qualitatively similar but statistically different* for all sailings of a ship.
- 2) Repeatability of squat between ships of one type: ships within the same type have a *qualitatively similar but statistically different* squat behaviour.
- 3) Trends between ship types: all ship types have *qualitatively similar but statistically different* trends. In other words, ships of different types have a similar squat behaviour. The only type that could be considered to produce slightly lower squat values than the other types is the Traditional Laker, especially in Lake St. Louis.

Given the similarity in squat behaviour but the significant variations in sinkage over and above modelled squat behaviour, we developed an alternative way of looking at the data. It is based on determining the upper envelope of the squat behaviour rather than seeking equations to

describe the mean. Using this approach, it may be unnecessary to distinguish between ship types. We therefore determined an equation that fits all ship types for South Shore Canal (Equation 2.1) and another one for Lake St. Louis (Equation 2.6) as well as individual equations for each ship type. More explanations are given in section 2.

2. INTRODUCTION OF DYNAMIC SQUAT EQUATIONS

To achieve safe navigation and under-keel clearance, the equations chosen to model the squat phenomenon must be conservative. To do so, these equations must take into account not only the squat itself, but also the dynamic effects that are difficult to separate from squat. The dynamic effects can introduce additional sinkage and include local changes in water surface elevation, surges, quick changes in rudder and propeller ship manoeuvres, variable channel morphology, ship roll, pitch and heave, and ship meetings, among others. As a result, the squat equations are rather called "dynamic squat" equations and are expressed as a function of ship speed-through-water only. It must be noted that the dynamic squat equations are representative of an envelope of the data and do not represent the most extreme sinkage observations. Therefore, in few cases, the observed dynamic squat can be superior to that calculated using the proposed equation (see Figures 15 to 23).

Sections 2.1 to 2.9 present the equations selected to model dynamic squat. A set of equations is given for the South Shore Canal section and another for the Lake St. Louis section. As a matter of fact, these two sections have different channel configurations: the South Shore Canal is a confined water (shallow and narrow) whereas Lake St. Louis is a semi-open water channel type. Since ships squat more in confined water than in open water channel types, using only the South Shore Canal equation would overestimate dynamic squat in Lake St. Louis.

A dynamic squat equation for all ship types is given for each of these two sections of the Seaway. In our view, this is the equation that should be inserted in the Seaway's spreadsheet for regular navigation. However, for special cases – e.g. the draft of a ship is slightly over the permissible limit – the maximum permissible vessel speed could be computed with respect to the specific type of the ship using the equation provided below for that specific ship type.

For Lake St. Francis and Wiley-Dondero Canal, no dynamic squat equations were determined because only four ships were monitored.

2.1 Dynamic Squat Equation for All Ship Types (South Shore Canal)

Dynamic squat = $0.0001763 * V^4 + 0.000407 * V^3 - 0.0065785 * V^2 + 0.0821755 * V$ (2.1)

where V is the speed through water (kn) and Dynamic squat is the maximum total sinkage value (m).

This equation is <u>valid for speeds from 0 to 8 kn</u>. It should not be used for speeds exceeding 8 kn (extrapolation) because the behaviour of the equation is unknown. This is the consequence of not using squat values at speeds above 8 kn in the determination of the equation. Since the dynamic squat equation for all ship types is more conservative than all the equations for each type, it can therefore be used for ships of all types. The dynamic squat values obtained with the present equation are illustrated on Figure 15.

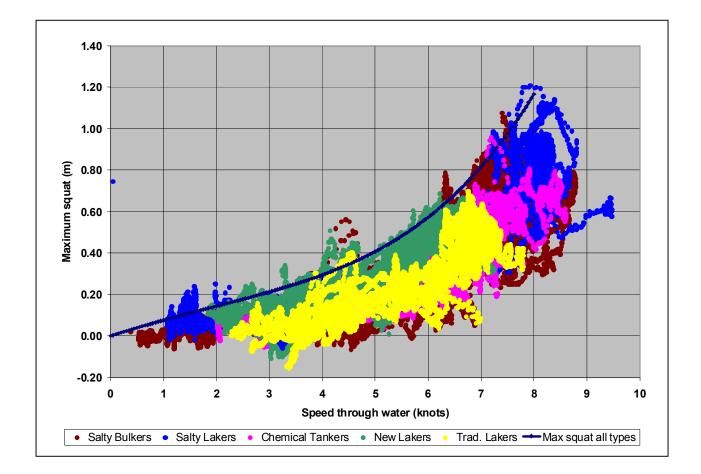


Figure 15 Dynamic squat values with the equation for all types, South Shore Canal.

2.2 Dynamic Squat Equation for Traditional Laker Type (South Shore Canal)

Dynamic squat = $0.0003035 * V^4 - 0.0021286 * V^3 + 0.0089056 * V^2 + 0.0289864 * V$ (2.2)

This equation is valid for <u>speeds from 0 to 7 kn</u>. If some ships of that type exceed 7 kn, it is recommended to use the dynamic squat equation for all types. The dynamic squat values obtained with the equation for Traditional Lakers are illustrated in Figure 16.

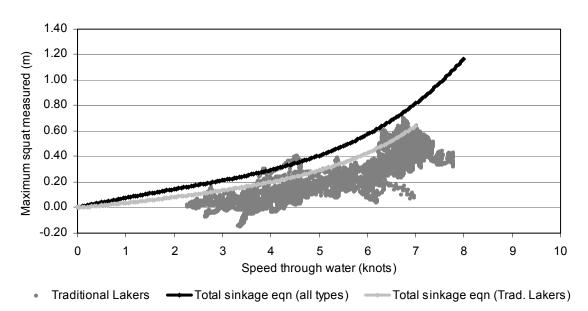


Figure 16 Dynamic squat values with the equation for Traditional Lakers, South Shore Canal.

2.3 Dynamic Squat Equation for Chemical Tanker Type (South Shore Canal)

Dynamic squat = $-0.0004077 * V^4 + 0.0079021 * V^3 - 0.0334612 * V^2 + 0.083439 * V$ (2.3)

This equation is valid for <u>speeds from 0 to 8 kn</u>. The dynamic squat values obtained with the equation for Chemical Tankers are illustrated in Figure 17.

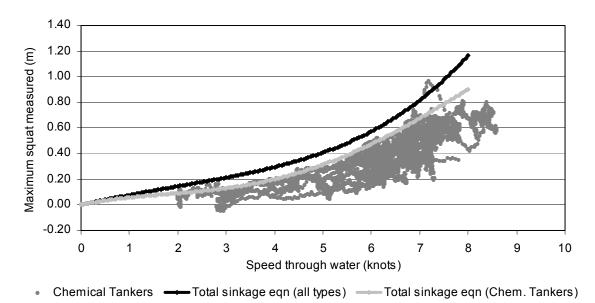


Figure 17 Dynamic squat values with the equation for Chemical Tankers, South Shore Canal.

2.4 Dynamic Squat Equation for Salty Laker Type (South Shore Canal)

Dynamic squat = $-0.0000972 * V^4 + 0.0052199 * V^3 - 0.0318266 * V^2 + 0.111191 * V$ (2.4)

This equation is valid for <u>speeds from 0 to 8 kn</u>. The dynamic squat values obtained with the equation for Salty Lakers are illustrated in Figure 18.

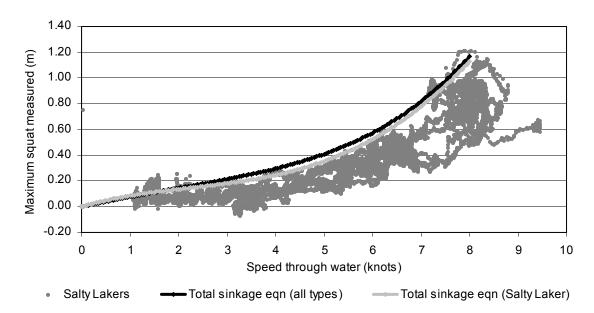


Figure 18 Dynamic squat values with the equation for Salty Lakers, South Shore Canal.

2.5 Dynamic Squat Equation for Salty Bulker Type (South Shore Canal)

Dynamic squat = $-0.0001364 * V^4 + 0.00559 * V^3 - 0.0286669 * V^2 + 0.0878583 * V$ (2.5)

This equation is valid for <u>speeds from 0 to 8 kn</u>. The dynamic squat values obtained with the equation for Salty Bulkers are illustrated in Figure 19.

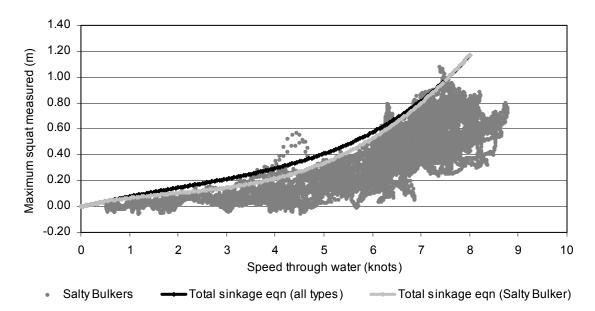
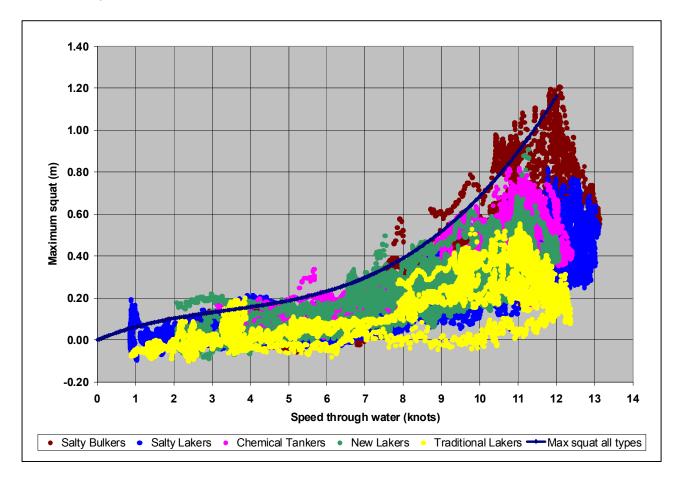


Figure 19 Dynamic squat values with the equation for Salty Bulkers, South Shore Canal.


2.6 Dynamic Squat Equation for All Ship Types (Lake St. Louis)

Dynamic squat = $-0.0000229 * V^4 + 0.0017472 * V^3 - 0.016011 * V^2 + 0.0768478 * V$ (2.6)

where V is the speed through water (kn) and Dynamic squat is the maximum total sinkage value (m).

This equation is <u>valid for speeds from 0 to 12 kn</u>. It should not be used for speeds exceeding 12 kn (extrapolation) because the behaviour of the equation is unknown. This is the consequence of not using squat values at speeds above 12 kn in the determination of the equation. Since the dynamic squat equation for all ship types is more conservative than all the equations for each type, it can therefore be used for ships of all types. The dynamic squat values obtained with the equation for all types are illustrated in Figure 20.

The dynamic squat equation for Chemical Tanker and Salty Bulker types is the same as the one for all types.

Figure 20 Dynamic squat values with the equation for all types, Lake St. Louis.

2.7 Dynamic Squat Equation for New Laker Type (Lake St. Louis)

```
Dynamic squat = -0.000075 * V^4 + 0.0021552 * V^3 - 0.0156176 * V^2 + 0.0725598 * V (2.7)
```

This equation is valid for <u>speeds from 0 to 12 kn</u>. The dynamic squat values obtained with the equation for New Lakers are illustrated in Figure 21.

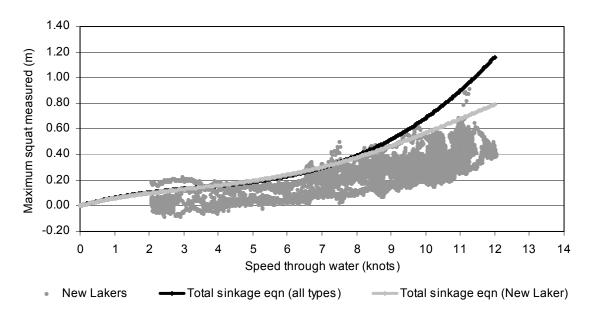


Figure 21 Dynamic squat values with the equation for New Lakers, Lake St. Louis.

2.8 Dynamic Squat Equation for Traditional Laker Type (Lake St. Louis)

Dynamic squat = $-0.0001007 * V^4 + 0.002602 * V^3 - 0.016014 * V^2 + 0.0429744 * V$ (2.8)

This equation is valid for <u>speeds from 0 to 12 kn</u>. The dynamic squat values obtained with the equation for Traditional Lakers are illustrated in Figure 22.

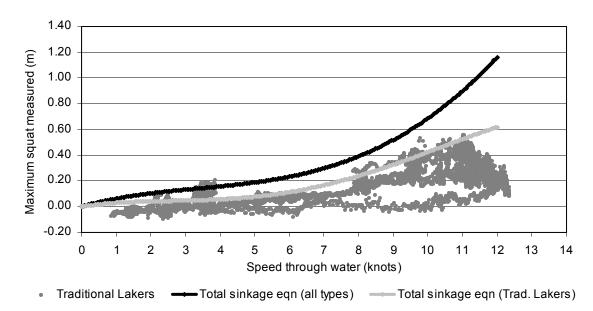
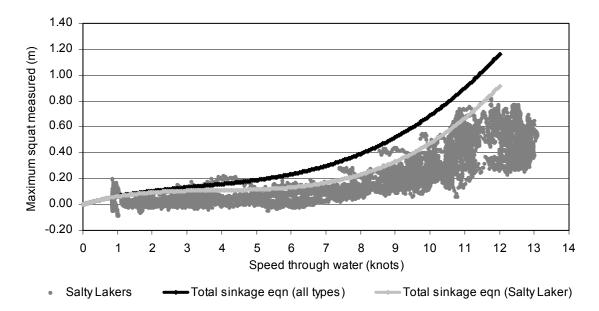



Figure 22 Dynamic squat values with the equation for Traditional Lakers, Lake St. Louis.

2.9 Dynamic Squat Equation for Salty Laker Type (Lake St. Louis)

Dynamic squat = $-0.000021 * V^4 + 0.0019346 * V^3 - 0.0204885 * V^2 + 0.0797849 * V$ (2.9)

This equation is valid for <u>speeds from 0 to 12 kn</u>. The dynamic squat values obtained with the equation for Salty Lakers are illustrated in Figure 23.

Figure 23 Dynamic squat values with the equation for Salty Lakers, Lake St. Louis.

2.10 Dynamic Squat: Conclusion

In this section, equations describing dynamic squat of ships as a function of speed-throughwater were presented. One equation to suit all types was presented for South Shore Canal, and another one for Lake St. Louis. Other equations that suit specific ship types were also presented for South Shore Canal and for Lake St. Louis. All these curves provide realistic and safe estimates of dynamic squat behaviour including squat effects as well as most other additional effects such as water surges.

3. UNDER-KEEL CLEARANCE

The two main objectives of this section are as follows:

- 1) Identify all the critical sections of the Seaway where negative UKC values were found.
- 2) Verify whether critical computed UKC values are real and have a real physical significance.

3.1 Locating Negative UKC Values

Computed UKC results by F-W-G were carefully analysed for all ships. It was found that UKC values smaller or equal to zero occurred at 116 locations along the seaway. Twenty-four of those were located at the entrance of Beauharnois lock, with UKC values smaller (i.e. more critical) than -2 m and UKC amplitude variations of up to 3.5 m for two specific ships (*Lake Carling* and *Mariupol*). Values at those areas were considered potentially anomalous and needed to be confirmed, especially at Beauharnois' lock entrance where UKC values were found to be most critical. The table in Appendix I shows identified anomalous UKC locations along with UKC values and channel bottom elevations used for computation. Table 4 shows the number of anomalous UKC values identified in the St. Lawrence Seaway in all critical sections between St. Lambert and Beauharnois locks as a function of distance from a known position originating at 3.3 km upstream from the Laurier dock located in the Port of Montreal. Note that the corresponding distances from the Laurier dock to St. Lambert and Beauharnois locks are 2.4 km and 47.2 km respectively.

Table 4 Number of anomalous UKC values identified in St. Lawrence Seaway between St. Lambert and Beauharnois locks – extracted from F-W-G data

Distance – Channel station at midship (km):	0 to 5	5 to 10	10 to 15	15 to 20	20 to 25	25 to 30	45 to 50
Number of ships where UKC is negative or equal to zero:	4	2	2	8	6	3	9
Number of locations where UKC is negative or equal to zero:	8	16	4	29	15	15	29
Number of locations where UKC is smaller than - 0.5 m: 0		1	0	1	2	0	24
Total number of locations where UKC is negative or equal to zero:				1	16		

Note: Origin of distance is at 3.3 km from the Laurier dock in Port of Montreal

F-W-G's UKC values were computed by subtracting the maximum channel bottom elevation (extracted amidships between –10 m port and +10 m starboard positions) from the ship's minimum keel elevation (MKE).

MKEs were determined by computing the sinkage at the centre of the ship, adjusting to the lowest point at the bow or stern according to the trim, and then adjusting to one half the beam according to the roll or heel. It was assumed that a ship is a rigid body and that it does not twist or bend significantly. Thus, the lowest elevation at the corners of the ship block defined by the ship beam and length was determined. It was considered that this could be used with highest channel bottom elevation at the midship because the lowest point of the ship would eventually have to cross that channel cross section. This allows a bit of conservatism in the UKC since the bottom elevation could be slightly lower on the side of the MKE.

It was considered that, because ships tend to follow the same path in the channel, searching for the maximum channel bottom elevation directly under the ship would provide the most likely minimum UKC. Maximum channel bottom elevations were interpolated from the latest vertical

data referenced to IGLD85 datum. Table 5 shows the number of anomalous UKC locations found as a function of position from amidships.

Table 5 Number of anomalous UKC locations as a function of position from amidshipsextracted from F-W-G data

Position from amidships (m)	-10	-5	0	5	10
Downbound ships	1	1	1	0	4
Upbound ships	65	12	5	7	20
Total number of anomalous UKC locations:					

Note: Negative position indicates port side, positive indicates starboard.

3.2 Reliability of UKC Values – Do They Have Physical Significance?

Anomalous UKC values could be explained by excessive squat (e.g. ship meeting situations, in theory enabling higher squat values); errors in GPS elevation data, keel elevations, and channel bottom elevations; or numerical errors. Note that errors are cumulative in the computation of UKC values.

Ship-Meeting Situations

Ship-meeting situations were analysed using 53 ship-meeting situations that were recorded during the data collection period between October 24 and November 14, 2000. All ship meetings were checked and compared with each vessel's positions and periods of time where UKC anomalies were identified. It was found that none of the recorded ship meetings corresponded to anomalous negative UKC locations or recorded time and it is therefore considered that, within the scope of this project, ship-meeting situations cannot explain UKC anomalies. Available ship meetings either happened before or after the moment when GPS instruments on vessels are known to have recorded data related to negative UKC results.

GPS Elevation

GPS elevations were previously validated within this project's framework and the accuracy of collected data was estimated to 10 cm 95 percent of the time. This means that 5 percent of the time, errors in GPS elevation may be larger and this may partially explain some anomalous UKC values. This accuracy not only takes into account the errors inherent in GPS positioning, but also the distance between the ship and the base station – i.e. the accuracy decreases as the distance increases - and the additional errors resulting from the strong geomagnetic activity that was occurring when GPS data were collected. The problem is that not all variables are currently available to us and there is therefore no way to verify the exact accuracy of GPS elevations without first accessing the complete set of used variables (such as variance and covariance matrices) for GPS data computation and processing. Moreover, some small errors (up to 5 cm) can be introduced when the ellipsoidal elevation given by the GPS data processing is transformed to an IGLD85 elevation. Therefore, it can be stated that GPS imprecision could partly explain some anomalous UKC values as well as some high UKC amplitude variations at Beauharnois lock. For that specific site, the structure of the lock can hide some satellites and the proximity of the walls is favourable to produce multipath errors, both being elements that reduce the accuracy.

However, GPS elevations were further individually plotted and analysed for each of the 116 anomalous locations and none showed clear visible erroneous behaviour. Nevertheless, this does not discard possible errors present on a larger scale within the signal. Some "jumps" in GPS elevation of up to 20 cm were indeed observed within global data, but not close to computed negative UKC locations. Figure 24 shows such jumps found very near Mercier bridge at station 23200 for the transit of the ship *Lake Carling*. Note that in this case, GPS data has already been cleaned by F-W-G during their UKC computation. Another example of an apparent anomalous jump (18 cm in just 2 seconds) is shown in Figure 25 for the ship *Mariupol* at station 22918, some 350 m downstream of Mercier bridge. This last jump is, however, observed not to be located close to a critical UKC location. These jumps, if they are not revealing a real vertical movement of the ship, can be the result of a satellite leaving or entering the process and affecting the solution. The impact of such apparent jumps in observed GPS data is not easy to assess, but this would affect keel elevation calculations and could then partly explain calculated negative UKC values.

Keel Elevation

As previously mentioned, MKEs were computed by F-W-G, first computing the sinkage at the midship keel, adjusting to the lowest point at the bow or stern according to the trim, and then adjusting to one half the beam according to the roll or heel. Sinkage at midship mainly relies on GPS elevations and ship geometry. Therefore, the ship geometry that was used for the computation of keel elevations is another variable that was checked, since the vertical position of GPS antennae and its relation to ship geometry enables the calculation of the ship's keel elevation. The geometry of vessels showing the worst UKC values where checked, but no significant errors were found.

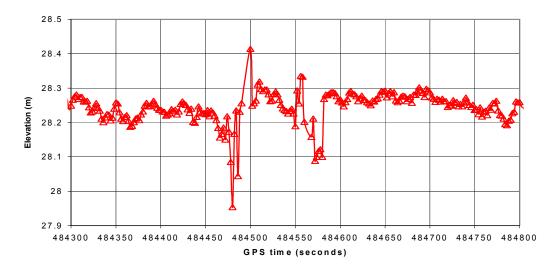
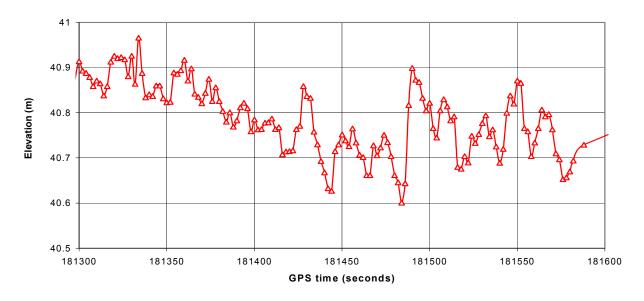



Figure 24 Anomalous GPS elevation behaviour for *Lake Carling* near Mercier Bridge at station 23200.

GPS elevation as a function of GPS time - Mariupol (MAR297)

Figure 25 Apparent jump in GPS elevation for *Mariupol* at station 22918, some 350 m downstream of Mercier Bridge.

Channel Bottom Elevations

Maximum bottom elevations were analysed for all 116 anomalous locations. Since bottom depths recorded during bathymetric surveys and used in this study were measured with the water level as a reference, accuracy of the former is directly proportional to the accuracy of the latter. One is therefore forced to consider water level precision.

Water Level Precision

At this point, accuracy of the water elevations used is not exactly known and it is mainly acknowledged that it is inversely proportional to the distance from the water level stations that record it. The precision is actually estimated by the Seaway to be ± 5 cm near stations and can decrease to at least ± 10 cm in between stations. One such station is installed at Beauharnois lock and water elevation errors can therefore not explain negative UKC values of several metres at this location. Few critical UKC data near other water level stations are currently available.

It is noteworthy to mention that a visit of the Seaway's infrastructures was made on November 22, 2001. Three items were found on this occasion:

- 1) The water level measured at St. Lambert lock was around 10 cm higher than the water level measured at Cote St. Catherine, something theoretically impossible to observe in nature that is equivalent to water running in an upstream direction. This was also in direct contradiction with measured GPS elevations indicating that the water level at St. Lambert lock was nearly 10 cm lower than the water level measured at Cote St. Catherine. This adds up to some 20 cm difference of elevation between those two stations.
- 2) Measured GPS elevations indicated that the ship used during bathymetric surveys was shown to have a squat of some 9 cm at a speed of 8 kn. This has a direct impact on the precision of previously surveyed bottom depths. Until now, this effect had not been taken into account by the survey team of the Seaway.
- 3) There seems to be no one person formally in charge of water level gauges and maintenance is not systematic.

These three observations suggest that water level measurement accuracy is not optimal. This directly affects the precision of available surveyed water depths and consequently bottom elevations, since water levels are used as a reference during sounding. It is also known that other factors affecting the precision of surveyed water depth, such as the speed of sound in water as a function of water temperature, were only recently completely tuned and integrated in the methodology used by the Seaway during hydrographic surveys.

UKC Locations Match High Bottom Elevations Extracted by F-W-G

Graphical plotting of bottom elevations used for UKC calculations by F-W-G showed that all 116 anomalous UKC locations corresponded exactly to high bottom elevations found in files used for UKC computation, sometimes shown as spikes in bottom configuration. Moreover, it was found that high bottom elevation amplitude matched high UKC amplitude at the Beauharnois lock entrance (channel stations between 47.0 km and 47.4 km).

Verification of Bottom Elevation Extraction

Several anomalous locations were verified to determine whether channel bottom elevations were extracted correctly (we did not check the algorithm used by F-W-G to extract or interpolate bottom elevation). Many matched available files of bottom elevation data, which are presumed to have been used for UKC computation. It turned out, however, that some high bottom elevations of some critical locations could not be found near the expected coordinates of anomalous locations, even if such high elevations could be found located farther away within the same file. This is especially true for most critical locations situated near Beauharnois lock, where the worst UKC values have been found. It therefore seems that some errors were made during the channel bottom extraction procedure. More details on this topic are presented in section 3.5.

Can High Bottom Elevations Be Explained by a Coordinate Shift?

It was suggested that negative UKC values could be explained by a coordinate shift that occurred while using a specific bathymetry file (note that some 52 different bathymetric files were provided by F-W-G). For some critical areas, such a shift could then have an impact on extracted bottom elevation values.

A coordinate shift could be explained by:

- The fact that bathymetric data provided by the Seaway to F-W-G was originally partially expressed in UTM or MTM coordinates, some in NAD83 datum and some others in NAD27 datum, depending on the location and date of the surveyed area of the Seaway;
- The fact that, previous to UKC and squat calculation, F-W-G converted all data to a common UTM NAD83/IGLD85 coordinate system and some errors could have occurred at this point.

This idea was supported by the fact that some GPS positions of the ship *Lake Carling* (LAC315) were plotted and it was found that directly downstream of Beauharnois lock, the ship is very close to the approaching wall of this lock. That section of the Seaway was previously identified as being very critical and showed many negative UKC values. It was first suggested by the Seaway that the ship did not really approach the wall; it was instead speculated that an error occurred in the manipulation of various hydrographic files. The error would be to use UTM NAD83 for the ship transit coordinates, along with UTM NAD27 coordinates for the bathymetric data. This error would explain an apparent shift of some 25 m to the east (i.e. toward the approaching wall).

Such a shift was, however, very improbable and a simpler explanation has been found. The transit position of the ship was plotted and is shown in Figure 26. It clearly shows the ship's direction changing toward the lock's approaching wall. The transit position of that ship has also been plotted over the latest bathymetric data in the area and both

- a) the ship's position matches the centre of the Seaway canal and
- b) the bottom elevation peaks extracted by F-W-G match the hydrographic data.

The ship *Rt. Hon. Paul Martin*, showing several negative UKC values near Beauharnois lock, was also analysed. The transit position of this ship was plotted and is shown in Figure 26. It clearly shows the ship's direction changing toward the lock's approaching wall. This position

was compared to an available video session in which it was possible to see that the ship actually touches the approaching wall at the time corresponding to the GPS position close to the wall. It was not possible, however, to see whether the midship section gets close to the wall. Although the ship appears to be parallel to the wall on the ECDIS (Electronic Chart Display and Information System) screen, this does not guarantee that it is the case, because this information varies in accordance with the system used on board. Some systems are directly connected to the gyro, giving a true projection, while others project the ship's direction by GPS interpolation and are less accurate at low speed.

In total, three ships show several negative UKC locations directly downstream of the Beauharnois lock area (*Lake Carling, Rt. Hon. Paul Martin* and *Mariupol*). The plotted trajectory of these three ships clearly indicates that they have very closely approached and probably even touched the approaching wall of the lock (see Figure 26). Moreover, the latest available bathymetric data corresponding to the edges of the approaching wall show a dramatic decrease of depth, indicating that this proximity to the wall creates a more critical condition in terms of UKC values. This last critical condition therefore partly explains why those three ships show negative UKC results.

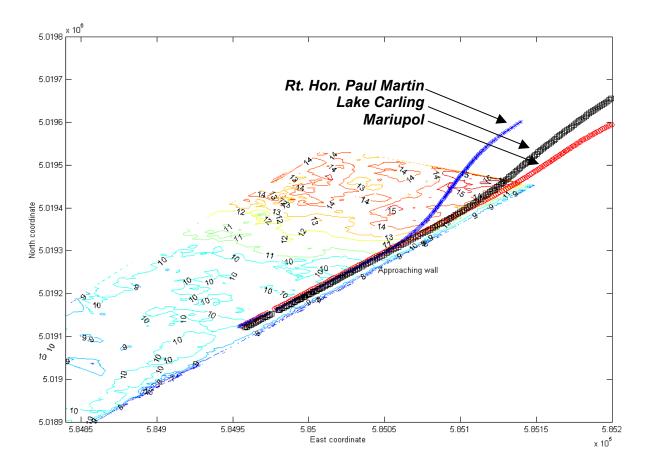


Figure 26 Transit trajectories for ships showing negative UKC values near Beauharnois lock.

3.3 UKC Computation of a Complete Ship Transit

To further validate the accuracy of negative UKC results provided by F-W-G, it was decided to recalculate a complete ship transit between St. Lambert and Beauharnois locks. The maximum channel bottom elevations were recalculated using a total of 33 bathymetric files provided by F-W-G. The Seaway had originally provided those files.

Some of the original bathymetric files contained UTM (Universal Transverse Mercator) and some others contained MTM (Modified Transverse Mercator) coordinates, depending on the years in which they were surveyed. The hydrographic surveys were performed during several years; the most recent ones available to us were done during the year 2000. Because of this, and for simplification purposes, F-W-G transformed all available bathymetric data to UTM NAD83/IGLD85 coordinates and the original files with the original format provided by the Seaway are not available.

All bathymetric files also corresponded to one or more of the 1 km-long survey areas that were delimited by the Seaway. Before 1999, all those areas had different names and the system used to manage them was complex. For this reason, the Seaway has recently greatly simplified the designation of those names and this enables a more efficient classification and archiving of all data related to those hydrographic areas. For example, numbers between 100 and 200 now designate all hydrographic areas located between St. Lambert and Cote St. Catherine locks, while numbers between 200 and 300 designate all areas located between Cote St. Catherine and Beauharnois locks. Moreover, because of the inherent complexity of the classification system previously employed by the Seaway, F-W-G completely renamed all bathymetric files. Therefore, not only the names, but also the format of the original hydrographic files have been changed.

To further complicate things, all bathymetric areas are also characterized by a reference water elevation noted at survey time. The bottom elevation can only be calculated by knowing this reference water level. Because some hydrographic areas have been surveyed many times, many of the hydrographic areas correspond to one or several of the bathymetric files available to us, as well as to one or several reference water elevations, simply because the water level constantly fluctuates. It has therefore been a complex task to create order with all of the hydrographic files, particularly because some detective work was necessary to link all bathymetric files with a correct water reference level. This has been done, to some extent, with incomplete information originating both from the Seaway and from F-W-G.

A New Bottom Elevation Processing Is Used

The ULaval results are computed using a new bottom elevation processing. This ULaval bottom processing searches for the highest bottom elevation found under the ship at midship. The searched area corresponds to a rectangle 10 m long (5 m before and 5 m after the midship cross section) and 20 m wide (10 m port and 10 m starboard). This area is therefore very similar to the 20 m (10 m port and 10 m starboard) midship cross section used by F-W-G to calculate the maximum bottom elevation under the transiting ship.

Note that during this process, the bathymetric data and reference water levels have only been thoroughly validated by the Seaway for the area near Beauharnois lock. To this end, the Seaway provided the latest year 2000 bathymetric data and the corresponding reference water

level. Data for areas located elsewhere along the Seaway have only been used in accordance with the correspondences that were established between all available bathymetric files (originally provided by the Seaway, but transformed by F-W-G), reference water levels and hydrographic areas defined by the Seaway.

Comparison of UKC Values Computed by F-W-G and ULaval near Beauharnois Lock

Figure 27 shows a comparison of UKC values computed by F-W-G and ULaval for the transit of the ship *Lake Carling*. Among the 33 instrumented ships, *Lake Carling* is the most critical in terms of UKC values and is characterized by the highest number of identified negative UKC values. This is especially true for the area directly downstream of Beauharnois lock. Results are therefore shown for that most critical area (between stations 47000 and 47500).

Figure 27 indicates that for this area, the ULaval UKC values are less critical as compared with F-W-G results. ULaval results show only a few negative values of – 0.01 m near station 47300, while F-W-G results show many negative results in that section. Such differences are partly because of the new year 2000 bathymetric data used, known to be more precise. However, differences are mostly a direct result of the ULaval bottom processing. Note that ULaval has only used the latest year 2000 bathymetric data for this area near Beauharnois lock. These data were provided directly by the Seaway and were not available to F-W-G.

UKC results computed by ULaval, using bathymetric data surveyed in 1999, are shown in Figure 28. Note that negative UKC values of -1.29 m near station 47400 appearing with the year 1999 data disappear when the year 2000 data is used. This is only because of the higher reliability of year 2000 data. This indicates that older hydrographic files are not as precise as more recent ones.

It therefore seems that, at least for this area, some errors were made by F-W-G during bottom extraction procedure. This explains the sharp bottom variations that appear in F-W-G results, variations that do not exist in reality (see Figure 26 for bathymetry near Beauharnois lock). Contrary to F-W-G calculations, the ULaval results are in agreement with the latest available hydrographic data and gentler bottom variations are found.

UKC Values Computed by F-W-G and ULaval: South Shore Canal

Figures 29 and 30 show a comparison of UKC results by F-W-G and ULaval for the section delimited by St. Lambert lock and Lake St. Louis (between stations 3000 and 26000). UKC values have been computed for the transit trajectory of the ship *Lake Carling*.

Results indicate that globally speaking, UKC values calculated by F-W-G are similar to the ULaval calculations. Results are most similar between stations 18450 and 26000 but show some differences between stations 3000 and 10300. Similar differences can also be seen between stations 17890 and 18450.

Note that both F-W-G and ULaval results show negative UKC values. However, ULaval results are often slightly smaller (i.e. more critical). Those differences could easily be explained by using slightly lower reference water levels during computation.

Most critical UKC values are a result of the bathymetry used. For example, negative UKC values found at stations 24869 (UKC = -1.29 m) and 18782 (UKC = -1.19 m) are directly related to high spots found in bathymetric files Xbe16a3s and Xbd1483S, respectively. Figures

31 and 32 graphically show the bathymetric data found in those files. The identified high spots that explain the computed negative UKC values are shown (depths of 8.16 m and 7.83 m for stations 24869 and 18782, respectively).

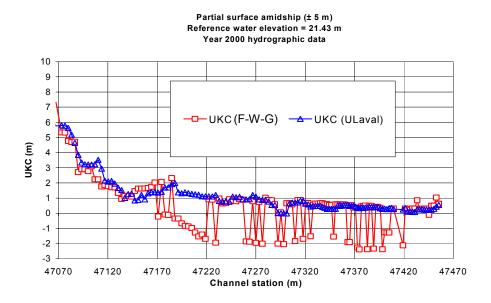


Figure 27 Comparison of UKC values, *Lake Carling,* near Beauharnois lock – Year 2000 bathymetric data.

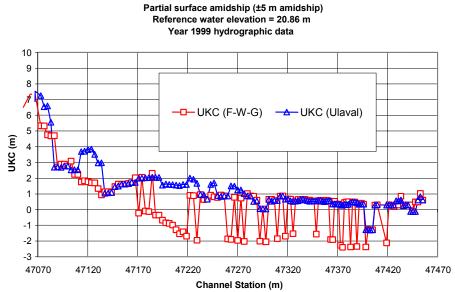
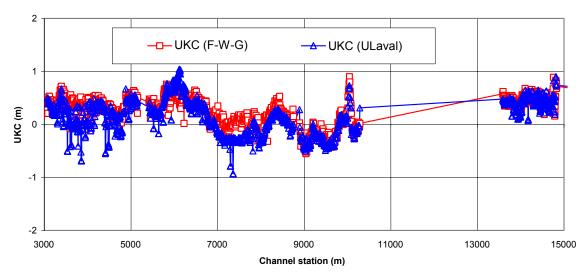
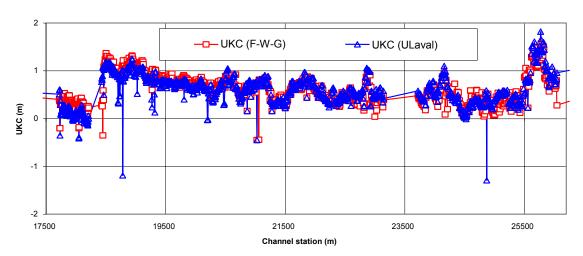




Figure 28 Comparison of UKC values, *Lake Carling,* near Beauharnois lock – Year 1999 bathymetric data.

Lake Carling (LAC315) - Comparison of UKC results between St. Lambert and Cote St. Catherine locks Partial surface amidship (± 5 m)

Figure 29 ULaval and F-W-G *Lake Carling* UKC values between St. Lambert and Cote St. Catherine locks.

Lake Carling (LAC315) - Comparison of UKC results between Cote St. Catherine lock and Lake St. Louis Partial surface amidship (± 5 m)

Figure 30 ULaval and F-W-G *Lake Carling* UKC values between Cote St. Catherine lock and Lake St. Louis.

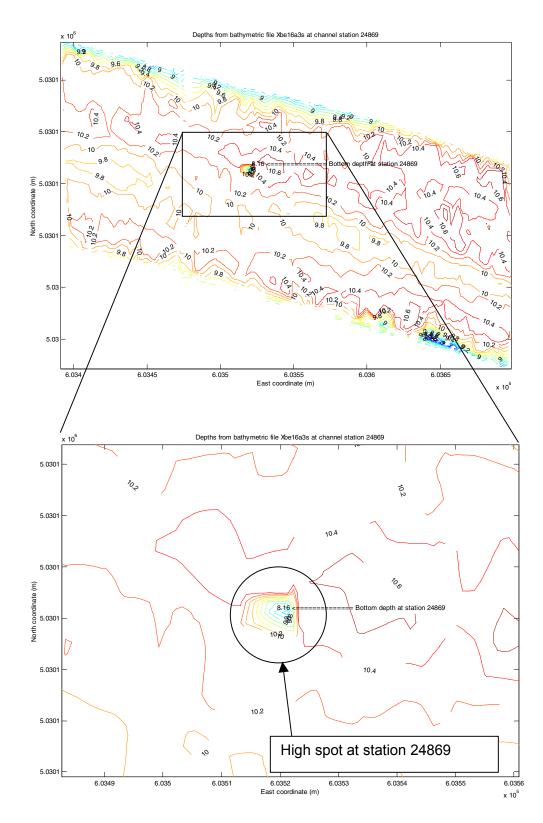


Figure 31 Bathymetry of high spot at station 24869 (where UKC = -1.29 m)

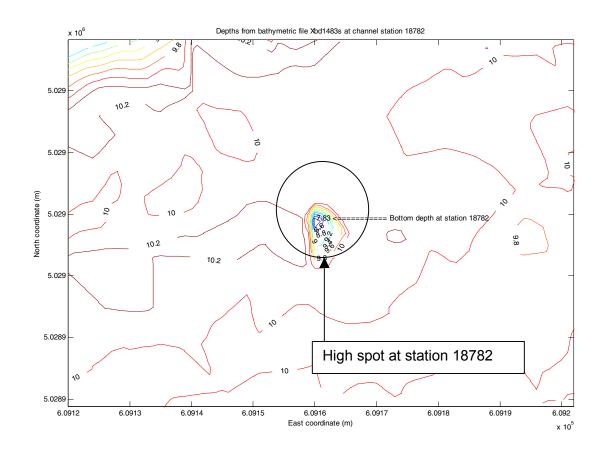


Figure 32 Bathymetry of high spot at station 19782 (where UKC = -1.19 m).

3.4 Under-Keel Clearance: Conclusions

The task to precisely assess UKC values is more complex than originally thought. As expected, not all negative UKC values are as critical as first indicated. This can at least be stated for the area directly downstream of Beauharnois lock. Because of the many limitations on the accuracy (e.g. GPS precision but mainly bathymetric data precision), and because those limitations have a direct impact on the precision of computed UKC values:

- We are forced to conclude that negative UKC values determined by F-W-G are probably all fictitious (i.e. they do not accurately reflect reality). However, instrumented ships may well have touched bottom at some points during their transit.
- Although imprecision in GPS and water level data of 10 and 30 cm, respectively, may lead to slightly higher/lower estimations of UKC, they cannot account for the large calculated negative values.

- Most calculated negative UKC values originate from the available bathymetric data that are not sufficiently reliable. However, some negative UKC values originate from a numerical problem in F-W-G's algorithm. This is particularly true for negative UKC values calculated along the downstream approach wall of the Beauharnois lock.
- The limited accuracy of the bathymetric data is partly the result of the cleaning procedures currently applied by the Seaway on their bathymetric files. These data reduction processes do not follow a formalized and validated procedure such as ISO14000.

3.5 Under-Keel Clearance: Recommendations

To obtain the correct UKC values in the St. Lawrence Seaway, the following actions are required:

- 1) During bathymetry soundings, validated local water levels must be obtained.
- 2) Adequate accounting must be made of the sounding vessel's (Maisonneuve's) squat.
- 3) Sounding instruments must be calibrated and validated. (The calibration is usually done but validation procedures are not carried out.)
- 4) The DGPS (Differential Global Positioning System) used for sounding must be installed and used correctly.
- 5) Data reduction processes aboard and in the office must follow a formalized and validated procedure. File cleaning procedures must be systematic and complete.
- 6) Bathymetric sounding must be reduced to and referred to a fixed (IGLD85) vertical datum that is independent of water fluctuations.
- 7) All potentially critical high spots must be re-sounded until their real elevation is known with certainty.
- 8) All bathymetric survey files representing the most recent information of each kilometre of the Seaway must be referred to a unique positioning system (MTM for XY and IGLD85 for Z) in a unique password-protected file directory. These files should be classified according to the new Seaway designation system (100, 200, etc.). Each file must contain the date of the survey and an indicator of level of confidence (or precision).
- 9) Once this bathymetric data is validated and accessible, the ULaval UKC algorithm (or another) can be used to calculate UKC values of various ships. The resulting picture will then be within the bathymetric sounding and ship GPS-OTF (GPS on-the-fly) accuracy.
- 10) The ULaval algorithm could also be used to identify the high spots for each kilometre for various water levels (particularly the alert level).

All these steps are required to obtain the true UKC picture. Until such time, UKC estimates by F-W-G or those reported by ULaval are unreliable and do not adequately reflect the reality of the Seaway.

4. STRENGTHENING THE WATER LEVEL NETWORK AND BATHYMETRIC SURVEYS

This section contains some reflections on ways to enhance the Seaway's water level network and bathymetric surveys. After presenting the status quo, we present the objective, the required resources, management alternatives and our conclusions.

4.1 Management Options for Strengthening the Water Level Network

Status Quo

Currently, there are enough water level recording stations, enough knowledge of the system by the operators and enough real-time links to enable the Seaway to have a good picture of water depths along the navigation route. This information enables the Seaway to set the permissible draft and to locate the critical shoal areas. At the same time, despite the recent investment in a new site and ad hoc system improvements, it seems that the water level network is currently (a) not recognized as an entity, and (b) not any one single person's responsibility, nor are there formally assigned technical resources to support it.

Objectives

There is a desire among Seaway management and employees to have a better system. There are essentially two end users: operators/managers and the bathymetric survey team. Operators/managers require better information to optimize permissible draft and facilitate water management decisions. Hydrographers require better information to increase the precision of their bathymetric surveys. A better system would mean easier access, more stations, more homogeneous technology and more reliable information. It would also require that the system officially be someone's responsibility.

Criteria

A good water level network requires:

- a common and easily understood reference datum and its link to another commonly accepted datum, e.g. NAD83;
- units of measurement (e.g. imperial or metric) that are comprehensible to users;
- dependable gauges;
- calibrated gauges that are verified on a scheduled basis;
- sufficient sampling frequency to record and reveal all significant water level fluctuations;
- a reliable telemetry system that gets the data from the stations to the users (Seaway operators, shippers, masters or bathymetric surveyors);
- data presented in an easy-to-understand language and format;
- coverage that meets operational needs.

Requirements and Resources

To a certain extent, the Seaway's system does meet most of these objectives. However, a formal project is required to upgrade the system to fully meet all criteria. Meeting these objectives is not as simple as it may first appear:

- The choice of a reference datum requires a specialist in geomatics who understands the Seaway's history and operational needs.
- The units of measurement do occasionally lead to misinterpretations and it is therefore probably advisable to use both units.
- Dependable gauges probably mean gauges whose technology is neither too old nor too new.
- Calibrated gauges require a responsible technician who is fully qualified and autonomous and is fully conversant with each gauge (noting that the types of gauges used in the network vary from one site to the next). The technician must also look after people living near the gauges who are willing to take local manual daily readings (to validate automated information).
- Most gauges filter out high-frequency water level fluctuations. In most cases this is desirable but they must somehow show the magnitude of negative water surges that could threaten a vessel's under-keel clearance.
- A reliable telemetry system implies redundancy, validation process, power failure management, real-time transmission and careful consideration for the locations of end users (e.g. on board a ship). It requires that qualified electronic technicians and engineers be assigned the responsibility to build, upgrade and maintain the system.
- End users are very particular when it comes to data presentation. Getting the water level information presented in the correct language and format to each user requires a concerted effort and some trial and error.
- The stations must cover key (critical) water level locations. Elsewhere, it has been found very useful to merge a hydrodynamic computer model of the water drainage network since the model can assist in interpolating between stations and can reveal if a particular gauge's reading is inconsistent with readings at other stations. The design of the water level system and the integration of a numerical model require someone qualified in water resource simulation.

Alternatives

There are three alternatives open to the Seaway:

- <u>Status quo:</u> Currently, the system seems to be sufficient to provide a picture of available depths. However, it is insufficient to enable ship under keel-clearance optimization and precise bathymetric surveys.
- 2) Internally building and supporting a water level network: The Seaway could launch a "water level network project" whose objective would be to design, build and maintain a system responsive to corporate objectives that meets the criteria and requirements of such a system. This approach would require a very capable project leader backed by management and well supported on the technical and financial sides. The capital side of the project would probably extend over a couple of years. At the same time, internal

human and financial resource reallocations would be required to sustain the system. This solution may seem to save the Seaway money, but because this is not the Seaway's area of expertise, it may be an exercise in frustration.

3) <u>Outsource:</u> A capital project could be awarded to a company to design, upgrade and maintain the network (for a period of 2 years). This could be followed by a multi-annual service contract to sustain the system. The advantages (at least theoretically) of this alternative are that the project will get done by a team having the managerial, human, technical and financial means. However, the choice of technology is critical. In some instances, other water level networks have been very expensive to install. There is also the long-term risk that the Seaway will lose its remaining internal expertise.

Conclusion

To a certain extent, the question is whether the Seaway is willing to invest in and support its internal human resources or whether it considers that the water level network is not a part of its corporate service delivery and that, therefore, it would be advisable to hand the water level network over to a third party.

4.2 Regarding Bathymetric Soundings

Following are some of the most important issues facing management.

Status Quo

Traditionally, the Seaway detected shoals by trolling a bar attached by chains at the waterway design depth. This required a large team of people to handle the equipment, keep the boat "on line" and observe water levels. This method did not measure the seaway's depths, it only showed whether there was an obstacle popping up above grade. It was a physically based system – when the bar hit something, you knew it for sure.

Over the past few years, the technology has changed from 19th to 21st century. There is now:

- a new sounding vessel (a catamaran formerly belonging the the Canadian Coast Guard as *GC-06* is now renamed *La Maisonneuve*)
- a new captain (formerly a crane operator)
- a new (in-house) ship positioning system (DGPS)
- new technicians (formerly working in non-technical posts)
- a new project leader (formerly a barge operator)
- a new technical advisor and quality control agent (with an electrical engineering background)
- new bathymetric instruments (sweep transducer, gyroscopes, motion detectors)
- new data acquisition software (known as HYPACK)
- new data treatment and cleaning approaches

- new file archiving systems
- new data mapping formats
- most importantly, a new mandate (stemming from new economic pressures and safety concerns) that insists on very accurate and precise bottom bathymetry of extended areas.

All of Seaway's personnel have responded remarkably well to this new mandate and technological challenge. Each year has seen a dramatic improvement in data quality and information packaging.

Objective

There is a great need (from a safety point of view) and a great desire (from an economic point of view) to go to the next level: get more precise, up-to-date and reliable data covering a larger territory.

Criteria

The goal is total coverage with 10 cm accuracy in shallow portions of the waterway.

Requirements

Bathymetric sounding is now very sophisticated and requires the mastery of high-tech instruments, software and procedures. It also requires systematic approaches, from data acquisition, to near-real-time data validation, to quality control and data presentation, in a homogeneous and comprehensible geographic reference system. To be useful, a lot of territory must be reliably covered on short notice. B. Morse performed time management studies of bathymetric activities elsewhere that revealed that actual sounding time in a normal day was only about one hour. Time management methods are therefore essential. All this means that the technical team must be motivated, autonomous, capable and technically proficient. There must also be a commitment by management to provide adequate support and resources to do the job.

Alternatives

- <u>Status quo</u>: Under the leadership of Pierre Champagne, the bathymetry survey team has demonstrated how well it has advanced. However, without some changes, the full extent of the objectives cannot be achieved.
- <u>Internal investment</u>: The team could be boosted. Exterior consultants and/or resource people could be hired to work with the team to develop better methods, build up procedures and provide technical instruction. Team members could be sent on courses (DGPS, hydrography, computer skills and specific software applications (e.g. HYPACK)). The team could be given the required infrastructure support (data communication, validation, etc.). A technician with qualifications in modern hydrography could be hired. The advantage of this alternative is that it may save some costs, it keeps the activity under the direct control of Seaway management, it provides some jobs internally and it makes for a technically stronger Seaway. The disadvantages are that the objectives may never be achieved and the Seaway's under-keel clearance security may be threatened.

 <u>Outsourcing</u>: The other alternative is to give the mandate to a company that is in the hydrography business. This could be presented as a multi-year mandate since there would be some initial investments. The advantages of this approach are that (theoretically) the company would have the knowledge infrastructure and the human and financial resources and expertise to fully meet the objectives. In the long run it may even be less costly. The disadvantages are that the Seaway would lose direct control and some internal technical expertise, and some of Seaway personnel may have to change jobs.

Conclusion

Right now, the members of the technical team are doing their best, but to achieve the required precision to ensure safety and optimal under-keel clearance, they can no longer be left on their own. Management must intervene by providing technical and administrative leadership and additional resources to build a real dynamic sounding team or it must assess whether the job may best be done by an external firm that already has the managerial, technical and software infrastructure to support this very specialized and crucial mandate. Is the Seaway in the hydrography business and, if so, does it want to stay in this business? If yes, internal support is required; if no, outsourcing to a trustworthy company is required. If the outsourcing option is chosen, it may be combined with outsourcing the water level network since both operations have significant operational, knowledge and infrastructure overlap.

A STATISTICS FOR SOUTH SHORE CANAL

Summary (see section 1.2 of text for more details)

Values presented in tables of Appendices A, B, C, and D are the statistics of the five squat related elements ("raw", "area", "Tuck", "Barrass 2", "Simard") of each ship for each speed class (e.g. 0-5, 5-6, 6-7, 7+). The statistics are: average (avg), standard deviation (std) and sample size (nb). These statistics are used in the statistical tests on the average presented in Appendices E, F, G and H. The statistics were first computed in order to perform the tests to assess the repeatability between two sailings of the same ship (A.1 and B.1), then two ships of the same type (A.2 and B.2), and two ship types (A.3, B.3, C.1, D.1).

A.1 Statistics for ships passing twice

Algosar day 303 (ALS303)				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.15	avg = 0.34	avg = 0.44	avg = 0.43
raw	std = 0.05	std = 0.05	std = 0.09	std = 0.12
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = 0.15	avg = 0.35	avg = 0.52	avg = 0.59
area	std = 0.05	std = 0.04	std = 0.08	std = 0.17
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.05	avg = -0.11	avg = -0.15	avg = -0.20
Tuck	std = 0.02	std = 0.04	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.03	avg = -0.04	avg = -0.05
Barrass 2	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.01	avg = 0.01	avg = 0.01
Simard	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
-	Algosa	r day 316 (A	LS316)	
	Algosa 0 - 5	- ·	LS316) 6 - 7	7 +
	$\frac{0-5}{\text{avg}=0.15}$	- ·	$\frac{6-7}{\text{avg}=0.32}$	
raw	0-5 avg = 0.15 std = 0.06	5 - 6 avg = 0.25 std = 0.12	6 - 7 avg = 0.32 std = 0.09	7 + $avg = 0.35$ $std = 0.01$
raw	0 - 5 avg = 0.15 std = 0.06 nb = 413	5-6 avg = 0.25 std = 0.12 nb = 771	6 - 7 avg = 0.32 std = 0.09 nb = 1787	7 + avg = 0.35 std = 0.01 nb = 15
raw	0 - 5 $avg = 0.15$ $std = 0.06$ $nb = 413$ $avg = 0.16$	5 - 6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30	6 - 7 avg = 0.32 std = 0.09 nb = 1787 avg = 0.38	7 + avg = 0.35 std = 0.01 nb = 15 avg = 0.40
raw area	0-5 = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07	5-6avg = 0.25std = 0.12nb = 771avg = 0.30std = 0.10	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01
	0-5 = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15
area	0-5 = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33
	0-5 = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05
area	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05nb = 15
area Tuck	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413 avg = -0.01	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771 avg = -0.07	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$ $avg = -0.08$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05nb = 15avg = -0.24
area	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413 avg = -0.01 std = 0.04	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771 avg = -0.07 std = 0.06	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$ $avg = -0.08$ $std = 0.06$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05nb = 15avg = -0.24std = 0.04
area Tuck	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413 avg = -0.01 std = 0.04 nb = 413	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771 avg = -0.07 std = 0.06 nb = 771	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$ $avg = -0.08$ $std = 0.06$ $nb = 1787$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05nb = 15avg = -0.24std = 0.04nb = 15
area Tuck Barrass 2	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413 avg = -0.01 std = 0.04 nb = 413 avg = -0.00	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771 avg = -0.07 std = 0.06 nb = 771 avg = -0.04	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$ $avg = -0.08$ $std = 0.06$ $nb = 1787$ $avg = -0.04$	7 + $avg = 0.35$ $std = 0.01$ $nb = 15$ $avg = 0.40$ $std = 0.01$ $nb = 15$ $avg = -0.33$ $std = 0.05$ $nb = 15$ $avg = -0.24$ $std = 0.04$ $nb = 15$ $avg = -0.19$
area Tuck	0-5 avg = 0.15 std = 0.06 nb = 413 avg = 0.16 std = 0.07 nb = 413 avg = -0.04 std = 0.04 nb = 413 avg = -0.01 std = 0.04 nb = 413	5-6 avg = 0.25 std = 0.12 nb = 771 avg = 0.30 std = 0.10 nb = 771 avg = -0.12 std = 0.07 nb = 771 avg = -0.07 std = 0.06 nb = 771	6 - 7 $avg = 0.32$ $std = 0.09$ $nb = 1787$ $avg = 0.38$ $std = 0.07$ $nb = 1787$ $avg = -0.16$ $std = 0.07$ $nb = 1787$ $avg = -0.08$ $std = 0.06$ $nb = 1787$	7 + avg = 0.35std = 0.01nb = 15avg = 0.40std = 0.01nb = 15avg = -0.33std = 0.05nb = 15avg = -0.24std = 0.04nb = 15

Algosar day 303 (ALS303)

	0 - 5	5 - 6	6 – 7	7 +
	avg = 0.14	avg = 0.30	avg = 0.00	avg = 0.00
raw	std = 0.06	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = 0.16	avg = 0.33	avg = 0.00	avg = 0.00
area	std = 0.07	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.03	avg = -0.01	avg = 0.00	avg = 0.00
Tuck	std = 0.04	std = 0.07	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.09	avg = -0.13	avg = 0.00	avg = 0.00
Barrass 2	std = 0.05	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.03	avg = -0.03	avg = 0.00	avg = 0.00
Simard	std = 0.04	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0

CSL Niagara day 315 (CNI315)

CSL Niagara day 320 (CNI320)

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.13	avg = 0.33	avg = 0.38	avg = 0.00
raw	std = 0.10	std = 0.07	std = 0.08	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.15	avg = 0.36	avg = 0.42	avg = 0.00
area	std = 0.12	std = 0.07	std = 0.11	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.01	avg = 0.02	avg = -0.01	avg = 0.00
Tuck	std = 0.09	std = 0.06	std = 0.09	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = -0.03	avg = -0.11	avg = -0.15	avg = 0.00
Barrass 2	std = 0.11	std = 0.09	std = 0.10	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.01	avg = 0.00	avg = -0.01	avg = 0.00
Simard	std = 0.10	std = 0.08	std = 0.10	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.11	avg = 0.26	avg = 0.39	avg = 0.34
raw	std = 0.06	std = 0.06	std = 0.08	std = 0.03
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = 0.12	avg = 0.28	avg = 0.53	avg = 0.45
area	std = 0.06	std = 0.07	std = 0.11	std = 0.05
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.01	avg = -0.02	avg = 0.03	avg = -0.11
Tuck	std = 0.04	std = 0.05	std = 0.08	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.05	avg = -0.14	avg = -0.09	avg = -0.25
Barrass 2	std = 0.05	std = 0.06	std = 0.09	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.02	avg = -0.06	avg = 0.02	avg = -0.11
Simard	std = 0.04	std = 0.06	std = 0.08	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80

John B. Aird day 306 (JBA306)

John B. Aird day 314 (JBA314)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.00	avg = 0.46	avg = 0.42	avg = 0.00
raw	std = 0.00	std = 0.03	std = 0.05	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.42	avg = 0.40	avg = 0.00
area	std = 0.00	std = 0.03	std = 0.05	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.07	avg = -0.00	avg = 0.00
Tuck	std = 0.00	std = 0.03	std = 0.07	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = -0.08	avg = -0.18	avg = 0.00
Barrass 2	std = 0.00	std = 0.03	std = 0.08	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.02	avg = -0.06	avg = 0.00
Simard	std = 0.00	std = 0.03	std = 0.07	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0

-		, i	,	,
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.00	avg = 0.44	avg = 0.52	avg = 0.00
raw	std = 0.00	std = 0.07	std = 0.06	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
	avg = 0.00	avg = 0.41	avg = 0.49	avg = 0.00
area	std = 0.00	std = 0.06	std = 0.06	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
	avg = 0.00	avg = 0.11	avg = 0.05	avg = 0.00
Tuck	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
	avg = 0.00	avg = -0.03	avg = -0.16	avg = 0.00
Barrass 2	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
	avg = 0.00	avg = 0.07	avg = -0.00	avg = 0.00
Simard	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0

Rt. Hon. Paul Martin day 299 (PMA299)

Rt. Hon. Paul Martin day 310 (PMA310)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.24	avg = 0.38	avg = 0.44	avg = 0.36
raw	std = 0.09	std = 0.10	std = 0.08	std = 0.02
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.26	avg = 0.40	avg = 0.57	avg = 0.47
area	std = 0.08	std = 0.09	std = 0.11	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.10	avg = 0.07	avg = 0.05	avg = -0.09
Tuck	std = 0.06	std = 0.10	std = 0.09	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.05	avg = -0.05	avg = -0.07	avg = -0.24
Barrass 2	std = 0.05	std = 0.09	std = 0.09	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.09	avg = 0.05	avg = 0.06	avg = -0.08
Simard	std = 0.05	std = 0.09	std = 0.09	std = 0.03
	nb = 906	nb = 176	nb = 1262	nb = 61

A.2 Statistics for ships of the same type

A.2.1 New Lakers

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.16	avg = 0.42	avg = 0.53	avg = 0.32
raw	std = 0.06	std = 0.07	std = 0.06	std = 0.01
	nb = 650	nb = 355	nb = 707	nb = 9
	avg = 0.15	avg = 0.40	avg = 0.52	avg = 0.34
area	std = 0.06	std = 0.07	std = 0.05	std = 0.02
	nb = 650	nb = 355	nb = 707	nb = 9
	avg = 0.05	avg = 0.08	avg = 0.12	avg = -0.19
Tuck	std = 0.04	std = 0.04	std = 0.05	std = 0.02
	nb = 650	nb = 355	nb = 707	nb = 9
	avg = 0.00	avg = -0.07	avg = -0.05	avg = -0.39
Barrass 2	std = 0.06	std = 0.03	std = 0.05	std = 0.03
	nb = 650	nb = 355	nb = 707	nb = 9
	avg = 0.03	avg = 0.04	avg = 0.09	avg = -0.21
Simard	std = 0.05	std = 0.04	std = 0.05	std = 0.03
	nb = 650	nb = 355	nb = 707	nb = 9

Algoville day 316 (ALV316)

CSL Niagara day 315 (CNI315)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.14	avg = 0.30	avg = 0.00	avg = 0.00
raw	std = 0.06	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = 0.16	avg = 0.33	avg = 0.00	avg = 0.00
area	std = 0.07	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.03	avg = -0.01	avg = 0.00	avg = 0.00
Tuck	std = 0.04	std = 0.07	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.09	avg = -0.13	avg = 0.00	avg = 0.00
Barrass 2	std = 0.05	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0
	avg = -0.03	avg = -0.03	avg = 0.00	avg = 0.00
Simard	std = 0.04	std = 0.08	std = 0.00	std = 0.00
	nb = 1294	nb = 2154	nb = 0	nb = 0

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.13	avg = 0.33	avg = 0.38	avg = 0.00
raw	std = 0.10	std = 0.07	std = 0.08	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.15	avg = 0.36	avg = 0.42	avg = 0.00
area	std = 0.12	std = 0.07	std = 0.11	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.01	avg = 0.02	avg = -0.01	avg = 0.00
Tuck	std = 0.09	std = 0.06	std = 0.09	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = -0.03	avg = -0.11	avg = -0.15	avg = 0.00
Barrass 2	std = 0.11	std = 0.09	std = 0.10	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0
	avg = 0.01	avg = 0.00	avg = -0.01	avg = 0.00
Simard	std = 0.10	std = 0.08	std = 0.10	std = 0.00
	nb = 1939	nb = 2193	nb = 435	nb = 0

CSL Niagara day 320 (CNI320)

Rt. Hon. Paul Martin day 299 (PMA299)

		=		
	0 - 5	5 - 6	6 - 7	7 +
raw	avg = 0.00	avg = 0.44	avg = 0.52	avg = 0.00
	std = 0.00	std = 0.07	std = 0.06	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
area	avg = 0.00	avg = 0.41	avg = 0.49	avg = 0.00
	std = 0.00	std = 0.06	std = 0.06	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
Tuck	avg = 0.00	avg = 0.11	avg = 0.05	avg = 0.00
	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
Barrass 2	avg = 0.00	avg = -0.03	avg = -0.16	avg = 0.00
	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0
Simard	avg = 0.00	avg = 0.07	avg = -0.00	avg = 0.00
	std = 0.00	std = 0.04	std = 0.07	std = 0.00
	nb = 0	nb = 682	nb = 915	nb = 0

		•		
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.24	avg = 0.38	avg = 0.44	avg = 0.36
raw	std = 0.09	std = 0.10	std = 0.08	std = 0.02
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.26	avg = 0.40	avg = 0.57	avg = 0.47
area	std = 0.08	std = 0.09	std = 0.11	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.10	avg = 0.07	avg = 0.05	avg = -0.09
Tuck	std = 0.06	std = 0.10	std = 0.09	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.05	avg = -0.05	avg = -0.07	avg = -0.24
Barrass 2	std = 0.05	std = 0.09	std = 0.09	std = 0.04
	nb = 906	nb = 176	nb = 1262	nb = 61
	avg = 0.09	avg = 0.05	avg = 0.06	avg = -0.08
Simard	std = 0.05	std = 0.09	std = 0.09	std = 0.03
	nb = 906	nb = 176	nb = 1262	nb = 61

Rt. Hon. Paul Martin day 310 (PMA310)

A.2.2 Traditional Lakers

Canadian Voyager day 305 (CAV305)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.12	avg = 0.24	avg = 0.41	avg = 0.50
raw	std = 0.06	std = 0.06	std = 0.08	std = 0.07
	nb = 1379	nb = 494	nb = 971	nb = 410
	avg = 0.15	avg = 0.31	avg = 0.49	avg = 0.53
area	std = 0.08	std = 0.08	std = 0.09	std = 0.04
	nb = 1379	nb = 494	nb = 971	nb = 410
	avg = -0.02	avg = -0.00	avg = 0.01	avg = 0.02
Tuck	std = 0.05	std = 0.06	std = 0.06	std = 0.05
	nb = 1379	nb = 494	nb = 971	nb = 410
	avg = -0.06	avg = -0.09	avg = -0.13	avg = -0.17
Barrass 2	std = 0.06	std = 0.07	std = 0.07	std = 0.05
	nb = 1379	nb = 494	nb = 971	nb = 410
	avg = -0.03	avg = -0.02	avg = -0.01	avg = -0.03
Simard	std = 0.05	std = 0.07	std = 0.07	std = 0.04
	nb = 1379	nb = 494	nb = 971	nb = 410

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.14	avg = 0.25	avg = 0.49	avg = 0.46
raw	std = 0.07	std = 0.04	std = 0.08	std = 0.06
	nb = 905	nb = 152	nb = 1857	nb = 629
	avg = 0.15	avg = 0.29	avg = 0.55	avg = 0.54
area	std = 0.08	std = 0.05	std = 0.11	std = 0.08
	nb = 905	nb = 152	nb = 1857	nb = 629
	avg = 0.00	avg = -0.02	avg = 0.08	avg = -0.02
Tuck	std = 0.04	std = 0.02	std = 0.07	std = 0.07
	nb = 905	nb = 152	nb = 1857	nb = 629
	avg = -0.04	avg = -0.12	avg = -0.08	avg = -0.19
Barrass 2	std = 0.05	std = 0.05	std = 0.08	std = 0.08
	nb = 905	nb = 152	nb = 1857	nb = 629
	avg = -0.01	avg = -0.05	avg = 0.04	avg = -0.05
Simard	std = 0.04	std = 0.04	std = 0.08	std = 0.08
	nb = 905	nb = 152	nb = 1857	nb = 629

SS Halifax day 308 (HAL308)

Manitoulin day 301 (MAN301)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.05	avg = 0.21	avg = 0.28	avg = 0.00
raw	std = 0.07	std = 0.06	std = 0.09	std = 0.00
	nb = 2084	nb = 971	nb = 963	nb = 0
	avg = 0.05	avg = 0.26	avg = 0.30	avg = 0.00
area	std = 0.08	std = 0.08	std = 0.10	std = 0.00
	nb = 2084	nb = 971	nb = 963	nb = 0
	avg = -0.09	avg = -0.06	avg = -0.10	avg = 0.00
Tuck	std = 0.06	std = 0.06	std = 0.07	std = 0.00
	nb = 2084	nb = 971	nb = 963	nb = 0
	avg = -0.14	avg = -0.15	avg = -0.24	avg = 0.00
Barrass 2	std = 0.07	std = 0.07	std = 0.07	std = 0.00
	nb = 2084	nb = 971	nb = 963	nb = 0
	avg = -0.11	avg = -0.08	avg = -0.14	avg = 0.00
Simard	std = 0.07	std = 0.07	std = 0.07	std = 0.00
	nb = 2084	nb = 971	nb = 963	nb = 0

A.2.3 Chemical Tankers

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.15	avg = 0.34	avg = 0.44	avg = 0.43
raw	std = 0.05	std = 0.05	std = 0.09	std = 0.12
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = 0.15	avg = 0.35	avg = 0.52	avg = 0.59
area	std = 0.05	std = 0.04	std = 0.08	std = 0.17
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.05	avg = -0.11	avg = -0.15	avg = -0.20
Tuck	std = 0.02	std = 0.04	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.03	avg = -0.04	avg = -0.05
Barrass 2	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217
	avg = -0.01	avg = -0.01	avg = 0.01	avg = 0.01
Simard	std = 0.02	std = 0.03	std = 0.06	std = 0.13
	nb = 319	nb = 281	nb = 1799	nb = 217

Algosar day 303 (ALS303)

Algosar day 316 (ALS316)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.15	avg = 0.25	avg = 0.32	avg = 0.35
raw	std = 0.06	std = 0.12	std = 0.09	std = 0.01
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = 0.16	avg = 0.30	avg = 0.38	avg = 0.40
area	std = 0.07	std = 0.10	std = 0.07	std = 0.01
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.04	avg = -0.12	avg = -0.16	avg = -0.33
Tuck	std = 0.04	std = 0.07	std = 0.07	std = 0.05
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.01	avg = -0.07	avg = -0.08	avg = -0.24
Barrass 2	std = 0.04	std = 0.06	std = 0.06	std = 0.04
	nb = 413	nb = 771	nb = 1787	nb = 15
	avg = -0.00	avg = -0.04	avg = -0.04	avg = -0.19
Simard	std = 0.03	std = 0.07	std = 0.06	std = 0.04
	nb = 413	nb = 771	nb = 1787	nb = 15

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.11	avg = 0.26	avg = 0.53	avg = 0.59
raw	std = 0.07	std = 0.08	std = 0.09	std = 0.09
	nb = 662	nb = 121	nb = 500	nb = 1295
	avg = 0.14	avg = 0.31	avg = 0.56	avg = 0.71
area	std = 0.09	std = 0.10	std = 0.09	std = 0.20
	nb = 662	nb = 121	nb = 500	nb = 1295
	avg = -0.04	avg = -0.10	avg = -0.04	avg = -0.08
Tuck	std = 0.06	std = 0.07	std = 0.06	std = 0.09
	nb = 662	nb = 121	nb = 500	nb = 1295
	avg = -0.03	avg = -0.09	avg = -0.06	avg = -0.09
Barrass 2	std = 0.05	std = 0.07	std = 0.07	std = 0.11
	nb = 662	nb = 121	nb = 500	nb = 1295
	avg = -0.01	avg = -0.03	avg = 0.04	avg = 0.04
Simard	std = 0.05	std = 0.07	std = 0.07	std = 0.11
	nb = 662	nb = 121	nb = 500	nb = 1295

Turid Knutson day 317 (TUK317)

A.2.4 Salty Lakers

Atlantic Erie day 313 (ATE313)

		=	· ,	
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.11	avg = 0.32	avg = 0.36	avg = 0.57
raw	std = 0.07	std = 0.07	std = 0.10	std = 0.02
	nb = 1690	nb = 431	nb = 514	nb = 66
	avg = 0.13	avg = 0.38	avg = 0.34	avg = 0.54
area	std = 0.09	std = 0.12	std = 0.09	std = 0.02
	nb = 1690	nb = 431	nb = 514	nb = 66
	avg = 0.03	avg = 0.03	avg = -0.07	avg = 0.05
Tuck	std = 0.09	std = 0.08	std = 0.06	std = 0.02
	nb = 1690	nb = 431	nb = 514	nb = 66
	avg = 0.01	avg = -0.07	avg = -0.24	avg = -0.17
Barrass 2	std = 0.10	std = 0.10	std = 0.05	std = 0.02
	nb = 1690	nb = 431	nb = 514	nb = 66
	avg = 0.02	avg = 0.02	avg = -0.12	avg = -0.01
Simard	std = 0.09	std = 0.10	std = 0.06	std = 0.02
	nb = 1690	nb = 431	nb = 514	nb = 66

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.09	avg = 0.22	avg = 0.37	avg = 0.78
raw	std = 0.06	std = 0.06	std = 0.09	std = 0.15
	nb = 501	nb = 139	nb = 98	nb = 2308
	avg = 0.12	avg = 0.29	avg = 0.50	avg = 0.89
area	std = 0.08	std = 0.08	std = 0.13	std = 0.16
	nb = 501	nb = 139	nb = 98	nb = 2308
	avg = -0.05	avg = -0.07	avg = -0.04	avg = 0.11
Tuck	std = 0.05	std = 0.05	std = 0.07	std = 0.15
	nb = 501	nb = 139	nb = 98	nb = 2308
	avg = -0.05	avg = -0.08	avg = -0.05	avg = 0.05
Barrass 2	std = 0.05	std = 0.05	std = 0.07	std = 0.14
	nb = 501	nb = 139	nb = 98	nb = 2308
	avg = -0.04	avg = -0.04	avg = 0.02	avg = 0.17
Simard	std = 0.05	std = 0.05	std = 0.08	std = 0.13
	nb = 501	nb = 139	nb = 98	nb = 2308

Federal Fugi day 298 (FEF298)

Federal Saguenay day 301 (FSA301)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.00	avg = 0.00	avg = 0.00	avg = 0.84
raw	std = 0.00	std = 0.00	std = 0.00	std = 0.15
	nb = 0	nb = 0	nb = 0	nb = 504
	avg = 0.00	avg = 0.00	avg = 0.00	avg = 0.99
area	std = 0.00	std = 0.00	std = 0.00	std = 0.16
	nb = 0	nb = 0	nb = 0	nb = 504
	avg = 0.00	avg = 0.00	avg = 0.00	avg = 0.30
Tuck	std = 0.00	std = 0.00	std = 0.00	std = 0.11
	nb = 0	nb = 0	nb = 0	nb = 504
	avg = 0.00	avg = 0.00	avg = 0.00	avg = 0.08
Barrass 2	std = 0.00	std = 0.00	std = 0.00	std = 0.11
	nb = 0	nb = 0	nb = 0	nb = 504
	avg = 0.00	avg = 0.00	avg = 0.00	avg = 0.23
Simard	std = 0.00	std = 0.00	std = 0.00	std = 0.11
	nb = 0	nb = 0	nb = 0	nb = 504

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.11	avg = 0.26	avg = 0.39	avg = 0.34
raw	std = 0.06	std = 0.06	std = 0.08	std = 0.03
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = 0.12	avg = 0.28	avg = 0.53	avg = 0.45
area	std = 0.06	std = 0.07	std = 0.11	std = 0.05
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.01	avg = -0.02	avg = 0.03	avg = -0.11
Tuck	std = 0.04	std = 0.05	std = 0.08	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.05	avg = -0.14	avg = -0.09	avg = -0.25
Barrass 2	std = 0.05	std = 0.06	std = 0.09	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80
	avg = -0.02	avg = -0.06	avg = 0.02	avg = -0.11
Simard	std = 0.04	std = 0.06	std = 0.08	std = 0.04
	nb = 1783	nb = 1202	nb = 871	nb = 80

John B. Aird day 306 (JBA306)

John B. Aird day 314 (JBA314)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.00	avg = 0.46	avg = 0.42	avg = 0.00
raw	std = 0.00	std = 0.03	std = 0.05	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.42	avg = 0.40	avg = 0.00
area	std = 0.00	std = 0.03	std = 0.05	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.07	avg = -0.00	avg = 0.00
Tuck	std = 0.00	std = 0.03	std = 0.07	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = -0.08	avg = -0.18	avg = 0.00
Barrass 2	std = 0.00	std = 0.03	std = 0.08	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0
	avg = 0.00	avg = 0.02	avg = -0.06	avg = 0.00
Simard	std = 0.00	std = 0.03	std = 0.07	std = 0.00
	nb = 0	nb = 65	nb = 1408	nb = 0

A.2.5 Salty Bulkers

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.17	avg = 0.31	avg = 0.47	avg = 0.47
raw	std = 0.08	std = 0.06	std = 0.11	std = 0.11
	nb = 989	nb = 486	nb = 1528	nb = 431
	avg = 0.19	avg = 0.36	avg = 0.52	avg = 0.58
area	std = 0.09	std = 0.08	std = 0.11	std = 0.08
	nb = 989	nb = 486	nb = 1528	nb = 431
	avg = -0.00	avg = -0.02	avg = -0.03	avg = -0.07
Tuck	std = 0.07	std = 0.06	std = 0.09	std = 0.08
	nb = 989	nb = 486	nb = 1528	nb = 431
	avg = -0.00	avg = -0.01	avg = -0.02	avg = -0.07
Barrass 2	std = 0.07	std = 0.06	std = 0.08	std = 0.07
	nb = 989	nb = 486	nb = 1528	nb = 431
	avg = 0.01	avg = 0.02	avg = 0.04	avg = 0.01
Simard	std = 0.07	std = 0.06	std = 0.08	std = 0.07
	nb = 989	nb = 486	nb = 1528	nb = 431

Blade Runner day 304 (BLR304)

Clipper Eagle day 307 (CLE307)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.03	avg = 0.19	avg = 0.29	avg = 0.59
raw	std = 0.05	std = 0.04	std = 0.05	std = 0.09
	nb = 2861	nb = 1320	nb = 35	nb = 1028
	avg = 0.05	avg = 0.31	avg = 0.36	avg = 0.73
area	std = 0.08	std = 0.07	std = 0.06	std = 0.12
	nb = 2861	nb = 1320	nb = 35	nb = 1028
	avg = -0.02	avg = -0.06	avg = -0.11	avg = -0.08
Tuck	std = 0.04	std = 0.04	std = 0.03	std = 0.05
	nb = 2861	nb = 1320	nb = 35	nb = 1028
	avg = -0.02	avg = -0.05	avg = -0.16	avg = -0.11
Barrass 2	std = 0.04	std = 0.04	std = 0.03	std = 0.06
	nb = 2861	nb = 1320	nb = 35	nb = 1028
	avg = -0.01	avg = -0.02	avg = -0.10	avg = -0.01
Simard	std = 0.03	std = 0.04	std = 0.03	std = 0.06
	nb = 2861	nb = 1320	nb = 35	nb = 1028

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.10	avg = 0.29	avg = 0.54	avg = 0.73
raw	std = 0.08	std = 0.07	std = 0.13	std = 0.12
	nb = 423	nb = 241	nb = 671	nb = 1798
	avg = 0.13	avg = 0.35	avg = 0.57	avg = 0.84
area	std = 0.10	std = 0.06	std = 0.15	std = 0.18
	nb = 423	nb = 241	nb = 671	nb = 1798
	avg = -0.11	avg = -0.13	avg = -0.11	avg = -0.08
Tuck	std = 0.06	std = 0.06	std = 0.10	std = 0.12
	nb = 423	nb = 241	nb = 671	nb = 1798
	avg = -0.06	avg = -0.05	avg = 0.01	avg = 0.08
Barrass 2	std = 0.06	std = 0.06	std = 0.10	std = 0.11
	nb = 423	nb = 241	nb = 671	nb = 1798
	avg = -0.04	avg = -0.01	avg = 0.07	avg = 0.17
Simard	std = 0.06	std = 0.05	std = 0.11	std = 0.11
	nb = 423	nb = 241	nb = 671	nb = 1798

Fossnes day 304 (FOS304)

Lake Carling day 315 (LAC315)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.05	avg = 0.17	avg = 0.35	avg = 0.56
raw	std = 0.05	std = 0.07	std = 0.10	std = 0.14
	nb = 686	nb = 352	nb = 512	nb = 1606
	avg = 0.06	avg = 0.20	avg = 0.41	avg = 0.61
area	std = 0.06	std = 0.08	std = 0.09	std = 0.10
	nb = 686	nb = 352	nb = 512	nb = 1606
	avg = -0.15	avg = -0.15	avg = -0.12	avg = -0.11
Tuck	std = 0.06	std = 0.07	std = 0.06	std = 0.10
	nb = 686	nb = 352	nb = 512	nb = 1606
	avg = -0.15	avg = -0.16	avg = -0.14	avg = -0.16
Barrass 2	std = 0.06	std = 0.07	std = 0.06	std = 0.09
	nb = 686	nb = 352	nb = 512	nb = 1606
	avg = -0.12	avg = -0.11	avg = -0.06	avg = -0.04
Simard	std = 0.06	std = 0.07	std = 0.06	std = 0.08
	nb = 686	nb = 352	nb = 512	nb = 1606

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.12	avg = 0.22	avg = 0.59	avg = 0.60
raw	std = 0.05	std = 0.04	std = 0.12	std = 0.12
	nb = 352	nb = 107	nb = 1066	nb = 1656
	avg = 0.16	avg = 0.30	avg = 0.61	avg = 0.73
area	std = 0.06	std = 0.05	std = 0.11	std = 0.12
	nb = 352	nb = 107	nb = 1066	nb = 1656
	avg = -0.04	avg = -0.10	avg = 0.09	avg = -0.01
Tuck	std = 0.05	std = 0.05	std = 0.10	std = 0.11
	nb = 352	nb = 107	nb = 1066	nb = 1656
	avg = -0.04	avg = -0.09	avg = 0.06	avg = -0.01
Barrass 2	std = 0.05	std = 0.05	std = 0.09	std = 0.10
	nb = 352	nb = 107	nb = 1066	nb = 1656
	avg = -0.02	avg = -0.04	avg = 0.13	avg = 0.09
Simard	std = 0.05	std = 0.05	std = 0.09	std = 0.10
	nb = 352	nb = 107	nb = 1066	nb = 1656

Mariupol day 297 (MAR297)

Millenium Raptor day 311 (MIR311)

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.03	avg = 0.15	avg = 0.20	avg = 0.48
raw	std = 0.03	std = 0.06	std = 0.11	std = 0.13
	nb = 629	nb = 385	nb = 685	nb = 278
	avg = 0.04	avg = 0.20	avg = 0.25	avg = 0.67
area	std = 0.04	std = 0.07	std = 0.14	std = 0.18
	nb = 629	nb = 385	nb = 685	nb = 278
	avg = -0.10	avg = -0.14	avg = -0.19	avg = -0.10
Tuck	std = 0.06	std = 0.06	std = 0.10	std = 0.09
	nb = 629	nb = 385	nb = 685	nb = 278
	avg = -0.11	avg = -0.16	avg = -0.22	avg = -0.17
Barrass 2	std = 0.07	std = 0.06	std = 0.10	std = 0.09
	nb = 629	nb = 385	nb = 685	nb = 278
	avg = -0.10	avg = -0.12	avg = -0.16	avg = -0.06
Simard	std = 0.06	std = 0.06	std = 0.10	std = 0.09
	nb = 629	nb = 385	nb = 685	nb = 278

			-	
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.11	avg = 0.31	avg = 0.46	avg = 0.67
raw	std = 0.11	std = 0.08	std = 0.12	std = 0.11
	nb = 458	nb = 387	nb = 335	nb = 1927
	avg = 0.12	avg = 0.35	avg = 0.53	avg = 0.87
area	std = 0.11	std = 0.07	std = 0.10	std = 0.13
	nb = 458	nb = 387	nb = 335	nb = 1927
	avg = -0.08	avg = -0.00	avg = 0.04	avg = 0.04
Tuck	std = 0.06	std = 0.07	std = 0.09	std = 0.12
	nb = 458	nb = 387	nb = 335	nb = 1927
	avg = -0.09	avg = -0.03	avg = 0.00	avg = 0.01
Barrass 2	std = 0.05	std = 0.06	std = 0.08	std = 0.11
	nb = 458	nb = 387	nb = 335	nb = 1927
	avg = -0.06	avg = 0.01	avg = 0.07	avg = 0.12
Simard	std = 0.06	std = 0.06	std = 0.08	std = 0.10
	nb = 458	nb = 387	nb = 335	nb = 1927

Zoitsa S day 302 (ZOS302)

A.3 Statistics for trends between ship types

A.1.1.1 Chemical Tanker

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.13	avg = 0.27	avg = 0.39	avg = 0.57
raw	std = 0.07	std = 0.11	std = 0.12	std = 0.11
	nb = 1394	nb = 1173	nb = 4086	nb = 1527
	avg = 0.15	avg = 0.31	avg = 0.46	avg = 0.69
area	std = 0.08	std = 0.10	std = 0.11	std = 0.20
	nb = 1394	nb = 1173	nb = 4086	nb = 1527
	avg = -0.04	avg = -0.12	avg = -0.14	avg = -0.10
Tuck	std = 0.05	std = 0.07	std = 0.08	std = 0.11
	nb = 1394	nb = 1173	nb = 4086	nb = 1527
	avg = -0.02	avg = -0.06	avg = -0.06	avg = -0.09
Barrass 2	std = 0.04	std = 0.06	std = 0.06	std = 0.11
	nb = 1394	nb = 1173	nb = 4086	nb = 1527
	avg = -0.01	avg = -0.03	avg = -0.01	avg = 0.03
Simard	std = 0.04	std = 0.06	std = 0.07	std = 0.11
	nb = 1394	nb = 1173	nb = 4086	nb = 1527

-				
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.16	avg = 0.34	avg = 0.47	avg = 0.35
raw	std = 0.09	std = 0.09	std = 0.09	std = 0.02
	nb = 4789	nb = 5560	nb = 3319	nb = 70
	avg = 0.18	avg = 0.36	avg = 0.52	avg = 0.45
area	std = 0.10	std = 0.08	std = 0.10	std = 0.06
	nb = 4789	nb = 5560	nb = 3319	nb = 70
	avg = 0.02	avg = 0.02	avg = 0.06	avg = -0.10
Tuck	std = 0.08	std = 0.08	std = 0.09	std = 0.05
	nb = 4789	nb = 5560	nb = 3319	nb = 70
	avg = -0.02	avg = -0.10	avg = -0.10	avg = -0.26
Barrass 2	std = 0.09	std = 0.08	std = 0.09	std = 0.06
	nb = 4789	nb = 5560	nb = 3319	nb = 70
	avg = 0.02	avg = 0.00	avg = 0.04	avg = -0.09
Simard	std = 0.09	std = 0.08	std = 0.09	std = 0.06
	nb = 4789	nb = 5560	nb = 3319	nb = 70

New Laker

Salty Bulker

		-		
	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.07	avg = 0.22	avg = 0.45	avg = 0.63
raw	std = 0.08	std = 0.08	std = 0.17	std = 0.14
	nb = 6398	nb = 3278	nb = 4832	nb = 8724
	avg = 0.09	avg = 0.30	avg = 0.50	avg = 0.75
area	std = 0.10	std = 0.09	std = 0.16	std = 0.17
	nb = 6398	nb = 3278	nb = 4832	nb = 8724
	avg = -0.05	avg = -0.07	avg = -0.04	avg = -0.05
Tuck	std = 0.07	std = 0.08	std = 0.13	std = 0.12
	nb = 6398	nb = 3278	nb = 4832	nb = 8724
	avg = -0.05	avg = -0.07	avg = -0.04	avg = -0.03
Barrass 2	std = 0.07	std = 0.08	std = 0.13	std = 0.13
	nb = 6398	nb = 3278	nb = 4832	nb = 8724
	avg = -0.03	avg = -0.03	avg = 0.02	avg = 0.07
Simard	std = 0.07	std = 0.07	std = 0.13	std = 0.12
	nb = 6398	nb = 3278	nb = 4832	nb = 8724

Saity Laker					
	0 - 5	5 - 6	6 - 7	7 +	
	avg = 0.10	avg = 0.28	avg = 0.40	avg = 0.78	
raw	std = 0.07	std = 0.08	std = 0.08	std = 0.17	
	nb = 3974	nb = 1837	nb = 2891	nb = 2958	
	avg = 0.12	avg = 0.31	avg = 0.43	avg = 0.89	
area	std = 0.08	std = 0.09	std = 0.11	std = 0.18	
	nb = 3974	nb = 1837	nb = 2891	nb = 2958	
	avg = 0.00	avg = -0.01	avg = -0.01	avg = 0.14	
Tuck	std = 0.07	std = 0.07	std = 0.08	std = 0.16	
	nb = 3974	nb = 1837	nb = 2891	nb = 2958	
	avg = -0.03	avg = -0.12	avg = -0.16	avg = 0.04	
Barrass 2	std = 0.08	std = 0.08	std = 0.09	std = 0.14	
	nb = 3974	nb = 1837	nb = 2891	nb = 2958	
	avg = -0.00	avg = -0.04	avg = -0.04	avg = 0.17	
Simard	std = 0.07	std = 0.08	std = 0.09	std = 0.14	
	nb = 3974	nb = 1837	nb = 2891	nb = 2958	

Salty Laker

Traditional Laker

	0 - 5	5 - 6	6 - 7	7 +
	avg = 0.09	avg = 0.22	avg = 0.42	avg = 0.47
raw	std = 0.08	std = 0.06	std = 0.12	std = 0.07
	nb = 4368	nb = 1617	nb = 3791	nb = 1039
	avg = 0.11	avg = 0.28	avg = 0.47	avg = 0.54
area	std = 0.09	std = 0.08	std = 0.15	std = 0.07
	nb = 4368	nb = 1617	nb = 3791	nb = 1039
	avg = -0.05	avg = -0.04	avg = 0.02	avg = -0.00
Tuck	std = 0.07	std = 0.07	std = 0.10	std = 0.06
	nb = 4368	nb = 1617	nb = 3791	nb = 1039
	avg = -0.09	avg = -0.13	avg = -0.13	avg = -0.18
Barrass 2	std = 0.07	std = 0.08	std = 0.10	std = 0.07
	nb = 4368	nb = 1617	nb = 3791	nb = 1039
	avg = -0.06	avg = -0.06	avg = -0.02	avg = -0.04
Simard	std = 0.07	std = 0.07	std = 0.11	std = 0.06
	nb = 4368	nb = 1617	nb = 3791	nb = 1039

B STATISTICS FOR LAKE ST. LOUIS

B.1 Statistics for ships passing twice

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.15	avg = 0.27	avg = 0.41	avg = 0.50
raw	std = 0.06	std = 0.07	std = 0.19	std = 0.12
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = 0.12	avg = 0.27	avg = 0.46	avg = 0.55
area	std = 0.05	std = 0.04	std = 0.10	std = 0.06
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.02	avg = -0.09	avg = -0.10	avg = -0.17
Tuck	std = 0.04	std = 0.05	std = 0.05	std = 0.07
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.05	avg = -0.13	avg = -0.16	avg = -0.23
Barrass 2	std = 0.05	std = 0.04	std = 0.05	std = 0.06
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.04	avg = -0.10	avg = -0.13	avg = -0.18
Simard	std = 0.04	std = 0.03	std = 0.08	std = 0.08
	nb = 683	nb = 260	nb = 238	nb = 788

Algosar day 303 (ALS303)

Algosar day 316 (ALS316)

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.17	avg = 0.34	avg = 0.50	avg = 0.55
raw	std = 0.04	std = 0.12	std = 0.13	std = 0.14
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = 0.15	avg = 0.35	avg = 0.47	avg = 0.61
area	std = 0.07	std = 0.06	std = 0.08	std = 0.08
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = 0.04	avg = 0.02	avg = -0.01	avg = -0.13
Tuck	std = 0.03	std = 0.03	std = 0.05	std = 0.06
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = -0.01	avg = -0.06	avg = -0.08	avg = -0.19
Barrass 2	std = 0.02	std = 0.04	std = 0.06	std = 0.07
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = -0.00	avg = -0.04	avg = -0.04	avg = -0.15
Simard	std = 0.03	std = 0.03	std = 0.08	std = 0.10
	nb = 80	nb = 133	nb = 489	nb = 974

	0 - 7	7 – 9	9 - 11	11 +
	avg = 0.17	avg = 0.26	avg = 0.30	avg = 0.33
raw	std = 0.08	std = 0.04	std = 0.06	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = 0.15	avg = 0.30	avg = 0.32	avg = 0.48
area	std = 0.08	std = 0.12	std = 0.10	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = 0.04	avg = 0.04	avg = -0.07	avg = 0.02
Tuck	std = 0.07	std = 0.09	std = 0.08	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = -0.12	avg = -0.19	avg = -0.42	avg = -0.36
Barrass 2	std = 0.11	std = 0.12	std = 0.10	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = -0.05	avg = -0.09	avg = -0.24	avg = -0.23
Simard	std = 0.08	std = 0.07	std = 0.06	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1

CSL Niagara day 315 (CNI315)

CSL Niagara day 320 (CNI320)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.04	avg = 0.22	avg = 0.23	avg = 0.00
raw	std = 0.08	std = 0.06	std = 0.05	std = 0.00
	nb = 939	nb = 643	nb = 548	nb = 0
	avg = 0.04	avg = 0.18	avg = 0.24	avg = 0.00
area	std = 0.07	std = 0.04	std = 0.06	std = 0.00
	nb = 939	nb = 643	nb = 548	nb = 0
	avg = -0.03	avg = -0.06	avg = -0.13	avg = 0.00
Tuck	std = 0.04	std = 0.03	std = 0.06	std = 0.00
	nb = 939	nb = 643	nb = 548	nb = 0
	avg = -0.11	avg = -0.34	avg = -0.49	avg = 0.00
Barrass 2	std = 0.05	std = 0.06	std = 0.08	std = 0.00
	nb = 939	nb = 643	nb = 548	nb = 0
	avg = -0.08	avg = -0.19	avg = -0.31	avg = 0.00
Simard	std = 0.04	std = 0.03	std = 0.05	std = 0.00
	nb = 939	nb = 643	nb = 548	nb = 0

-				
	0 - 7	7 - 9	9 - 11	11+
	avg = 0.08	avg = 0.14	avg = 0.25	avg = 0.00
raw	std = 0.05	std = 0.04	std = 0.07	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = 0.08	avg = 0.15	avg = 0.27	avg = 0.00
area	std = 0.06	std = 0.05	std = 0.06	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.02	avg = -0.07	avg = -0.08	avg = 0.00
Tuck	std = 0.06	std = 0.05	std = 0.05	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.13	avg = -0.28	avg = -0.41	avg = 0.00
Barrass 2	std = 0.08	std = 0.08	std = 0.07	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.09	avg = -0.21	avg = -0.28	avg = 0.00
Simard	std = 0.06	std = 0.05	std = 0.04	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0

John B. Aird day 306 (JBA306)

John B. Aird day 314 (JBA314)

		-		
	0 - 7	7 - 9	9 - 11	11+
	avg = 0.03	avg = 0.21	avg = 0.23	avg = 0.00
raw	std = 0.08	std = 0.07	std = 0.05	std = 0.00
	nb = 454	nb = 719	nb = 1431	nb = 0
	avg = 0.02	avg = 0.18	avg = 0.23	avg = 0.00
area	std = 0.05	std = 0.04	std = 0.05	std = 0.00
	nb = 454	nb = 719	nb = 1431	nb = 0
	avg = -0.02	avg = -0.06	avg = -0.10	avg = 0.00
Tuck	std = 0.05	std = 0.05	std = 0.05	std = 0.00
	nb = 454	nb = 719	nb = 1431	nb = 0
	avg = -0.10	avg = -0.33	avg = -0.41	avg = 0.00
Barrass 2	std = 0.07	std = 0.10	std = 0.06	std = 0.00
	nb = 454	nb = 719	nb = 1431	nb = 0
	avg = -0.08	avg = -0.22	avg = -0.28	avg = 0.00
Simard	std = 0.06	std = 0.05	std = 0.04	std = 0.00
	nb = 454	nb = 719	nb = 1431	nb = 0

-		ĩ	,	,
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.07	avg = 0.24	avg = 0.34	avg = 0.32
raw	std = 0.10	std = 0.09	std = 0.09	std = 0.04
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = 0.06	avg = 0.19	avg = 0.33	avg = 0.42
area	std = 0.07	std = 0.05	std = 0.07	std = 0.07
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = 0.01	avg = -0.01	avg = -0.05	avg = -0.02
Tuck	std = 0.05	std = 0.05	std = 0.06	std = 0.06
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = -0.06	avg = -0.26	avg = -0.42	avg = -0.43
Barrass 2	std = 0.07	std = 0.08	std = 0.07	std = 0.07
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = -0.04	avg = -0.14	avg = -0.24	avg = -0.28
Simard	std = 0.05	std = 0.06	std = 0.05	std = 0.05
	nb = 781	nb = 738	nb = 1146	nb = 120

Rt. Hon. Paul Martin day 299 (PMA299)

Rt. Hon. Paul Martin day 310 (PMA310)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.18	avg = 0.27	avg = 0.28	avg = 0.00
raw	std = 0.05	std = 0.05	std = 0.06	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.18	avg = 0.24	avg = 0.29	avg = 0.00
area	std = 0.06	std = 0.05	std = 0.04	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.10	avg = 0.03	avg = -0.04	avg = 0.00
Tuck	std = 0.03	std = 0.05	std = 0.05	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.00	avg = -0.22	avg = -0.36	avg = 0.00
Barrass 2	std = 0.09	std = 0.07	std = 0.06	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.04	avg = -0.10	avg = -0.21	avg = 0.00
Simard	std = 0.06	std = 0.05	std = 0.05	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0

B.2 Statistics for ships of the same type

B.2.1 New Lakers

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.07	avg = 0.24	avg = 0.34	avg = 0.32
raw	std = 0.10	std = 0.09	std = 0.09	std = 0.04
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = 0.06	avg = 0.19	avg = 0.33	avg = 0.42
area	std = 0.07	std = 0.05	std = 0.07	std = 0.07
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = 0.01	avg = -0.01	avg = -0.05	avg = -0.02
Tuck	std = 0.05	std = 0.05	std = 0.06	std = 0.06
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = -0.06	avg = -0.26	avg = -0.42	avg = -0.43
Barrass 2	std = 0.07	std = 0.08	std = 0.07	std = 0.07
	nb = 781	nb = 738	nb = 1146	nb = 120
	avg = -0.04	avg = -0.14	avg = -0.24	avg = -0.28
Simard	std = 0.05	std = 0.06	std = 0.05	std = 0.05
	nb = 781	nb = 738	nb = 1146	nb = 120

Rt. Hon. Paul Martin day 299 (PMA299)

Rt. Hon. Paul Martin day 310 (PMA310)

The second se				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.18	avg = 0.27	avg = 0.28	avg = 0.00
raw	std = 0.05	std = 0.05	std = 0.06	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.18	avg = 0.24	avg = 0.29	avg = 0.00
area	std = 0.06	std = 0.05	std = 0.04	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.10	avg = 0.03	avg = -0.04	avg = 0.00
Tuck	std = 0.03	std = 0.05	std = 0.05	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.00	avg = -0.22	avg = -0.36	avg = 0.00
Barrass 2	std = 0.09	std = 0.07	std = 0.06	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0
	avg = 0.04	avg = -0.10	avg = -0.21	avg = 0.00
Simard	std = 0.06	std = 0.05	std = 0.05	std = 0.00
	nb = 268	nb = 835	nb = 979	nb = 0

	8 1 1				
	0 - 7	7 - 9	9 - 11	11 +	
	avg = 0.11	avg = 0.35	avg = 0.44	avg = 0.46	
raw	std = 0.03	std = 0.09	std = 0.14	std = 0.09	
	nb = 123	nb = 323	nb = 597	nb = 707	
	avg = 0.11	avg = 0.28	avg = 0.41	avg = 0.49	
area	std = 0.04	std = 0.04	std = 0.07	std = 0.08	
	nb = 123	nb = 323	nb = 597	nb = 707	
	avg = 0.02	avg = 0.07	avg = 0.00	avg = -0.02	
Tuck	std = 0.03	std = 0.04	std = 0.08	std = 0.08	
	nb = 123	nb = 323	nb = 597	nb = 707	
	avg = -0.09	avg = -0.23	avg = -0.36	avg = -0.45	
Barrass 2	std = 0.04	std = 0.06	std = 0.10	std = 0.09	
	nb = 123	nb = 323	nb = 597	nb = 707	
	avg = -0.05	avg = -0.08	avg = -0.16	avg = -0.23	
Simard	std = 0.04	std = 0.03	std = 0.09	std = 0.08	
	nb = 123	nb = 323	nb = 597	nb = 707	

Algoville day 316 (ALV316)

CSL Niagara day 315 (CNI315)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.17	avg = 0.26	avg = 0.30	avg = 0.33
raw	std = 0.08	std = 0.04	std = 0.06	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = 0.15	avg = 0.30	avg = 0.32	avg = 0.48
area	std = 0.08	std = 0.12	std = 0.10	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = 0.04	avg = 0.04	avg = -0.07	avg = 0.02
Tuck	std = 0.07	std = 0.09	std = 0.08	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = -0.12	avg = -0.19	avg = -0.42	avg = -0.36
Barrass 2	std = 0.11	std = 0.12	std = 0.10	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1
	avg = -0.05	avg = -0.09	avg = -0.24	avg = -0.23
Simard	std = 0.08	std = 0.07	std = 0.06	std = 0.00
	nb = 436	nb = 277	nb = 1217	nb = 1

	0 - 7	7 - 9	9 - 11	11+	
	avg = 0.04	avg = 0.22	avg = 0.23	avg = 0.00	
raw	std = 0.08	std = 0.06	std = 0.05	std = 0.00	
	nb = 939	nb = 643	nb = 548	nb = 0	
	avg = 0.04	avg = 0.18	avg = 0.24	avg = 0.00	
area	std = 0.07	std = 0.04	std = 0.06	std = 0.00	
	nb = 939	nb = 643	nb = 548	nb = 0	
	avg = -0.03	avg = -0.06	avg = -0.13	avg = 0.00	
Tuck	std = 0.04	std = 0.03	std = 0.06	std = 0.00	
	nb = 939	nb = 643	nb = 548	nb = 0	
	avg = -0.11	avg = -0.34	avg = -0.49	avg = 0.00	
Barrass 2	std = 0.05	std = 0.06	std = 0.08	std = 0.00	
	nb = 939	nb = 643	nb = 548	nb = 0	
	avg = -0.08	avg = -0.19	avg = -0.31	avg = 0.00	
Simard	std = 0.04	std = 0.03	std = 0.05	std = 0.00	
	nb = 939	nb = 643	nb = 548	nb = 0	

CSL Niagara day 320 (CNI320)

B.2.2 Traditional Lakers

Canadian Voyager day 305 (CAV305)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.05	avg = 0.15	avg = 0.38	avg = 0.45
raw	std = 0.04	std = 0.06	std = 0.08	std = 0.05
	nb = 1524	nb = 115	nb = 292	nb = 171
	avg = 0.06	avg = 0.16	avg = 0.34	avg = 0.41
area	std = 0.05	std = 0.05	std = 0.06	std = 0.04
	nb = 1524	nb = 115	nb = 292	nb = 171
	avg = -0.00	avg = -0.06	avg = -0.06	avg = -0.07
Tuck	std = 0.04	std = 0.03	std = 0.04	std = 0.05
	nb = 1524	nb = 115	nb = 292	nb = 171
	avg = -0.06	avg = -0.26	avg = -0.40	avg = -0.47
Barrass 2	std = 0.05	std = 0.05	std = 0.06	std = 0.05
	nb = 1524	nb = 115	nb = 292	nb = 171
	avg = -0.05	avg = -0.19	avg = -0.23	avg = -0.26
Simard	std = 0.05	std = 0.03	std = 0.04	std = 0.04
	nb = 1524	nb = 115	nb = 292	nb = 171

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = -0.00	avg = 0.23	avg = 0.35	avg = 0.35
raw	std = 0.04	std = 0.10	std = 0.07	std = 0.07
	nb = 1367	nb = 205	nb = 739	nb = 839
	avg = -0.00	avg = 0.21	avg = 0.30	avg = 0.36
area	std = 0.06	std = 0.05	std = 0.05	std = 0.06
	nb = 1367	nb = 205	nb = 739	nb = 839
	avg = -0.02	avg = 0.04	avg = -0.07	avg = -0.11
Tuck	std = 0.03	std = 0.06	std = 0.07	std = 0.06
	nb = 1367	nb = 205	nb = 739	nb = 839
	avg = -0.05	avg = -0.21	avg = -0.43	avg = -0.51
Barrass 2	std = 0.03	std = 0.08	std = 0.10	std = 0.07
	nb = 1367	nb = 205	nb = 739	nb = 839
	avg = -0.05	avg = -0.13	avg = -0.26	avg = -0.34
Simard	std = 0.03	std = 0.07	std = 0.08	std = 0.05
	nb = 1367	nb = 205	nb = 739	nb = 839

SS Halifax day 308 (HAL308)

Manitoulin day 310 (MAN301)

	0 - 7	7 - 9	9 - 11	11+
	avg = -0.02	avg = 0.13	avg = 0.17	avg = 0.21
raw	std = 0.03	std = 0.07	std = 0.11	std = 0.07
	nb = 165	nb = 317	nb = 399	nb = 832
	avg = -0.03	avg = 0.09	avg = 0.14	avg = 0.21
area	std = 0.05	std = 0.05	std = 0.09	std = 0.05
	nb = 165	nb = 317	nb = 399	nb = 832
	avg = -0.08	avg = -0.11	avg = -0.20	avg = -0.30
Tuck	std = 0.02	std = 0.04	std = 0.07	std = 0.07
	nb = 165	nb = 317	nb = 399	nb = 832
	avg = -0.17	avg = -0.39	avg = -0.53	avg = -0.74
Barrass 2	std = 0.04	std = 0.07	std = 0.09	std = 0.09
	nb = 165	nb = 317	nb = 399	nb = 832
	avg = -0.15	avg = -0.28	avg = -0.39	avg = -0.55
Simard	std = 0.04	std = 0.04	std = 0.08	std = 0.06
	nb = 165	nb = 317	nb = 399	nb = 832

B.2.3 Chemical Tankers

	0 - 7	7 - 9	9 - 11	11+
	avg = 0.15	avg = 0.27	avg = 0.41	avg = 0.50
raw	std = 0.06	std = 0.07	std = 0.19	std = 0.12
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = 0.12	avg = 0.27	avg = 0.46	avg = 0.55
area	std = 0.05	std = 0.04	std = 0.10	std = 0.06
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.02	avg = -0.09	avg = -0.10	avg = -0.17
Tuck	std = 0.04	std = 0.05	std = 0.05	std = 0.07
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.05	avg = -0.13	avg = -0.16	avg = -0.23
Barrass 2	std = 0.05	std = 0.04	std = 0.05	std = 0.06
	nb = 683	nb = 260	nb = 238	nb = 788
	avg = -0.04	avg = -0.10	avg = -0.13	avg = -0.18
Simard	std = 0.04	std = 0.03	std = 0.08	std = 0.08
	nb = 683	nb = 260	nb = 238	nb = 788

Algosar day 303 (ALS303)

Algosar day 316 (ALS316)

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.17	avg = 0.34	avg = 0.50	avg = 0.55
raw	std = 0.04	std = 0.12	std = 0.13	std = 0.14
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = 0.15	avg = 0.35	avg = 0.47	avg = 0.61
area	std = 0.07	std = 0.06	std = 0.08	std = 0.08
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = 0.04	avg = 0.02	avg = -0.01	avg = -0.13
Tuck	std = 0.03	std = 0.03	std = 0.05	std = 0.06
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = -0.01	avg = -0.06	avg = -0.08	avg = -0.19
Barrass 2	std = 0.02	std = 0.04	std = 0.06	std = 0.07
	nb = 80	nb = 133	nb = 489	nb = 974
	avg = -0.00	avg = -0.04	avg = -0.04	avg = -0.15
Simard	std = 0.03	std = 0.03	std = 0.08	std = 0.10
	nb = 80	nb = 133	nb = 489	nb = 974

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.08	avg = 0.27	avg = 0.43	avg = 0.44
raw	std = 0.03	std = 0.08	std = 0.10	std = 0.07
	nb = 332	nb = 173	nb = 1186	nb = 455
	avg = 0.13	avg = 0.29	avg = 0.40	avg = 0.53
area	std = 0.06	std = 0.10	std = 0.09	std = 0.10
	nb = 332	nb = 173	nb = 1186	nb = 455
	avg = 0.02	avg = 0.02	avg = -0.14	avg = -0.11
Tuck	std = 0.04	std = 0.06	std = 0.08	std = 0.07
	nb = 332	nb = 173	nb = 1186	nb = 455
	avg = -0.02	avg = -0.14	avg = -0.31	avg = -0.32
Barrass 2	std = 0.05	std = 0.10	std = 0.08	std = 0.06
	nb = 332	nb = 173	nb = 1186	nb = 455
	avg = -0.02	avg = -0.08	avg = -0.18	avg = -0.22
Simard	std = 0.05	std = 0.06	std = 0.07	std = 0.05
	nb = 332	nb = 173	nb = 1186	nb = 455

Turid Knutson day 317 (TUK317)

B.2.4 Salty Lakers

Atlantic Erie day 313 (ATE313)

		-	· /	
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.02	avg = 0.07	avg = 0.33	avg = 0.36
raw	std = 0.03	std = 0.04	std = 0.10	std = 0.09
	nb = 2204	nb = 85	nb = 1012	nb = 277
	avg = 0.01	avg = 0.11	avg = 0.30	avg = 0.39
area	std = 0.03	std = 0.05	std = 0.08	std = 0.06
	nb = 2204	nb = 85	nb = 1012	nb = 277
	avg = 0.00	avg = -0.06	avg = -0.10	avg = -0.07
Tuck	std = 0.04	std = 0.02	std = 0.07	std = 0.06
	nb = 2204	nb = 85	nb = 1012	nb = 277
	avg = -0.02	avg = -0.24	avg = -0.46	avg = -0.47
Barrass 2	std = 0.07	std = 0.04	std = 0.09	std = 0.07
	nb = 2204	nb = 85	nb = 1012	nb = 277
	avg = -0.01	avg = -0.21	avg = -0.28	avg = -0.30
Simard	std = 0.06	std = 0.03	std = 0.07	std = 0.06
	nb = 2204	nb = 85	nb = 1012	nb = 277

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.04	avg = 0.24	avg = 0.48	avg = 0.53
raw	std = 0.03	std = 0.14	std = 0.16	std = 0.13
	nb = 1156	nb = 233	nb = 419	nb = 962
	avg = 0.05	avg = 0.23	avg = 0.41	avg = 0.53
area	std = 0.05	std = 0.06	std = 0.10	std = 0.10
	nb = 1156	nb = 233	nb = 419	nb = 962
	avg = 0.00	avg = 0.01	avg = -0.04	avg = -0.12
Tuck	std = 0.03	std = 0.09	std = 0.06	std = 0.08
	nb = 1156	nb = 233	nb = 419	nb = 962
	avg = -0.03	avg = -0.17	avg = -0.29	avg = -0.39
Barrass 2	std = 0.04	std = 0.08	std = 0.08	std = 0.08
	nb = 1156	nb = 233	nb = 419	nb = 962
	avg = -0.03	avg = -0.13	avg = -0.17	avg = -0.25
Simard	std = 0.04	std = 0.09	std = 0.08	std = 0.09
	nb = 1156	nb = 233	nb = 419	nb = 962

Federal Fugi day 298 (FEF298)

Federal Saguenay day 301 (FSA301)

	_			
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.05	avg = 0.23	avg = 0.44	avg = 0.44
raw	std = 0.03	std = 0.23	std = 0.18	std = 0.11
	nb = 678	nb = 97	nb = 329	nb = 1209
	avg = 0.08	avg = 0.34	avg = 0.43	avg = 0.53
area	std = 0.05	std = 0.16	std = 0.12	std = 0.09
	nb = 678	nb = 97	nb = 329	nb = 1209
	avg = 0.03	avg = 0.09	avg = 0.03	avg = -0.12
Tuck	std = 0.03	std = 0.16	std = 0.08	std = 0.11
	nb = 678	nb = 97	nb = 329	nb = 1209
	avg = -0.00	avg = -0.08	avg = -0.28	avg = -0.47
Barrass 2	std = 0.04	std = 0.11	std = 0.07	std = 0.11
	nb = 678	nb = 97	nb = 329	nb = 1209
	avg = -0.00	avg = -0.06	avg = -0.16	avg = -0.33
Simard	std = 0.05	std = 0.15	std = 0.09	std = 0.10
	nb = 678	nb = 97	nb = 329	nb = 1209

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.08	avg = 0.14	avg = 0.25	avg = 0.00
raw	std = 0.05	std = 0.04	std = 0.07	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = 0.08	avg = 0.15	avg = 0.27	avg = 0.00
area	std = 0.06	std = 0.05	std = 0.06	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.02	avg = -0.07	avg = -0.08	avg = 0.00
Tuck	std = 0.06	std = 0.05	std = 0.05	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.13	avg = -0.28	avg = -0.41	avg = 0.00
Barrass 2	std = 0.08	std = 0.08	std = 0.07	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0
	avg = -0.09	avg = -0.21	avg = -0.28	avg = 0.00
Simard	std = 0.06	std = 0.05	std = 0.04	std = 0.00
	nb = 768	nb = 332	nb = 1049	nb = 0

John B. Aird day 306 (JBA306)

John B. Aird day 314 (JBA314)

	• • • •				
	0 - 7	7 - 9	9 - 11	11+	
	avg = 0.03	avg = 0.21	avg = 0.23	avg = 0.00	
raw	std = 0.08	std = 0.07	std = 0.05	std = 0.00	
	nb = 454	nb = 719	nb = 1431	nb = 0	
	avg = 0.02	avg = 0.18	avg = 0.23	avg = 0.00	
area	std = 0.05	std = 0.04	std = 0.05	std = 0.00	
	nb = 454	nb = 719	nb = 1431	nb = 0	
	avg = -0.02	avg = -0.06	avg = -0.10	avg = 0.00	
Tuck	std = 0.05	std = 0.05	std = 0.05	std = 0.00	
	nb = 454	nb = 719	nb = 1431	nb = 0	
	avg = -0.10	avg = -0.33	avg = -0.41	avg = 0.00	
Barrass 2	std = 0.07	std = 0.10	std = 0.06	std = 0.00	
	nb = 454	nb = 719	nb = 1431	nb = 0	
	avg = -0.08	avg = -0.22	avg = -0.28	avg = 0.00	
Simard	std = 0.06	std = 0.05	std = 0.04	std = 0.00	
	nb = 454	nb = 719	nb = 1431	nb = 0	

B.2.5 Salty Bulkers

	0 - 7	7 - 9	9 - 11	11+
	avg = 0.06	avg = 0.25	avg = 0.19	avg = 0.00
raw	std = 0.03	std = 0.08	std = 0.03	std = 0.00
	nb = 746	nb = 1536	nb = 38	nb = 0
	avg = 0.09	avg = 0.21	avg = 0.24	avg = 0.00
area	std = 0.03	std = 0.05	std = 0.03	std = 0.00
	nb = 746	nb = 1536	nb = 38	nb = 0
	avg = -0.01	avg = -0.08	avg = -0.08	avg = 0.00
Tuck	std = 0.03	std = 0.06	std = 0.03	std = 0.00
	nb = 746	nb = 1536	nb = 38	nb = 0
	avg = -0.05	avg = -0.22	avg = -0.24	avg = 0.00
Barrass 2	std = 0.04	std = 0.06	std = 0.03	std = 0.00
	nb = 746	nb = 1536	nb = 38	nb = 0
	avg = -0.05	avg = -0.16	avg = -0.21	avg = 0.00
Simard	std = 0.04	std = 0.06	std = 0.03	std = 0.00
	nb = 746	nb = 1536	nb = 38	nb = 0

Blade Runner day 304 (BLR304)

Clipper Eagle day 307 (CLE307)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.07	avg = 0.23	avg = 0.40	avg = 0.48
raw	std = 0.03	std = 0.12	std = 0.11	std = 0.09
	nb = 144	nb = 97	nb = 244	nb = 1163
	avg = 0.13	avg = 0.27	avg = 0.40	avg = 0.59
area	std = 0.04	std = 0.08	std = 0.08	std = 0.08
	nb = 144	nb = 97	nb = 244	nb = 1163
	avg = -0.01	avg = -0.03	avg = -0.12	avg = -0.20
Tuck	std = 0.02	std = 0.06	std = 0.06	std = 0.08
	nb = 144	nb = 97	nb = 244	nb = 1163
	avg = -0.04	avg = -0.14	avg = -0.25	avg = -0.30
Barrass 2	std = 0.03	std = 0.09	std = 0.06	std = 0.07
	nb = 144	nb = 97	nb = 244	nb = 1163
	avg = -0.06	avg = -0.13	avg = -0.18	avg = -0.24
Simard	std = 0.03	std = 0.07	std = 0.05	std = 0.08
	nb = 144	nb = 97	nb = 244	nb = 1163

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.05	avg = 0.31	avg = 0.75	avg = 0.82
raw	std = 0.03	std = 0.21	std = 0.23	std = 0.17
	nb = 546	nb = 165	nb = 437	nb = 1109
	avg = 0.05	avg = 0.27	avg = 0.62	avg = 0.82
area	std = 0.04	std = 0.08	std = 0.11	std = 0.10
	nb = 546	nb = 165	nb = 437	nb = 1109
	avg = -0.01	avg = 0.02	avg = 0.04	avg = -0.03
Tuck	std = 0.04	std = 0.09	std = 0.07	std = 0.11
	nb = 546	nb = 165	nb = 437	nb = 1109
	avg = -0.03	avg = -0.09	avg = -0.04	avg = -0.11
Barrass 2	std = 0.05	std = 0.07	std = 0.09	std = 0.12
	nb = 546	nb = 165	nb = 437	nb = 1109
	avg = -0.03	avg = -0.05	avg = 0.08	avg = 0.02
Simard	std = 0.05	std = 0.11	std = 0.13	std = 0.14
	nb = 546	nb = 165	nb = 437	nb = 1109

Fossnes day 304 (FOS304)

Lake Carling day 315 (LAC315)

	0 - 7	7 - 9	9 - 11	11+
	avg = 0.07	avg = 0.16	avg = 0.36	avg = 0.29
raw	std = 0.06	std = 0.05	std = 0.08	std = 0.06
	nb = 581	nb = 177	nb = 1309	nb = 317
	avg = 0.07	avg = 0.21	avg = 0.33	avg = 0.32
area	std = 0.05	std = 0.06	std = 0.05	std = 0.07
	nb = 581	nb = 177	nb = 1309	nb = 317
	avg = -0.01	avg = -0.04	avg = -0.18	avg = -0.21
Tuck	std = 0.05	std = 0.04	std = 0.07	std = 0.09
	nb = 581	nb = 177	nb = 1309	nb = 317
	avg = -0.07	avg = -0.19	avg = -0.40	avg = -0.46
Barrass 2	std = 0.07	std = 0.07	std = 0.08	std = 0.08
	nb = 581	nb = 177	nb = 1309	nb = 317
	avg = -0.06	avg = -0.16	avg = -0.28	avg = -0.36
Simard	std = 0.06	std = 0.04	std = 0.06	std = 0.06
	nb = 581	nb = 177	nb = 1309	nb = 317

-	-		-	
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.04	avg = 0.25	avg = 0.37	avg = 0.00
raw	std = 0.05	std = 0.08	std = 0.09	std = 0.00
	nb = 1573	nb = 286	nb = 1107	nb = 0
	avg = 0.04	avg = 0.21	avg = 0.34	avg = 0.00
area	std = 0.04	std = 0.05	std = 0.05	std = 0.00
	nb = 1573	nb = 286	nb = 1107	nb = 0
	avg = -0.04	avg = -0.04	avg = -0.10	avg = 0.00
Tuck	std = 0.05	std = 0.08	std = 0.07	std = 0.00
	nb = 1573	nb = 286	nb = 1107	nb = 0
	avg = -0.08	avg = -0.19	avg = -0.28	avg = 0.00
Barrass 2	std = 0.06	std = 0.05	std = 0.06	std = 0.00
	nb = 1573	nb = 286	nb = 1107	nb = 0
	avg = -0.07	avg = -0.12	avg = -0.19	avg = 0.00
Simard	std = 0.06	std = 0.06	std = 0.07	std = 0.00
	nb = 1573	nb = 286	nb = 1107	nb = 0

Mariupol day 297 (MAR297)

Millenium Raptor day 311 (MIR311)

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.00	avg = 0.00	avg = 0.51	avg = 0.51
raw	std = 0.00	std = 0.00	std = 0.07	std = 0.10
	nb = 0	nb = 0	nb = 101	nb = 712
	avg = 0.00	avg = 0.00	avg = 0.42	avg = 0.47
area	std = 0.00	std = 0.00	std = 0.06	std = 0.07
	nb = 0	nb = 0	nb = 101	nb = 712
	avg = 0.00	avg = 0.00	avg = -0.04	avg = -0.12
Tuck	std = 0.00	std = 0.00	std = 0.05	std = 0.09
	nb = 0	nb = 0	nb = 101	nb = 712
	avg = 0.00	avg = 0.00	avg = -0.30	avg = -0.43
Barrass 2	std = 0.00	std = 0.00	std = 0.05	std = 0.09
	nb = 0	nb = 0	nb = 101	nb = 712
	avg = 0.00	avg = 0.00	avg = -0.17	avg = -0.29
Simard	std = 0.00	std = 0.00	std = 0.05	std = 0.09
	nb = 0	nb = 0	nb = 101	nb = 712

				-
	0 - 7	7 - 9	9 - 11	11+
	avg = 0.02	avg = 0.32	avg = 0.55	avg = 0.51
raw	std = 0.04	std = 0.19	std = 0.14	std = 0.10
	nb = 652	nb = 140	nb = 533	nb = 792
	avg = 0.02	avg = 0.32	avg = 0.52	avg = 0.59
area	std = 0.04	std = 0.08	std = 0.06	std = 0.07
	nb = 652	nb = 140	nb = 533	nb = 792
	avg = -0.03	avg = 0.08	avg = 0.04	avg = -0.02
Tuck	std = 0.04	std = 0.10	std = 0.06	std = 0.07
	nb = 652	nb = 140	nb = 533	nb = 792
	avg = -0.07	avg = -0.09	avg = -0.16	avg = -0.23
Barrass 2	std = 0.05	std = 0.07	std = 0.06	std = 0.06
	nb = 652	nb = 140	nb = 533	nb = 792
	avg = -0.07	avg = -0.05	avg = -0.07	avg = -0.15
Simard	std = 0.05	std = 0.10	std = 0.07	std = 0.06
	nb = 652	nb = 140	nb = 533	nb = 792

Zoitsa S day 302 (ZOS302)

B.3 Statistics for trends between ship types

Chemical Tanker

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.13	avg = 0.29	avg = 0.44	avg = 0.51
raw	std = 0.06	std = 0.09	std = 0.13	std = 0.13
	nb = 1095	nb = 566	nb = 1913	nb = 2217
	avg = 0.13	avg = 0.30	avg = 0.43	avg = 0.57
area	std = 0.05	std = 0.08	std = 0.09	std = 0.08
	nb = 1095	nb = 566	nb = 1913	nb = 2217
	avg = -0.00	avg = -0.03	avg = -0.10	avg = -0.14
Tuck	std = 0.04	std = 0.07	std = 0.09	std = 0.07
	nb = 1095	nb = 566	nb = 1913	nb = 2217
	avg = -0.04	avg = -0.12	avg = -0.23	avg = -0.23
Barrass 2	std = 0.05	std = 0.07	std = 0.12	std = 0.08
	nb = 1095	nb = 566	nb = 1913	nb = 2217
	avg = -0.03	avg = -0.08	avg = -0.13	avg = -0.17
Simard	std = 0.05	std = 0.05	std = 0.09	std = 0.09
	nb = 1095	nb = 566	nb = 1913	nb = 2217

-				
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.09	avg = 0.26	avg = 0.32	avg = 0.44
raw	std = 0.10	std = 0.08	std = 0.10	std = 0.10
	nb = 2547	nb = 2816	nb = 4487	nb = 828
	avg = 0.08	avg = 0.23	avg = 0.32	avg = 0.48
area	std = 0.09	std = 0.07	std = 0.09	std = 0.08
	nb = 2547	nb = 2816	nb = 4487	nb = 828
	avg = 0.01	avg = 0.00	avg = -0.06	avg = -0.02
Tuck	std = 0.06	std = 0.07	std = 0.07	std = 0.08
	nb = 2547	nb = 2816	nb = 4487	nb = 828
	avg = -0.08	avg = -0.26	avg = -0.41	avg = -0.45
Barrass 2	std = 0.08	std = 0.09	std = 0.09	std = 0.09
	nb = 2547	nb = 2816	nb = 4487	nb = 828
	avg = -0.05	avg = -0.13	avg = -0.23	avg = -0.24
Simard	std = 0.06	std = 0.07	std = 0.07	std = 0.08
	nb = 2547	nb = 2816	nb = 4487	nb = 828

New Laker

Salty Bulker

		-		
	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.05	avg = 0.25	avg = 0.44	avg = 0.57
raw	std = 0.05	std = 0.11	std = 0.18	std = 0.20
	nb = 4242	nb = 2401	nb = 3769	nb = 4093
	avg = 0.05	avg = 0.22	avg = 0.40	avg = 0.61
area	std = 0.05	std = 0.07	std = 0.12	std = 0.17
	nb = 4242	nb = 2401	nb = 3769	nb = 4093
	avg = -0.02	avg = -0.05	avg = -0.09	avg = -0.11
Tuck	std = 0.04	std = 0.08	std = 0.11	std = 0.12
	nb = 4242	nb = 2401	nb = 3769	nb = 4093
	avg = -0.06	avg = -0.19	avg = -0.28	avg = -0.27
Barrass 2	std = 0.06	std = 0.08	std = 0.14	std = 0.15
	nb = 4242	nb = 2401	nb = 3769	nb = 4093
	avg = -0.06	avg = -0.14	avg = -0.17	avg = -0.17
Simard	std = 0.05	std = 0.08	std = 0.13	std = 0.16
	nb = 4242	nb = 2401	nb = 3769	nb = 4093

Sany Laker					
	0 - 7	7 - 9	9 - 11	11 +	
	avg = 0.04	avg = 0.19	avg = 0.30	avg = 0.47	
raw	std = 0.05	std = 0.11	std = 0.13	std = 0.13	
	nb = 5260	nb = 1466	nb = 4240	nb = 2448	
	avg = 0.04	avg = 0.19	avg = 0.29	avg = 0.51	
area	std = 0.05	std = 0.08	std = 0.10	std = 0.10	
	nb = 5260	nb = 1466	nb = 4240	nb = 2448	
	avg = -0.00	avg = -0.04	avg = -0.08	avg = -0.11	
Tuck	std = 0.04	std = 0.08	std = 0.07	std = 0.09	
	nb = 5260	nb = 1466	nb = 4240	nb = 2448	
	avg = -0.04	avg = -0.28	avg = -0.40	avg = -0.44	
Barrass 2	std = 0.07	std = 0.12	std = 0.09	std = 0.11	
	nb = 5260	nb = 1466	nb = 4240	nb = 2448	
	avg = -0.03	avg = -0.19	avg = -0.26	avg = -0.29	
Simard	std = 0.06	std = 0.08	std = 0.07	std = 0.10	
	nb = 5260	nb = 1466	nb = 4240	nb = 2448	

Salty Laker

Traditional Laker

	0 - 7	7 - 9	9 - 11	11 +
	avg = 0.02	avg = 0.17	avg = 0.30	avg = 0.30
raw	std = 0.05	std = 0.09	std = 0.12	std = 0.11
	nb = 3056	nb = 637	nb = 1430	nb = 1842
	avg = 0.03	avg = 0.14	avg = 0.26	avg = 0.30
area	std = 0.06	std = 0.07	std = 0.10	std = 0.10
	nb = 3056	nb = 637	nb = 1430	nb = 1842
	avg = -0.02	avg = -0.05	avg = -0.10	avg = -0.19
Tuck	std = 0.04	std = 0.08	std = 0.09	std = 0.12
	nb = 3056	nb = 637	nb = 1430	nb = 1842
	avg = -0.06	avg = -0.31	avg = -0.45	avg = -0.61
Barrass 2	std = 0.05	std = 0.11	std = 0.10	std = 0.14
	nb = 3056	nb = 637	nb = 1430	nb = 1842
	avg = -0.05	avg = -0.21	avg = -0.29	avg = -0.43
Simard	std = 0.05	std = 0.08	std = 0.10	std = 0.12
	nb = 3056	nb = 637	nb = 1430	nb = 1842

C STATISTICS FOR LAKE ST. FRANCIS

C.1 Statistics for trends between ship types

	0 - 8	8 - 9	9 - 10	10 +
	avg = 0.47	avg = 0.48	avg = 0.44	avg = 0.51
raw	std = 0.07	std = 0.10	std = 0.09	std = 0.03
	nb = 53	nb = 509	nb = 2163	nb = 177
area	avg = 0.46	avg = 0.45	avg = 0.44	avg = 0.49
	std = 0.08	std = 0.07	std = 0.07	std = 0.01
	nb = 53	nb = 509	nb = 2163	nb = 177
Tuck	avg = 0.27	avg = 0.19	avg = 0.13	avg = 0.13
	std = 0.07	std = 0.07	std = 0.07	std = 0.01
	nb = 53	nb = 509	nb = 2163	nb = 177
Barrass 2	avg = 0.04	avg = -0.13	avg = -0.23	avg = -0.29
	std = 0.07	std = 0.07	std = 0.08	std = 0.02
	nb = 53	nb = 509	nb = 2163	nb = 177
Simard	avg = 0.13	avg = 0.02	avg = -0.08	avg = -0.09
	std = 0.07	std = 0.07	std = 0.07	std = 0.01
	nb = 53	nb = 509	nb = 2163	nb = 177

Atlantic Erie day 313 (ATE313) (Salty Laker)

SS Halifax day 308 (HAL308) (Traditional Laker)

	0 - 8	8 - 9	9 - 10	10 +
	avg = 0.54	avg = 0.66	avg = 0.68	avg = 0.81
raw	std = 0.02	std = 0.11	std = 0.10	std = 0.16
	nb = 89	nb = 534	nb = 1427	nb = 776
area	avg = 0.53	avg = 0.55	avg = 0.66	avg = 0.84
	std = 0.05	std = 0.10	std = 0.09	std = 0.16
	nb = 89	nb = 534	nb = 1427	nb = 776
Tuck	avg = 0.36	avg = 0.36	avg = 0.36	avg = 0.42
	std = 0.02	std = 0.10	std = 0.08	std = 0.11
	nb = 89	nb = 534	nb = 1427	nb = 776
Barrass 2	avg = 0.13	avg = 0.03	avg = -0.00	avg = -0.01
	std = 0.02	std = 0.10	std = 0.08	std = 0.10
	nb = 89	nb = 534	nb = 1427	nb = 776
Simard	avg = 0.22	avg = 0.18	avg = 0.14	avg = 0.17
	std = 0.02	std = 0.09	std = 0.08	std = 0.11
	nb = 89	nb = 534	nb = 1427	nb = 776

	e .		, .	-
	0 - 8	8 - 9	9 - 10	10 +
	avg = 0.40	avg = 0.45	avg = 0.38	avg = 0.47
raw	std = 0.05	std = 0.06	std = 0.08	std = 0.08
	nb = 30	nb = 463	nb = 1442	nb = 839
	avg = 0.37	avg = 0.39	avg = 0.38	avg = 0.47
area	std = 0.06	std = 0.04	std = 0.06	std = 0.06
	nb = 30	nb = 463	nb = 1442	nb = 839
Tuck	avg = 0.13	avg = 0.08	avg = -0.02	avg = -0.00
	std = 0.05	std = 0.05	std = 0.06	std = 0.04
	nb = 30	nb = 463	nb = 1442	nb = 839
Barrass 2	avg = -0.04	avg = -0.14	avg = -0.27	avg = -0.29
	std = 0.05	std = 0.06	std = 0.07	std = 0.04
	nb = 30	nb = 463	nb = 1442	nb = 839
	avg = 0.03	avg = -0.04	avg = -0.16	avg = -0.16
Simard	std = 0.05	std = 0.06	std = 0.07	std = 0.04
	nb = 30	nb = 463	nb = 1442	nb = 839

Lake Carling day 315 (LAC315) (Salty Bulker)

Rt. Hon. Paul Martin day 310 (PMA310) (New Laker)

	0 - 8	8 - 9	9 - 10	10 +
	avg = 0.52	avg = 0.46	avg = 0.00	avg = 0.00
raw	std = 0.06	std = 0.05	std = 0.00	std = 0.00
	nb = 2088	nb = 746	nb = 0	nb = 0
area	avg = 0.46	avg = 0.50	avg = 0.00	avg = 0.00
	std = 0.08	std = 0.13	std = 0.00	std = 0.00
	nb = 2088	nb = 746	nb = 0	nb = 0
Tuck	avg = 0.31	avg = 0.20	avg = 0.00	avg = 0.00
	std = 0.07	std = 0.07	std = 0.00	std = 0.00
	nb = 2088	nb = 746	nb = 0	nb = 0
Barrass 2	avg = 0.11	avg = -0.04	avg = 0.00	avg = 0.00
	std = 0.08	std = 0.09	std = 0.00	std = 0.00
	nb = 2088	nb = 746	nb = 0	nb = 0
Simard	avg = 0.21	avg = 0.08	avg = 0.00	avg = 0.00
	std = 0.07	std = 0.07	std = 0.00	std = 0.00
	nb = 2088	nb = 746	nb = 0	nb = 0

D STATISTICS FOR WILEY-DONDERO CANAL

D.1 Statistics for trends between ship types

	0 - 6	6 - 8	8 - 10	10 +
	avg = 0.33	avg = 0.20	avg = 0.46	avg = 0.23
raw	std = 0.20	std = 0.03	std = 0.17	std = 0.15
	nb = 267	nb = 68	nb = 763	nb = 271
	avg = 0.31	avg = 0.18	avg = 0.41	avg = 0.32
area	std = 0.19	std = 0.02	std = 0.15	std = 0.15
	nb = 267	nb = 68	nb = 763	nb = 271
	avg = 0.27	avg = -0.15	avg = -0.16	avg = -0.24
Tuck	std = 0.24	std = 0.05	std = 0.19	std = 0.18
	nb = 267	nb = 68	nb = 763	nb = 271
	avg = 0.25	avg = -0.25	avg = -0.31	avg = -0.50
Barrass 2	std = 0.26	std = 0.06	std = 0.19	std = 0.16
	nb = 267	nb = 68	nb = 763	nb = 271
	avg = 0.27	avg = -0.14	avg = -0.11	avg = -0.35
Simard	std = 0.25	std = 0.04	std = 0.18	std = 0.12
	nb = 267	nb = 68	nb = 763	nb = 271

Atlantic Erie day 313 (ATE313) (Salty Laker)

SS Halifax day 308 (HAL308) (Traditional Laker)

The second se				
	0-6	6 - 8	8 - 10	10 +
	avg = 0.22	avg = 0.23	avg = 0.51	avg = 0.39
raw	std = 0.13	std = 0.05	std = 0.11	std = 0.08
	nb = 255	nb = 246	nb = 484	nb = 278
	avg = 0.22	avg = 0.21	avg = 0.49	avg = 0.50
area	std = 0.13	std = 0.04	std = 0.11	std = 0.12
	nb = 255	nb = 246	nb = 484	nb = 278
	avg = 0.15	avg = -0.07	avg = -0.04	avg = -0.18
Tuck	std = 0.18	std = 0.03	std = 0.13	std = 0.18
	nb = 255	nb = 246	nb = 484	nb = 278
	avg = 0.12	avg = -0.17	avg = -0.20	avg = -0.42
Barrass 2	std = 0.20	std = 0.04	std = 0.13	std = 0.14
	nb = 255	nb = 246	nb = 484	nb = 278
	avg = 0.14	avg = -0.09	avg = -0.04	avg = -0.25
Simard	std = 0.19	std = 0.03	std = 0.12	std = 0.08
	nb = 255	nb = 246	nb = 484	nb = 278

	0 - 6	6 - 8	8 - 10	10 +
	avg = 0.15	avg = 0.32	avg = 0.41	avg = 0.36
raw	std = 0.10	std = 0.10	std = 0.13	std = 0.12
	nb = 830	nb = 204	nb = 425	nb = 167
	avg = 0.14	avg = 0.29	avg = 0.43	avg = 0.45
area	std = 0.10	std = 0.10	std = 0.10	std = 0.10
	nb = 830	nb = 204	nb = 425	nb = 167
	avg = 0.01	avg = -0.06	avg = -0.15	avg = -0.29
Tuck	std = 0.15	std = 0.09	std = 0.15	std = 0.16
	nb = 830	nb = 204	nb = 425	nb = 167
	avg = 0.01	avg = -0.06	avg = -0.17	avg = -0.37
Barrass 2	std = 0.15	std = 0.08	std = 0.12	std = 0.09
	nb = 830	nb = 204	nb = 425	nb = 167
	avg = 0.03	avg = 0.01	avg = -0.07	avg = -0.26
Simard	std = 0.14	std = 0.07	std = 0.11	std = 0.08
	nb = 830	nb = 204	nb = 425	nb = 167
	110 050	110 204	110 423	10 107

Lake Carling day 315 (LAC315) (Salty Bulker)

Rt. Hon. Paul Martin day 310 (PMA310) (New Laker)

	0 - 6	6 - 8	8 - 10	10 +
	avg = 0.08	avg = 0.24	avg = 0.24	avg = 0.00
raw	std = 0.08	std = 0.05	std = 0.03	std = 0.00
	nb = 1883	nb = 297	nb = 138	nb = 0
	avg = 0.09	avg = 0.22	avg = 0.35	avg = 0.00
area	std = 0.10	std = 0.05	std = 0.14	std = 0.00
	nb = 1883	nb = 297	nb = 138	nb = 0
	avg = 0.02	avg = -0.15	avg = -0.12	avg = 0.00
Tuck	std = 0.10	std = 0.07	std = 0.16	std = 0.00
	nb = 1883	nb = 297	nb = 138	nb = 0
	avg = 0.01	avg = -0.23	avg = -0.26	avg = 0.00
Barrass 2	std = 0.10	std = 0.08	std = 0.13	std = 0.00
	nb = 1883	nb = 297	nb = 138	nb = 0
	avg = 0.02	avg = -0.10	avg = -0.15	avg = 0.00
Simard	std = 0.09	std = 0.07	std = 0.08	std = 0.00
	nb = 1883	nb = 297	nb = 138	nb = 0

E RESULTS OF STATISTICAL ANALYSIS FOR SOUTH SHORE CANAL

Summary (see section 1.3 of text for more details)

Values presented in tables of Appendices E, F, G, and H are the results of statistical tests on the average performed between two sailings of the same ship (E.1 and F.1), two ships of the same type (E.2 and F.2), and two ship types (E.3, F.3, G.1, H.1). The aim of this statistical analysis is to state quantitatively if one ship passing twice has the same squat behaviour during each sailing, or if two ships of the same type have the same squat behaviour, of if two ship types have the same trend. The average, standard deviation and sample size were first computed (Appendices A, B, C, and D) for each ship (or each trend) for each of the five squat related elements ("raw", "area", "Tuck", "Barrass 2", "Simard") for each of the four speed class (e.g. 0-5, 5-6, 6-7, 7+). Using the average, standard deviation and sample size of each ship (or trend) and Equation 1.4, the Zexp value was computed and then compared to the known values of the Normal distribution for a 95% probability. The Z_{exp} value of the test is given with a "pass" or "fail" success result. The starting hypothesis, i.e. the two averages are consistent, is accepted ("pass") if $-1.96 \le Z_{exp} \le 1.96$ and rejected ("fail") otherwise. In that case, the alternative hypothesis states that the two averages are not statistically the same and are therefore inconsistent. The further Z_{exp} is from the [-1.96, 1.96] interval, the more inconsistent the two averages are. If there is less than 30 observations in one of the two samples, "n < 30" appears instead of the result.

		0 - 5	5 - 6	6 - 7	7 +
als303 &	raw	0.25 pass	17.78 fail	39.79 fail	n<30
als316	area	-2.58 fail	11.01 fail	53.33 fail	n<30
	Tuck	-5.12 fail	4.41 fail	6.52 fail	n<30
	Barrass 2	-2.76 fail	11.14 fail	19.30 fail	n<30
	Simard	-3.02 fail	11.68 fail	25.73 fail	n<30
cni315 &	raw	4.64 fail	-13.45 fail	n<30	n<30
cni320	area	1.99 fail	-13.23 fail	n<30	n<30
	Tuck	-16.68 fail	-10.65 fail	n<30	n<30
	Barrass 2	-21.25 fail	-10.56 fail	n<30	n<30
	Simard	-15.53 fail	-11.64 fail	n<30	n<30
jba306 &	raw	n<30	-48.74 fail	-7.71 fail	n<30
jba314	area	n<30	-35.88 fail	32.86 fail	n<30
	Tuck	n<30	-20.83 fail	11.19 fail	n<30
	Barrass 2	n<30	-14.01 fail	26.10 fail	n<30
	Simard	n<30	-19.07 fail	25.66 fail	n<30
pma299 &	raw	n<30	7.69 fail	24.67 fail	n<30
pma310	area	n<30	1.37 pass	-20.90 fail	n<30
	Tuck	n<30	5.79 fail	-1.58 pass	n<30
	Barrass 2	n<30	2.86 fail	-23.91 fail	n<30
	Simard	n<30	3.35 fail	-19.21 fail	n<30

E.1 Results of statistical analysis for ships passing twice

E.2 Results of statistical analysis for ships of the same type

E.2.1 New Lakers

		0 - 5	5 - 6	6 - 7	7 +
alv316 &	raw	7.34 fail	28.23 fail	n<30	n<30
cni315	area	-3.54 fail	18.55 fail	n<30	n<30
	Tuck	38.51 fail	32.06 fail	n<30	n<30
	Barrass 2	31.31 fail	27.07 fail	n<30	n<30
	Simard	29.48 fail	25.01 fail	n<30	n<30
alv316 &	raw	10.62 fail	21.38 fail	35.61 fail	n<30
cni320	area	-1.11 pass	10.87 fail	17.89 fail	n<30
	Tuck	12.69 fail	25.06 fail	26.78 fail	n<30
	Barrass 2	7.60 fail	15.75 fail	19.31 fail	n<30
	Simard	7.61 fail	15.11 fail	19.89 fail	n<30
alv316 &	raw	n<30	-4.46 fail	4.65 fail	n<30
pma299	area	n<30	-1.71 pass	10.41 fail	n<30
	Tuck	n<30	-14.46 fail	22.26 fail	n<30
	Barrass 2	n<30	-16.61 fail	34.38 fail	n<30
	Simard	n<30	-11.79 fail	30.02 fail	n<30
alv316 &	raw	-21.38 fail	4.82 fail	29.16 fail	n<30
pma310	area	-32.38 fail	0.35 pass	-13.18 fail	n<30
	Tuck	-21.69 fail	0.85 pass	19.96 fail	n<30
	Barrass 2	-17.69 fail	-2.66 fail	6.58 fail	n<30
	Simard	-24.38 fail	-1.31 pass	7.14 fail	n<30
cni315 &	raw	4.64 fail	-13.45 fail	n<30	n<30
cni320	area	1.99 fail	-13.23 fail	n<30	n<30
	Tuck	-16.68 fail	-10.65 fail	n<30	n<30
	Barrass 2	-21.25 fail	-10.56 fail	n<30	n<30
	Simard	-15.53 fail	-11.64 fail	n<30	n<30
cni315 &	raw	n<30	-42.92 fail	n<30	n<30
pma299	area	n<30	-28.72 fail	n<30	n<30
	Tuck	n<30	-53.22 fail	n<30	n<30
	Barrass 2	n<30	-45.59 fail	n<30	n<30
	Simard	n<30	-42.38 fail	n<30	n<30
cni315 &	raw	-29.69 fail	-10.03 fail	n<30	n<30
pma310	area	-29.92 fail	-10.01 fail	n<30	n<30
	Tuck	-56.02 fail	-10.18 fail	n<30	n<30
	Barrass 2	-61.83 fail	-12.13 fail	n<30	n<30
	Simard	-58.78 fail	-11.31 fail	n<30	n<30
cni320 &	raw	n<30	-34.88 fail	-32.32 fail	n<30
pma299	area	n<30	-18.37 fail	-12.57 fail	n<30
	Tuck	n<30	-47.41 fail	-11.35 fail	n<30
	Barrass 2	n<30	-32.88 fail	0.76 pass	n<30
	Simard	n<30	-31.18 fail	-2.48 fail	n<30

cni320 &	raw	-30.94 fail	-6.07 fail	-13.79 fail	n<30
pma310	area	-28.49 fail	-5.61 fail	-24.39 fail	n<30
	Tuck	-30.34 fail	-7.27 fail	-12.35 fail	n<30
	Barrass 2	-25.86 fail	-8.31 fail	-14.50 fail	n<30
	Simard	-28.64 fail	-7.32 fail	-14.60 fail	n<30
pma299 &	raw	n<30	7.69 fail	24.67 fail	n<30
pma310	area	n<30	1.37 pass	-20.90 fail	n<30
pma310	area Tuck	n<30 n<30	1.37 pass 5.79 fail	-20.90 fail -1.58 pass	n<30 n<30
pma310					

E.2.2 Traditional Lakers

		0 - 5	5 - 6	6 - 7	7 +
cav305 &	raw	-7.52 fail	-2.90 fail	-24.91 fail	9.66 fail
hal308	area	-0.79 pass	3.98 fail	-15.59 fail	-2.03 fail
	Tuck	-12.22 fail	4.53 fail	-24.89 fail	8.24 fail
	Barrass 2	-9.77 fail	6.84 fail	-17.44 fail	4.62 fail
	Simard	-8.41 fail	6.08 fail	-19.02 fail	4.47 fail
cav305 &	raw	32.18 fail	9.57 fail	34.39 fail	n<30
man301	area	34.59 fail	10.26 fail	42.38 fail	n<30
	Tuck	36.06 fail	17.06 fail	39.56 fail	n<30
	Barrass 2	35.67 fail	16.94 fail	34.52 fail	n<30
	Simard	38.11 fail	15.57 fail	38.35 fail	n<30
hal308 &	raw	34.70 fail	12.11 fail	60.58 fail	n<30
man301	area	32.32 fail	4.74 fail	59.95 fail	n<30
	Tuck	48.48 fail	16.81 fail	63.89 fail	n<30
	Barrass 2	45.34 fail	7.02 fail	54.05 fail	n<30
	Simard	45.86 fail	7.36 fail	58.82 fail	n<30

E.2.3 Chemical Tankers

		0 - 5	5 - 6	6 - 7	7 +
als303 &	raw	0.25 pass	17.78 fail	39.79 fail	n<30
als316	area	-2.58 fail	11.01 fail	53.33 fail	n<30
	Tuck	-5.12 fail	4.41 fail	6.52 fail	n<30
	Barrass 2	-2.76 fail	11.14 fail	19.30 fail	n<30
	Simard	-3.02 fail	11.68 fail	25.73 fail	n<30
als303 &	raw	12.36 fail	10.05 fail	-21.25 fail	-18.69 fail
tuk317	area	2.17 fail	3.86 fail	-9.33 fail	-9.29 fail
	Tuck	-4.10 fail	-1.00 pass	-34.38 fail	-13.61 fail
	Barrass 2	7.48 fail	8.33 fail	6.99 fail	4.80 fail
	Simard	1.15 pass	3.87 fail	-10.21 fail	-3.26 fail

als316 &	raw	11.61 fail	-2.07 fail	-47.95 fail	n<30
tuk317	area	4.38 fail	-1.36 pass	-40.77 fail	n<30
	Tuck	0.81 pass	-3.42 fail	-37.66 fail	n<30
	Barrass 2	8.48 fail	3.15 fail	-5.23 fail	n<30
	Simard	3.20 fail	-1.47 pass	-25.87 fail	n<30

E.2.4 Salty Lakers

		0 - 5	5 - 6	6 - 7	7 +
ate313 &	raw	4.60 fail	16.51 fail	-1.13 pass	-52.04 fail
fef298	area	2.11 fail	9.71 fail	-11.80 fail	-83.56 fail
	Tuck	26.94 fail	18.07 fail	-3.68 fail	-15.95 fail
	Barrass 2	18.63 fail	2.36 fail	-24.67 fail	-58.87 fail
	Simard	19.58 fail	7.95 fail	-16.90 fail	-49.31 fail
ate313 &	raw	n<30	n<30	n<30	-36.90 fail
fsa301	area	n<30	n<30	n<30	-58.55 fail
	Tuck	n<30	n<30	n<30	-44.78 fail
	Barrass 2	n<30	n<30	n<30	-44.77 fail
	Simard	n<30	n<30	n<30	-43.31 fail
ate313 &	raw	-0.56 pass	14.20 fail	-6.26 fail	56.08 fail
jba306	area	4.12 fail	15.99 fail	-34.38 fail	15.54 fail
	Tuck	15.86 fail	12.07 fail	-24.75 fail	29.56 fail
	Barrass 2	21.05 fail	13.58 fail	-40.05 fail	18.17 fail
	Simard	19.29 fail	14.20 fail	-36.55 fail	21.14 fail
ate313 &	raw	n<30	-28.75 fail	-12.65 fail	n<30
jba314	area	n<30	-6.07 fail	-13.44 fail	n<30
	Tuck	n<30	-7.02 fail	-18.31 fail	n<30
	Barrass 2	n<30	2.00 fail	-17.63 fail	n<30
	Simard	n<30	-1.06 pass	-16.63 fail	n<30
fef298 &	raw	n<30	n<30	n<30	-7.30 fail
fsa301	area	n<30	n<30	n<30	-12.30 fail
	Tuck	n<30	n<30	n<30	-31.14 fail
	Barrass 2	n<30	n<30	n<30	-4.34 fail
	Simard	n<30	n<30	n<30	-11.28 fail
fef298 &	raw	-5.26 fail	-8.40 fail	-2.03 fail	96.90 fail
jba306	area	0.40 pass	1.86 pass	-2.19 fail	68.12 fail
	Tuck	-18.99 fail	-11.98 fail	-8.98 fail	39.37 fail
	Barrass 2	-0.51 pass	11.29 fail	5.08 fail	60.51 fail
	Simard	-5.18 fail	4.11 fail	-0.54 pass	58.11 fail
fef298 &	raw	n<30	-39.64 fail	-4.62 fail	n<30
jba314	area	n<30	-17.08 fail	8.04 fail	n<30
	Tuck	n<30	-24.14 fail	-4.30 fail	n<30
	Barrass 2	n<30	-0.57 pass	17.69 fail	n<30
	Simard	n<30	-10.00 fail	10.61 fail	n<30

fsa301 &	raw	n<30	n<30	n<30	67.07 fail
jba306	area	n<30	n<30	n<30	59.40 fail
	Tuck	n<30	n<30	n<30	59.83 fail
	Barrass 2	n<30	n<30	n<30	51.47 fail
	Simard	n<30	n<30	n<30	53.22 fail
fsa301 &	raw	n<30	n<30	n<30	n<30
jba314	area	n<30	n<30	n<30	n<30
	Tuck	n<30	n<30	n<30	n<30
	Barrass 2	n<30	n<30	n<30	n<30
	Simard	n<30	n<30	n<30	n<30
jba306 &	raw	n<30	-48.74 fail	-7.71 fail	n<30
jba314	area	n<30	-35.88 fail	32.86 fail	n<30
	Tuck	n<30	-20.83 fail	11.19 fail	n<30
	Barrass 2	n<30	-14.01 fail	26.10 fail	n<30
	Simard	n<30	-19.07 fail	25.66 fail	n<30

E.2.5 Salty Bulkers

		0 - 5	5 - 6	6 - 7	7 +
blr304 &	raw	54.14 fail	38.88 fail	22.27 fail	-20.31 fail
cle307	area	42.58 fail	11.53 fail	16.12 fail	-28.06 fail
	Tuck	6.75 fail	16.84 fail	13.77 fail	4.29 fail
	Barrass 2	5.08 fail	12.96 fail	21.26 fail	11.49 fail
	Simard	9.46 fail	15.85 fail	22.28 fail	5.31 fail
blr304 &	raw	16.30 fail	3.18 fail	-11.81 fail	-44.66 fail
fos304	area	10.88 fail	2.22 fail	-8.42 fail	-44.81 fail
	Tuck	27.74 fail	24.80 fail	18.00 fail	3.61 fail
	Barrass 2	14.89 fail	7.83 fail	-6.91 fail	-32.78 fail
	Simard	13.66 fail	6.47 fail	-7.77 fail	-37.15 fail
blr304 &	raw	40.99 fail	29.90 fail	22.12 fail	-15.05 fail
lac315	area	35.28 fail	27.40 fail	23.30 fail	-5.31 fail
	Tuck	46.93 fail	30.88 fail	27.69 fail	10.28 fail
	Barrass 2	45.43 fail	31.96 fail	35.74 fail	21.85 fail
	Simard	41.98 fail	29.70 fail	29.78 fail	11.81 fail
blr304 &	raw	15.96 fail	18.15 fail	-25.77 fail	-22.31 fail
mar297	area	7.72 fail	10.12 fail	-21.29 fail	-29.63 fail
	Tuck	11.10 fail	14.36 fail	-30.56 fail	-11.76 fail
	Barrass 2	9.37 fail	12.90 fail	-24.32 fail	-13.94 fail
	Simard	8.07 fail	11.97 fail	-27.50 fail	-19.45 fail
blr304 &	raw	51.31 fail	37.87 fail	54.66 fail	-1.53 pass
mir311	area	44.71 fail	30.43 fail	44.55 fail	-7.67 fail
	Tuck	30.05 fail	29.12 fail	36.19 fail	4.88 fail
	Barrass 2	31.02 fail	35.63 fail	46.55 fail	16.74 fail
	Simard	32.38 fail	34.39 fail	45.55 fail	10.55 fail

blr304 &	raw	11.61 fail	-0.56 pass	1.31 pass	-35.79 fail
zos302	area	11.79 fail	2.24 fail	-1.92 pass	-59.37 fail
	Tuck	21.98 fail	-4.12 fail	-12.52 fail	-21.75 fail
	Barrass 2	25.15 fail	5.10 fail	-5.15 fail	-18.83 fail
	Simard	21.84 fail	3.32 fail	-5.90 fail	-27.15 fail
cle307 &	raw	-17.41 fail	-22.57 fail	-27.50 fail	-35.03 fail
fos304	area	-15.21 fail	-8.25 fail	-19.20 fail	-19.35 fail
	Tuck	28.05 fail	16.77 fail	-0.36 pass	-0.22 pass
	Barrass 2	14.31 fail	-0.78 pass	-22.94 fail	-58.91 fail
	Simard	9.45 fail	-4.98 fail	-24.21 fail	-55.70 fail
cle307 &	raw	-6.50 fail	5.45 fail	-7.47 fail	5.50 fail
lac315	area	-2.09 fail	23.22 fail	-5.24 fail	28.44 fail
	Tuck	54.49 fail	23.45 fail	1.40 pass	10.21 fail
	Barrass 2	55.26 fail	27.75 fail	-2.47 fail	16.07 fail
	Simard	47.19 fail	23.01 fail	-6.23 fail	9.52 fail
cle307 &	raw	-32.36 fail	-9.77 fail	-35.74 fail	-2.89 fail
mar297	area	-29.36 fail	2.35 fail	-24.78 fail	1.24 pass
	Tuck	8.27 fail	6.77 fail	-31.08 fail	-23.45 fail
	Barrass 2	7.52 fail	7.14 fail	-33.17 fail	-34.98 fail
	Simard	2.01 fail	4.01 fail	-36.08 fail	-33.90 fail
cle307 &	raw	1.27 pass	11.75 fail	10.45 fail	12.92 fail
mir311	area	5.64 fail	27.25 fail	9.25 fail	4.98 fail
	Tuck	31.86 fail	21.07 fail	11.19 fail	2.64 fail
	Barrass 2	34.47 fail	32.33 fail	9.84 fail	10.94 fail
	Simard	33.76 fail	28.59 fail	8.87 fail	8.21 fail
cle307 &	raw	-14.38 fail	-28.43 fail	-17.37 fail	-22.11 fail
zos302	area	-12.49 fail	-9.11 fail	-15.57 fail	-30.09 fail
	Tuck	21.54 fail	-17.46 fail	-20.21 fail	-39.62 fail
	Barrass 2	28.18 fail	-5.67 fail	-21.42 fail	-41.88 fail
	Simard	19.79 fail	-10.72 fail	-22.69 fail	-45.19 fail
fos304 &	raw	12.69 fail	21.42 fail	28.02 fail	36.59 fail
Lac315	area	13.16 fail	24.59 fail	23.89 fail	47.52 fail
	Tuck	11.52 fail	3.84 fail	2.41 fail	8.14 fail
	Barrass 2	25.03 fail	21.61 fail	31.00 fail	66.96 fail
	Simard	22.97 fail	21.10 fail	27.22 fail	61.21 fail
fos304 &	raw	-3.96 fail	11.69 fail	-8.93 fail	32.04 fail
Mar297	area	-4.77 fail	7.88 fail	-6.01 fail	22.15 fail
	Tuck	-15.38 fail	-4.97 fail	-39.74 fail	-18.81 fail
	Barrass 2	-5.36 fail	6.54 fail	-10.56 fail	23.73 fail
	Simard	-5.93 fail	6.40 fail	-11.53 fail	22.78 fail
fos304 &	raw	17.39 fail	26.20 fail	53.69 fail	30.38 fail
Mir311	area	17.48 fail	27.34 fail	41.31 fail	14.00 fail
	Tuck	-0.82 pass	0.79 pass	14.42 fail	2.57 fail
	Barrass 2	14.07 fail	23.78 fail	41.91 fail	42.50 fail
	Simard	15.17 fail	24.38 fail	41.22 fail	37.53 fail

fos304 &	raw	-1.14 pass	-3.23 fail	9.48 fail	14.65 fail
zos302	area	1.28 pass	-0.09 pass	5.11 fail	-6.63 fail
	Tuck	-6.57 fail	-25.35 fail	-23.67 fail	-31.41 fail
	Barrass 2	7.58 fail	-3.23 fail	1.05 pass	17.91 fail
	Simard	6.41 fail	-3.39 fail	1.20 pass	14.45 fail
lac315 &	raw	-22.87 fail	-11.13 fail	-41.44 fail	-8.06 fail
mar297	area	-24.51 fail	-15.19 fail	-40.02 fail	-31.34 fail
	Tuck	-29.61 fail	-8.34 fail	-53.14 fail	-28.21 fail
	Barrass 2	-31.77 fail	-10.71 fail	-53.50 fail	-45.52 fail
	Simard	-31.51 fail	-11.08 fail	-51.21 fail	-40.74 fail
lac315 &	raw	6.79 fail	3.31 fail	26.19 fail	9.50 fail
mir311	area	6.36 fail	1.30 pass	24.24 fail	-5.81 fail
	Tuck	-13.74 fail	-3.39 fail	14.92 fail	-2.26 fail
	Barrass 2	-10.11 fail	0.66 pass	18.49 fail	2.51 fail
	Simard	-8.16 fail	1.75 pass	21.91 fail	3.57 fail
lac315 &	raw	-11.14 fail	-25.68 fail	-13.84 fail	-25.14 fail
zos302	area	-10.77 fail	-25.89 fail	-17.80 fail	-68.47 fail
	Tuck	-19.81 fail	-30.53 fail	-29.02 fail	-42.05 fail
	Barrass 2	-19.14 fail	-26.78 fail	-27.85 fail	-51.72 fail
	Simard	-17.30 fail	-26.09 fail	-24.60 fail	-51.56 fail
mar297 &	raw	31.03 fail	15.78 fail	71.79 fail	14.37 fail
mir311	area	31.90 fail	17.17 fail	57.30 fail	4.56 fail
	Tuck	15.92 fail	5.93 fail	56.58 fail	14.33 fail
	Barrass 2	19.94 fail	11.69 fail	60.63 fail	28.58 fail
	Simard	22.81 fail	13.04 fail	62.00 fail	24.89 fail
mar297 &	raw	1.86 pass	-15.69 fail	17.69 fail	-19.01 fail
zos302	area	6.00 fail	-8.31 fail	12.19 fail	-35.25 fail
	Tuck	9.40 fail	-16.07 fail	8.19 fail	-12.05 fail
	Barrass 2	13.67 fail	-9.36 fail	11.14 fail	-6.14 fail
	Simard	13.16 fail	-9.45 fail	12.45 fail	-9.44 fail
mir311 &	raw	-14.52 fail	-31.13 fail	-34.84 fail	-23.74 fail
zos302	area	-14.67 fail	-28.94 fail	-35.93 fail	-17.47 fail
	Tuck	-6.31 fail	-28.74 fail	-36.52 fail	-21.91 fail
	Barrass 2	-7.54 fail	-29.79 fail	-38.88 fail	-32.18 fail
	Simard	-9.13 fail	-30.26 fail	-38.61 fail	-30.17 fail

E.3 Trends between ship types

		0 - 5	5 - 6	6 - 7	7 +
Chemical	raw	-11.45 fail	-19.83 fail	-33.28 fail	52.32 fail
Tanker	area	-10.90 fail	-14.07 fail	-22.44 fail	27.84 fail
&	Tuck			-104.30 fail	
New Laker	Barrass 2	2.64 fail	20.33 fail	22.37 fail	20.94 fail
	Simard	-13.68 fail	-17.22 fail	-27.34 fail	17.44 fail

	*011	29.69 fail	13.84 fail	-19.17 fail	-18.01 fail
Chemical	raw	29.09 fail 25.11 fail	4.93 fail	-19.17 fail	-18.01 fail
Tanker	area Tuck	6.70 fail	-18.19 fail	-12.75 fail	-12.01 fail
&					
	Barrass 2	18.67 fail	4.65 fail	-7.75 fail	-16.23 fail
Salty Bulker	Simard	20.08 fail	0.51 pass	-16.73 fail	-11.16 fail
Chemical	raw	12.82 fail	-2.64 fail	-1.81 pass	-49.84 fail
Tanker	area	10.36 fail	1.56 pass	11.68 fail	-33.03 fail
&	Tuck	-25.26 fail	-44.35 fail	-70.51 fail	-56.39 fail
Salty Laker	Barrass 2	5.01 fail	21.42 fail	51.01 fail	-33.08 fail
	Simard	-0.99 pass	1.14 pass	16.56 fail	-35.75 fail
Chemical	raw	19.62 fail	14.43 fail	-8.34 fail	26.75 fail
Tanker	area	16.79 fail	10.01 fail	-3.84 fail	28.23 fail
&	Tuck	4.49 fail	-30.38 fail	-78.45 fail	-27.16 fail
Trad. Laker	Barrass 2	46.37 fail	26.77 fail	38.10 fail	26.90 fail
	Simard	35.87 fail	10.37 fail	4.15 fail	21.77 fail
New Laker	raw	50.68 fail	61.75 fail	7.53 fail	-81.19 fail
&	area	45.24 fail	30.18 fail	5.79 fail	-42.48 fail
Salty Bulker	Tuck	48.03 fail	59.11 fail	41.64 fail	-8.70 fail
5	Barrass 2	14.16 fail	-18.89 fail	-24.15 fail	-28.66 fail
	Simard	33.97 fail	22.63 fail	6.27 fail	-23.75 fail
New Laker	raw	29.99 fail	26.71 fail	36.16 fail	-98.27 fail
&	area	26.84 fail	19.61 fail	31.51 fail	-57.20 fail
Salty Laker	Tuck	12.48 fail	16.38 fail	30.36 fail	-34.85 fail
~	Barrass 2	2.17 fail	5.57 fail	25.35 fail	-37.05 fail
	Simard	12.54 fail	18.79 fail	37.26 fail	-36.84 fail
New Laker	raw	37.09 fail	62.15 fail	23.02 fail	-32.76 fail
&	area	33.54 fail	33.41 fail	14.55 fail	-11.69 fail
Traditional	Tuck	44.25 fail	32.97 fail	19.92 fail	-15.41 fail
Laker	Barrass 2	40.25 fail	12.18 fail	13.60 fail	-9.22 fail
200101	Simard	47.69 fail	29.82 fail	25.88 fail	-7.24 fail
Salty Bulker	raw	-22.97 fail	-25.22 fail	19.31 fail	-43.79 fail
&	area	-20.00 fail	-3.84 fail	21.60 fail	-35.52 fail
Salty Laker	Tuck	-36.83 fail	-33.36 fail	-15.22 fail	-56.23 fail
Salty Laker	Barrass 2	-11.94 fail	19.77 fail	47.23 fail	-25.88 fail
	Simard	-20.77 fail	0.82 pass	27.63 fail	-35.32 fail
Salty Dullson			<u>+</u>		
Salty Bulker	raw	-11.69 fail	1.11 pass 7.29 fail	11.52 fail 7.68 fail	58.06 fail 80.18 fail
& Traditional	area Tuek	-9.50 fail	-16.50 fail		-19.11 fail
	Tuck	-2.34 fail 33.22 fail		-23.20 fail	
Laker	Barrass 2		25.78 fail	36.64 fail	56.88 fail
	Simard	20.42 fail	11.52 fail	17.53 fail	45.89 fail
Salty Laker	raw	9.57 fail	25.98 fail	-7.56 fail	80.52 fail
&	area	8.98 fail	9.78 fail	-13.36 fail	89.66 fail
Traditional	Tuck	33.17 fail	14.70 fail	-9.51 fail	38.60 fail
Laker	Barrass 2	38.72 fail	5.64 fail	-11.93 fail	65.70 fail
	Simard	36.27 fail	9.29 fail	-10.21 fail	65.31 fail

F RESULTS OF STATISTICAL ANALYSIS FOR LAKE ST. LOUIS

		- -		0 11	
		0 - 7	7 - 9	9 - 11	11 +
ALS303 &	raw	-3.46 fail	-6.12 fail	-6.79 fail	-7.94 fail
ALS316	area	-4.42 fail	-12.82 fail	-0.38 pass	-17.49 fail
	Tuck	-17.90 fail	-27.94 fail	-21.04 fail	-12.18 fail
	Barrass 2	-14.92 fail	-17.56 fail	-19.74 fail	-12.54 fail
	Simard	-10.80 fail	-18.24 fail	-14.96 fail	-6.97 fail
cni315 &	raw	27.73 fail	10.63 fail	26.46 fail	n<30
Cni320	area	24.52 fail	15.28 fail	21.37 fail	n<30
	Tuck	18.92 fail	18.42 fail	16.70 fail	n<30
	Barrass 2	-1.12 pass	20.24 fail	15.10 fail	n<30
	Simard	8.98 fail	22.54 fail	24.73 fail	n<30
JBA306 &	raw	13.07 fail	-19.61 fail	9.45 fail	n<30
JBA314	area	16.16 fail	-9.14 fail	17.16 fail	n<30
	Tuck	1.81 pass	-3.19 fail	6.31 fail	n<30
	Barrass 2	-8.53 fail	8.25 fail	-1.23 pass	n<30
	Simard	-3.81 fail	2.04 fail	-1.42 pass	n<30
Pma299 &	raw	-23.79 fail	-8.20 fail	16.63 fail	n<30
Pma310	area	-27.05 fail	-20.11 fail	16.23 fail	n<30
	Tuck	-34.02 fail	-16.01 fail	-6.79 fail	n<30
	Barrass 2	-10.98 fail	-11.63 fail	-21.98 fail	n<30
	Simard	-16.95 fail	-13.09 fail	-13.21 fail	n<30

F.1 Results of statistical analysis for ships passing twice

F.2 Results of statistical analysis for ships of the same type

F.2.1 New Lakers

		0 - 7	7 - 9	9 – 11	11+
Pma299 &	raw	-23.79 fail	-8.20 fail	16.63 fail	n<30
Pma310	area	-27.05 fail	-20.11 fail	16.23 fail	n<30
	Tuck	-34.02 fail	-16.01 fail	-6.79 fail	n<30
	Barrass 2	-10.98 fail	-11.63 fail	-21.98 fail	n<30
	Simard	-16.95 fail	-13.09 fail	-13.21 fail	n<30
Pma299 &	raw	-9.62 fail	-18.39 fail	-15.78 fail	-25.59 fail
Alv316	area	-11.53 fail	-30.11 fail	-22.60 fail	-9.22 fail
	Tuck	-3.04 fail	-29.83 fail	-15.56 fail	0.10 pass
	Barrass 2	7.21 fail	-8.74 fail	-14.78 fail	2.96 fail
	Simard	3.94 fail	-21.43 fail	-18.57 fail	-8.25 fail
Pma299 &	raw	-19.22 fail	-4.34 fail	11.07 fail	n<30
Cni315	area	-19.12 fail	-13.36 fail	1.62 pass	n<30
	Tuck	-7.69 fail	-8.02 fail	5.78 fail	n<30
	Barrass 2	10.16 fail	-9.52 fail	0.06 pass	n<30
	Simard	2.50 fail	-10.52 fail	2.05 fail	n<30

pma299 &	raw	7.16 fail	4.48 fail	32.69 fail	n<30
cni320	area	6.83 fail	5.80 fail	27.32 fail	n<30
	Tuck	17.09 fail	23.75 fail	24.28 fail	n<30
	Barrass 2	17.45 fail	20.30 fail	16.87 fail	n<30
	Simard	21.86 fail	20.32 fail	26.95 fail	n<30
pma310 &	raw	15.94 fail	-15.13 fail	-25.07 fail	n<30
alv316	area	12.69 fail	-14.07 fail	-36.84 fail	n<30
	Tuck	23.24 fail	-16.71 fail	-11.65 fail	n<30
	Barrass 2	14.83 fail	1.43 pass	-0.87 pass	n<30
	Simard	16.99 fail	-9.56 fail	-11.85 fail	n<30
pma310 &	raw	1.79 pass	4.34 fail	-6.79 fail	n<30
cni315	area	6.12 fail	-7.04 fail	-10.55 fail	n<30
	Tuck	16.56 fail	-0.79 pass	11.51 fail	n<30
	Barrass 2	16.38 fail	-3.86 fail	18.44 fail	n<30
	Simard	15.16 fail	-3.24 fail	14.87 fail	n<30
pma310 &	raw	34.70 fail	16.63 fail	20.13 fail	n<30
cni320	area	32.81 fail	29.25 fail	16.71 fail	n<30
	Tuck	53.36 fail	47.27 fail	30.29 fail	n<30
	Barrass 2	20.41 fail	36.49 fail	33.04 fail	n<30
	Simard	29.73 fail	41.36 fail	37.81 fail	n<30
alv316 &	raw	-11.83 fail	16.68 fail	22.20 fail	n<30
cni315	area	-6.42 fail	-1.85 pass	20.87 fail	n<30
	Tuck	-4.21 fail	6.94 fail	18.39 fail	n<30
	Barrass 2	4.55 fail	-4.43 fail	13.69 fail	n<30
	Simard	-0.89 pass	1.65 pass	19.51 fail	n<30
alv316 &	raw	18.95 fail	23.07 fail	33.77 fail	n<30
cni320	area	16.78 fail	37.85 fail	43.49 fail	n<30
	Tuck	15.25 fail	58.80 fail	32.02 fail	n<30
	Barrass 2	5.78 fail	28.93 fail	25.22 fail	n<30
	Simard	8.81 fail	52.45 fail	33.85 fail	n<30
cni315 &	raw	27.73 fail	10.63 fail	26.46 fail	n<30
cni320	area	24.52 fail	15.28 fail	21.37 fail	n<30
	Tuck	18.92 fail	18.42 fail	16.70 fail	n<30
	Barrass 2	-1.12 pass	20.24 fail	15.10 fail	n<30
	Simard	8.98 fail	22.54 fail	24.73 fail	n<30

F.2.2 Traditional Lakers

		0 - 7	7 - 9	9 - 11	11+
CAV305 &	raw	33.86 fail	-9.63 fail	6.17 fail	22.57 fail
HAL308	area	32.83 fail	-10.00 fail	10.55 fail	11.44 fail
	Tuck	18.18 fail	-19.12 fail	4.42 fail	8.30 fail
	Barrass 2	-5.34 fail	-6.42 fail	6.53 fail	10.77 fail
	Simard	-2.06 fail	-11.15 fail	8.13 fail	19.39 fail

CAV305 &	raw	25.42 fail	2.40 fail	30.27 fail	54.97 fail
MAN301	area	23.18 fail	12.26 fail	34.56 fail	55.81 fail
	Tuck	39.45 fail	15.31 fail	33.58 fail	52.70 fail
	Barrass 2	29.82 fail	19.85 fail	21.80 fail	56.94 fail
	Simard	31.16 fail	24.28 fail	35.03 fail	70.27 fail
HAL308 &	raw	6.35 fail	12.62 fail	30.42 fail	40.01 fail
MAN301		0 1			
IVIAIN301	area	5.77 fail	25.76 fail	32.16 fail	56.28 fail
IVIAIN301	area Tuck	5.77 fail 29.53 fail	25.76 fail 29.69 fail	32.16 fail 29.23 fail	56.28 fail 59.02 fail
WIAN301					

F.2.3 Chemical Tankers

		0 - 7	7 - 9	9 - 11	11+
ALS303 &	raw	-3.46 fail	-6.12 fail	-6.79 fail	-7.94 fail
ALS316	area	-4.42 fail	-12.82 fail	-0.38 pass	-17.49 fail
	Tuck	-17.90 fail	-27.94 fail	-21.04 fail	-12.18 fail
	Barrass 2	-14.92 fail	-17.56 fail	-19.74 fail	-12.54 fail
	Simard	-10.80 fail	-18.24 fail	-14.96 fail	-6.97 fail
ALS303 &	raw	24.56 fail	-0.83 pass	-1.84 pass	11.60 fail
TUK317	area	-2.39 fail	-2.89 fail	9.17 fail	5.25 fail
	Tuck	-13.73 fail	-20.04 fail	9.74 fail	-14.37 fail
	Barrass 2	-10.25 fail	1.70 pass	41.18 fail	27.36 fail
	Simard	-5.44 fail	-4.06 fail	7.86 fail	9.14 fail
ALS316 &	raw	20.23 fail	5.11 fail	10.30 fail	20.05 fail
TUK317	area	3.12 fail	5.77 fail	14.48 fail	16.19 fail
	Tuck	5.48 fail	0.13 pass	38.69 fail	-5.31 fail
	Barrass 2	3.44 fail	10.32 fail	68.35 fail	37.73 fail
	Simard	4.67 fail	7.71 fail	33.84 fail	16.20 fail

F.2.4 Salty Lakers

		0 - 7	7 - 9	9 - 11	11+
ATE313 &	raw	-17.07 fail	-16.11 fail	-17.62 fail	-26.39 fail
FEF298	area	-25.85 fail	-16.04 fail	-18.91 fail	-30.25 fail
	Tuck	0.20 pass	-10.81 fail	-17.20 fail	12.18 fail
	Barrass 2	4.72 fail	-10.61 fail	-33.54 fail	-16.44 fail
	Simard	7.22 fail	-12.91 fail	-24.92 fail	-11.82 fail
ATE313 &	raw	-27.12 fail	-6.76 fail	-10.49 fail	-13.56 fail
FSA301	area	-31.53 fail	-12.55 fail	-17.76 fail	-31.54 fail
	Tuck	-15.42 fail	-8.99 fail	-25.38 fail	11.09 fail
	Barrass 2	-5.75 fail	-13.72 fail	-37.02 fail	0.09 pass
	Simard	-4.45 fail	-9.56 fail	-21.64 fail	6.59 fail

ATE313 &	raw	-36.61 fail	-14.08 fail	20.24 fail	n<30
JBA306	area	-29.05 fail	-6.37 fail	11.73 fail	n<30
5011500	Tuck	8.28 fail	2.53 fail	-5.17 fail	n<30
	Barrass 2	37.78 fail	6.99 fail	-13.00 fail	n<30
	Simard	28.67 fail	-0.83 pass	-0.13 pass	n<30
ATE313 &	raw	-4.18 fail	-28.73 fail	29.39 fail	n<30
JBA314	area	-4.38 fail	-11.25 fail	25.24 fail	n<30
51571511	Tuck	10.25 fail	-0.57 pass	-0.55 pass	n<30
	Barrass 2	21.96 fail	16.84 fail	-15.36 fail	n<30
	Simard	19.85 fail	0.98 pass	-1.09 pass	n<30
FEF298 &	raw	-12.15 fail	0.05 pass	3.46 fail	18.12 fail
FSA301	area	-10.26 fail	-6.37 fail	-2.63 fail	0.40 pass
	Tuck	-16.43 fail	-4.66 fail	-11.95 fail	-0.23 pass
	Barrass 2	-10.39 fail	-7.81 fail	-2.72 fail	19.19 fail
	Simard	-10.74 fail	-4.02 fail	-1.71 pass	19.93 fail
FEF298 &	raw	-24.88 fail	10.19 fail	27.54 fail	n<30
JBA306	area	-8.63 fail	15.28 fail	26.99 fail	n<30
	Tuck	8.37 fail	11.84 fail	15.18 fail	n<30
	Barrass 2	36.39 fail	16.03 fail	25.65 fail	n<30
	Simard	24.81 fail	12.67 fail	27.34 fail	n<30
FEF298 &	raw	1.17 pass	2.76 fail	31.07 fail	n<30
JBA314	area	10.50 fail	10.89 fail	34.67 fail	n<30
	Tuck	10.37 fail	10.77 fail	19.64 fail	n<30
	Barrass 2	20.16 fail	25.12 fail	26.42 fail	n<30
	Simard	16.24 fail	14.24 fail	26.98 fail	n<30
FSA301 &	raw	-14.26 fail	4.09 fail	18.42 fail	n<30
JBA306	area	1.27 pass	10.75 fail	23.63 fail	n<30
	Tuck	17.50 fail	9.50 fail	24.08 fail	n<30
	Barrass 2	40.01 fail	16.87 fail	29.33 fail	n<30
	Simard	29.74 fail	9.38 fail	22.86 fail	n<30
FSA301 &	raw	5.93 fail	1.08 pass	21.14 fail	n<30
JBA314	area	17.51 fail	9.26 fail	29.23 fail	n<30
	Tuck	19.04 fail	8.91 fail	27.20 fail	n<30
	Barrass 2	24.63 fail	21.36 fail	30.36 fail	n<30
	Simard	21.60 fail	9.87 fail	22.52 fail	n<30
JBA306 &	raw	13.07 fail	-19.61 fail	9.45 fail	n<30
JBA314	area	16.16 fail	-9.14 fail	17.16 fail	n<30
	Tuck	1.81 pass	-3.19 fail	6.31 fail	n<30
	Barrass 2	-8.53 fail	8.25 fail	-1.23 pass	n<30
	Simard	-3.81 fail	2.04 fail	-1.42 pass	n<30

F.2.5 Salty Bulkers

		0 - 7	7 - 9	9 - 11	11 +
blr304 &	raw	-2.54 fail	1.36 pass	-25.65 fail	n<30
cle307	area	-10.62 fail	-6.59 fail	-22.89 fail	n<30
	Tuck	0.43 pass	-7.80 fail	5.87 fail	n<30
	Barrass 2	-3.25 fail	-8.76 fail	1.17 pass	n<30
	Simard	1.37 pass	-4.95 fail	-6.55 fail	n<30
blr304 &	raw	6.02 fail	-3.83 fail	-45.85 fail	n<30
fos304	area	16.28 fail	-9.16 fail	-49.81 fail	n<30
	Tuck	-0.44 pass	-12.85 fail	-23.12 fail	n<30
	Barrass 2	-9.66 fail	-22.61 fail	-32.71 fail	n<30
	Simard	-10.53 fail	-12.36 fail	-38.57 fail	n<30
blr304 &	raw	-4.13 fail	19.98 fail	-31.28 fail	n<30
lac315	area	8.48 fail	0.71 pass	-16.23 fail	n<30
	Tuck	1.16 pass	-12.74 fail	20.10 fail	n<30
	Barrass 2	5.21 fail	-5.60 fail	34.09 fail	n<30
	Simard	0.86 pass	-0.13 pass	13.38 fail	n<30
blr304 &	raw	14.69 fail	-1.66 pass	-33.44 fail	n<30
mar297	area	29.44 fail	2.39 fail	-18.34 fail	n<30
	Tuck	18.90 fail	-8.06 fail	3.04 fail	n<30
	Barrass 2	11.52 fail	-9.05 fail	9.57 fail	n<30
	Simard	7.70 fail	-10.72 fail	-5.55 fail	n<30
blr304 &	raw	n<30	n<30	-37.19 fail	n<30
Mir311	area	n<30	n<30	-22.25 fail	n<30
	Tuck	n<30	n<30	-7.02 fail	n<30
	Barrass 2	n<30	n<30	9.41 fail	n<30
	Simard	n<30	n<30	-6.85 fail	n<30
blr304 &	raw	23.05 fail	-4.33 fail	-45.32 fail	n<30
Zos302	area	30.08 fail	-16.04 fail	-48.97 fail	n<30
	Tuck	13.45 fail	-18.38 fail	-26.00 fail	n<30
	Barrass 2	7.12 fail	-20.69 fail	-15.91 fail	n<30
	Simard	7.12 fail	-12.36 fail	-27.14 fail	n<30
Cle307 &	raw	6.34 fail	-3.91 fail	-26.23 fail	-60.37 fail
Fos304	area	18.55 fail	-0.61 pass	-28.54 fail	-62.85 fail
	Tuck	-0.72 pass	-4.87 fail	-30.62 fail	-40.19 fail
	Barrass 2	-5.37 fail	-5.13 fail	-35.71 fail	-45.80 fail
	Simard	-10.23 fail	-6.46 fail	-37.72 fail	-54.28 fail
cle307 &	raw	-1.56 pass	5.29 fail	6.50 fail	43.82 fail
lac315	area	14.61 fail	6.24 fail	15.04 fail	60.46 fail
	Tuck	0.71 pass	0.86 pass	13.74 fail	2.07 fail
	Barrass 2	7.06 fail	4.39 fail	36.06 fail	30.89 fail
	Simard	-0.28 pass	4.64 fail	29.19 fail	28.22 fail

cle307 &	raw	11.83 fail	-1.92 pass	4.15 fail	n<30
mar297	area	23.09 fail	7.18 fail	12.42 fail	n<30
	Tuck	14.23 fail	1.42 pass	-4.43 fail	n<30
	Barrass 2	12.45 fail	4.94 fail	9.03 fail	n<30
	Simard	4.70 fail	-0.37 pass	2.11 fail	n<30
cle307 &	raw	n<30	n<30	-10.75 fail	-6.51 fail
mir311	area	n<30	n<30	-1.80 pass	34.66 fail
	Tuck	n<30	n<30	-12.27 fail	-18.74 fail
	Barrass 2	n<30	n<30	8.82 fail	32.95 fail
	Simard	n<30	n<30	-1.95 pass	11.67 fail
cle307 &	raw	17.71 fail	-4.31 fail	-15.69 fail	-6.32 fail
zos302	area	25.56 fail	-4.90 fail	-21.32 fail	-0.03 pass
	Tuck	10.71 fail	-10.29 fail	-34.97 fail	-51.90 fail
	Barrass 2	8.91 fail	-5.31 fail	-18.84 fail	-22.54 fail
	Simard	4.83 fail	-6.55 fail	-26.04 fail	-28.29 fail
fos304 &	raw	-7.44 fail	8.83 fail	34.25 fail	85.91 fail
lac315	area	-5.32 fail	8.19 fail	51.44 fail	105.03 fail
	Tuck	1.33 pass	6.63 fail	54.67 fail	28.49 fail
	Barrass 2	11.74 fail	12.53 fail	73.20 fail	59.43 fail
	Simard	8.86 fail	11.87 fail	55.34 fail	70.23 fail
fos304 &	raw	7.13 fail	3.22 fail	32.61 fail	n<30
mar297	area	6.88 fail	9.67 fail	48.62 fail	n<30
	Tuck	14.48 fail	6.67 fail	34.52 fail	n<30
	Barrass 2	18.98 fail	15.48 fail	50.46 fail	n<30
	Simard	16.67 fail	7.52 fail	40.64 fail	n<30
fos304 &	raw	n<30	n<30	17.90 fail	49.85 fail
mir311	area	n<30	n<30	23.90 fail	91.57 fail
	Tuck	n<30	n<30	12.24 fail	18.69 fail
	Barrass 2	n<30	n<30	40.21 fail	65.72 fail
	Simard	n<30	n<30	30.91 fail	57.20 fail
6 204 8	Simula	II •50	11 \ 50	50.71 Iuli	0 / 12 0 10011
fos304 &	raw	14.92 fail	-0.36 pass	15.43 fail	50.43 fail
zos304 &					
	raw	14.92 fail	-0.36 pass	15.43 fail	50.43 fail
	raw area	14.92 fail 12.11 fail	-0.36 pass -4.87 fail	15.43 fail 15.26 fail	50.43 fail 61.47 fail
	raw area Tuck	14.92 fail 12.11 fail 11.11 fail	-0.36 pass -4.87 fail -5.42 fail	15.43 fail 15.26 fail 0.19 pass	50.43 fail 61.47 fail -3.00 fail
	raw area Tuck Barrass 2	14.92 fail 12.11 fail 11.11 fail 14.97 fail	-0.36 pass -4.87 fail -5.42 fail -0.49 pass	15.43 fail 15.26 fail 0.19 pass 23.69 fail	50.43 fail 61.47 fail -3.00 fail 29.18 fail
zos302	raw area Tuck Barrass 2 Simard	14.92 fail 12.11 fail 11.11 fail 14.97 fail 15.27 fail	-0.36 pass -4.87 fail -5.42 fail -0.49 pass -0.13 pass	15.43 fail 15.26 fail 0.19 pass 23.69 fail 20.69 fail	50.43 fail 61.47 fail -3.00 fail 29.18 fail 35.45 fail
zos302 Lac315 &	raw area Tuck Barrass 2 Simard raw	14.92 fail 12.11 fail 11.11 fail 14.97 fail 15.27 fail 12.29 fail	-0.36 pass -4.87 fail -5.42 fail -0.49 pass -0.13 pass -15.64 fail	15.43 fail 15.26 fail 0.19 pass 23.69 fail 20.69 fail -4.79 fail	50.43 fail 61.47 fail -3.00 fail 29.18 fail 35.45 fail n<30
zos302 Lac315 &	raw area Tuck Barrass 2 Simard raw area	14.92 fail 12.11 fail 11.11 fail 14.97 fail 15.27 fail 12.29 fail 12.16 fail	-0.36 pass -4.87 fail -5.42 fail -0.49 pass -0.13 pass -15.64 fail 0.76 pass	15.43 fail 15.26 fail 0.19 pass 23.69 fail 20.69 fail -4.79 fail -6.02 fail	50.43 fail 61.47 fail -3.00 fail 29.18 fail 35.45 fail n<30 n<30

Lac315 &	raw	n<30	N<30	-20.44 fail	-43.05 fail
mir311	area	n<30	N<30	-14.59 fail	-33.20 fail
	Tuck	n<30	N<30	-24.54 fail	-14.39 fail
	Barrass 2	n<30	N<30	-19.79 fail	-4.43 fail
	Simard	n<30	N<30	-20.41 fail	-14.06 fail
Lac315 &	raw	17.55 fail	-9.32 fail	-28.81 fail	-43.28 fail
zos302	area	16.29 fail	-13.99 fail	-68.75 fail	-59.54 fail
	Tuck	8.54 fail	-12.68 fail	-70.99 fail	-32.72 fail
	Barrass 2	-0.04 pass	-12.19 fail	-71.60 fail	-44.25 fail
	Simard	4.55 fail	-11.89 fail	-57.90 fail	-51.49 fail
mar297 &	raw	n<30	N<30	-18.00 fail	n<30
mir311	area	n<30	N<30	-12.47 fail	n<30
	Tuck	n<30	N<30	-10.76 fail	n<30
	Barrass 2	n<30	N<30	2.95 fail	n<30
	Simard	n<30	N<30	-3.46 fail	n<30
mar297 &	raw	8.48 fail	-3.71 fail	-25.90 fail	n<30
Zos302	area	7.75 fail	-16.16 fail	-61.63 fail	n<30
	Tuck	-2.41 fail	-12.37 fail	-44.14 fail	n<30
	Barrass 2	-3.39 fail	-14.59 fail	-38.22 fail	n<30
	Simard	0.92 pass	-7.60 fail	-31.37 fail	n<30
mir311 &	raw	n<30	N<30	-4.15 fail	0.25 pass
Zos302	area	n<30	N<30	-15.77 fail	-33.78 fail
	Tuck	n<30	N<30	-13.20 fail	-24.40 fail
	Barrass 2	n<30	N<30	-25.80 fail	-50.00 fail
	Simard	n<30	N<30	-17.02 fail	-34.37 fail

F.3 Trends between ship types

		0 - 7	7 - 9	9 - 11	11+
Chem. Tanker &	raw	14.68 fail	6.97 fail	39.19 fail	15.24 fail
New Laker	area	18.61 fail	20.69 fail	42.77 fail	28.76 fail
	Tuck	-8.55 fail	-11.25 fail	-18.74 fail	-36.75 fail
	Barrass 2	20.14 fail	41.06 fail	56.43 fail	59.40 fail
	Simard	9.37 fail	19.00 fail	40.54 fail	18.98 fail
Chem. Tanker &	raw	40.70 fail	8.34 fail	0.94 pass	-14.20 fail
Salty Bulker	area	40.52 fail	20.94 fail	9.57 fail	-11.70 fail
	Tuck	12.84 fail	5.96 fail	-3.61 fail	-14.05 fail
	Barrass 2	13.22 fail	22.63 fail	12.62 fail	12.99 fail
	Simard	18.55 fail	22.26 fail	11.32 fail	-0.85 pass

Chem. Tanker &	raw	45.95 fail	10.00 0.1	41 07 0 1	
	1411	43.95 Iall	19.82 fail	41.07 fail	10.46 fail
Salty Laker	area	47.65 fail	28.82 fail	51.06 fail	22.41 fail
-	Tuck	-1.67 pass	2.67 fail	-8.80 fail	-10.88 fail
	Barrass 2	0.81 pass	36.56 fail	53.13 fail	73.39 fail
	Simard	1.09 pass	35.90 fail	50.63 fail	41.70 fail
Chem. Tanker &	raw	51.75 fail	22.56 fail	33.05 fail	57.03 fail
Trad. Laker	area	49.93 fail	35.92 fail	48.27 fail	94.54 fail
	Tuck	7.92 fail	4.29 fail	1.38 pass	16.13 fail
	Barrass 2	11.76 fail	36.12 fail	56.39 fail	100.95 fail
	Simard	15.03 fail	33.21 fail	46.83 fail	72.09 fail
New Laker &	raw	20.01 fail	3.03 fail	-38.11 fail	-27.00 fail
Salty Bulker	area	15.48 fail	0.50 pass	-33.36 fail	-34.50 fail
2	Tuck	24.85 fail	27.96 fail	16.31 fail	24.55 fail
	Barrass 2	-11.56 fail	-27.33 fail	-50.37 fail	-44.95 fail
	Simard	7.99 fail	6.05 fail	-25.60 fail	-17.92 fail
New Laker &	raw	24.87 fail	20.48 fail	6.71 fail	-6.49 fail
Salty Laker	area	22.41 fail	15.35 fail	13.73 fail	-9.80 fail
-	Tuck	9.56 fail	18.97 fail	14.89 fail	26.44 fail
	Barrass 2	-22.46 fail	4.96 fail	-4.22 fail	-2.96 fail
	Simard	-10.18 fail	24.71 fail	16.77 fail	15.08 fail
New Laker &	raw	31.21 fail	23.03 fail	3.76 fail	33.52 fail
Trad. Laker	area	27.04 fail	26.06 fail	19.38 fail	50.59 fail
	Tuck	19.49 fail	16.30 fail	18.35 fail	42.03 fail
	Barrass 2	-12.89 fail	10.39 fail	14.18 fail	36.08 fail
	Simard	4.33 fail	23.77 fail	21.31 fail	46.61 fail
Salty Bulker &	raw	10.26 fail	16.17 fail	40.07 fail	24.24 fail
Salty Laker	area	12.36 fail	14.93 fail	42.46 fail	29.37 fail
ÿ	Tuck	-24.14 fail	-3.97 fail	-5.16 fail	2.65 fail
	Barrass 2	-15.96 fail	23.19 fail	46.36 fail	52.15 fail
	Simard	-23.08 fail	18.47 fail	35.77 fail	37.09 fail
Salty Bulker &	raw	22.93 fail	19.48 fail	32.19 fail	67.42 fail
Trad. Laker	area	19.69 fail	25.74 fail	41.18 fail	89.31 fail
	Tuck	-7.61 fail	-0.47 pass	4.77 fail	25.00 fail
	Barrass 2	-1.98 fail	24.51 fail	49.96 fail	84.07 fail
	Simard	-4.67 fail	19.63 fail	36.06 fail	66.38 fail
Salty Laker &	raw	14.47 fail	5.27 fail	-0.98 pass	47.84 fail
Trad. Laker	area	10.08 fail	13.03 fail	9.68 fail	69.83 fail
	Tuck	15.71 fail	2.34 fail	9.49 fail	22.74 fail
	Barrass 2	14.05 fail	5.66 fail	16.75 fail	44.70 fail
	Simard	18.39 fail	5.79 fail	11.67 fail	38.55 fail

G RESULTS OF STATISTICAL ANALYSIS FOR LAKE ST. FRANCIS

G.1 Trends between ship types

		0-8	8 - 9	9 - 10	10+
ATE313 (SL)	raw	-7.82 fail	-27.56 fail	-70.54 fail	-48.85 fail
&	area	-6.04 fail	-19.06 fail	-74.48 fail	-60.53 fail
HAL308 (TL)	Tuck	-8.51 fail	-30.75 fail	-90.72 fail	-70.56 fail
	Barrass 2	-8.74 fail	-30.60 fail	-85.19 fail	-74.78 fail
	Simard	-8.13 fail	-30.94 fail	-84.64 fail	-66.02 fail
ATE313 (SL)	raw	5.24 fail	7.00 fail	21.42 fail	13.23 fail
&	area	5.58 fail	15.97 fail	29.99 fail	8.13 fail
LAC315 (SB)	Tuck	10.13 fail	28.09 fail	63.68 fail	80.65 fail
	Barrass 2	5.63 fail	2.92 fail	13.29 fail	0.93 pass
	Simard	7.45 fail	12.55 fail	35.59 fail	40.47 fail
ATE313 (SL)	raw	-5.22 fail	5.33 fail	n<30	n<30
&	area	-0.56 pass	-9.62 fail	n<30	n<30
PMA310 (NL)	Tuck	-3.50 fail	-1.82 pass	n<30	n<30
	Barrass 2	-7.05 fail	-18.25 fail	n<30	n<30
	Simard	-8.05 fail	-15.14 fail	n<30	n<30
HAL308 (TL)	raw	14.45 fail	38.51 fail	84.94 fail	55.26 fail
&	area	13.45 fail	33.73 fail	98.75 fail	60.14 fail
LAC315 (SB)	Tuck	22.59 fail	55.90 fail	140.02 fail	98.31 fail
	Barrass 2	17.38 fail	35.13 fail	91.49 fail	73.55 fail
	Simard	18.87 fail	43.76 fail	110.15 fail	79.45 fail
HAL308 (TL)	raw	9.20 fail	40.65 fail	n<30	n<30
&	area	12.31 fail	7.89 fail	n<30	n<30
PMA310 (NL)	Tuck	19.97 fail	31.39 fail	n<30	n<30
	Barrass 2	6.04 fail	14.53 fail	n<30	n<30
	Simard	0.69 pass	21.17 fail	n<30	n<30
LAC315 (SB)	raw	-12.13 fail	-3.49 fail	n<30	n<30
&	area	-8.51 fail	-22.74 fail	n<30	n<30
PMA310 (NL)	Tuck	-17.71 fail	-33.93 fail	n<30	n<30
	Barrass 2	-15.73 fail	-22.78 fail	n<30	n<30
	Simard	-18.92 fail	-31.80 fail	n<30	n<30

(SL): Salty Laker, (TL): Traditional Laker, (SB): Salty Bulker, (NL): New Laker

H RESULTS OF STATISTICAL ANALYSIS FOR WILEY-DONDERO CANAL

H.1 Trends between ship types

		0 - 6	6 - 8	8 - 10	10+
ATE212 (SL)	*011/	7.37 fail	-5.23 fail	-5.93 fail	-15.80 fail
ATE313 (SL) &	raw	6.54 fail	-3.23 fail	-3.93 fail	-15.80 fail
	area				
HAL308 (TL)	Tuck	6.56 fail	-11.69 fail	-13.80 fail	-3.75 fail
	Barrass 2	6.37 fail	-8.77 fail	-11.67 fail	-6.15 fail
	Simard	6.70 fail	-9.01 fail	-8.83 fail	-11.36 fail
ATE313 (SL)	raw	14.48 fail	-15.51 fail	5.43 fail	-10.27 fail
&	area	14.34 fail	-14.92 fail	-2.49 fail	-10.77 fail
LAC315 (SB)	Tuck	16.45 fail	-9.98 fail	-1.37 pass	3.36 fail
	Barrass 2	14.43 fail	-19.67 fail	-15.60 fail	-10.64 fail
	Simard	15.05 fail	-19.33 fail	-5.33 fail	-9.71 fail
ATE313 (SL)	raw	20.06 fail	-7.10 fail	32.22 fail	n<30
&	area	18.93 fail	-10.31 fail	4.86 fail	n<30
PMA310 (NL)	Tuck	16.42 fail	0.31 pass	-2.90 fail	n<30
	Barrass 2	14.93 fail	-2.31 fail	-4.00 fail	n<30
	Simard	15.88 fail	-5.09 fail	3.48 fail	n<30
HAL308 (TL)	raw	8.23 fail	-12.49 fail	11.72 fail	2.57 fail
&	area	8.68 fail	-10.33 fail	8.30 fail	4.60 fail
LAC315 (SB)	Tuck	10.92 fail	-1.54 pass	12.01 fail	6.90 fail
	Barrass 2	8.25 fail	-19.67 fail	-4.37 fail	-4.30 fail
	Simard	8.75 fail	-16.76 fail	3.97 fail	0.74 pass
HAL308 (TL)	raw	16.11 fail	-1.93 pass	45.47 fail	n<30
&	area	14.76 fail	-1.88 pass	11.01 fail	n<30
PMA310 (NL)	Tuck	10.73 fail	17.33 fail	5.28 fail	n<30
	Barrass 2	8.67 fail	9.56 fail	4.26 fail	n<30
	Simard	9.61 fail	4.05 fail	12.48 fail	n<30
LAC315 (SB)	raw	15.65 fail	11.36 fail	24.50 fail	n<30
&	area	11.97 fail	9.16 fail	6.44 fail	n<30
PMA310 (NL)	Tuck	-2.11 fail	12.24 fail	-2.01 fail	n<30
	Barrass 2	-0.19 pass	23.00 fail	7.14 fail	n<30
	Simard	0.66 pass	17.03 fail	9.06 fail	n<30

(SL): Salty Laker, (TL): Traditional Laker, (SB): Salty Bulker, (NL): New Laker

I LIST OF NEGATIVE UKC LOCATIONS BETWEEN ST. LAMBERT AND BEAUHARNOIS

List of al	l negative	e UKC locatio	ns between St-L	ambert and Beauha	rnois locks	
Note: A	MTM coo	ordinates				
Ship type	Ship ID	Direction	UKC (m)	Bottom Elev. (m)	North	East
SB	MAR279	Down bound	-0.16	3.25	5037986.497	303863.2683
SB	LAC315	Up bound	-0.08	2.82	5037921.88	303867.8061
SB	LAC315	Up bound	-0.04	2.75	5037833.704	303910.8947
SB	FOSS304	Up bound	-0.24	3.38	5037685.061	303970.995
SB	LAC315	Up bound	-0.12	2.73	5037490.084	304059.5595
SB	MAR297	Down bound	-0.33	3.16	5037175.634	304194.7822
TL	CAV305	Up bound	-0.12	3.16	5037175.072	304196.4523
SB	FOSS304	Up bound	-0.09	3.02	5037100.429	304229.5698
SB	LAC315	Up bound	-0.09	2.68	5034829.491	304669.5859
SB	LAC315	Up bound	-0.01	2.62	5034809.337	304670.5402
SB	LAC315	Up bound	-0.10	2.67	5034499.107	304680.0719
SB	LAC315	Up bound	-0.12	2.73	5034447.301	304682.6864
SB	LAC315	Up bound	-0.14	2.71	5034424.888	304683.9289
SB	LAC315	Up bound	-0.12	2.74	5034394.873	304685.6698
SB	LAC315	Up bound	-0.05	2.63	5034349.513	304688.3648
SB	LAC315	Up bound	-0.05	2.64	5034249.846	304692.5075
SB	LAC315	Up bound	-0.01	2.64	5034226.669	304693.2151
SB	LAC315	Up bound	-0.07	2.63	5034111.049	304702.5329
SB	LAC315	Up bound	-0.31	2.78	5033843.716	304698.5753
SB	LAC315	Up bound	-0.26	2.62	5033702.928	304708.3848
SB	LAC315	Up bound	-0.32	2.82	5033506.432	304702.2496
SB	LAC315	Up bound	-0.55	2.11	5032622.175	304731.604
TL	HAL308	Up bound	-0.09	3.22	5032013.195	304615.7977
TL	HAL308	Up bound	-0.22	3.33	5031986.757	304608.5228
SB	LAC315	Up bound	-0.27	2.79	5031551.622	304457.9769
SB	LAC315	Up bound	-0.17	2.37	5031239.925	304294.0612
SB	LAC315	Up bound	-0.14	2.74	5030204.104	303236.7873
SB	BLR304	Down bound	-0.01	2.82	5029770.84	301459.5492
SB	FOSS304	Up bound	-0.27	12.19	5029771.699	297600.0748
SB	LAC315	Up bound	-0.20	12.26	5029771.757	297593.7973
SL	FEF298	Up bound	-0.25	12.17	5029711.634	297378.9882
SB	FOSS304	Up bound	-0.25	12.27	5029712.581	297381.0611
SL	JBA314	Up bound	-0.10	12.19	5029701.615	297345.3851
SB	FOSS304	Up bound	-0.03	12.04	5029705.959	297340.7456
SL	JBA314	Up bound	-0.02	12.12	5029695.982	297321.0141
SL	FEF298	Up bound	-0.32	12.11	5029702.088	297308.5648
SB	MAR297	Down bound	-0.13	11.83	5029691.532	297286.0597
SB	LAC315	Up bound	-0.18	12.27	5029706.045	297281.4597
SL	FEF298	Up bound	-0.16	12.12	5029681.906	297248.1379
SL	JBA314	Up bound	-0.06	12.21	5029682.123	297260.0859
SL	JBA314	Up bound	-0.08	12.20	5029679.449	297247.9521
SL	JBA314	Up bound	-0.11	12.18	5029672.741	297217.6671
SL	FEF298	Up bound	-0.19	12.18	5029674.083	297217.0219
SL	FEF298	Up bound	-0.14	12.11	5029664.497	297178.0205

Note: All points match high bottom elevations MTM coordinates							
Ship type	Ship ID	Direction	UKC (m)	Bottom Elev. (m)	North	East	
SL	FEF298	Up bound	-0.17	12.15	5029654.828	297139.2076	
SB	LAC315	Up bound	-0.07	12.02	5029669.06	297089.6596	
SL	FEF298	Up bound	-0.06	12.04	5029636.51	297070.0462	
SL	FEF298	Up bound	-0.04	12.04	5029626.369	297031.5718	
SL	JBA314	Up bound	-0.04	12.09	5029625.788	297021.5325	
SL	FEF298	Up bound	-0.11	12.11	5029614.58	296985.5591	
SL	JBA314	Up bound	-0.01	12.12	5029612.68	296969.505	
SL	FEF298	Up bound	-0.07	12.13	5029611.895	296953.7684	
SB	LAC315	Up bound	-0.35	12.32	5029624.835	296890.623	
СТ	TUK317	Up bound	0.00	12.84	5029527.645	296573.6880	
NL	CNI315	Down bound	-0.47	12.84	5029527.764	296573.230	
SL	FEF298	Up bound	-0.79	12.87	5029526.723	296571.6207	
NL	PMA299	Up bound	-0.23	12.08	5029368.597	295998.8884	
SB	LAC315	Up bound	-0.45	11.80	5029119.594	294378.053	
SB	LAC315	Up bound	-0.44	11.85	5029116.188	294346.4550	
СТ	ALS316	Down bound	-0.13	12.68	5030496.256	291567.761	
TL	MAN301	Down bound	-0.02	12.68	5030500.459	291569.489	
СТ	ALS316	Down bound	-0.35	12.92	5030507.326	291550.2530	
SL	FSA301	Up bound	-0.06	11.58	5030511.555	291552.3917	
SL	FSA301	Up bound	-0.05	11.56	5030522.303	291531.1061	
СТ	ALS316	Down bound	-0.17	12.77	5030532.713	291509.345	
SL	FSA301	Up bound	-1.01	12.58	5030532.844	291509.7304	
SL	FSA301	Up bound	-0.49	12.04	5030550.553	291474.2663	
SL	FSA301	Up bound	-0.18	11.62	5030582.682	291410.7219	
SL	FSA301	Up bound	-0.32	11.78	5030593.618	291389.8964	
SL	FSA301	Up bound	-0.46	11.98	5030614.73	291348.284	
NL	CNI320	Up bound	-0.50	12.69	5030759.537	290954.6631	
SL	FEF298	Up bound	-0.74	12.69	5030759.693	290954.121	
SL	FSA301	Up bound	-0.07	11.37	5030601.297	289514.7599	
SL	FSA301	Up bound	-0.02	11.31	5030574.13	289500.7613	
SL	FSA301	Up bound	-0.17	11.43	5030576.138	289465.8350	
SL	FSA301	Up bound	-0.06	11.37	5030563.207	289420.0803	
SL	FSA301	Up bound	-0.04	11.34	5030539.035	289413.2502	
SL	FSA301	Up bound	-0.01	11.30	5030547.063	289392.648	
SB	LAC315	Up bound	-0.09	11.47	5030517.521	289367.4632	
SL	FSA301	Up bound	-0.22	11.49	5030516.644	289301.911	
SB	LAC315	Up bound	-0.02	11.45	5030512.114	289354.337	
SB	LAC315	Up bound	-0.04	11.49	5030504.059	289334.6208	
SB	LAC315	Up bound	-0.04	11.49	5030495.973	289314.943	
SL	FSA301	Up bound	-0.31	11.47	5030412.933	289039.836	
SB	LAC315	Up bound	-0.02	11.55	5030396.663	289054.5025	
SL	FSA301	Up bound	-0.31	11.48	5030273.734	288755.4944	
NL	CNI320	Up bound	-0.07	12.42	5029672.399	287109.784	
SB	MAR297	Down bound	-0.59	13.30	5020491.21	272368.6248	
SB	MAR297	Down bound	-0.60	13.34	5020476.035	272361.272	

Negative	UKC loc	ations betwee	en St-Lambert an	d Beauharnois lock	ts	
Note: A	All points mat	ch high bottom elev	vations		MTM coo	ordinates
Ship type	Ship ID	Direction	UKC (m)	Bottom Elev. (m)	North	East
SB	MAR297	Down bound	-0.55	13.21	5020465.726	272356.1982
SB	MAR297	Down bound	-0.26	13.09	5020458.322	272351.9387
SB	MAR297	Down bound	-0.09	12.74	5020440.802	272342.4088
SB	MAR297	Down bound	-0.02	12.67	5020415.836	272328.2585
SB	LAC315	Up bound	-1.69	13.89	5020344.728	272311.8114
SB	MAR297	Down bound	-1.32	14.00	5020346.941	272288.9007
SB	LAC315	Up bound	-1.95	14.12	5020335.426	272306.8763
SB	LAC315	Up bound	-1.89	14.07	5020308.141	272292.0926
SB	LAC315	Up bound	-1.96	14.07	5020299.337	272287.2569
SB	LAC315	Up bound	-2.02	14.18	5020293.563	272284.1181
SB	LAC315	Up bound	-2.01	14.20	5020279.66	272276.4564
SB	LAC315	Up bound	-2.05	14.22	5020274.353	272273.5364
SB	LAC315	Up bound	-1.85	14.07	5020264.262	272267.9864
SB	LAC315	Up bound	-1.69	13.91	5020257.133	272264.0221
SB	LAC315	Up bound	-1.69	13.91	5020254.815	272262.7685
SB	LAC315	Up bound	-1.53	13.72	5020250.33	272260.264
SB	LAC315	Up bound	-1.55	13.77	5020229.865	272248.869
SB	LAC315	Up bound	-1.91	14.16	5020217.243	272241.7013
NL	PMA299	Up bound	-1.63	14.16	5020217.309	272239.7817
SB	LAC315	Up bound	-2.39	14.62	5020206.809	272235.7847
SB	LAC315	Up bound	-2.38	14.69	5020199.69	272231.8507
SB	LAC315	Up bound	-2.34	14.65	5020194.056	272228.6946
SB	LAC315	Up bound	-2.38	14.62	5020186.225	272224.2771
NL	PMA299	Up bound	-0.91	13.52	5020182.268	272219.4195
SB	MAR297	Down bound	-0.66	13.52	5020191.029	272199.8948
SB	LAC315	Up bound	-2.12	14.37	5020168.019	272213.8673
SB	LAC315	Up bound	-0.11	12.32	5020144.663	272200.6612