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La présente étude porte sur la stabilité des membrures de coques de navires de cote arctique, et plus
précisément sur la stabilité post-élastique de profilés servant de membrures principales. Le but était d’établir des 
critères précis et pratiques d’évaluation de la stabilité dans le domaine plastique. Pour cela, les résultats d’une 
série d’évaluations paramétriques par la méthode des éléments finis ont été soumis à une analyse empirique. 

Un panneau de coque renforcé selon un quadrillage 3 x 3 et conforme aux Normes équivalentes canadiennes a été 
modélisé à l’aide de la méthode des éléments finis. Pour l’analyse non linéaire par éléments finis (AEF), les 
chercheurs ont utilisé une technique qui permettait de faire varier indépendamment les paramètres relatifs aux 
membrures principales. L’analyse s’est poursuivie jusqu’à ce que les charges glacielles dépassent une force 
égale à la valeur Fmax calculée; les contraintes de compression biaxiale dans le plan du panneau étaient prises en 
compte. 

Des relations limitées ont été établies pour la configuration de navire étudiée. Pour de grandes variations de la 
portée, de la hauteur de l’âme, de l’épaisseur et de la largeur des ailes, les membrures n’ont pas flambé, sous 
des sollicitations inférieures à 2*Fmax. Seulement deux des paramètres étudiés ont influé sur la stabilité de la 
structure sous les charges étudiées : l’épaisseur de l’âme et la limite élastique du matériau. 

Il s’est révélé impossible de traduire les relations observées en des formules réalistes assimilables aux critères en 
vigueur. 

Une AEF non linéaire devrait être effectuée pour déterminer la tenue au flambement de la structure étudiée dans 
le domaine plastique. Des procédures/directives devraient être élaborées pour guider les analyses non linéaires. 
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EXECUTIVE SUMMARY

The design of ice-going ships for operation in Canadian waters is currently controlled and
regulated by the Equivalent Standards for the Construction of Arctic Class Ships, which
includes stability criteria for scantlings that are used in ship design. However, more accurate
and practical criteria continue to be developed that are valid for extreme load cases.

In the current Equivalent Standards, stability of framing is controlled by two sets of equations.
The first set was developed for the purpose of controlling tripping of frames and is based on
span and web ratios. The second set of rules was developed to control local buckling of
frames. The two sets of rules are based on designing a structure to exceed its elastic limit
before it experiences either tripping or local buckling. The equations are based on linear
assumptions and are valid only up to the point of yielding.

This project is the latest in an initiative to incorporate practical and more accurate stability
criteria into the Equivalent Standards, particularly in the post-yield range. The primary
objective of this project was to apply Finite Element Modelling to obtain empirical
performance results that could be expressed by formulae resembling those of the current
Equivalent Standards.

A literature survey was undertaken to identify all current work that is relevant to post-yield
structural stability of laterally loaded stiffeners on plated structures. It included all fields and
was not limited to ship structures. The literature survey did not uncover any work being
performed that is relevant to this project.

The present design criteria, as laid out in the Equivalent Standards, were thoroughly reviewed
to understand how the equations were derived and to determine their applicability in the non-
linear regime. The main results of the review were that the current stability equations could not
be expected to predict the non-linear flexural-torsional buckling of stiffened panel main frames
that is observed in nature as a response to a laterally applied load.

The structure used for analysis in this study is a portion of a single skin icebreaker hull. It
consists of a 3x3 bay stiffened panel that is typical of an icebreaking ship hull. One bay of this
panel is shown in Figure 1.

A series of linear eigenvalue buckling analyses were performed. The buckling load levels
showed no correlation with those predicted using the current equations. It was concluded that
this is because the response is dominated by highly non-linear phenomena. Non-linear post-
yield analyses were performed to establish relationships between key parameters that describe
the hull scantlings and the buckling load for main frames. The applied ice load results in two
components of load:  an in-plane load and a lateral load. The lateral load component of the ice
load is evident. The in-plane load component is produced by the overall ship bending response
and the "local-global" bending between adjacent bulkheads and decks. The global bending
response produces a biaxial in-plane compressive load in the hull.
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Note:  Units are in millimetres

Figure 1  Elements of Stiffened Panel Construction

Key geometric parameters were selected and the panel geometry altered by varying these
independently. Finite Element Analysis (FEA) was then used in a semi-empirical manner to
study the response of the structure to these modifications. The study was restricted to angle
section main frames, and it was expected that the most important parameters affecting the
buckling load would be: span, yield stress, flange width, flange thickness, web height and web
thickness.

The yield stress was manipulated so that the “strength” of the frame was unchanged as each
single parameter was varied. Thus, the initiation of yield in the frame always occurred at the
same value of applied lateral load.

In the non-linear solution algorithm, all of the loads and load related “initial” conditions are
incrementally increased at each load step in direct proportion to each other. The effect of the
in-plane load was studied by varying its “nominal” level. The nominal in-plane load is defined
as the magnitude of the in-plane load at an applied ice load equal in magnitude to Fmax. It was
found that as the proportion of nominal in-plane load to lateral ice load is increased, buckling
occurs at a lower overall load level.
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In previous phases of this work, it was found that main frame stability is heavily affected by
the magnitude of the material yield strength. Since yield strength was modified to offset the
effects of varying parameters, the effect of yield strength on stability needed to be determined
independently. A series of runs was completed where only the yield strength was modified.
The relationship between the yield strength and the buckling load factor (BLF) was found to
be linear, as can be seen in Figure 2. The panel becomes more stable in the post-yield regime
as the yield strength is increased.

Buckling Load Factor vs. Yield Strength
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Figure 2  BLF vs. Yield Strenth

This relationship, in the form of the equation displayed in Figure 2, was used to adjust the
results of the other runs to take into account the change in yield strength. It is important to note
that for this particular panel, the curve does not go below Fmax until the yield strength of the
material is reduced to a value too small to be practical in design.

Linearly, under compressive loads, the buckling load of typical column-like structures depends
on the inverse of span squared. Thus, as the unsupported length (or span), increases, the
buckling load decreases. A similar relationship was anticipated in the case of the non-linear
runs. However, this trend was not found. The results are plotted in Figure 3.

The relationship found for the effect of span on stability is rather counter-intuitive. Initially, as
one might expect, the stability of the panel decreases as the span is increased. However, for
spans greater than about two metres, this trend reverses and the stability begins to increase as
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the span is increased. The curve in Figure 3 shows a change in buckling load as span is varied,
but it appears to be bounded by a horizontal line at BLF = 2.

Buckling Load Factor vs. Span
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Figure 3  BLF vs. Span

Figure 3 also includes a curve with the yield strength effect described above accounted for
(using the linear equation found in Figure 2). It can be seen that the effect of changing the
yield strength is minimal.

Analysing the results of the non-linear FEA for the varying web depth, flange thickness and
flange width series of analyses, the curves of BLF vs. dimension of the parameter were found
to be similarly bounded by a horizontal line at BLF = 2. That is, regardless of the dimensions
of the span, web depth or flange, the main frames do not experience buckling below a load
level of 2* Fmax.

An exception to this bounding phenomenon was found in the web thickness series of non-
linear analyses. The post-yield buckling load level for these runs is plotted versus the web
thickness in Figure 4. As can be seen from the figure, there is a linear dependence of buckling
load on frame web thickness. The stability of the panel increases as the web thickness is
increased. Again, the comparison of the results from the actual analyses and the results with
the yield strength effect accounted for is shown in the figure. It can be seen that the effect of
changing the yield strength is again minimal.
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Therefore, in summary, only two parameters affect the frame stability at the load levels of
interest: web thickness and material yield strength.

Buckling Load Factor vs. Web Thickness
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Figure 4  BLF vs. Web Thickness

It must be understood that all of the information generated in this study is based on one ship
configuration (i.e., displacement and power). Scantling dimensions have been varied
extensively for this ship and there is a high level of confidence that the relationships defined
for this ship are accurate and that post-yield buckling will not be a problem except for frames
with very thin webs. However, whether this will hold for all ships of varying displacement and
power has yet to be determined and was beyond the scope of this project.

Upon completion of this study, it appeared that it would not be practical (or perhaps even
possible) to identify analytical relationships that would accurately predict post-yield buckling
because the response is too complicated. It is quite possible that the approach taken in the
future will be that ship designers will use formulae only to provide an initial design that will
then be verified and optimized by non-linear FEA.

It is therefore recommended that designers use the current Equivalent Standards rules for
developing ship scantling sizes. Based on the results of this and previous phases of this study,
main frames designed using the current rules for ship design show no trends toward post-yield
buckling below Fmax. In fact, most designs fail above 2* Fmax.
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It is also recommended that, where critical, non-linear FEA be performed to determine the
specific post-yield buckling response of the designed structure. It is further recommended that
procedures be developed for performing the non-linear analyses.
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SOMMAIRE

La conception des navires de cote arctique admis dans les eaux canadiennes est actuellement
réglementée par les Normes équivalentes pour la construction des navires de cote arctique, qui
définissent des critères de stabilité visant les échantillonnages utilisés dans la conception des
navires. Parallèlement à ces normes, des travaux se poursuivent en vue d’élaborer des critères
plus précis et plus pratiques pour les cas de charges extrêmes.

Dans les Normes équivalentes actuelles, la stabilité des membrures est déterminée par deux
ensembles d’équations. Les premières, qui régissent le déversement des membrures, sont
fondées sur le rapport de la portée à l’âme. Les deuxièmes régissent le flambement local des
membrures. Dans les deux cas, la structure doit être conçue de façon qu’elle ne puisse déverser
ou flamber localement, à moins d’avoir atteint sa limite élastique. Les équations sont fondées
sur des hypothèses linéaires et elles ne sont valides qu’en deçà de la limite élastique.

La présente étude est la dernière d’une série d’études qui visaient à incorporer dans les Normes
équivalentes des critères de stabilité pratiques et plus précis, notamment dans le domaine
plastique. L’objectif principal assigné à cette étude était d’utiliser la modélisation par éléments
finis pour obtenir des données de comportement empirique qui pourraient être traduites en des
formules semblables à celles des Normes équivalentes actuelles.

Une recherche documentaire a d’abord été entreprise, dans le but de recenser tous les travaux
en cours s’intéressant à la stabilité structurelle post-élastique de raidisseurs fixés à des plaques,
lorsque soumis à une pression latérale. Tous les types de structures, et non seulement les
structures navales, intéressaient les chercheurs. Mais ils n’ont trouvé aucune recherche
pertinente.

Les chercheurs ont ensuite examiné attentivement les critères de conception énoncés dans les
Normes équivalentes, afin de comprendre comment les équations avaient été établies et de
déterminer leur applicabilité à des analyses en régime non linéaire. L’examen a mené à une
constatation cruciale, à savoir que les équations actuelles de stabilité ne peuvent prédire le
flambement non linéaire par flexion et torsion des membrures principales d’un panneau
renforcé, tel qu’il est observé dans la nature en réponse à l’application latérale d’une charge.

La structure utilisée pour l’analyse était un panneau renforcé selon un quadrillage de 3 x 3
représentant une partie de coque de brise-glace à bordé simple. La figure 1 montre un carré de
ce panneau.

Une série d’analyses linéaires de flambement aux valeurs propres ont été effectuées. Aucune
corrélation n’a pu être établie entre les résultats obtenus et les valeurs prédites selon les
équations actuelles. Cette absence de corrélation a été attribuée au fait que les réponses sont
fortement dominées par un phénomène non linéaire. Des analyses non linéaires dans le
domaine élastique ont donc été réalisées afin d’établir des rapports entre les principaux
paramètres qui décrivent les échantillonnages de la coque et la charge de flambement des
membrures principales. La charge glacielle appliquée produit deux types de contraintes : une
contrainte dans le plan du panneau et une pression latérale. La composante latérale de la
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charge glacielle est manifeste. Quant à la composante qui agit dans le plan du panneau, elle
résulte de la flexion globale de la coque et de la flexion «mi-locale, mi-globale» se produisant
entre les parois et les ponts adjacents. La réponse de flexion globale engendre une charge de
compression biaxiale dans le plan de la coque.

épaisseur – tôle = 30,163 

âme – serre = 500 x 25,4 

aile – serre = 160 x 25,4 

âme – membrure renforcée = 1 014 x 22,23 

aile – membrure renforcée = 112 x 15,875 

âme – membrure principale = 274 x 23,81 

aile – membrure  
principale =  

132 x 15,875

Figure 1  Panneau avec raidisseurs
(Nota : les mesures sont exprimées en millimètres)

Des paramètres clés relatifs à la géométrie du panneau ont été choisis et on a fait varier ceux-ci
de façon indépendante. La méthode d’analyse par éléments finis (AEF) a alors été utilisée de
façon semi-empirique pour étudier l’effet de ces variations sur la structure. L’étude a porté
uniquement sur des membrures principales en forme de profilés. On s’attendait à ce que les
paramètres suivants aient la plus grande influence sur la charge de flambement : la portée, la
limite élastique, la largeur des ailes, l’épaisseur des ailes, la hauteur de l’âme et l’épaisseur de
l’âme.

La limite élastique était établie de façon à garder la «résistance» de la membrure constante
pendant que chaque paramètre variait. Ainsi, la membrure commençait toujours à flamber à la
même valeur de charge latérale.

Dans l’algorithme de résolution non linéaire, toutes les charges et les conditions «initiales»
reliées aux charges sont augmentées progressivement et en proportion directe les unes des
autres. L’effet de la charge dans le plan du panneau a été étudié en faisant varier la valeur
«nominale» de cette charge, laquelle est définie comme la valeur de la charge dans le plan du
panneau sous une charge glacielle égale à Fmax. À mesure que le rapport de la charge nominale
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à la charge latérale (pression de la glace) augmentait, la charge globale menant au flambement
diminuait.

Les phases antérieures du programme de recherche avaient révélé que la stabilité des
membrures principales est fortement tributaire de la limite élastique du matériau. Comme, dans
la présente étude, on modifiait la limite élastique pour compenser les effets de la variation des
paramètres, il fallait mesurer de façon indépendante l’effet de la limite élastique sur la stabilité.
Une série de cycles d’essais ont été réalisés, dans lesquels seule la limite élastique était
modifiée. La relation entre la limite élastique et le facteur de charge de flambement (FCF) s’est
révélée linéaire, comme on peut le voir à la figure 2. Ainsi, à mesure que la limite élastique
augmente, le panneau est plus stable en régime post-élastique.

Facteurs de charge de flambement vs limite élastique

y = 0,0028x + 1,2543 
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Figure 2  FCF vs limite élastique

Cette relation, exprimée par l’équation montrée à la figure 2, a été utilisée pour rajuster les
résultats des autres cycles d’essais, de façon à prendre en compte la variation de la limite
élastique. Il est important de noter que pour ce panneau en particulier, la courbe ne descend
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sous Fmax que lorsque la limite élastique du matériau est réduite à une valeur trop faible pour
être envisagée dans la pratique.

En régime linéaire, sous des charges de compression, la charge de flambement de structures
types en forme de colonnes varie en fonction inverse de la portée au carré. Ainsi, à mesure que
la portée (longueur non soutenue) augmente, la charge de flambement diminue. Une relation
semblable était attendue dans le cas des cycles d’essai en régime non linéaire. Toutefois, cela
ne s’est pas avéré. Les résultats sont présentés à la figure 3.

La relation établie entre la portée et la stabilité défie plutôt l’intuition. Au départ, comme on
peut s’y attendre, la stabilité du panneau diminue à mesure que la portée augmente. Toutefois,
lorsque la portée dépasse les deux mètres, environ, cette tendance s’inverse et la stabilité se
met à augmenter en même temps que la portée. Ainsi, la courbe de la figure 3 montre la
variation de la charge de flambement en fonction de la portée, mais elle semble être limitée par
une horizontale à FCF = 2.

 Facteur de charge de flambement vs portée 
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Figure 3  FCF vs portée

La figure 3 comprend également une courbe dans laquelle l’effet de la limite élastique décrite
ci-dessus est pris en compte (à l’aide de l’équation linéaire reproduite à la figure 2). Il est
facile de constater que la variation de la limite élastique a peu d’effet.
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L’analyse des résultats des AEF non linéaires portant sur des hauteurs d’âmes et des épaisseurs
et largeurs d’ailes variables a donné des courbes de FCF en fonction des dimensions des
paramètres qui étaient limitées elles aussi par une horizontale à FCF = 2. C’est dire que, peu
importent la portée, la hauteur de l’âme ou les dimensions des ailes, les membrures principales
ne flambent pas sous des charges inférieures à 2*Fmax.

Une exception à ce phénomène de limitation a toutefois été constatée dans la série d’analyses
non linéaires de l’épaisseur de l’âme. La figure 4 montre la charge de flambement post-
élastique en fonction de l’épaisseur de l’âme, telle qu’établie lors de ces essais. Comme on
peut le voir, la charge de flambement et l’épaisseur de l’âme de la membrure définissent une
fonction linéaire. La stabilité du panneau augmente en raison directe de l’épaisseur de l’âme.
Encore une fois, la figure permet de comparer les résultats des analyses réelles et les résultats
obtenus lorsque la limite élastique est prise en compte. Et on peut voir, encore une fois, que la
variation de la limite élastique du matériau produit peu d’effet.

Donc, pour résumer, deux paramètres seulement influent sur la stabilité des membrures sous
les charges étudiées : l’épaisseur de l’âme et la limite élastique du matériau.

 Facteur de charge de flambement vs épaisseur de l’aile 
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Figure 4  FCF vs épaisseur de l’aile

Il convient de noter que toutes les données générées au cours de cette étude sont fondées sur
une seule configuration de navire (aux chapitres du déplacement et de la puissance). Des
variations importantes des échantillonnages ont été étudiées pour ce navire et il est permis
d’établir, avec un niveau de confiance élevé, que les relations définies pour ce navire sont
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exactes et que le flambement post-élastique n’est pas un risque significatif, sauf dans le cas des
membrures à âme très mince. Toutefois, il reste à déterminer si ces conclusions valent pour
tous les navires affichant d’autres valeurs de déplacement et de puissance, ce qui dépassait la
portée de ce projet.

Au terme de la présente étude, il est apparu qu’il serait difficile (voire impossible) de définir
des relations analytiques permettant de prédire avec justesse le flambement post-élastique,
parce que cette réponse est trop complexe. On peut penser que dans l’avenir, les architectes
navals auront recours à des formules uniquement pour leurs travaux de conception initiale et
qu’ils peaufineront ensuite leurs études à l’aide d’AEF non linéaires.

Il est donc recommandé que les concepteurs utilisent les Normes équivalentes en vigueur pour
définir les dimensions des pièces de construction des navires. Selon les résultats de la présente
étude et des phases antérieures de ce programme, les membrures principales conçues à la
lumière des règles actuelles de conception des navires n’ont pas tendance à flamber dans le
domaine plastique sous des charges inférieures à Fmax. De fait, la plupart flambent sous des
charges supérieures à 2*Fmax.

Il est également recommandé que, dans des cas critiques, une AEF non linéaire soit effectuée
pour déterminer la tenue au flambement dans le domaine plastique propre à la structure
étudiée. Il est en outre recommandé d’élaborer des procédures pour la réalisation des analyses
non linéaires.
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1.  INTRODUCTION AND OBJECTIVES

This project represents Phase IV of an initiative to incorporate practical and more accurate
stability criteria into the Equivalent Standards for the Construction of Arctic Class Ships [1], a
document developed to control and regulate the design and manufacture of ice-going ships for
operation in Canadian waters (hereinafter referred to as "Equivalent Standards"). The
Equivalent Standards are the follow-on refined version of the previous Arctic Shipping
Pollution Prevention Regulations (ASPPR)[2].

The present stability criteria in the Equivalent Standards were developed with the underlying
philosophy that premature buckling will result in a structure that does not achieve its strength
potential. Therefore, an efficient design would buckle at a design load level slightly higher
than that required to cause structural failure by yielding or rupture. This would mean that for
an acceptable design, a structure would never experience buckling, provided design loads were
not exceeded. Traditionally, the design stresses have been yield stresses and the structure was
designed such that, at a load level of sufficient magnitude to cause yielding, the structure
should not buckle.

The Equivalent Standards have deviated from tradition and permit yielding of structural
components at load levels corresponding to extreme, low-probability, ice interaction forces.
The philosophy behind this is that the occurrence of these “extreme” loads is quite rare and a
certain amount of permanent distortion should be tolerated provided that the structural
integrity of the ship is not compromised. The structural integrity of the ship would be
compromised if stresses exceeded the ultimate strength of the materials or if buckling (i.e., loss
of stability) of structural members occurred.

By permitting yielding to occur, the formation of plastic hinges in framing is allowed to
develop. This permits the utilization of plastic shear and bending capacities to carry
incremental load. If instabilities are prevented throughout this process, then the potential to use
the full plastic shear and bending capacity of frames can be achieved and a substantial reserve
loading capacity is realized. Thus, the full plastic strength can be used to support the rare
occurrence of extreme ice interaction loads. This will result in permanent damage to the ship
but the overall structural integrity will be maintained, the underlying philosophy being that a
ship can now be designed for no damage during “normal” loads but for some damage during
“extreme” loads. This type of design will result in lighter and less expensive ships.

In the current Equivalent Standards, stability is controlled by two sets of equations. The first
set was developed for the purpose of controlling tripping of frames and is based on span and
web ratios as follows:

VNx
WF
LU /300≤ for Angles
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WF = Flange Width
HW = Web Height (Depth)
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The second set of rules was developed to control local buckling of frames as follows:

y

K
TW
HW

σ
≤ where: K = 1000 for Tee and Angle Sections

K = 282 for Flat Bars and
K = 155 for Outstand
σy = yield strength

The two sets of rules are based on designing a structure to achieve its elastic limit before it
experiences either tripping or local buckling. The equations are based on linear assumptions
and are valid up to the point of yielding. Details on the derivation of these equations are
contained in the literature review in Section 5.
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Section 2 of this report provides a description of the physical structure being modelled and
defines some important terms. It also provides the panel dimensions used in the study.  Section
3 presents the software used to complete the work and outlines the hardware on which the
work was produced. A benchmark analysis was completed to verify the performance of the
software and hardware to be used. A brief description of the benchmark analysis and its
findings is included as Section 4.

Section 6 describes the panels selected for study and the modelling considerations involved in
producing an acceptable model. The source of the applied loads is also presented.

Section 7 describes the procedure used to determine the load level at which an instability
occurs. Because the structures studied do not generally experience a bifurcation type of
buckling, the exact load level at which an instability is determined to be present is somewhat
subjective.

The primary objective of this project was to apply Finite Element Modelling to obtain
empirical performance results that could be expressed by formulae resembling those of the
current Equivalent Standards. The present design criteria, as laid out in the Equivalent
Standards, were thoroughly reviewed to understand how the equations were derived.

The next step was to determine whether the linear finite element (FE) representation of the
buckling modes and load levels could be accurately represented by similar, simplified
equations. The linear analyses and results are described in Section 8. The philosophy behind
this approach is that once the linear applicability of the equations is established, then the
possibility of extending the linear equations into the non-linear regime can be evaluated. The
key parameters determined to be relevant for this study and the non-linear analyses and results
are described in Section 9.

Section 10 presents a summary of the results, the conclusions drawn from the study and
recommendations on how to proceed from this point.

Because of limited resources, this project did not encompass studying the entire range of main
frame types (i.e., angles, tees, and flat bars).  From previous studies [3, 4] it was determined
that angle sections exhibit more of a propensity to non-linear buckling.  Consequently, the
project focused on the post-yield stability of angle main frames.
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2.  DESCRIPTION OF STRUCTURE AND DEFINITION OF TERMS

2.1 General Description of Structure

The structure used for analysis in this study was a portion of an icebreaker hull. It consisted of
a stiffened panel that is typical of an icebreaking ship hull. The nominal dimensions used were
taken from the work carried out in [4].  The single hull scantlings were chosen to conform to
the Equivalent Standard strength and stability criteria for a CAC 3 ship.

Figure 2.1 shows a sketch of a ¼ finite element model of an icebreaking ship.  This particular
model of the MV Arctic was created for the Phase I [3] work, with the arrow identifying the
midbody area of the model as the chosen region of study. The same area of an icebreaking ship
will be modelled in the current project as a 3x3 bay stiffened panel, part of which is shown in
Figure 2.2. This figure contains a sketch of one bay of the panel with the main structural
components identified by name. As shown in Figure 2.2, the type of structure considered has
three levels of support: main frames, stringers and deep web frames (sometimes referred to as
“webs”). The panel is described in detail in Section 2.2.

Figure 2.1    Sketch Showing 1/4 Model of an Icebreaker
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Figure 2.2    Elements of Stiffened Panel Construction

The panel design is based on a ship configuration as follows:
Displacement   12.00 kilotonnes
Power   15.00 megawatts
Material Yield Strength 355.00 megapascals
CAC     3
Hull Area Midbody
Arctic Class Factor     0.6
Area Factor for panel location      0.5

2.2 Geometric Terms and Panel Dimensions

The stiffened panel used for this study was a panel design employing both transverse and
longitudinal stiffeners, including stringers (parallel to the water line) as well as deep webs and
main frames (perpendicular to the stringers). The individual elements of the panel
construction, along with their dimensions, are illustrated in Figure 2.3. Dimensions are shown
for the main frames as calculated for the base model, but these vary considerably among the
different FE models. The main frames shown in Figure 2.3 are angle main frames.
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The dimensions of the stringers, web frames and hull plating were taken from the panel
designs determined from the study in [4]. The main frames were redesigned for a single hull
configuration according to the Equivalent Standards. Table 2.1 lists the scantling dimensions
and design criteria for each of the geometries considered.

Figure 2.4 shows a sketch of typical main frame cross sections. The variable names used to
identify the dimensions are those defined in the Equivalent Standards.

This study consisted of an investigation of angle main frames only. The dimensions of the
main frames varied from model to model and are listed in Table 2.1.

Note:  Units are millimetres

Figure 2.3    3 x 3 Bay Model (Showing the Centre Bay) with Angle Main Frames
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Figure 2.4    Main Frame Section Dimensions
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Table 2.1    Scantling Dimensions Used in Study

Variable Dimensions:

Model Name Run ID Model Description Span 
(mm)

Frame
Web

Depth

Frame
Web

Thickness

Frame
Flange
Width

Frame
Flange

Thickness

Yield
Stress 
(Mpa)

sep20_webs IV-1 "Run 4" panel config. 2300 274 23.81 132 15.875 355
dec20_ip15  - 1.5 x in-plane load 2300 274 23.81 132 15.875 355
dec20_ip20  - 2.0 x in-plane load 2300 274 23.81 132 15.875 355
dec13_5x5_red  - no in-plane load 2300 274 23.81 132 15.875 355
oct31_p10y  - yield strength: +10% 2300 274 23.81 132 15.875 390.5
oct31_p20y  - yield strength: +20% 2300 274 23.81 132 15.875 426.0
oct31_m10y  - yield strength: -10% 2300 274 23.81 132 15.875 319.5
oct31_m20y  - yield strength: -20% 2300 274 23.81 132 15.875 284.0
nov21_m577y  - yield strength: -57.7% 2300 274 23.81 132 15.875 150.0
oct23_p10spy IV-2 span: +10% 2530 274 23.81 132 15.875 390.5
oct11_p20spy IV-3 span: +20% 2760 274 23.81 132 15.875 426
oct23_m10spy IV-4 span: -10% 2070 274 23.81 132 15.875 319.5
oct11_m20spy IV-5 span: -20% 1840 274 23.81 132 15.875 284
nov3_m33spy IV-6 span: -33% 1533.3 274 23.81 132 15.875 236.7
nov22_m436spy IV-7 span: -43.6% 1298 274 23.81 132 15.875 200.3
oct27_p25wfy IV-8 flange width: +25% 2300 274 23.81 165 15.875 340.1
oct27_p50wfy IV-9 flange width: +50% 2300 274 23.81 198 15.875 328.3
nov21_p894wfy IV-10 flange width: +89.4% 2300 274 23.81 250 15.875 315.5
oct27_m25wfy IV-11 flange width: -25% 2300 274 23.81 99 15.875 374.4
oct27_m50wfy IV-12 flange width: -50% 2300 274 23.81 66 15.875 400.8
oct25_p20dw IV-13 web depth: +20% 2300 328.8 23.81 132 15.875 286.8
nov3_p30dw IV-14 web depth: +30% 2300 356.2 23.81 132 15.875 261.4
nov29_p46dw IV-15 web depth: +46% 2300 400 23.81 132 15.875 228.4
nov3_m10dw IV-16 web depth: -10% 2300 246.6 23.81 132 15.875 402.2
oct26_m20dw IV-17 web depth: -20% 2300 219.2 23.81 132 15.875 463.0
nov8_p20tf IV-18 flange thickness: +20% 2300 274 23.81 132 19.05 341.9
nov14_p50tf IV-19 flange thickness: +50% 2300 274 23.81 132 23.813 325.6
nov28_p89tf IV-20 flange thickness: +89% 2300 274 23.81 132 30 308.6
nov10_m20tf IV-21 flange thickness: -20% 2300 274 23.81 132 12.7 370.5
nov14_m50tf IV-22 flange thickness: -50% 2300 274 23.81 132 7.938 400.1
nov14_p10tw IV-23 web thickness: +10% 2300 274 26.191 132 15.875 353.3
nov8_p20tw IV-24 web thickness: +20% 2300 274 28.57 132 15.875 351.7
nov14_m10tw IV-25 web thickness: -10% 2300 274 21.429 132 15.875 356.6
nov10_m20tw IV-26 web thickness: -20% 2300 274 19.048 132 15.875 358.2
nov21_m37tw IV-27 web thickness: -37% 2300 274 15 132 15.875 360.9
nov28_m58tw IV-28 web thickness: -58% 2300 274 10 132 15.875 363.8

Mainframe Dimensions (mm)
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2.3 Description of Post-Yield Buckling

Buckling is a phenomenon that results from a “load-generated” loss of lateral stiffness of a
structure. Buckling can be thought of as the point where a complete loss of lateral stiffness
occurs as a result of induced stresses from an applied load.

In a column, axial compressive stresses generate an internal moment as a result of infinitesimal
displacements (either geometric imperfections or displacements resulting from a lateral
component of the applied load). This internal moment results in a decrease in the resistance of
the structure to lateral displacement (or its lateral stiffness). In a finite element buckling
analysis, the original structure has an overall stiffness matrix that includes a lateral stiffness
component.  In addition to this, a stiffness component is developed as a result of the applied
load.  This stiffness component is referred to as geometric stiffness. When the magnitude of
the geometric stiffness (negative) equals the magnitude of the original lateral stiffness
(positive), the structure has zero lateral stiffness, resulting in an unstable structure.  The load
magnitude at this point is commonly referred to as the buckling load.

Typical displacement and strain response curves for different types of buckling are shown in
Figure 2.5.

For Linear Buckling, the structure behaves linearly prior to buckling (i.e., small
displacements and no yielding). Generally, large displacements and material yielding occur
during the buckling process, resulting in permanent deformations. Figure 2.5 shows the
expected response for an elastic perfectly plastic material.

For Linear Elastic buckling, large displacements occur during buckling with no yielding. The
structure returns to its original shape after the load is removed with no associated inelastic
strain effects (plasticity). A typical return path is indicated in Figure 2.5; however, this path
depends largely on the structure. When the load is removed, the structure returns to its original
state (prior to buckling) with no permanent deformations.

The most general type of buckling is Non-linear Plastic Buckling (also referred to in this
study as Post-Yield Buckling). As shown in Figure 2.5, both large displacements and yielding
occur before the structure buckles. Permanent deformations result. At the buckling load, the
structural stiffness has changed significantly from the original stiffness. While the structure
does not have sufficient lateral stiffness to prevent buckling, this may not have occurred
completely as a result of stiffness degradation due to compressive forces. The structure may
have yielded in tension and buckled as a result of a complex combination of internal loads.

This is the phenomenon that is of interest in this study. It has been found through inspection of
ice-damaged vessels that structural failure is often the result of buckling. This is even though
substantial yielding has occurred in the hull plating. Therefore, large displacements
(membrane stresses become apparent in plating at deflections between t/2 and t) and plasticity
are occurring prior to buckling.
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Figure 2.5    Displacement and Strain Response for Different Types of Buckling
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3.  COMPUTER CONFIGURATION

3.1 Software

The FE program MAESTRO/DSA [5, 6] was used to perform all the analyses carried out in
this project. MAESTRO is an FE-based ship design package that includes a module called
DSA (Detailed Stress Analysis), which is provided to perform detailed stress analysis of local
ship areas. The FE solver used by DSA is a program called VAST [7].  MAESTRO (with
DSA) is used by Lloyds, Det Norske Veritas, American Bureau of Shipping and Bureau
Veritas. It is also used by several navies, including the Canadian, UK and Dutch navies.

MAESTRO/DSA incorporates full non-linear capability as well as eigenvalue buckling that
can be performed at a selected step during a non-linear analysis. MAESTRO/DSA has
undergone considerable verification testing that indicates that it produces results similar to
other major non-linear codes such as ANSYS [8] and ADINA [9]. To check the capabilities, a
selected run from the previous phase of the project was repeated using MAESTRO/DSA. The
results of this study are presented in Section 4. MAESTRO/DSA was found to perform well
when compared to the results from the parametric study performed in Phase III [4], and can
accurately produce the same results as ANSYS and ADINA. As described in Section 4,
MAESTRO/DSA has an optional “bubble function” that can be invoked to improve the
bending characteristics of the 4 node shell element. This produces results that are more
accurate than the previously generated ADINA results.

Some of the figures showing colour contour plots of the results were generated using the
pre/post-processing program, HyperMesh [10]. The plots that show the load displacement
curves and shear force difference curves were generated using Microsoft Excel [11].

3.2 Hardware

The FE analyses carried out in this study were executed using personal computers. The
minimum configuration employed was a Pentium III 450 MHz processor, with 128 MB RAM
and 10 GB hard drive, running Windows 95. Full non-linear static runs typically took 12 hours to
execute. During the project, several personal computers were employed such that more than one
run could be performed in parallel.
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4.  BENCHMARK ANALYSIS

A benchmark analysis was performed to ensure that MAESTRO/DSA could be used to
accurately predict post-yield buckling of complex stiffened panel structures. The validation is
based on producing the same results as the validated ADINA runs conducted in the previous
phase.

Non-linear finite element analysis (FEA) is a complex procedure that requires both a
theoretical and practical understanding of non-linear FE procedures and assumptions and also
of the anticipated physical response of the structure that is being analysed. The accuracy of the
results produced depends on both the capabilities of the program being used and the skills of
the analysts conducting the work. The benchmark analysis was performed to verify that the FE
code and computer platform to be used for this study could provide accurate results.

To perform the code validation, it was decided to reproduce the analysis results for a selected
run from the Phase III study. The model chosen is identified in Phase III as “Run 4”. This is an
ASPPR-compliant design employing angle main frames.

In Phase III, ADINA was used to perform the FE analyses and the results were considered
accurate. For the benchmark analysis, the Run 4 results were reproduced using
MAESTRO/DSA and compared to those from the ADINA run. The results of the benchmark
analysis showed some small differences when compared to the ADINA results, but the
differences were minor and insignificant.

The two plots in Figure 4.1 compare the results of the benchmark test run using ADINA and
MAESTRO/DSA. It can be seen that MAESTRO/DSA produces virtually the same results as
ADINA when the “non-enhanced” 4 node shell element is utilized. However, it is felt that
increased accuracy can be obtained when bubble functions1 are incorporated to enhance the in-
plane bending properties of the 4 node shell element. The enhanced element produces slightly
different results but it is felt that these would be slightly more accurate, as the bending
characteristics are better represented. The conclusion reached was that MAESTRO/DSA can
produce slightly more accurate results than the previous ADINA results, and MAESTRO/DSA
was determined to be capable of producing accurate results for all further analysis work on this
project. It was also concluded that the results from the “old” and “new” runs matched well
enough such that the differences would not be taken to indicate trends.

                                                
1 Bubble functions are numerical element enhancement shape functions that allow the in-plane bending
characteristics of the 4 node shell element to be more accurately represented. They allow slightly more
flexibility, which provides a numerical representation that more closely replicates “real life” response.
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Results



14

5.  LITERATURE STUDY AND REVIEW OF EQUIVALENT STANDARDS
EQUATIONS

5.1 Literature Review

A literature survey was undertaken to identify all current work that is relevant to post-yield
structural stability of laterally loaded stiffeners on plated structures. It included all fields and
was not limited to ship structures. Martec had undertaken a literature search on similar subject
matter in 1996;  therefore, this search concentrated on information that had been produced
since 1996.

A general internet search of the libraries listed in Table 5.1 was performed using a
combination of relevant keywords using the libraries listed in Table 5.1. Several papers were
identified as having potential and were requested/printed and reviewed.

The general results of the literature survey are:

• Any formulations found in the literature are based on linear elastic response to
compression of frames. In all formulations reviewed, elastic buckling will not
occur if the flange is in tension.

• To the best of our knowledge, there is no work being conducted on post-yield
buckling of laterally loaded frames/stiffened panels.

5.2 Review of Equivalent Standards Stability Equations

The stability equations presented in the Equivalent Standards were reviewed in detail to
determine their basis and their applicability in the non-linear regime. Several textbooks [12-
17], which were referenced from the Equivalent Standards, were also reviewed.  These books
were originally used as the basis for the formulation of the existing stability equations.

Dr. Lei Jiang of Martec performed the review and wrote a short note, which is included as
Appendix A.
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Table 5.1    Literature Search Sources
American Bureau of Shipping (ABS)
http://www.eagle.org

American Society of Mechanical Engineers (ASME)
http://www.asme.org

Applied Science and Technology (AST) Index
(available at DalTech, Dalhousie University)

Bureau Veritas Publications
17 bis, place des Reflets
La Défense 2
92400 Courbevoie- France
http://www.bureauveritas.com

Canada Institute for Scientific and Technical Information
(CISTI)
National Research Council Canada (NRC)
1500 Montreal Road (M-55)
Ottawa, ON,  K1A 0S2
http://www.nrc.ca/cisti

Det Norske Veritas (DNV) Publication List
Veritasveien 1
1322 Høvik, Oslo, Norway
http://www.dnv.com

Edison Welding Institute (EWI)
1250 Arthur E. Adams Dr.
Columbus, OH 43221  USA
http://www.ewi.org

Elsevier Publications
Publisher Database Search Performed by TDC Library Staff
Transport Canada Information and Research Services, ATA
Ottawa, ON, K1A 0N5

Glasgow University Library
Hillhead Street
Glasgow G12 8QE, Scotland, UK
http://eleanor.lib.gla.ac.uk

Lloyd’s Register
http://www.lr.org

Massachusetts Institute of Technology (MIT)
77 Massachusetts Ave
Cambridge, MA 02139-4307, USA
http://libraries.mit.edu

Memorial University of Newfoundland Libraries
St. John's, NF,  A1B 3Y1
http://www.mun.ca/library

NASA
http://www.nasa.gov

National Library of Canada Catalogue (resAnet)
395 Wellington Street
Ottawa, ON, K1A 0N4
http://www.amicus.nlc-bnc.ca

Novanet Catalogue (consortium of Nova Scotia academic
libraries)
http://novanet.ns.ca

Offshore Mechanics & Arctic Engineering (OMAE)
http://www.omae.org

Oulu University Library
P.O. Box 7500
FIN-90014 UNIVERSITY OF OULU
http://www.oulu.fi

ProQuest Digital Dissertations
Bell & Howell Information and Learning (Formerly known as
UMI)
300 North Zeeb Road
PO Box 1346
Ann Arbor, MI 48106-1346, USA
http://wwwlib.umi.com/dissertations

Springer LINK
Heidelberg, Germany
http://link.springer.de

Technical Research Centre of Finland (VTT)
Vuorimiehentie 5, Espoo
P.O. Box 1000, FIN-02044 VTT
http://www.vtt.fi

Transport Canada
330 Sparks Street
Ottawa, ON, K1A 0N5
http://www.tc.gc.ca

University of New Brunswick Libraries
8 Bailey Drive
Fredericton, NB, E3B 5H5
http://www.unb.ca/inside/libraries.html

US Army Cold Regions Research and Engineering Laboratory
(CRREL)
72 Lyme Road
Hanover, NH 03755-1290, USA
http://144.3.144.209/crrel

Vaughan Memorial Library
Acadia University
Wolfville, NS, B0P 1X0
http://www.acadiau.ca/vaughan



16

In summary, the main results of the Equivalent Standards review are:

• The basis for the equations that currently appear in the Equivalent Standards
was established. As speculated, the stability equations employed in the
Equivalent Standards are based on an assumed mode 1 flexural-torsional
buckling mode with the entire section in compression. According to the
formulation, a frame with a flange in tension will never buckle in either elastic
or plastic mode. The formulation of the equations is based on coupling a
formula for buckling for a beam with enforced axis of rotation (which already
includes torsion about the shear centre and bending in both vertical and lateral
directions) with the governing equation for vertical buckling of an
unconstrained beam. It is felt that the coupling is not justified. There are also a
couple of mathematical errors in the Equivalent Standards equations;  however,
there is insufficient time to attempt to correct these within the existing contract.
[Note:  Apparent errors are identified at the end of Appendix A.]

• In the proposal for this project, Martec questioned the basis behind the use of
the reduced slenderness ratio (σy/σT = 0.36) which in essence requires a design
that will not buckle until the flexural-torsional buckling stress is equal to three
times the yield stress. This requirement was based on the 1984 DNV rules,
which present a series of curves of reduced slenderness ratio vs. a ratio of
critical buckling stress to yield stress. DNV has since changed the curves (1998
version)[15] and they no longer have the same limitation. It is unclear how the
reduced slenderness is now limited but the change alters the equations in the
Equivalent Standards significantly. Once again, there is not sufficient time to
pursue this further but it is expected that the equations in the Equivalent
Standards will not accurately reflect either linear or non-linear buckling under
laterally applied loads.

5.3 Summary and Conclusions

The literature survey did not uncover any work being performed that is relevant to this project.
The problem involves large displacements/rotations and large-scale, non-uniform plastic
deformations in the pre-buckling range. Analytical solutions dealing with these extremely
complicated situations have not yet been identified. It is highly possible that analytical
solutions for this problem do not exist because of its complexity.

The stability equations in the Equivalent Standards are not expected to predict the expected
“real life” response to a laterally applied load. It was decided that there would be no merit in
trying to modify those equations or to try to extend the equations into the non-linear regime.
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6.  DESCRIPTION OF FINITE ELEMENT MODEL

6.1 Extent of the FE Model

To save time in the analysis, it was necessary to ensure that the model used was optimized
from a size point of view. Non-linear runs are very computationally demanding and runs can
take anywhere from several hours to several days, depending on the size of the model. One of
the main factors in determining model size is the extent of the structure included in the FE
model.

In the Phase I and II [18] studies, a 3x3 bay model was used for most of the work. In the Phase
III study, the effectiveness of a reduced 1x3 bay model was investigated. Several analyses
were conducted on two models (one 3x3 bay and one 1x3 bay) and it was found that
significant differences resulted in the stress magnitudes in the main frames. Therefore, a 3x3
bay model was used to complete the Phase III study. A fairly crude mesh was used to model
the outer bays and a detailed mesh was used in the centre bay. In this manner, boundary
conditions were accurately imposed on the centre bay without too much of a penalty in model
size. However, runtimes were very long and a run typically took over 24 hours.

For the present study, it was decided to maintain the 3x3 bay model but to take advantage of
the vertical symmetry in the structure to reduce the model size to a 3x1½ bay model. Other
than the hydrostatic load, all loads applied to the structure are symmetric about the
longitudinal centre of the model (i.e., the waterplane). Since the hydrostatic load is small
compared to the ice load, the response of the panel is expected to be very close to symmetric.

The extent of the structure included in the FE model, therefore, is the 3x3 bay section of ship
side panel. It is modelled assuming symmetric response about the waterplane. Figure 6.1
shows the area of the ship included in the model, including a sketch of the 3x3 bay
configuration.

It should be noted that the total ice load extends beyond the bounds of the 3x3 bay section.
However, the effect of the total ice load is included in the analysis.  This is discussed in detail
in Sections 6.4 and 6.5.

6.2 Description of FE Model

The files and results of the Phase III work were organized and reviewed. Run 4 was selected as
the run to use to perform a non-linear benchmark analysis (as described in Section 4) and the
linear eigenvalue buckling analysis. There were significant time savings in utilizing the
existing model from the previous phase rather than developing and testing a new model.

An angle main frame model was chosen because angle sections were found to be more
susceptible to post-yield buckling. Also, previous phases of work found that angle section
main frames exhibit a form of buckling where the webs displace dramatically in the lateral
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direction at the point of buckling, making it easier to observe the response. The FE model is
shown in Figure 6.2.

Figure 6.1    Sketch Showing Global 1/4 Model and Extent of Structure Included in
Model

line of
assumed
symmetry
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Figure 6.2    "Run 4" 3x3 Bay FE Model

The element type used for the detailed 3x3 bay FE models must be able to predict in-plane
membrane and shear strains, and out-of-plane bending strains. The appropriate element for this
is the 4 node shell element.

In the Phase II analysis, the 4 node ANSYS shell element was used for the analysis. This
element performed very well in matching the response of the physical panel test at Carleton
University. In an independent check [19], it was found that the 4 node ADINA shell element
also performed well in matching these results. Based on the performance of the ADINA 4 node
shell in matching actual experimental test results, this element type was selected for the FE
work in Phase III of the project. The recommended ADINA default 2x2x2 integration order
was used for all analyses.

As discussed in Section 6.1, the 3x3 bay model was cut in half for this study. The mesh density
of the Phase III model is shown in Figure 6.2 and was retained for the 3x1½ bay model that
was used in this study. The appearance of the model after reducing it by half through a
symmetry assumption is shown in Figure 6.3.
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Figure 6.3    3 x 1 1/2 Bay FE Model Used in Study

As discussed in Section 3, the FE program MAESTRO/DSA was employed for this study. The
4 node shell element was employed with a 2x2x2 integration order. This was shown to
produce good agreement with the previous work.

6.3 Material Properties

The material used in the model of the ship panel is steel, as in the previous phases [3, 4, 18].
The constitutive (stress/strain) relationship used was bilinear elastic plastic, and the properties
were:

Yield strength: 355 MPa
Modulus of elasticity: 207,000 MPa
Strain hardening modulus: 5,175 MPa
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6.4 Boundary Conditions

The boundary conditions used for the analysis were the same as those used for Run 4 in Phase
III, the parametric study, modified to include symmetry boundary conditions for the reduced
model, as discussed in Section 6.2.

The boundary conditions to be used on all of the 3x3 bay FE models had to be representative
of the actual, “real life” constraints on the panel. In the Phase I study, the boundary conditions
used were prescribed displacements that were determined from a MAESTRO analysis of the
complete ship.

The benefit of modelling the boundary conditions using prescribed displacements is that the
response of the overall ship is accurately included in the local 3x3 bay panel response. The
disadvantage of using prescribed displacements is that a model of the complete ship must be
generated and analysed to get the proper boundary conditions. In the Phase III study it was
realized that this is not practical for a parametric study where the potential exists to analyse
many different ship configurations. It was also concluded from the Phase I study that the
prescribed displacements are not necessary if the overall ship response is included through in-
plane stresses. Therefore, in the Phase III study a set of boundary conditions was defined using
a combination of loads and constrained degrees of freedom that approximated the global ship
response.

[Note: While the panel boundary conditions were made as realistic as possible, the Phase I
study found that results for members in the centre bay were not very sensitive to the panel
boundary conditions, other than in-plane stresses. The eight surrounding bays were included
with a relatively coarse mesh to provide realistic boundary conditions for the centre bay.]

Figure 6.4 shows the rationale behind the selection of the boundary conditions as determined
in Phase III. Figure 6.4 a) shows a sketch of the expected overall ship response to an ice load
along with an outline of the local 3x3 bay region. The overall ship model is from the
MAESTRO analysis of the MV Arctic taken from the Phase I study, where centre line
symmetry was applied to the model. This means that the reaction force (not shown) was
opposite to the ice force and generated no full global bending. Thus, the induced in-plane
stresses indicated were minimal and could be designated as local/global.

It can be seen in Figure 6.4 that the upper and lower boundaries of the 3x3 bay panel region
displace laterally at approximately the same magnitude. This is due to the fact that the ice load
is applied (inward) not only to the local 3x3 bay region but also to the entire iceprint area
along the side of the ship. One component of the global response in the area of the 3x3 bay
model is a rigid body deflection of the panel in the lateral direction as the hull displaces inward
as a result of the application of the massive ice load.

The upper and lower boundaries also rotate about a longitudinal axis. While this degree of
rotation depends on the proximity of decks above and below the 3x3 bay region, the highest
stresses result when the boundaries are free to rotate. In this case, higher compressive stresses
are generated on the hull plating (which acts as the outer flange of the deep webs) and higher
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tensile stresses are generated on the inner flanges of the deep webs (or inner skin for double
hull vessels).

The forward and aft vertical edges displace concavely inward, restrained only by the structure
above and below the 3x3 bay panel. There is only a small contribution from the longitudinal
stringers because the structure forward and aft of the panel is displaced laterally from the ice
load. Consequently, it does not put any significant lateral constraint on the 3x3 bay stiffened
panel.  However, the stringers have generated stresses from the local/global effect.

Based on the response of the overall ship, as shown in Figure 6.4 a), the boundary conditions
used on all 3x3 bay models in Phase III are shown in Figure 6.4 b). The numbers shown on the
plot indicate the global degrees of freedom that are constrained. From this it can be seen that
the upper and lower panel boundaries were fixed against lateral (z) displacement. Lateral
constraint is required for numerical purposes and also ensures that the top and bottom
boundaries displace at the same magnitudes. Since the overall model analysis showed rotation
at the top and bottom boundaries, no rotational constraints were imposed at these locations.

As previously discussed, the forward and aft vertical boundaries are considered not to be
constrained laterally by the adjacent structure and displace freely. Therefore, no lateral (z)
displacement boundary conditions were applied at the fore/aft boundaries.

Additional boundary conditions were imposed to satisfy numerical conditions and to permit
application of the biaxial in-plane pressure loads. Nodes at the centre of the top and bottom
edges were constrained in the longitudinal (x) direction only. This provided suppression of
rigid body motion while permitting the structure to compress in the longitudinal direction
under influence of the in-plane pressure loads. Similarly, nodes at the centre of the forward
and aft edges were constrained in the vertical (y) direction such that free body motion was
suppressed and the structure was still permitted to compress under the vertically applied in-
plane pressure loads.

6.4.1 Boundary Conditions for the Linear Eigenvalue Analyses

The linear eigenvalue analysis is particularly demanding computationally. The finite element
model was reduced in size by assuming symmetry about the centre bay in the longitudinal
direction. Symmetry boundary conditions were applied on the bottom and side surfaces where
the model was trimmed. Figure 6.5 shows the boundary conditions on the reduced model.
Since the linear eigenvalue analysis is making gross assumptions about the behaviour of a
highly non-linear structure, the inaccuracies associated with this simplification were
acceptable.
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Figure 6.4    Selection of Boundary Conditions for Study

b) 3x3 Bay FE Model Boundary Conditions

X
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Figure 6.5    Boundary Conditions Including Symmetry

6.5 Loads

The applied load consists of two components:  an in-plane load and a lateral load. The total
lateral load component generated from impact with multi-year ice has a magnitude equal to
“Fmax”.  All applied loads are expressed as a multiplier of Fmax (For example, 2.24 x Fmax
would be 2.24 times the load that is expected to be generated by the ship impacting the multi-
year ice.).  The in-plane load is generated from the global ship response. The ice load produces
an overall ship response that includes a biaxial in-plane compressive load (a magnitude of  69
MPa was determined in the Phase I study as a “typical” value for the mid-body side shell of
the MV Arctic).

In the previous phases, the in-plane compressive stresses were determined from modelling the
global ship response using MAESTRO and were modelled using prescribed displacements.
However, it was determined that these in-plane stresses were fairly constant, and they could be
determined through simpler methods. They could also be applied to the model as in-plane
forces. In this study, the in-plane stresses were applied as in-plane forces in the same manner
as was used in Phase III of this work. These in-plane forces were applied as a consistent load
vector along the exterior edges of the plate (i.e.,, not on the cut edges of the reduced model).
The magnitude of the load was set to the “typical” value of 69 MPa, as described above. In the
non-linear analyses, the in-plane loads were scaled with the application of load, along with the
ice load.
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The ice load is characterized by a force distributed over an area designated in the Equivalent
Standards as the iceprint, with dimensions LDL * Vp (length x height). Figure 6.6 (reproduced
from Figure 4.9 of the ASPPR) shows the actual and idealized shape of the iceprint. This
idealized distribution was used for this study. It was assumed that a triangular distribution of
the pressure is acting on this iceprint.

Figure 6.6    Ice Load Model (from Figure 4.9 of the ASPPR, TP 9981, Dec. 1989)
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As shown in Figure 6.6, the peak of this triangle has a magnitude of 2 * Pa (where Pa is the
average pressure). The pressure also varies along the length of the iceprint. This results in a
higher pressure on a smaller section of the iceprint. This higher pressure is defined as Pav and
is also shown in Figure 6.6. The value of Pav is calculated from Section 15 of the Equivalent
Standards regulations. This value is a function of DPT, which is defined in Section 18 of the
Equivalent Standards as:

DLL
SDPT =

where S = frame spacing
LDL = horizontal length of the iceprint

It should be noted that Pav is for a load acting at the bow area of a CAC1 ship. To achieve the
proper values for different CACs and areas of the ship, these values are multiplied by
appropriate class and area factors.

The size of the iceprint and ice load is based on the force developed as a result of ship-ice
interaction while the vessel is engaged in icebreaking activity. To derive expressions for the
ice-load parameters, several models and full-scale tests were conducted during the
development of ASPPR. The effects of several parameters (i.e., speed, displacement, bow
geometry, and power) on this value were examined. It was found that the ship's displacement
and power had a direct influence on the ice forces. The resulting formula for the iceprint to be
used in framing design, obtained from the research conducted during the development of the
Equivalent Standards, is as follows:

33.048.07.0
DL P80.2L ⋅∆+∆=

where Vp = LDL/8
∆ = the displacement in thousands of tonnes
P = the shaft power in megawatts

The value of Fmax is the total applied ice load on the ship.

The magnitudes of the applied loads in this study were the same as those applied to the model
in Phase III of this project. For structural models with iceprint dimensions as shown in Figure
6.7, the magnitude of the lateral ice load applied to the panel for the midbody region of the
ship is illustrated in the figure.  The overall iceprint is significantly larger than the area
covered by the 3x3 bay panel.  Therefore, only the portion of the iceprint directly applied on
the panel is modelled.  The effect of the ice load outside this region is represented by both the
boundary conditions and the in-plane loads.  The peak pressure load is centred over the centre
main frame of the 3x3 bay panel.
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As in the Phase III work, since the overall panel geometry did not change in this study, this ice
load was used for all analyses. It should be noted that for load values not equal to Fmax, the
same proportional distribution of pressures was maintained. For the linear eigenvalue buckling
runs, the lateral ice load was applied using point loads calculated in the previous phase as a
consistent load vector. The magnitude of the in-plane load was set to the value of 69 MPa.

Figure 6.7    Ice Load for Midbody Region Calculating Using the Equivalent Standards
(TP 12260, 1996)
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7.  IDENTIFICATION OF INSTABILITIES

7.1 Shear Force Difference Method

In Phase III, a methodology was developed to monitor the load being carried by a beam. It was
called the “shear force difference” method and calculated the lateral load that a beam is
carrying in bending and shear by determining and comparing the shear forces at selected cross
sections within the beam.

When a beam supports a lateral load through flexure (bending), a shear force is developed in
the beam that is directly proportional to the applied load. In a rectangular cross section, this
shear force has a parabolic distribution through the depth of the beam and has a value of zero
at each free surface and a maximum value at the neutral axis. Without developing this shear
force, a beam is incapable of carrying a load in bending. The difference between the shear
force carried at any two cross sections in a beam under a bending load gives a calculation of
the applied load between the two sections. Therefore, if the shear force difference decreases,
then it is because the load carried in bending by that member decreases.

Relating this to buckling, if a member that is carrying a load experiences buckling, it is no
longer capable of supporting the load that it carried prior to buckling. (Note that if a member
that is carrying a load yields, its ability to carry incremental load diminishes but it continues to
carry the load that was present prior to yielding.) In a redundant structure, where multiple load
paths exist, as scantlings in a structure buckle, the load being carried by a particular scantling
will be shed to the surrounding structure until the surrounding structure is no longer capable of
carrying incremental load. This is because the geometry of the buckled scantling is such that it
is no longer capable of carrying the load that it supported prior to buckling.  Some of the
bending load shed by the buckled member will be picked up by membrane forces in the
surrounding structure.  Eventually, nearly all of the load will be carried by membrane stiffness.

It is therefore construed that if the load-carrying capacity of a scantling decreases, it is because
of a change in geometry associated with buckling. So, if the load that a member is carrying
decreases dramatically while the applied load continues to increase, it is associated with
buckling.

In Phase III, the shear force difference method was used to monitor the loads being carried by
members. Buckling was predicted to have initiated when the load carried by the member
started to decrease while the applied load continued to increase. The method was shown to
correlate well with an increase in lateral deflection (also associated with the onset of buckling)
for selected frames. This provided a subjective validation of the methodology.

In this phase of the project, it was thought that the shear force difference method could be
validated somewhat less subjectively by using linear eigenvalue analysis results to compare to
the buckling load determined from the shear force difference curves. Details on the
methodology and results of the linear validation are contained in Section 7.2.
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An attempt was also made to validate the shear force difference method using the non-linear
eigenvalue buckling capability contained in MAESTRO/DSA. Details on the methodology and
results of this validation are contained in Section 7.3.

7.2 Validation Using Linear Eigenvalue Method

A linearized buckling analysis computes the intensity of an applied loading condition that will
cause buckling. For an eigenvalue problem, the governing equations for a linear buckling
analysis can be expressed as:

[K] {N}+ {λ} [KG] {N}= {0}

where: [K] is the stiffness matrix;
[KG] is the geometric stiffness matrix;
{N} is the buckling mode shape.

The eigenvalue function {λ} is the factor by which the applied reference loading condition
must be multiplied to produce buckling.

The geometric stiffness matrix [KG] is calculated using the initial stresses, which are
determined from the applied load on the structure. Buckling occurs when the factored
geometric stiffness {λ}[KG] equals the structural stiffness component [K] associated with
lateral strength. These terms basically cancel, leaving the structure with no lateral strength.
The factor {λ} multiplied by the applied load provides the linear buckling load.

The eigenvalue method of predicting linear buckling loads is the standard process used by FE
codes and was used for the prediction of the linear buckling response of the 3x3 bay FE
models in this project.

It was thought that the linear eigenvalue analysis results could be used to validate the shear
force difference method, which is described in Section 7.1, somewhat less subjectively than by
using load vs. lateral deflection curves. The procedure used was to select several of the linear
eigenvalue models and re-analyze them by non-linear step-by-step solution under an
increasing lateral load. The idea was that the run would be performed using linear material
properties (i.e., no yielding) such that the same buckling load should be predicted as in the
linear eigenvalue analyses, so long as the stiffness of the structure remained relatively
constant. Therefore, the non-linear analysis (with linear material properties) should identify a
linear buckling load that would be very close to that predicted from the linear eigenvalue
buckling load analysis. The shear force difference methodology would be used to generate the
buckling load level for comparison with the eigenvalue-predicted buckling loads. Correlation
between the two predictions would provide a validation of the shear force difference
methodology.
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Unfortunately, the level of the load required to achieve linear buckling was found to be about
8* Fmax. This is high enough to create substantial non-linear geometric effects that result in no
correlation between linear and non-linear runs. Since the buckling phenomena to be predicted
(which cause the changes in the shear force difference curve) were thus non-linear and could
only be modelled by incorporating large displacements into the model, the run had to be
conducted by including large displacement effects. Therefore, the validation using linear
eigenvalue analyses was not possible.

7.3 Validation Using Non-linear Eigenvalue Method

MAESTRO/DSA, the FE program used for the project, has a non-linear option for linearized
eigenvalue buckling analysis. This allows a user to perform a linearized eigenvalue buckling
analysis at selected load steps during a full non-linear analysis. An excerpt from a Martec
Technical Note regarding the non-linear buckling capability in MAESTRO/DSA is included in
Appendix B.

A full non-linear analysis was performed using the “Run 4” configuration. Figure 7.1 shows a
shear force difference curve for the analysis. From the slope of the curve, one would predict
buckling at a load level of about 2.24*Fmax. This is the point where the tangent to the curve is
vertical and the frame now carries no increased bending load even though the applied load
continues to increase. Subsequent to this point, the frame starts to shed load to the surrounding
structure and the load carried by the frame starts to decrease.

Figure 7.1    Shear Force Difference Curve for Run IV-1, "Run 4" Pan
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Figure 7.2 a) shows the full-scale displaced shape of the main frame at a load level of
2.25*Fmax and Figure 7.2 b) shows the full-scale displaced shape of the main frame at a load
level of 2.86*Fmax. From the two plots it is clearly evident that buckling of the main frame has
occurred somewhere between 2.25* Fmax. and 2.86* Fmax.

Figure 7.2    Run IV-1, "Run 4" Panel Configuration - Deflected Shapes at Buckling
Load Level and Load Level Well Beyond Buckling

Figure 7.2 a) Deflected Shape at LF = 2.25

Figure 7.2 b) Deflected Shape at LF = 2.86
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However, in the interests of providing a less subjective validation of the shear force difference
method, a linearized eigenvalue buckling analysis was performed at several load steps selected
from the non-linear run. If the frame is truly starting to buckle, then a linearized buckling
analysis performed just before the point of buckling should predict buckling at a load level just
slightly larger than the load applied at that point. This would provide confirmation that
buckling is occurring, thereby validating the shear force difference method as an accurate
method to predict non-linear buckling.

A linearized eigenvalue buckling analysis was performed at the load level 2.16*Fmax, shown as
“1” just below the dashed line in Figure 7.1. Many (350) buckling modes were calculated.
Review of the buckling modes indicated that the first 112 modes were very local buckling
modes that were insignificant and would not result in an instability significant enough to affect
the non-linear step-by-step results. Modes 113, 133 and 162 are shown in Figure 7.3. They are
very similar in shape to the displaced shape plots shown in Figure 7.2 b) as predicted by the
step-by-step analysis. The predicted buckling load for mode 113 is 2.197 times the applied
load at that time-step, or 1.017*2.16*Fmax = 2.197*Fmax. This agrees well with the more
subjective prediction of 2.24*Fmax from the plot in Figure 7.1.

The overall conclusion that can be drawn from the results of the linearized eigenvalue buckling
analysis, performed at a load level of 2.16*Fmax, is that an instability exists in the structure.
This instability portrays itself as a significant main frame buckling mode at a load level of
2.197*Fmax. This supports the graphical calculation of buckling load level described as the
shear force difference method.

The shear force difference method of predicting buckling load level was used throughout the
study as the methodology for calculation of buckling load.
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Figure 7.3    Buckling Modes Predicted by Nonlinear and Eigenvalue Analysis

Mode 113: BLF = 2.197
Mag. Factor = 100,000

Mode 133: BLF = 2.198
Mag. Factor = 100,000

Mode 162: BLF = 2.200
Mag. Factor = 100,000
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8.  LINEAR EIGENVALUE BUCKLING ANALYSIS

8.1 Objective of Analysis

The objective of this task was to investigate the linear buckling response of the panel using
finite element analysis.

In the previous phase of this work, non-linear FEA was used to predict the post-yield response
of main frames. Using the results, a relationship could not be defined between the stability
equations in the Equivalent Standards and the predicted post-yield stability of the main frames.
Therefore, it was proposed in this phase to take a step back and first perform an investigation
of the equations in the linear range. It was thought that since the stability equations are based
on linear assumptions, the FEA linear prediction of buckling might relate to the resulting
prediction from the Equivalent Standards equations.  Since linear eigenvalue analyses are
simpler to run than non-linear analyses, the strategy was to execute a large number of linear
analyses to gain an understanding of the current equations.

This validation was to be performed though a series of linear eigenvalue analyses using the FE
models developed in the previous phase.

8.2 Extent of the FE Model

As described in Section 6.1, the finite element model employed for the linear eigenvalue
buckling analysis represents a 3x3 bay stiffened panel section of a typical icebreaker structure
at a location close to midbody.

To reduce the size of the model, the model used for the initial linear eigenvalue buckling
analysis was trimmed down using symmetry. As discussed in Section 6.1, the 3x3 bay model
was cut in half lengthwise, such that only the top half of the panel was included in the model
while the bottom half was accounted for by applying symmetry boundary conditions on the cut
edge.

There are two disadvantages to this approach, but it was felt to be acceptable for the purposes
of this study. The two disadvantages are:

1) Employing a symmetric model limits the predicted eigenmodes to symmetric
modes. Non-symmetric modes will not be calculated.

2) The symmetric model assumes symmetric loads. As discussed in Section 6.1, the
hydrostatic loads are not symmetric.

Eigenvalue analysis is very time consuming and the 3x1½ bay model was large enough to be
very inconvenient to run. It was decided to further reduce the size of the model by assuming
symmetric response across bay boundaries (i.e., across deep webs). This allowed trimming of
the side bays, thus leaving only 1x1½ bays from the original 3x3 bay model. Symmetry
boundary conditions were again applied at the cut edges. This provided a smaller model that
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simulated a 3x3 model through symmetry. Figure 6.5 shows the boundary conditions applied
to the model to replicate symmetry. By applying symmetry in place of the side bays, the lateral
ice load is altered, displaying three peaks (one each for the centre frame in each bay) instead of
one. Although this is not a true representation of the load, the stiffness of the panel is
maintained at the 3x3 bay level, and the results are expected to provide sufficient accuracy for
the purposes of this study. Execution of both models independently showed good agreement in
the first few significant buckling modes predicted. For the 1x1½ bay model, the horizontal in-
plane load was removed and the vertical in-plane load was applied as before. This was not
expected to have any significant detrimental effect on the predicted modes.

8.3 Description of FE Model and Analysis Methodology

This section of the report details the development of the FE model and the MAESTRO/DSA
analysis methodology employed for the linear eigenvalue analysis.

8.3.1 FE Model Description

The FE model used for the linear eigenvalue analysis was a slightly modified version of the
model that was used for the non-linear runs described in Section 6.2. As before, the model was
developed for use with MAESTRO/DSA and employed the 4 node shell element.

The FE mesh density is shown in Figure 8.1. As can be seen in the figure, the model consists
of a 1x1½ bay version of the 3x1½ bay model described in Section 6.2.

Figure 8.1    Reduced 1 x 1 1/2 Bay Model
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8.3.2 Analysis Methodology

As described in Section 7.2, a linearized eigenvalue buckling analysis computes the intensity
of an applied loading condition that will cause buckling. For an eigenvalue problem, the
governing equations for a linear buckling analysis can be expressed as:

[K] {N}+ {λ} [KG] {N}= {0}

where: [K] is the stiffness matrix;
[KG] is the geometric stiffness matrix;
{N} is the buckling mode shape.

The eigenvalue function {λ} is the factor by which the applied reference loading condition
must be multiplied to produce buckling.

The geometric stiffness matrix [KG] is calculated using the initial stresses, which are
determined from the applied load on the structure by completing a static analysis. Buckling
occurs when the factored geometric stiffness {λ}[KG] equals the structural stiffness component
[K] associated with lateral strength. These terms basically cancel, leaving the structure with no
lateral strength. The factor {λ} multiplied by the applied load provides the linear buckling
load.

The eigenvalue method of predicting linear buckling loads is the standard process used to
predict buckling modes by FE codes. In this project, it is the methodology used for the
prediction of the linear buckling response of the 1x1½ bay FE model.

8.4 Loads

As described in Section 8.3.2, performing an eigenvalue buckling analysis requires a previous
linear static analysis to be performed. The state of stress resulting from the linear static
analysis is used to calculate the geometric stiffness matrix. The load selected for the linear
static analysis is similar to the load described in Section 6.5 for the non-linear analysis. It
consists of a laterally applied load and an in-plane load.

The lateral load was applied as described in Section 6.5, with the exception that the load
terminated at the boundaries of the model (i.e., web frames). The symmetry assumption
implies that the load condition on both sides of the web frames is identical. As mentioned in
Section 8.2, this is erroneous but will provide an acceptable simplification for the purposes of
this analysis. The magnitude of the applied load used for the static analysis was equivalent to
Fmax. Therefore, the eigenvalues predicted were multiplied by Fmax to give the magnitude of
the buckling load.
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An in-plane load of 69 MPa was applied to the model in the vertical direction only. This
caused compression of the frames and was a result of the global response of the ship to the
applied lateral ice load. This is described in Section 6.4. The symmetry boundary conditions
applied at the web frames precluded the application of a longitudinal in-plane load.

8.5 Boundary Conditions

The overall boundary conditions used for the analysis were developed to replicate those used
for Run 4 in the Phase III work. As discussed in Section 8.2, the model was reduced using
symmetry for the eigenvalue analysis. Therefore, the boundary conditions had to represent the
previous Run 4 and impose symmetric response on the model. Figure 6.5 in Section 6.4 shows
the applied boundary conditions.  Further details on the justification of the boundary
conditions selected are contained in Section 6.4.

8.6 Linear Eigenvalue Analysis Results

A linear eigenvalue buckling analysis was performed for the “reduced Run 4” model.  From
these results, it was determined that the in-plane load was not a significant factor in the
linearly predicted buckling load level.  (Note:  This is opposite to the effect that the in-plane
load has on the post-yield buckling load level prediction as demonstrated in Section 9.3.1.)  An
analysis of the model with only the lateral ice load applied resulted in a buckling load level of
over 8*Fmax. For the analysis with both load components (in-plane and lateral) applied, several
of the first resulting buckling load factors (BLFs) were negative. This is because the main
frames are linearly in tension when the loads are applied, while linear buckling is caused by
compression of the frame.

With both load components applied, the first positive BLF (for apparent flexural-torsional
buckling) was shown to occur at an applied load of about 6*Fmax in a mode that was of no
significance to the study. A plot of this mode shape can be seen in Figure 8.2. Even though the
deflected shape for this mode looks very similar to the deflected shape for the non-linear
tripping, the state of stress in the two models is entirely different.

As far as the validity of the assumed reduced model size, an analysis of the 3x3 bay model,
with only the bottom half trimmed with symmetry, the side bays untouched and all loads
applied as described in Section 6.5 (i.e., the original model), yielded a linear eigenvalue
buckling load level of about 5*Fmax.  This proved that the approximation using the reduced
model was acceptable.
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8.7 Conclusions

The philosophy behind performing these runs was to fully understand the linear equations so
that they could be modified and extended into a regime where they would have the potential to
be applicable to both linear and non-linear (post-yield) buckling. However, based on a review
of the results, the linear equations do not reflect the non-linear flexural-torsional buckling that
is observed in nature.

Performing the linear eigenvalue runs on a variety of structures as planned would not provide
information that would be useful to deduce empirical relationships. It was assumed that the
linear equations would have been developed to ensure that, under linear assumptions, buckling
should not occur until after a load equal to Fmax was applied. Therefore, it was expected that
the linear buckling load levels would be significantly lower than observed in the eigenvalue
analysis and that extrapolation of the linear results to the buckling load would give some
meaningful information. However, understanding the linear response and extrapolating it to
6*Fmax would not yield any insight into non-linear buckling, which will happen under a
different mode at load levels below 2*Fmax.

Figure 8.2    Buckling Mode for Panel with Vertical In-Plane and Lateral Ice Loads
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In addition, as discussed in Section 5, there are some errors in the formulation of the linear
equations and questionable assumptions have been made in their derivation. It was concluded
that buckling predicted by linear equations shows no correlation with the “real life” response
and little benefit would be gained by performing the linear eigenvalue runs on a variety of
structures as originally intended.

With respect to the validation of the shear force difference methodology, as discussed in
Sections 7.1 and 7.2, the level of the load required to achieve linear buckling was found to be
high enough to create substantial non-linear effects that result in no correlation between linear
and non-linear runs. Since the buckling phenomena to be predicted were non-linear and could
only be modelled by incorporating large displacements into the model, the run had to be
conducted by including large displacement effects. Therefore, the validation using linear
eigenvalue analyses was not possible.
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9.  NON-LINEAR POST-YIELD ANALYSIS

9.1 Objective of Analysis

The objective of performing the non-linear post-yield analysis was to establish relationships
between key parameters that describe the hull scantlings and the buckling load for main
frames. The established relationships could then be used to develop equations that could be
incorporated into the Equivalent Standards to control the design of icebreaker hull structures.

9.2 Analysis Methodology

9.2.1 Solution Methodology

FEA can be used to predict the “real life” response of a structure to a given set of loads.
Provided that the model is developed with sufficient accuracy, FEA can give an accurate
prediction of buckling response in highly non-linear, post-yield conditions. Therefore, by
applying a “design” load to a given hull geometry, the response to that load can be determined
with a reasonable degree of accuracy, subject to the assumptions that have been incorporated
into the modelling and analysis.

The scantling geometry of a stiffened panel (representing a ship hull) can be characterized by
several parameters. By selecting key parameters and altering the panel geometry by varying
these independently, one can use FEA in a semi-empirical manner to study the response of the
structure to these modifications. In this manner, a set of semi-empirical relationships can be
developed to characterize the relationship between a selected parameter and the load at which
buckling occurs.

The solution methodology for the analysis consisted of selecting several significant geometric
parameters and performing series of analyses using FEA to determine the effect that varying
each parameter had on the stability of the main frames. This was accomplished by varying
each parameter independently while attempting to keep all other parameters constant. Details
on the procedure to vary the parameters are contained in Section 9.2.2.

As described in Section 3.1, the non-linear post-yield analysis was performed using
MAESTRO/DSA. The method of solution used was a procedure called the modified Load
Displacement Control (LDC) method. This is the same method as was used in Phase III of this
project. It was chosen because of its advantage over conventional applied force methods.
When conventional applied force methods are used in the solution of large displacement non-
linear analyses, the solution often fails at regions of high non-linearity (for example, at the
bifurcation point of buckled structures) because of non-positive definite terms in the stiffness
matrix. This results in an inability of the algorithm to converge to a unique solution.

The LDC method eliminates this problem by using displacements instead of loads to control
the solution. A load vector must be provided; however, the algorithm is started at the first load
step with an initial nodal displacement in the desired direction instead of a force. The program
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automatically determines the load factor (a constant multiplied by the load vector) necessary to
displace the structure by the initial displacement while maintaining equilibrium. The program
then automatically determines the next incremental displacement and continues to the next
load step. This procedure continues until either the maximum specified displacement is
reached, the maximum number of time steps is reached, or the non-linearity is extreme enough
to prevent convergence within four iterations of repeatedly reducing the incremental load. The
advantage of using displacement control occurs when a large displacement results from a very
small force (due to small stiffness). Without LDC, if a force is applied at this point, the program
has difficulty converging to a displacement.

The MAESTRO/DSA program allows all of the loads and initial conditions to be
incrementally increased at each load step for the LDC method. For example, the total load
includes both the biaxial in-plane loads and ice loads normal to the hull plating. Therefore, at a
load factor of 0.5 Fmax, the in-plane loads and the ice load are both 50 percent of their
(nominal) value at Fmax. This provides an accurate representation of the load at all load levels.
(This eliminates a problem encountered in previous studies where the in-plane load was
applied with prescribed displacements that could not be scaled with applied load.)

The analysis accounts for non-linear material properties and large displacement effects, and
assumes small strains.

9.2.2 Approach to Varying Parameters

As described in Section 8.7, the linear analyses did not provide any insight that would aid in
the selection of relevant parameters to use for the non-linear formulations. However, based on
Martec’s previous analysis experience and engineering judgement, it was expected that the
most important parameters affecting the buckling load for angle main frames would be: span,
yield stress, flange width, flange thickness, web height (or web depth) and web thickness.

The current Equivalent Standards base the stability criteria for angles on only one parameter,
span ratio. Span ratio is the ratio of the unsupported length of the frame to the width of the
flange. The design is controlled by keeping this ratio below a specified value. From the results
of the present study, it became apparent that the stability in the post-yield regime is adversely
affected by both increasing span (LU) and by increasing flange width (WF). This means that
the ratio LU/WF cannot be used to control stability since a proportional increase in both
parameters would maintain the same span ratio but adversely affect stability. It is more likely
that the product of LU*WF could be maintained at a given value to ensure stability. That is, as
the span is increased, the flange width could be decreased to maintain the product. In the limit,
this would lead to the elimination of the flange (resulting in a flat bar main frame) if post-yield
buckling were the only consideration in the design. This indicates that the current parametric
ratio, span ratio, is inadequate for controlling post-yield stability. Section 9.4.7 presents the
results of an investigation of the relationship between span ratio and stability.
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In this study, non-linear runs were conducted to determine the relationships between span and
stability, and flange width and stability, independently. The most desirable way to vary the
models to study the effects of changing individual parameters is to vary one parameter
independently of all others. Therefore, to study the effect of increasing span, it was desirable to
simply stretch out the panel while keeping all other dimensions the same. The drawback to this
approach was that it produced a frame that does not meet the strength criteria of the Equivalent
Standards and yielding would occur at a lower load level than in the original design. This
yielding effect would, in itself, alter the buckling load levels and could mask the effect of
increasing span. To offset this effect, the yield strength of the material was increased
proportionally to the increase in span. Since the applied moment is linearly proportional to
span, this compensated for the changed span and yielding should occur at the same applied
load as the original design.

A similar approach was taken for varying the flange and web width and thickness, with the
exception that the yield strength was modified proportionally to the moment of inertia of the
equivalent section (i.e., combination of effective width of hull plating, web and flange). This
approach maintained the original level of stress for a given load and hence yielding occurred at
the original yielding load level.

Table 9.1 contains a sample calculation of the modified yield strength for one of the web
thickness analyses. Table 2.1 in Section 2.2 contains a summary of the scantling dimensions
used in the study. It also shows the modified yield strengths in MPa that were used for each of
the runs.

9.2.3 Prediction of Buckling

As described in Section 7, buckling is predicted when the calculated value of the shear force
difference decreases during increasing load application. This is determined by plotting the
shear force difference (for a main frame) versus the total applied load. The load at which
buckling occurs is found by selecting the value of the applied load corresponding to the point
where the tangent to the curve is vertical. As described in Section 7, this methodology is found
to give values that agree well with other characteristics that are indicative of buckling.

9.2.4 Methodology for Presentation of Results

The empirical/analytical approach for the evaluation of the non-linear FEA results was based
on data visualization and relationship determination.

The data visualization step is important in understanding how the variables/parameters affect
the stability of the structure in a post-yield condition. This step was a pattern recognition
procedure that established patterns of behaviour from the non-linear analysis results. Microsoft
Excel was used to visualize the data.
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Once the data was plotted, regression analysis tools were used to develop the relationships
between the significant variables and the limiting condition (i.e., the plastic buckling load).
The regression analysis tools fit a curve through a set of observations. This enabled the
determination of how a single dependent variable (plastic buckling load) is affected by the
values of one or more independent variables.

To define the relationships, Microsoft Excel was used to fit the necessary type of equations to
the non-linear FEA results. The options available through MS Excel are linear, polynomial,
logarithmic, power or exponential. MS Excel also provides various regression statistics that
were used to determine the accuracy of the curve fit for each of the parameters.

9.3 Non-linear Modelling Requirements

9.3.1 Effect of In-plane Loads on Main Frame Stability

In the non-linear solution algorithm (see Section 9.2.1), all of the loads and load-related
“initial” conditions are incrementally increased at each load step in direct proportion to each
other. The total load includes both a biaxial in-plane load and ice loads (applied normal to the
plate). Both of these load components are scaled in the solution process. Since the in-plane
load is a direct result of the local/global response of the ship to the ice load, this representation
is accurate at all load levels. However, it creates some confusion when the load factor is
greater than one and all loads are scaled accordingly.

The effect of the in-plane load was studied by varying the “nominal” level of the in-plane load.
The nominal in-plane load is defined as the magnitude of the in-plane load at an applied ice
load equal in magnitude to Fmax. Note that for a load factor of less than one the in-plane load
will be less than its nominal value, and at load factors greater than one it will be greater.

The results of the study are shown in Figure 9.1. From this figure, it can be seen that as the
nominal in-plane load is increased, buckling occurs at a lower load level. Note, however, that
buckling at a load level less than Fmax would mean that the value of the in-plane load at
buckling is less than the nominal level. This effect is shown in Figure 9.1, which plots the BLF
vs. the magnitude of the in-plane load at the point of buckling. As shown in the figure, it is
evident that as the magnitude of the in-plane load is increased, the BLF is decreased, and that
the trend is virtually linear. Therefore, as the proportion of in-plane load to lateral ice load is
increased, the structure buckles at a lower overall load level.
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Buckling Load Factor vs. In-Plane Load
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Figure 9.1    Buckling Load Factors vs. In-Plane Loads
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9.3.2 Effect of Deep Web Failure on Main Frame Stability

During the course of the initial non-linear investigation, it was found that the extent of yielding
in the deep web frames greatly affected the stability of the main frames. Figure 9.2 shows the
shear force difference curves of the benchmark analysis (DSA Run 4) and the base run for the
current parametric study (Run IV-1). The two models are essentially identical, with the
exception of the strain-hardening modulus in the deep webs. In Run IV-1, this modulus is set
equal to the modulus of elasticity, E, and as a result the deep webs behave linearly throughout
the analysis and do not yield.
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Figure 9.2    Shear Force Difference Plot Comparing Runs with Linear and Nonlinear
Response in the Deep Webs

It can be seen that the response in the main frames is very different between the two runs. The
main frames in the benchmark analysis (see Section 4) buckle at a significantly lower load
level than those in Run IV-1. Upon an investigation of this occurrence, it was found that the
deep webs in the benchmark analysis fail prior to main frame buckling. Thus the response in
the main frames is influenced by the failure of the tertiary supporting structure.

To study the buckling stability of the main frames, it was necessary to eliminate the failure of
the deep web frames. This was accomplished by increasing the strain-hardening modulus of
the deep web frames to the value of the elastic modulus, E, effectively creating a linear
response in the deep web frames.
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In justifying this modification on a physical, “real life” level, one must look at the physical
implications of the modification. The fact that the deep web frames buckle prior to the main
frames would indicate that the either the deep web frames are underdesigned or the main
frames are overdesigned, based on a post-yield buckling design requirement. If the structure is
optimally designed for post-yield buckling, the structure will remain stable until just after Fmax
and then the deep web frames and main frames would become unstable at approximately the
same load level. Although this is unlikely to occur (since other design constraints will likely
result in one or the other structure being overdesigned for buckling), the performance of the
main frames should not be influenced by the prior buckling of the deep web frames. This
concern is eliminated by requiring the material in the deep web frames to remain linear.

9.4 Test Matrix

9.4.1 Effect of Yield Strength on Stability

In Section 9.2.2 it was explained that the yield strength of the panel was modified for the non-
linear runs in order for all the new panel configurations to yield at the same applied load level.
In the previous phases of this project, it was found that main frame stability is heavily affected
by the magnitude of the material yield strength.

To determine the effect of yield strength on stability, a series of runs was completed where
only the yield strength was modified. This investigation showed that the material yield
strength has an important effect on the stability of the main frames. The relationship between
the yield strength and the BLF was found to be linear, as can be seen in Figure 9.3. The panel
becomes more stable in the post-yield regime as the yield strength is increased.

This relationship, in the form of the equation displayed in the figure, was used to adjust the
results of the other runs to take into account the change in yield strength. It is important to
notice that for this particular panel, the curve does not go below Fmax until the yield strength of
the material is reduced to a value too small to be practical in design. Therefore, for this
geometry, non-linear buckling will not result from yield strength modifications alone.
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Buckling Load Factor vs. Yield Strength
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Figure 9.3    Buckling Load Factor vs. Yield Strength

9.4.2 Effect of Span on Stability

In the linear regime, span is very important to stability. Linearly, the buckling load depends on
the inverse of span squared. Thus, as the unsupported length (or span), increases, the buckling
load decreases. A similar relationship was anticipated in the case of the non-linear runs. Seven
analyses were performed to investigate the effect of varying span on non-linear main frame
stability. The values of span that were considered in the analyses are shown below. Also
shown below are the load levels corresponding to the initiation of buckling as determined from
each of the analyses.

Span Increase/Run IV-1 Load Level for Initiation
of Buckling

Run IV-1 2300.0 mm – 00.0% increase 2.24 * Fmax
Run IV-2 2530.0 mm – 10.0% increase 2.40 * Fmax
Run IV-3 2760.0 mm – 20.0% increase 2.67 * Fmax
Run IV-4 2070.0 mm – 10.0% decrease 2.20 * Fmax
Run IV-5 1840.0 mm – 20.0% decrease 2.13 * Fmax
Run IV-6 1533.3 mm – 33.0% decrease 2.21 * Fmax
Run IV-7 1298.0 mm – 43.6% decrease Did not buckle



48

Other than the changes made to the span, all other scantlings remained unchanged from the
Run 4 panel configuration. The yield strength of the panel was modified for each of the
analyses in order for all the new panel configurations to yield at the same applied load level.
To achieve this, the yield strength was adjusted proportionally with span. This was done to
account for the increase in bending moment (and therefore the relevant stress) as the span was
increased. For example, when span was increased by 10 percent, the yield strength was also
increased by 10 percent.

The buckling load level is plotted versus the span in Figure 9.4.   (Note:  In the plot of Figure
9.4 and subsequent plots, polynomials are used to fit the data points generated from the
analyses.  These are the “best fit” curves and are identified as the “Poly.” of the particular data
set that is being plotted.)

As can be seen from Figure 9.4 and the numbers presented above, the relationship found is
rather counter-intuitive. Initially, as one might expect, the stability of the panel decreases as
the span is increased. However, for spans greater than about 2 m, this trend reverses and the
stability begins to increase as the span is increased. The curve shows a change in buckling load
as span is varied, but it appears to be bounded by a horizontal line at BLF = 2. That is,
regardless of the dimension of the span, the main frames do not experience buckling below a
load level of 2*Fmax.

Buckling Load Factor vs. Span
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Figure 9.4    Buckling Load Factor vs. Span
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In Section 9.4.1 the effect of changing the yield strength on stability was investigated. This
relationship proved to be linear and the resulting relationship was used to determine what the
response of the various panels would have been if the yield strength had not been changed.
The comparison of the results from the actual analyses and the results with the yield strength
effect accounted for is shown in Figure 9.5. It can be seen that the effect of changing the yield
strength is not particularly dramatic, and that the two curves are similar and exhibit the same
type of polynomial shape.
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Figure 9.5    Buckling Load Factor vs. Span, Including Yield Effect

9.4.3 Effect of Main Frame Flange Width on Stability

The flange width is important to stability in more than one way. First, the flange increases the
bending stiffness of the section, so increasing its width (while maintaining constant flange
thickness) should increase the load at which buckling occurs. Counteracting this effect,
however, is the added eccentricity of the section as the flange width is increased. In the
previous phase of this project, it was thought that this eccentricity contributed to non-linear
tripping, and therefore increasing the flange width should, in this respect, lower the post-yield
buckling load.

In addition to Run IV-1, five analyses were performed to investigate the effect of flange width
on non-linear main frame stability.  The values of flange width considered for the analyses are
shown below, as are the load levels corresponding to the initiation of buckling as determined
from each of the analyses.
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Main Frame Load Level for
Flange Width Increase/Run IV-1 Initiation of Buckling

Run IV-1 132 mm – 00.0% increase 2.24 * Fmax
Run IV-8 165 mm – 25.0% increase 2.11 * Fmax
Run IV-9 198 mm – 50.0% increase 2.10 * Fmax
Run IV-10 250 mm – 89.4% decrease 2.31 * Fmax
Run IV-11   99 mm – 25.0% decrease 2.50 * Fmax
Run IV-12   66 mm – 50.0% decrease No buckling

Other than the changes made to the flange width, all other scantlings remained unchanged
from the Run 4 panel configuration. Again, the yield strength of the panel was modified for
each of the analyses in order for all the new panel configurations to yield at the same applied
load level. To achieve this, the yield strength was adjusted according to the change in section
modulus. A sample calculation is provided in Table 9.1.

The post-yield buckling load level is plotted versus the flange width in Figure 9.6.

As can be seen from Figure 9.6 and the numbers presented above, the relationship found is
similar in shape to that found for span. Initially, the stability of the panel decreases as the
flange width is increased, then at one point the response alters such that the stability begins to
increase as the flange width is increased. The curve is again bounded by a horizontal line at
BLF = 2. That is, regardless of the dimension of the flange width, the main frames do not
experience buckling below a load level of 2*Fmax.

To determine what the response of the various panels would have been if the yield strength had
not been changed, the relationship from Section 9.4.1 was applied. The comparison of the
results from the actual analyses and the results with the yield strength effect accounted for is
shown in Figure 9.7. It can be seen that the effect of changing the yield strength is again quite
unimportant, and that the two curves are very similar and exhibit the same type of polynomial
shape.
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Table 9.1    Sample Calculation of Adjustment of Yield Strength Based on Section Modulus

b1 (flange width) = 132 A1 = b1*h1 x1 = 0.5*h1+h2+h3 I1 = (1/12)b1*h1^3 d1 = x1-xbar
h1 (flange thickness) = 15.875  = 2095.5  = 312.1005  = 44008.2  = 243.7974
b2 (web thickness) = 23.81 A2 = b2*h2 x2 = 0.5*h2+h3 I2 = (1/12)b2*h2^3 d2 = x2-xbar
h2 (web depth) = 274  = 6523.94  = 167.163  = 40815943.3  = 98.860
b3 (included plating length) = 720 A3 = b3*h3 x3 = 0.5*h3 I3 = (1/12)b3*h3^3 d3 = x3-xbar
h3 (plate thickness) = 30.163  = 21717.36  = 15.0815  = 1646549.7  = -53.2216

Atotal = A1+A2+A3 xbar = (A1*x1+A2*x2+A3*x3)
Atotal Ixbar = Σ (In+An*dn

2) xbar/Ixbar = 2.33649E-07

= 30336.8 = 68.30 = 292332649.7

Yield stress 1 = 355

b1 (flange width) = 132 A1 = b1*h1 x1 = 0.5*h1+h2+h3 I1 = (1/12)b1*h1^3 d1 = x1-xbar
h1 (flange thickness) = 15.875  = 2095.5  = 312.1005  = 44008.2  = 245.9701
b2 (web thickness) = 21.429 A2 = b2*h2 x2 = 0.5*h2+h3 I2 = (1/12)b2*h2^3 d2 = x2-xbar
h2 (web depth) = 274  = 5871.55  = 167.163  = 36734349.0  = 101.033
b3 (included plating length) = 720 A3 = b3*h3 x3 = 0.5*h3 I3 = (1/12)b3*h3^3 d3 = x3-xbar
h3 (plate thickness) = 30.163  = 21717.36  = 15.0815  = 1646549.7  = -51.0489

Atotal = A1+A2+A3 xbar = (A1*x1+A2*x2+A3*x3)
Atotal Ixbar = Σ (In+An*dn

2) xbar/Ixbar = 2.34726E-07

= 29684.406 = 66.13 = 281734899.7

% Diff in xbar/Ixbar = 0.460967 Yield stress 2 = 356.6  = [1+(% Diff/100)]*YS1

ORIGINAL (RUN 4, webs do not yield)

DECREASE WEB THICKNESS BY 10%
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Buckling Load Factor vs. Flange Width
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Figure 9.6    Buckling Load Factor vs. Flange Width

Buckling Load Factor vs. Flange Width
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Figure 9.7    Buckling Load Factor vs. Flange Width, Including Yield Effect



53

9.4.4 Effect of Main Frame Web Depth on Stability

Linearly, increasing the main frame web depth would have an adverse affect on main frame
stability. As the web depth is increased, the section centroid moves farther from the plating,
increasing the potential for tripping of the frame.  Counteracting this effect, the section
modulus increases in proportion to the web depth, increasing the bending stiffness.

In addition to Run IV-1, five analyses were performed to investigate the effect of web depth on
non-linear, post-yield main frame stability. The values of web depth considered in the analyses
are shown below, as are the load levels corresponding to initiation of buckling.

Main Frame Load Level for
Flange Width Increase/Run IV-1 Initiation of Buckling

Run IV-1 274.0 mm – 00% increase 2.24 * Fmax
Run IV-13 328.8 mm – 20% increase 2.04 * Fmax
Run IV-14 356.2 mm – 30% increase 2.01 * Fmax
Run IV-15 400.0 mm – 46% decrease 2.04 * Fmax
Run IV-16 246.6 mm – 10% decrease 2.50 * Fmax
Run IV-17 219.2 mm – 20% decrease 3.11 * Fmax

Other than the changes made to the web depth, all other scantlings remained unchanged from
the Run 4 panel configuration. Again, the yield strength of the panel was modified according
to the change in section modulus for each of the analyses in order for all the new panel
configurations to yield at the same applied load level.

The buckling load level is plotted versus the web depth in Figure 9.8.

As can be seen from Figure 9.8 and the numbers presented above, the relationship found is
again similar in shape to that found for span and flange width. Initially, as one might expect,
the stability of the panel decreases as the web depth is increased, but at one point the response
alters such that the stability begins to increase as the web depth is increased. The curve is again
bounded by a horizontal line close to BLF = 2. That is, regardless of the dimension of the web
depth, the main frames do not experience buckling below a load level of around 2*Fmax.

To determine what the response of the various panels would have been if the yield strength had
not been changed, the relationship from Section 9.4.1 was again applied. The comparison of
the results from the actual analyses and the results with the yield strength effect accounted for
is shown in Figure 9.9. It can be seen that the effect of changing the yield strength is again
relatively unimportant, and that the two curves are similar.
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Buckling Load Factor vs. Web Depth
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Figure 9.8    Buckling Load Factor vs. Web Depth

Buckling Load Factor vs. Web Depth

y = 6E-05x2 - 0.0436x + 9.5877
R2 = 0.9591

y = 5E-05x2 - 0.0302x + 7.0427
R2 = 0.899

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 50 100 150 200 250 300 350 400 450

Web Depth (mm)

B
LF

 (P
ro

po
rt

io
n 

of
 F

m
ax

)

Web Depth BLF with Yield Effect Poly. (Web Depth) Poly. (BLF with Yield Effect)

Figure 9.9    Buckling Load Factor vs. Web Depth, Including Yield Effect
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9.4.5 Effect of Main Frame Flange Thickness on Stability

One would expect that the flange thickness would have a similar effect on stability as flange
width, in that an increase in the flange width increases the bending stiffness of the section.
Thus, intuitively, it is expected that increasing its thickness should increase the buckling load.
Also similar to increasing the flange width, increasing the flange thickness increases the
eccentricity of the centroid of the section.

In addition to Run IV-1, five analyses were performed to investigate the effect of flange
thickness on non-linear main frame stability. The values of flange thickness are shown below
for each of the runs.  The load level corresponding to the initiation of buckling is also shown
below.

 Main Frame Load Level for
Flange Thickness Increase/Run IV-1 Initiation of Buckling

Run IV-1 15.875 mm – 00% increase 2.24 * Fmax
Run IV-18 19.050 mm – 20% increase 2.18 * Fmax
Run IV-19 23.813 mm – 50% increase 2.13 * Fmax
Run IV-20 30.000 mm – 89% decrease 2.13 * Fmax
Run IV-21 12.700 mm – 20% decrease 2.36 * Fmax
Run IV-22   7.938 mm – 50% decrease 2.89 * Fmax

Other than the changes made to the flange thickness, all other scantlings remained unchanged
from the Run 4 panel configuration. Again, the yield strength of the panel was modified
according to the change in section modulus for each of the analyses in order for the new panel
configurations to yield at the same applied load level.

The buckling load level is plotted versus the flange thickness in Figure 9.10.

As can be seen from Figure 9.10 and the numbers presented above, the relationship found is
again somewhat similar in shape to those found for the preceding parameters. The stability of
the panel decreases as the flange thickness is increased. The data does not change to indicate
that the stability would at some point increase as the flange thickness is further increased, but
it may be that this would occur if further analyses were performed. A best-fit curve indicates
that this is the case. Further analysis was not deemed necessary, as the curve is again bounded
by a horizontal line at BLF = 2. That is, regardless of the dimension of the flange thickness,
the main frames do not experience buckling below a load level of 2*Fmax.

To determine the response of the various panels if the yield strength had not been changed, the
relationship from Section 9.4.1 was applied. The comparison of the results from the actual
analyses and the results with the yield strength effect accounted for is shown in Figure 9.11. It
can be seen that the effect of changing the yield strength is minimal, and that the two curves
are very similar and exhibit the same type of polynomial shape.
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Buckling Load Factor vs. Flange Thickness
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Figure 9.10  Buckling Load Factor vs. Flange Thickness
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Figure 9.11  Buckling Load Factor vs. Flange Thickness, Including Yield Effect
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9.4.6 Effect of Main Frame Web Thickness on Stability

In addition to Run IV-1, six analyses were performed to investigate the effect of web thickness
on non-linear main frame stability. The values of web thickness are shown below for each of
the runs together with the load level corresponding to the initiation of buckling.

Load Level for
Web Thickness Increase/Run IV-1 Initiation of Buckling

Run IV-1 23.810 mm – 00% increase 2.24 * Fmax
Run IV-23 26.191 mm – 10% increase 2.64 * Fmax
Run IV-24 28.570 mm – 20% increase 2.85 * Fmax
Run IV-25 21.429 mm – 10% decrease 1.95 * Fmax
Run IV-26 19.048 mm – 20% decrease 1.70 * Fmax
Run IV-27 15.000 mm – 37% decrease 1.37 * Fmax
Run IV-28 10.000 mm – 58% decrease 0.84 * Fmax

Other than the changes made to the web thickness, all other scantlings remained unchanged
from the Run 4 panel configuration. Again, the yield strength of the panel was modified
according to the change in section modulus for each of the analyses in order for all the new
panel configurations to yield at the same applied load level.

The buckling load level is plotted versus the web thickness in Figure 9.12.

As can be seen from Figure 9.12 and the numbers presented above, there is a linear
dependence of buckling load on frame web thickness. The stability of the panel increases as
the web thickness is increased.

To determine what effect the change in yield strength had on the response of the various
panels, the relationship from Section 9.4.1 was applied again. The comparison of the results
from the actual analyses and the results with the yield strength effect accounted for is shown in
Figure 9.13. It can be seen that the effect of changing the yield strength is again minimal, and
that the two curves are virtually identical.
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Buckling Load Factor vs. Web Thickness
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Figure 9.12  Buckling Load Factor vs. Web Thickness
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Figure 9.13  Buckling Load Factor vs. Web Thickness, Including Yield Effect
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9.4.7 LU/WF versus Buckling Load

As discussed in Section 9.2.2, LU/WF is used in the Equivalent Standards to control stability.
The Equivalent Standards require that LU/WF be maintained below a specified value and
indicate that any increase in LU/WF would result in a decrease in stability. Using the results of
the analyses presented in Sections 9.4.2 through 9.4.6, a curve of Span/Flange Width (LU/WF)
was generated and can be seen in Figure 9.14. It shows a relationship between LU/WF and
BLF. The curve is still bounded by a horizontal line BLF = 2, as was the case with the separate
flange width and span curves. Figure 9.15 compares the LU/WF curves for the actual analysis
results and the results altered by including the yield strength effect as described in Section
9.4.1.  Again, the curves are bounded by a horizontal line BLF = 2.
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Buckling Load Factor vs. LU/WF
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Figure 9.15  Buckling Load Factor vs. LU/WF, Including Yield Effect

9.5 Results and Conclusions from the Non-linear Analyses

For each of span, web depth, flange thickness and flange width, the curves of BLF vs.
dimension are bounded by a horizontal line at BLF = 2. That is, regardless of the dimensions
of the span, web depth or flange, the main frames do not experience buckling below a load
level of 2*Fmax.

Therefore, in summary, only two parameters affect the frame stability at the load levels of
interest: web thickness and material yield strength.

It must be understood that all of the information generated in this study is based on one ship
configuration (i.e., displacement and power). Dimensions have been varied extensively for this
ship and there is a high level of confidence that, for this ship, the relationships defined in
Sections 9.4.1 to 9.4.7 are accurate and that post-yield buckling will not be a problem except
for frames with very thin webs. However, whether this will hold for all ships of varying
displacement and power has yet to be determined and is beyond the scope of this project.
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Typically, current restrictions imposed on designers to control buckling are very conservative
and result in a structure that is overdesigned. This is because the equations describing buckling
do not reflect the structural response and employ large factors of safety (3 or 4) to account for
their inaccuracies. Upon completion of this study, it appears that it would probably not be
practical (or perhaps even possible) to identify analytical relationships that would accurately
predict post-yield buckling because the response is too complicated. It is quite possible that the
approach taken in the future will be that ship designers will use formulae only to provide an
initial design that will then be verified and optimized by non-linear FEA.

In summary, based on the results of this study, it could be concluded that post-yield buckling
is a concern only when determining the web thickness for main frames.
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10.  OVERALL PROJECT CONCLUSIONS AND RECOMMENDATIONS

The literature survey did not uncover any new work relevant to the post-yield buckling
response of ship structure. No analytical solutions dealing with large displacements/rotations
and large-scale non-uniform plastic deformations in the pre-buckling range were identified.
Because of its complexity, it is likely that analytical solutions for this problem do not exist.

The stability equations in the Equivalent Standards are not expected to predict the expected
“real life” response to a laterally applied load. It was decided that there would be no merit in
trying to modify those equations or to try to extend the equations into the non-linear regime.

It is concluded that the shear force difference method for predicting the post-yield buckling
load level is a valid process.  A linear eigenvalue buckling analysis, performed within a non-
linear analysis at a load level of 2.16*Fmax, demonstrated a main frame instability in the
structure at a load level of 2.197*Fmax. This supported the graphical calculation of buckling
load level at 2.24*Fmax determined using the shear force difference method.

Although the purpose of the study was to review post-yield buckling criteria that would be
independent of ship geometry, the study was conducted with one global ship configuration.
For this specific configuration, it is concluded that only two parameters affect the frame
stability at the load levels of interest: web thickness and material yield strength.  It was
determined that post-yield buckling will not occur unless the frame webs are very thin.
Whether this will hold for all ships of varying displacement and power is unknown at this
point as all studies were conducted with one ship geometry.

It was shown that for variations in span, web depth, flange thickness and flange width, main
frames do not experience buckling for this ship below a load level of 2*Fmax. Therefore, it is
concluded that post-yield buckling is not a concern unless frame web thicknesses are very
small.

Upon completion of this study, it appears that it is not practical (or perhaps even possible) to
identify analytical relationships that would accurately control post-yield buckling because the
response is too complicated. It is quite possible that the approach taken in the future will be
that ship designers use such formulas only to provide an initial design that will then be verified
and optimized by non-linear finite element analysis.

It is therefore recommended that designers use the current Equivalent Standards rules for
developing ship scantling sizes.  Based on the results of this and previous studies, main frames
designed using the current rules show no trend toward post-yield buckling below Fmax.  In fact,
most designs fail above 2* Fmax.
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It is also recommended that, where critical, non-linear finite element analysis be performed to
determine the specific post-yield buckling response of the designed structure.  It is further
recommended that procedures/guidelines be developed for performing the non-linear analyses.
These analyses are very complicated and a set procedure should be followed by qualified
personnel to assure accurate results.
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1 Derivation of Torsional Buckling Stress for Beams with Enforced Axis of Rotation
and Under Uniform Axial Compression

The design equations for stiffener tripping in the CASPPR Hull Structure Regulations were
obtained as special cases of the torsional-flexural buckling stress of stiffeners with enforced
axis of rotation.

This buckling stress can be derived using an energy approach (Bleich, 1952), which involved
construction of potential energy expression for axially loaded thin-walled beam structures.
The potential energy equation obtained by Bleich (presented in Equation (4.5) in Daley and
Ferregut’s report, 1988 and reproduced as Equation 1 below) was quite general and included
bending deformations about both principal axes and torsion about the shear centre.  It should
be noted that the displacement components, u and v, were measured with respect to the shear
centre and θ denoted rotation about the shear centre.

Equation 1:
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This potential energy expression was derived based on the following assumptions:

1. The cross section of the beam is constant along the axial direction;
2. The geometry of the cross section remains unchanged during deformation;
3. The stresses due to the external load are in linear elastic range;
4. The pre-buckling displacements are negligibly small so that the potential energy

expression can be derived based on the original configuration of the beam;
5. The axial pre-stresses are uniformly distributed over the beam cross section, so that the

resultant of these stresses is through the centroid of the cross section. Lateral load and
transverse bending moment were not considered.

For beams with enforced axis of rotation, the displacements at shear centre can be expressed in
terms of the rotation about the enforced axis.  For cross section that is symmetric about one of
the principal axes, such as the Tee section, displacement components can be expressed as in
Equations (4.3) and (4.4) in Daley and Ferregut (1988) (shown as Equations 2 and 3 below)
where the assumption of small rotation had been utilized.  Substituting this kinematic relation
into the potential energy function resulted in a simplified expression that contained only one
variable: the rotation about the enforced axis.

Equation 2: a θu =

Equation 3: 0=v

Once the potential energy was established, the buckling stress could be obtained in various
ways.  One method was to derive the governing differential equation of the problem, which



A-2

was Euler’s equation in the calculus of variation. (Please note: this is different from Euler’s
formula for lateral buckling of beam columns.) The other approach was to use the Ritz
method, which involved direct substitution of an assumed displacement field into the potential
energy function and then minimizing the potential energy by differentiating with respect to the
coefficient in the displacement function.  With proper selected displacement field, these two
methods should yield identical solutions.

The assumed half sine wave displacement pattern implied the following boundary conditions:
a) along the enforced axis of rotation, u=v=0 and no restraint on θ (like a hinge).
b) at both ends, simply supported boundary conditions were assumed so that u=θ=0 and

u’’=θ’’=0.

Timoshenko and Gere (1961) considered the same problem using a slightly different approach.
Instead of constructing potential energy function, they derived the system of governing
differential equations for coupled torsional-flexural buckling of thin-walled beams.  This
system of equations included flexural deformations in vertical and lateral directions and
torsional deformation about shear centre.  For buckling with enforced axis of rotation, the use
of the kinematic relations between displacements and rotation simplified the governing system
of equations and reduced it to a single equation about θ, which was identical to Euler’s
equation obtained by Bleich using the energy method.  Timoshenko and Gere (1961) presented
their result in a more general form that did not require any symmetry of the beam cross
section.  The equation of Timoshenko and Gere was presented as Equation (4.31) in Daley and
Ferregut’s report (1988) and is reproduced as Equation 4 below.

Equation 4:

( ) ( )[ ] ( )
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+−+−+
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where:   =yx II ,  moment of inertia with respect to principal axis of the section
=oo yx ,  coordinates of the shear centre with respect to centroid
=cc yx ,  coordinates of the enforced axis of rotation with respect to centroid

=oI  Polar moment of inertia about the shear centre
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As mentioned above, the formula for buckling stress for beam with enforced axis of rotation
was obtained from a single equation that was derived by substituting the kinematic relations
into the governing system of equations.  This reduced equation already includes torsion about
the shear centre and bending in both vertical and lateral directions. In Daley and Ferregut
(1988), however, this equation was coupled with the governing equation for vertical buckling
of unconstrained beam and no detail was given.  In my opinion, this coupling is not justified.

The torsional-flexural buckling formula obtained by Bleich and Timoshenko, et al. could be
over-conservative because in their derivation, no rotational restraints were assumed along the
enforced axis of rotation.  Several attempts had been made to account for this effect by
Adamchak (1979), Faulkner (1973, 1975, 1991, 1996) and Hughes (1983), among others.

2 Derivation of Critical Stress 36.0/yT σσ ≥ and the Design Equations

From the formula for buckling stress, it is readily recognized that the reduced slenderness λ
only depends on the geometric and material properties of the stiffener.  In other words, for a
given stiffener, this parameter can be uniquely determined.  If Tσ is the true critical stress, we
should then obtain the curve marked as “EULER” in Figure A-1, reproduced from Daley and
Ferregut’s report (1988) below.

However, the relationship between the true (experimentally measured?) critical stress CRσ and
the reduced slenderness parameter λ was shown as curve “e”.  To ensure that no buckling
occurred prior to the complete yielding of the cross section (form of plastic hinge), CRσ must
be greater than or equal to the yield stress yσ .  This results in 6.0≥λ  or equivalently

36.0/yT σσ ≥ .

To gain a better understanding of this relation, we could consider the intersection of curve “e”
and vertical line corresponding to .1=λ  At this intersection, we have yT σσ = , however,

yCR σσ < .

However, in the 1998 version of the DNV Rules for Classification, the critical buckling stress
was determined as:
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Based on this equation, CRσ  never exceeds the yield stress.
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Figure A-1
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The design equations in the ASPPR standards were derived by combining the torsional-
flexural buckling stress and the requirement 36.0/yT σσ ≥ .  Two extreme cases covered by
the buckling equation were considered.  If the section is a shallow thick section, the torsional
strength would predominate, whereas if the section is deep and thin, the warping and lateral
bending strength would be predominate.  To obtain design equations in their simplest form,
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average values of geometric parameters of the beam cross section, such as the ratio of the
flange width and the web height and the ratio of the flange and web thicknesses for Tee
section, have been utilized.

Some errors were identified in Daley and Ferregut’s report (1988) in the treatment of the flat
bar cross section. [Note: Apparent errors are identified in this Appendix, following Section 4.]

3 Stiffener Tripping Under Lateral Loads

Stiffener tripping under lateral loads and vertical bending moments were also considered by
Bleich and Timoshenko, et al.  Some of the results were summarized by Ferregut and Daley
(1989).

The potential energy function obtained by Bleich considered axial compressions (acting on the
shear centre), vertical bending moments and distributed load acting in the mid-plane of the
web.  The assumptions used in this derivation were similar to those presented earlier, with one
additional assumption stating that the direction of the vertical load remains constant and does
not change to follow the displaced shape of the structure.

For beams with enforced axis of rotation subjected to a constant bending moment, this theory
predicted that only moments caused by compressive stress in flange can lead to buckling of the
stiffener.

Ferregut and Daley (1989) had attempted to solve the tripping buckling problem with flange in
tension.  However, this attempt was unsuccessful.

Danielson (1995) has recently considered buckling of stiffened plate under combined axial
compressive stress, uniform lateral pressure and uniform bending moment.  An energy method
was utilized based on the von Karman plate equation and a non-linear beam theory developed
previously by the author.  The potential energy expression was obtained using a number of
assumptions including:

1. The plate and stiffener material was elastic, linear and isotropic;
2. The bases of the stiffeners were clamped to the plate along the line of attachment;
3. The pre-buckling displacements were less than the maximum thickness of the structure;
4. The plate and stiffeners were think and slender.

Critical axial stress was found as a function of the magnitudes of the lateral pressure, bending
moment, initial geometric imperfection and residual stress.  It is very interesting to note that
the first three parameters all have stabilization effects on the stiffened plate structure.
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The problem that we are facing involves large displacements/rotations and large-scale, non-
uniform plastic deformations in the pre-buckling range.  Analytical solutions dealing these
extremely complicated situations have not been identified at the present time.  A more detailed
literature search should be conducted.  However, it is highly possible that analytical solutions
for this problem do not exist because of its complexity.
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Errors identified in Daley and Ferregut’s report (1988) in the treatment of the flat bar
cross section:

In the report by Daley and Ferregut (1988), Equation (4.29) should be:
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where pcI  is the polar moment of inertia of the cross section with reference to the enforced
centre of rotation (as defined on page 11 of the same report).  For a flat bar with centre of
rotation at the toe, we have:
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However, the equation shown in the report is:
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No further explanation of variable pI  is given in the report.
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INTRODUCTION

In most finite element programs, linearized buckling analysis capabilities are associated with
the solution of an eigenvalue problem formulated by linearizing the non-linear equilibrium
equations at the stress-free reference configuration.  It is well known that this buckling
analysis algorithm can only predict critical buckling loads with acceptable accuracy for
problems with an almost linear response in the pre-buckling regime.  For problems showing a
strong non-linearity prior to buckling, the linearized buckling analysis often results in
significant overestimation of the critical buckling load level.  This is obviously undesirable in
practical engineering analysis.

One way to solve this difficulty is to formulate a linearized buckling (eigenvalue) problem in
terms of the current tangent stiffness matrices around a converged equilibrium point along the
non-linear solution path. Since the tangent stiffness matrices contain information on the non-
linearities involved in this problem, these eigen solutions can provide more accurate
predictions to the critical load level.  Such an analysis option has been implemented in the
VAST program [1], in which the user is permitted to terminate a non-linear run in the pre-
buckling range and perform a linearized buckling analysis.  This capability in VAST is
referred to as Advanced Buckling Analysis [2].

The VAST advanced buckling analysis capability has been verified previously using two
buckling problems with known analytical solutions [1].  The first problem is the buckling of a
beam column subjected to an axial compression, and the second is the buckling of a simply
supported plate subjected to uniform biaxial in-plane stresses.  The verification results are
documented in Reference [1].  However, since its development, it has been discovered that this
buckling analysis capability produces spurious numerical results for some non-linear
problems, especially for those having significantly non-linear pre-buckling responses.  In order
to gain an improved understanding of the performance and limitations of this numerical
algorithm, its theoretical derivation and computer implementation have been reconsidered in
the present study.  Additional numerical verifications have also been conducted by using non-
linear benchmark problems involving non-linear pre-buckling responses.  These problems
include clamped-clamped shallow arch and hinged shallow spherical shell subjected to centre
point loads.  After modifying a number of details on the implementation of the advanced
buckling algorithm, VAST produced excellent results for all of the test problems.

SOME FURTHER CONSIDERATIONS ON THEORETICAL DERIVATIONS

The advanced buckling capability in VAST was developed based on an algorithm proposed by
Bathe and Dvorkin [3] using a linear extrapolation of the tangent stiffness matrix.  Denoting
the tangent stiffness matrices of a structure at the end of the current and previous equilibrium
points as T

t K  and T
tt K∆− , and the corresponding load parameters as λt  and λtt ∆− ,

respectively, the tangent stiffness matrix at an arbitrary load level λ was assumed as:

( )T
tt

T
t

T
tt

T KKKK ∆−∆− −+= µλ)( (1a)
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where

   
λλ
λλµ ttt

tt

∆−

∆−

−
−= . (1b)

Let λ indicate the load level at which buckling or collapse would occur in an incremental
analysis, we then have:

  ( )( ) 0=λTdet K . (2)

Substituting Equation (1a) into (2) leads to an eigenvalue problem as:

 ( )φφφφφφφφ T
tt

T
t

T
tt KKK ∆−∆− −−= µ . (4)

In Reference [3], Bathe and Drovkin have suggested rearranging the terms in Equation (4) to
establish an equivalent eigenvalue problem as:

          φφφφφφφφ T
tt

T
t KK ∆−−= γ (5a)

where

    
µ
µγ −= 1 . (5b)

Once the eigenvalue γ  is obtained, the buckling load parameter can be readily computed using
Equations (5b) and (1b).

Although the above algorithm is effective in evaluating structural instability of non-linear
systems, it also has a number of disadvantages.  We first consider the effect of the change of
variable defined in Equation (5b).  The relation between µ  and γ  is displayed graphically in
Figure 1.  It was observed that when µ  is greater than 1.0, the eigenvalues of eigenvalue
problem (5a) become very closely spaced and approach –1.0.  This fact indicates a number of
potential numerical problems: (1) a small error in eigenvalue γ  may be amplified to a huge
error in µ  and eventually in the predicted load parameter λ , (2) the convergence rate of the
eigen solver may be extremely slow, and (3) the eigen solutions may be extremely sensitive to
the accuracy of the arithmetic operations.  Based on Figure 1, it was also realized that the best
performance of the eigenvalue problem solver can be reached when 1→µ .  This occurs when
critical load parameter λ  is close to λt .  As an attempt to avoid using the change of variable
in (5b), an alternative eigenvalue problem has been implemented and tested.  This eigenvalue
problem was formulated directly in terms of the load parameter λ as:
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( ) ( )φφφφφφφφ T
tt

T
t

T
ttt

T
ttt KKKK ∆−∆−∆− −−=− λλλ . (6)

Unfortunately, numerical experiments indicated that this formulation was less effective than
the one defined in (5a).  This is probably because in (6) the matrices are too sensitive to the
accuracy of arithmetic operations and a small round-off error may cause completely incorrect
eigen solutions.

Another limitation of this advanced buckling analysis algorithm is associated with the linear
approximation of the tangent stiffness matrix as defined in Equation (1a).  This approximation
is obviously not applicable to the extreme cases where the structure has either a very stiff or a
very highly non-linear pre-buckling response.  In addition, it should be realized that this
buckling analysis algorithm is based on an overall measure of the properties of the tangent
stiffness matrix.  Because plastic deformations can also cause a reduction of the structural
tangent stiffness, the eigenvalues and eigenvectors obtained in the buckling analysis may not
always be interpreted as critical load levels and buckling mode shapes.  This point will be
further demonstrated later using a numerical example.

NUMERICAL VERIFICATIONS

Test Case 1 : Buckling of a Simply-Supported Plate Under Uniform In-Plane Stresses

In this test problem, buckling of a simply-supported square plate compressed by uniform
stresses in two directions was considered.  The problem is depicted in Figure 2.  The in-plane
dimension of the plate is 10×10, and the thickness is 0.1.  The elastic isotropic material
properties are E=1.2×108 and ν=0.3.  The reference uniform stress is 0σ =103.  Due to
symmetry, one quarter of the plate was modelled by using a 10×10 mesh of 4-noded
quadrilateral shell elements.

The analytical solution to the buckling stress for this problem has been given by Timoshenko
[4] as:

   ( ) 22

22

16 a
Eh

YX ν
πσσ
−

==

where a and h denote the edge length and thickness of the plate, respectively. Substitution of
the geometry and material properties defined above into this formula results in a buckling
stress of 21.6914×103, which corresponds to a load parameter of 21.6914.

In the present study, a fully non-linear analysis was first performed to obtained a complete
non-linear solution to this problem.  In order to trigger the desired buckling mode, a small
vertical force was applied at the plate centre in the non-linear run.  The load-centre deflection
curve predicted by the non-linear analysis is displayed in Figure 3.  Once the non-linear
analysis was completed, five advanced buckling analyses were performed by restarting VAST
from the fifth, fourth, third, second and first solution step, respectively.  The first critical load
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parameters predicted by these analyses are summarized in Table 1, along with the load
parameters at the end of these solution steps.  An excellent convergence property of the
advanced buckling analysis algorithm is observed.  The deformed shape predicted by non-
linear analysis at the end the fifth load step and the first buckling mode predicted by advanced
buckling analysis performed at the end of the third step are compared in Figure 4.  The close
agreement between these deformed shapes indicates the ability of the advanced buckling
analysis algorithm to predict the correct failure mode of structures.  The buckling load was
also obtained using the regular linearized buckling analysis and the result is also included in
Table 1.  For this particular problem, the buckling stress predicted by the regular buckling
analysis is in good agreement with those obtained using the advanced buckling algorithm.

Table 1: Comparison of Critical Loads of the Simply-Supported Plate Under Uniform
In-Plane Stresses Predicted by Various Buckling Analysis Methods

Solution Methods Load Step No. Critical Load
Parameter CRλ

Load Parameter at
which advanced
buckling analysis is
performed, λt

Advanced Buckling 1 21.796 11.191
Advanced Buckling 2 21.779 16.309
Advanced Buckling 3 21.734 18.477
Advanced Buckling 4 21.664 19.614
Advanced Buckling 5 21.603 20.309
Regular Buckling 21.799
Analytical [4] 21.691

[Tests cases 2, 3 and 4 were removed to abbreviate this appendix.]
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CONCLUSIONS

In this technical note, the theoretical derivation of the advanced buckling analysis algorithm
and its implementation in VAST have been seriously reconsidered.  A number of potential
problems and limitations of this algorithm were investigated and the computer program was
enhanced. This capability has been verified using a number of example problems involving
different types of non-linearities and excellent results have been obtained for all test problems.
The numerical verification indicates the effectiveness of the advanced buckling analysis
capability, but also suggested that the results of the advanced buckling analyses must be
interpreted with caution!
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Figure 2: A Simply-Supported Plate Subjected to Uniform Bi-Axial In-Plane Stresses.
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Figure 3: Load-Center Deflection Curve of the Simply-Supported Plate Subjected to 
Uniform Bi-Axial In-Plane Stresses Obtained by Fully Nonlinear Analysis.
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Figure 4: Comparison of Deformed Configuration Predicted by Nonlinear Analysis and Eigenmode 
Predicted by Advanced Buckling Analysis for the Simply-Supported Plate.
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