### **Use and Releases of MTBE in Canada**

A report based on responses to Environment Canada's May 26, 2001 information gathering notice on Methyl tertiary-Butyl Ether

> Joanna Bellamy Jeffrey Guthrie Steven Groves (student) Oil, Gas and Energy Branch Environment Canada

> > March 2003

ı.

Questions and comments on the content of this report should be directed to:

Oil, Gas and Energy Branch Air Pollution Prevention Directorate Environmental Protection Service Environment Canada Place Vincent Massey, 10<sup>th</sup> Floor Ottawa, Ontario K1A 0H3 Fax: (819) 953-8903

### **Contents**

| 1.0 Introduction                                           |  |
|------------------------------------------------------------|--|
| 2.0 Background 3                                           |  |
| 2.1 Nature and cause of problem                            |  |
| 2.2 Responses to the problem by other jurisdictions        |  |
| - actions to prevent contamination                         |  |
| 2.3 Responses to the problem by other jurisdictions        |  |
| - water quality guidelines for MTBE                        |  |
| 2.4 Canadian situation - what was known prior to the       |  |
| CEPA 1999 Information Gathering Notice                     |  |
| 3.0 Information on MTBE Provided Pursuant to the CEPA 1999 |  |
| Notice 8                                                   |  |
| 3.1 Production, import and export of gasoline              |  |
| containing MTBE                                            |  |
| 3.2 Production, import and export of MTBE 10               |  |
| 3.3 Reported releases of gasoline containing MTBE          |  |
| 3.4 Reported releases of MTBE 14                           |  |
| 3.5 Reported ground water and drinking water               |  |
| contamination 15                                           |  |
| 3.5.1 Ground water contamination                           |  |
| 3.5.2 Drinking water contamination                         |  |
| 3.6 Procedures to monitor and prevent MTBE releases        |  |
| monitor contamination                                      |  |
| 3.7 Future use of MTBE 21                                  |  |
| 3.8 Discussion                                             |  |
| 3.8.1 Summary of key findings 22                           |  |
| 3.8.2 Addressing the problem                               |  |
| 4.0 Path forward 28                                        |  |
| Appendix A - May 26, 2001 CEPA 1999 Notice on MTBE 29      |  |
| Appendix B - U.S. states taking or considering action      |  |
| to ban MTBE                                                |  |
| Appendix C - Reported production, import and export of     |  |
| gasoline containing MTBE and of MTBE, by region            |  |

| Appendix D - Reported incidents of ground and drinking water |    |
|--------------------------------------------------------------|----|
| contamination with MTBE                                      | 39 |

### List of Figures

| Figure 3.1 - Companies reporting producing, exporting producing, exporting or importing gasoline containing MTBE in Canada, |    |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| 1991-2000                                                                                                                   | 10 |
| Figure 3.2 - Reported production, imports and exports of gasoline                                                           |    |
| containing MTBE in Canada, 1991-2000                                                                                        | 11 |
| Figure 3.3 - Companies that reported producing, exporting and                                                               |    |
| importing MTBE in Canada, 1991-2000                                                                                         | 12 |
| Figure 3.4 - Net volume (production + imports - exports) of MTBE                                                            |    |
| Canada, 1991-2000                                                                                                           | 13 |
| Figure 3.5 - Reported number of sites with MTBE contamination                                                               |    |
| of ground water                                                                                                             | 16 |
| Figure 3.6 - Distribution of maximum reported concentrations of                                                             |    |
| MTBE in ground water (ppb)                                                                                                  | 17 |
| Figure 3.7 - Distribution of facility types for which ground water                                                          |    |
| contamination was reported                                                                                                  | 18 |
| Figure C.1 - Reported production, imports and exports of gasoline                                                           |    |
| containing MTBE in Canada by region, 1991-2000                                                                              | 37 |
| Figure C.2 - Reported production, imports and exports of MTBE                                                               |    |
| in Canada by region, 1991-2000                                                                                              | 38 |

### List of Tables

| Table 2.1 - Water quality guidelines for MTBE                    | 7  |
|------------------------------------------------------------------|----|
| Table 3.1 - Companies responding to Notice                       | 8  |
| Table 3.2 - Reported releases of gasoline containing MTBE in     |    |
| Canada, 1991-2000                                                | 14 |
| Table 3.3 - Reported releases of MTBE in Canada in 1991-2000     | 15 |
| Table 3.4 - Reported incidents of drinking water contamination   |    |
| with MTBE in Canada, 1991-2000                                   | 18 |
| Table 3.5 - Comparison of provincial storage tank regulations    | 25 |
| Table B.1 - U.S. states having passed or considering legislation |    |
| to limit or ban MTBE                                             | 36 |
| Table D.1 - Reported incidents of ground water contamination     |    |
| with MTBE in Canada, 1991-2000                                   | 39 |
|                                                                  |    |

### **Executive Summary**

On May 26, 2001, Environment Canada published a Notice in the Canada Gazette requiring the reporting of information on the use and releases of methyl *tertiary*-butyl ether (MTBE) in Canada. This report is based on the information provided by companies in response to the Notice in July 2001. The report summarizes findings from the Notice, including an assessment of the extent to which MTBE has been detected in ground water and drinking water in Canada, and lays out the steps being taken by the federal government to address the issue.

Twenty three responses<sup>1</sup> to the CEPA 1999 Notice were submitted to Environment Canada. MTBE was reported as having been detected in ground water at two hundred and fifty locations and in every province in Canada<sup>2</sup>. Among the two hundred and fifty locations, six were sites where ground water was used as a source of drinking water. All six sites were located in PEI. In all six cases, the concentration of MTBE was at levels below the United States Environmental Protection Agency's (EPA's) consumer advisory level of 20 to 40 parts per billion. Data later provided to Environment Canada indicated that as a result of remediation, MTBE was no longer detected at three of the six locations. In Canada, as in other jurisdictions, ground water contamination with MTBE is believed to be linked to releases of gasoline from storage tanks systems.

In 1998, gasoline containing MTBE accounted for 10% of the Canadian gasoline pool. This fell to 2% in 2000, was projected to drop to less than 1% by the end of 2001, and to decrease further in subsequent years. By the end of 2002, use of gasoline containing MTBE in Canada was projected to fall by 95% from the 1998 peak. However, contamination of ground water resulting from the past use of MTBE may persist for some time due to its slow rate of degradation in the environment.

Only one company, Alberta Envirofuels, reported producing MTBE in Canada. It reported that it would cease production of MTBE in 2002 and instead produce iso-octane. Eleven refining and marketing companies reported having used MTBE; only Irving Oil and North Atlantic Refining indicated that they intended to continue producing gasoline containing MTBE after 2001. Both of these Atlantic refiners export reformulated gasoline, which must contain oxygenate, to the U.S. While North Atlantic Refining reported that it plans to continue marketing gasoline containing MTBE in Canada, Irving Oil has indicated that it will not.

While addressing contaminated sites is primarily an area of provincial jurisdiction, the federal government plans to coordinate a number of actions to address the issues related to MTBE contamination. Given the substantial decrease in use of

<sup>&</sup>lt;sup>1</sup> Several nil responses were also submitted.

<sup>&</sup>lt;sup>2</sup> There were no releases reported in the three territories.

MTBE in Canada, the following initiatives, falling into three areas, are considered appropriate:

- 1. Preventing releases of MTBE into the environment:
  - Codes of practice for underground and above ground storage tanks developed in 1993 by the Canadian Council of Ministers of the Environment (CCME) are being updated (expected to be published in 2003).
  - New federal regulations are being developed to put technical requirements such as leak detection in place for all tanks under federal jurisdiction (expected to be completed in 2003).
- 2. Detecting ground water and drinking water contamination:
  - On a broader level, Environment Canada will continue to study and report on the use of MTBE in gasoline in Canada in order to monitor potentially affected regions;
  - Environment Canada will monitor MTBE contamination of ground and drinking water across Canada through information provided to the department by provinces and territories.
- 3. Remediating contaminated sites:
  - The CCME is developing Canadian water quality guidelines for the protection of aquatic life and the Federal-Provincial-Territorial Subcommittee on Drinking Water is developing Guidelines for Canadian Drinking Water Quality for MTBE. These guidelines may be used to guide clean up for cases where standards do not exist (expected to be completed in 2003-2004).

These actions will provide an ongoing understanding of MTBE usage in Canada, mitigate the potential for further MTBE releases, and give guidance for remediation of contaminated sites.

### 1.0 Introduction

In February 2001, the Federal Minister of the Environment published a Notice of Intent on Cleaner Vehicles, Engines and Fuels, laying out the federal agenda to address related environmental issues. One item addressed in the Notice was the use of MTBE in Canadian gasoline. Specifically, the Notice indicated that:

- the Minister would publish "a notice under paragraph 71(1)(b) of the Canadian Environmental Protection Act (CEPA 1999) requesting information on usage and releases of MTBE"; and
- "following a review of the information, Environment Canada will consider whether further action in respect of MTBE is warranted".

The MTBE information gathering notice referred to above was published in the Canada Gazette on May 26, 2001. It required persons handling MTBE or gasoline containing MTBE to provide information to the Minister on use and releases of MTBE by July 31, 2001 (for full text of the Notice, see Appendix A).

This report is a summary of the information provided to Environment Canada in response to the Notice. The report also outlines the proposed path forward by the federal government to prevent future releases of MTBE.

### 2.0 Background

### 2.1 Nature and cause of problem

MTBE is a synthetic organic compound known as an oxygenate. It may be used in gasoline to improve gasoline octane and also because it reduces vehicle emissions. (Oxygenates are a required component in U.S. reformulated gasoline for the latter reason.) MTBE has a higher solubility in water and a slower rate of degradation than many other components of gasoline. As well, MTBE has a low taste and odour threshold. Because of its strong turpentine-like taste, MTBE can render water undrinkable at concentrations as low as 15-20 parts per billion (ppb).

Releases of gasoline containing MTBE from gasoline storage tank systems have contributed to significant drinking water contamination problems in some jurisdictions during the last decade, particularly in the U.S. In 2001, the U.S. Geological Survey (USGS) reported that MTBE was detected in approximately 5 percent of ground water samples across the U.S. However, less that one percent of the samples exceeded the EPA consumer advisory concentration of 20 micrograms per litre (approximately equal to 20 ppb). As well, MTBE was detected in nine percent of community water systems in twelve North East and mid-Atlantic states looked at by the USGS. Again, less than one percent of the

samples exceeded the EPA consumer advisory concentration<sup>3</sup>. While remediation of contaminated drinking water is feasible, it is often difficult and expensive.

The health and environmental effects of MTBE were assessed by the federal government under CEPA 1999 as part of the first Priority Substance Assessment process. Based on the level of use at the time, the 1992 Assessment report on MTBE concluded that, *"the predicted concentrations of MTBE in the environment in Canada do not constitute a danger to the environment or…to human life or health"*<sup>4</sup>. As a result, MTBE was found not to be "toxic" as defined in the *Canadian Environmental Protection Act.* 

Assessments by other agencies have examined the health risk of MTBE more recently:

- In 1997, the U.S. Interagency Assessment of Oxygenated Fuels released by the White House National Science and Technology Council indicated that, "While there are no studies on the carcinogenicity of MTBE in humans, MTBE should be regarded as posing a potential carcinogenic risk to humans based on animal cancer data"<sup>5</sup>.
- In 1998, the World Health Organization's International Programme on Chemical Safety published a report on MTBE which concluded that, "MTBE is not genotoxic but has induced tumours in rodents primarily at high concentrations" and that "data are considered currently inadequate for use in human carcinogenic risk assessment"<sup>6</sup>.
- In its March 2000 Advance Notice of Proposed Rulemaking to control MTBE in gasoline, the EPA stated, "*low levels of MTBE can make drinking water supplies undrinkable due to its offensive taste and odor. At higher levels, it may also pose a risk to human health*".

# **2.2** Responses to the problem by other jurisdictions - actions to prevent contamination

MTBE contamination of ground water has become an issue of serious concern in the U.S., where use of MTBE or other oxygenates has been required in reformulated gasoline since 1993. MTBE has been the refiners' oxygenate of choice in the U.S. and in 1998 was present in 87% of the U.S. reformulated gasoline pool at levels of 10% to 15% by volume, amounting to an average MTBE concentration across the U.S. gasoline pool of approximately 3%.

<sup>&</sup>lt;sup>3</sup> Clawges, Rick, Rowe, Barbara, and Zogorski, John, 2001, National Survey of MTBE and Other VOCs in Community Drinking-Water Sources: U.S. Geological Survey Fact Sheet.

<sup>&</sup>lt;sup>4</sup> Government of Canada, Canadian Environmental Protection Act Priority Substances List Assessment Report No. 5, Methyl *tertiary*-Butyl Ether, 1991, pp. v, 12-13.

<sup>&</sup>lt;sup>5</sup> White House Office of Science and Technology Policy, Interagency Assessment of Oxygenated Fuels, 1997.

<sup>&</sup>lt;sup>6</sup> World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 206, Methyl tertiary-Butyl Ether, 1998, p. 9.

One of the best known examples of drinking water contamination with MTBE is in Santa Monica, California. In 1996, seven wells in Santa Monica providing 50% of the city's drinking water supply were found to be contaminated at levels up to 600 ppb<sup>7</sup>. Releases of gasoline from underground storage tanks were identified as the cause.

In March 1999, California Governor Gray Davis announced that MTBE would be phased out "*at the earliest date, but not later than December 31, 2002*". In December 1999, California approved its Phase 3 gasoline regulations banning the use of MTBE by the end of 2002. In the interim, California requires prominent labelling of pumps which dispense gasoline containing MTBE, "*in order to allow consumers to make an informed choice as to the type of gasoline they purchase*"<sup>8</sup>. On March 15, 2002, Governor Davis announced a decision to delay the ban until January 1, 2004 because of concerns that gasoline shortages could result.

Sixteen other states are also taking or have taken action to ban or limit MTBE in the 2003-2004 time frame, and several others are considering taking action. Several states require labelling of gasoline containing MTBE. Table B.1 in Appendix B summarizes actions taken or proposed by U.S. states with respect to MTBE.

In Canada, *CEPA 1999* does not currently provide the authority to ban MTBE as a gasoline additive as this substance was found not to be toxic in an assessment conducted by Environment Canada in 1992 based on the levels of production prior to 1992. There is extremely limited constitutional authority for the federal government to require labelling at the pump - although limited authority exists under the *CEPA 1999* to require labelling of fuels, this does not provide the power to require the labelling for MTBE at the pump.

In November 1998, the U.S. EPA administrator commissioned a Blue Ribbon Panel on Oxygenates in Gasoline to assess the water quality problems associated with oxygenates in gasoline. In July 1999, the panel recommended that the current mandate for oxygenates in reformulated gasoline "*be removed… while quickly reducing usage of MTBE and maintaining air quality benefits*".

As follow-up to the Blue Ribbon Panel report, in March 2000 the EPA issued an Advance Notice of Proposed Rulemaking under Section 6 of the Toxic Substances Control Act to control MTBE in gasoline. The Advance Notice indicated that *"the outcome of this rulemaking could be a total ban on the use of MTBE as a gasoline additive or a limitation preventing the use of MTBE in* 

<sup>&</sup>lt;sup>7</sup> U.S. National Groundwater Association, Position Paper on MTBE.

<sup>&</sup>lt;sup>8</sup> California Air Resources Board website, http://www.arb.ca.gov/cbg/Oxy/mtbelabl/mtbelabl.htm

gasoline in amounts greater than those designed to provide octane enhancement." <sup>9</sup>

A major energy bill in the last session of the U.S. Congress would have banned MTBE within four years of the bill coming into effect. However, the bill was not passed. It is understood that a revised version of this bill (including the MTBE ban) will soon be introduced into the U.S. Senate..

A March 2001 study for the European Commission, "MTBE and the Requirements for Underground Storage Tank Construction and Operation in Member States" indicated that, "contamination is unlikely if standards governing the construction and operation of underground storage tanks at service stations are robustly enforced"<sup>10</sup>. The EU Commission has not proposed any restrictions on the MTBE content of gasoline<sup>11</sup>. In addition, Denmark has looked at the use of tax incentives on gasoline to speed up investment aimed at protecting soil and ground water from leaks of MTBE from underground tanks.

In Australia, legislation has been passed to limit the concentration of MTBE in gasoline to 1% by volume (approximately 0.18% oxygen by volume), beginning January 1, 2004<sup>12</sup>.

### 2.3 Responses to the problem by other jurisdictions - water quality guidelines for MTBE

Some jurisdictions have developed water quality guidelines for MTBE based on the threshold concentration at which MTBE can be tasted (aesthetic level). Other jurisdictions have set guidelines at which MTBE is a threat to aquatic life. California has, in addition, developed a guideline for health effects. In some jurisdictions, these guidelines are used as standards for ground water remediation.

In December 1997, the U.S. EPA issued a drinking water advisory on MTBE. The advisory recommended controlling levels for taste and odour acceptability levels of 20-40 ppb - that would also protect against potential health effects. Other jurisdictions have also developed guidelines for acceptable levels of MTBE in water (see Table 2.1).

<sup>&</sup>lt;sup>9</sup> US EPA, Office of Transportation and Air Quality, Advance Notice of Proposed Rulemaking to Control MTBE in Gasoline, March 2000.

<sup>&</sup>lt;sup>10</sup> Arthur D. Little Limited, Report to the European Commission, "MTBE and the Requirements for Underground Storage Tank Construction and Operation in Member States", April 2001, p. 2.

<sup>&</sup>lt;sup>11</sup> European Union, Proposal for a Directive of the European Parliament and of the Council of the Quality of petrol and diesel fuels and amending Directive 98/70/EC, Document 501PC0241, s 6.4.

<sup>&</sup>lt;sup>12</sup> Australian 2001 Fuel Standard (Petrol) Determination, 8 October 2001.

|                                     | Level (ppm) |
|-------------------------------------|-------------|
| B.C. guidelines (aesthetic)         | 20 ppb      |
| B.C. guidelines (marine, estuarine) | 440 ppb     |
| B.C. guidelines (aquatic life)      | 3400 ppb    |
| P.E.I. guidelines (aesthetic)       | 15 ppb      |
| EPA guidelines (aesthetic)          | 20-40 ppb   |
| California guidelines (aesthetic)   | 5 ppb       |
| California guidelines (health)      | 13 ppb      |

### Table 2.1 - Water quality guidelines for MTBE

### 2.4 Canadian situation - what was known prior to the CEPA Information Gathering Notice

MTBE has been used in Canada since 1986, although use in Canada has been much less widespread than in the U.S. as the addition of oxygenates has never been required in Canadian gasoline. The U.S. Clean Air Act has required the addition of oxygenates to reformulated gasoline since 1993.

Prior to the publication of the 2001 CEPA 1999 Notice, Environment Canada was aware of three cases of ground water contamination with MTBE in Canada:

- In 1997, low levels of MTBE were detected by the U.S. Geological Survey (working with Environment Canada) in the Abbottsford-Sumas Aquifer in southern British Columbia.
- In May 2000, Chevron and the province of British Columbia indicated that MTBE had been found in ground water at Chevron's Burnaby refinery.
- In March 2001, Prince Edward Island's Department of Fisheries, Aquaculture and Environment informed Environment Canada that MTBE had been detected in monitoring wells on, and adjacent to, sites contaminated with gasoline.

The average concentration of MTBE in the Canadian gasoline pool reported by gasoline producers and importers under the *Benzene in Gasoline Regulations* fell from 0.33% to 0.14% between 1999 and 2000. However, since the regulations do not require reporting of oxygenate blended downstream of refineries (except for a few special incidences described in the regulations), these values underestimate MTBE usage. In comparison, the average concentration of MTBE in the U.S. gasoline pool was approximately 3% in 1998.

### 3.0 Information on MTBE Provided Pursuant to the CEPA 1999 Notice

Twenty three responses<sup>13</sup> to the CEPA 1999 Notice were received by Environment Canada. Table 3.1 lists the companies that provided responses to the Notice:

- eleven respondents reported importing gasoline containing MTBE;
- nine respondents have produced or blended gasoline containing MTBE;
- eight respondents have imported MTBE; two have exported MTBE;
- one company reported producing MTBE;
- three companies reported that they have handled/transported MTBE.

| Company                                       | MTBE-related activity                                                         | Location of company             |
|-----------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|
|                                               |                                                                               | neadquarters                    |
| Alberta Envirofuels Inc.                      | Manufacturer of MTBE                                                          | Edmonton, Alberta               |
| BP Global Fuels Technology                    | exporter of MTBE; producer, importer and exporter of gasoline containing MTBE | Naperville, Illinois            |
| Cami Automotive Inc.                          | Importer of gasoline containing MTBE                                          | Ingersoll, Ontario              |
| Chevron Canada Limited                        | Exporter of MTBE; producer of gasoline<br>containing MTBE                     | Vancouver, B.C.                 |
| Consumers' Co-operative<br>Refineries Limited | Importer of MTBE; producer of gasoline<br>containing MTBE                     | Regina, Saskatchewan            |
| Esso Imperial Oil                             | Importer of MTBE; producer and importer of gasoline containing MTBE           | Toronto, Ontario                |
| Fisher Scientific                             | Importer of MTBE                                                              | Nepean, Ontario                 |
| Ford Motor Company of<br>Canada, Limited      | Importer of gasoline containing MTBE                                          | Oakville, Ontario               |
| Gibson Petroleum Company<br>Limited           | Operator of MTBE loading facility                                             | Calgary, Alberta                |
| General Motors of Canada<br>Limited           | Importer of gasoline containing MTBE                                          | Oshawa, Ontario                 |
| Honda of Canada Mfg.                          | Importer of gasoline containing MTBE                                          | Alliston, Ontario               |
| Irving Oil Limited                            | Importer of MTBE; producer and exporter of gasoline containing MTBE           | Saint John, New Brunswick       |
| Methanex Corporation                          | Trans-shipper of MTBE                                                         | Kitimat, B.C.                   |
| Neste Canada Inc.                             | Exporter of MTBE                                                              | Calgary, Alberta                |
| North Atlantic Refining<br>Limited            | Importer of MTBE; producer and exporter of gasoline containing MTBE           | Come by Chance,<br>Newfoundland |
| Northern Transportation<br>Company Limited    | Importer of gasoline containing MTBE                                          | Montreal, Quebec                |
| Olco                                          | Importer of gasoline containing MTBE                                          | Montreal, Quebec                |
| Petro-Canada                                  | Producer and importer of gasoline<br>containing MTBE                          | Mississauga, Ontario            |
| Pétroles Norcan Inc.                          | Importer of gasoline containing MTBE                                          | Montreal, Quebec                |
| Sunoco Inc.                                   | Importer of MTBE; producer of gasoline<br>containing MTBE                     | North York, Ontario             |
| Toyota Motor Manufacturing Canada Inc.        | Handles gasoline containing MTBE                                              | Cambridge, Ontario              |
| Trans Mountain Pipe Line<br>Company           | Ships gasoline                                                                | Calgary, Alberta                |
| Ultramar                                      | Importer of MTBE; blender and importer of gasoline containing MTBE            | St-Romuald, Quebec              |

Table 3.1 - Companies responding to Notice

<sup>&</sup>lt;sup>13</sup> Several nil responses were also submitted.

#### 3.1 Production, import and export of gasoline containing MTBE

Paragraphs 1(b) and (d) of the CEPA 1999 Notice required reporting of information relating to the production, import and export of gasoline containing MTBE in Canada between 1991 and 2000 and the intended production, and import of such gasoline from 2001 to 2005.

Companies that reported producing, exporting or importing gasoline containing MTBE between 1991 and 2000 are listed in Figure 3.1.

- Seven companies reported producing gasoline containing MTBE;
- three<sup>14</sup> companies reported blending<sup>15</sup> MTBE into gasoline;
- ten<sup>16</sup> companies reported importing gasoline containing MTBE;
- two companies reported exporting gasoline containing MTBE.

It is important to note that due to commercial exchanges of gasoline between fuel companies, companies other than those listed below would have handled, stored and sold gasoline containing MTBE.

Figure C.1 in Appendix C shows the production, blending, imports and exports of gasoline containing MTBE on a regional basis from 1991 to 2000. The figure shows that imports of gasoline containing MTBE have occurred in every region of the country during the ten year period. Production or blending has also occurred in every region. Exports have occurred from the Atlantic and Western regions only.

Figure 3.2 shows the volumes of gasoline containing MTBE that were reported to have been produced in, imported into, and exported from Canada between 1991 and 2000, as well as the net volumes of gasoline containing MTBE remaining in Canada (production + imports - exports).

<sup>&</sup>lt;sup>14</sup> One additional company, BP, reported adding MTBE to gasoline in Canada in 2001. All of this gasoline was subsequently exported.

<sup>&</sup>lt;sup>15</sup> Blending is considered to be the addition of MTBE to gasoline at a point in the distribution system which is downstream of a refinery.

<sup>&</sup>lt;sup>16</sup> An eleventh company, Olco, imported gasoline containing MTBE, but not until 2001.



# Figure 3.1 - Companies reporting producing, exporting or importing gasoline containing MTBE in Canada, 1991-2000

Between 1991 and 2000, a total of approximately 34.2 million m<sup>3</sup> of gasoline containing MTBE, equivalent to approximately 10% of the total gasoline pool, was produced in Canada. As Figure 3.2 shows, production peaked in 1997 at about 6.5 million m<sup>3</sup>, while the net volume of gasoline containing MTBE in Canada (production + imports - exports) peaked in 1998 at about 3.5 million m<sup>3</sup>. By 2003, net volumes are expected to fall by over 95% from the 1998 peak.

In 1998, gasoline containing MTBE at concentration in excess of 0.6% by volume accounted for 10% of the gasoline Canadian pool. This fell to 2% in 2000, and is estimated to have been less than 1% in 2001.



Figure 3.2 - Reported production, imports and exports of gasoline containing MTBE in Canada, 1991-2000

Only two refining companies, Irving Oil Ltd. and North Atlantic Refining Ltd., reported that they intend to continue using MTBE in gasoline in Canada post-2001. North Atlantic Refining Ltd. indicated that 90% of the gasoline it produces containing MTBE will be exported. Irving has informed Environment Canada that it no longer sells gasoline in Canada that contains MTBE.

Three companies, Cami Automotive, Honda and Northern Transportation, indicated that they intend to continue to import small volumes of gasoline containing MTBE post -2001. In addition, Ultramar reported that imports of gasoline containing MTBE could be possible but are not planned.

### 3.2 Production, import and export of MTBE

Paragraphs 1(a) and (c) of the CEPA 1999 Notice required the reporting of information relating to the production, import and export of MTBE in Canada between 1991 and 2000 and the intended production, import and export of MTBE from 2001 to 2005.

Figure 3.3 lists the companies that reported producing, importing or exporting MTBE in Canada between 1991 and 2000. A total of six companies imported

MTBE into Canada during this period<sup>17</sup>, two companies exported MTBE, and only one company, Alberta Envirofuels Inc., produced MTBE.





Figure C.2 in Appendix C shows the production, exports and imports of MTBE on a regional basis between 1991 and 2000. While imports of MTBE occurred in every region during the ten year period, production and exports were limited to the west of Canada.

Production of MTBE in Canada peaked in 2001. It was reported that production would cease in 2002. There were imports of MTBE into each region of Canada between 1991 and 2000, with 89% of the volume being imported into the Atlantic region.

Figure 3.4 shows the net volumes of MTBE remaining in Canada (production + imports - exports) between 1991 and 2000 as a percentage of the 1997 peak volume.

<sup>&</sup>lt;sup>17</sup> at volumes greater than 2 m<sup>3</sup>/year or greater.

Figure 3.4 - Net volume (production + imports - exports) of MTBE in Canada, 1991-2000



#### 3.3 Reported releases of gasoline containing MTBE

The CEPA 1999 Notice required the reporting of spills or leaks into the environment of more than 150 litres at any one time of a fuel containing at least 0.6 percent by volume MTBE. Table 3.2 presents the dates, volumes and locations of the nineteen releases of gasoline containing MTBE in Canada during 1991 to 2000 as reported by three companies. These releases occurred in British Columbia (B.C.), Ontario, Quebec and Nova Scotia.

Five of the releases were reported to be due to human error (overfilling, loading errors); others were due to equipment failure, such as leaks from tanks and piping. Twelve of the nineteen releases were reported to have been contained. For the seven releases that were not contained, the follow-up action consisted of:

- soil remediation (one case);
- soil and ground water remediation (two cases);
- remedial action was not described in four cases.

| Date   | Province | Volume Released |
|--------|----------|-----------------|
|        |          | (litres)        |
| 1992   | ON       | unknown         |
| 1993   | ON       | unknown         |
| 1994   | QC       | 960             |
| May-94 | BC       | 2,700           |
| Jul-94 | BC       | 250             |
| Jan-95 | BC       | 600             |
| Apr-95 | BC       | 429             |
| Sep-95 | BC       | 300             |
| Sep-95 | BC       | 150             |
| Apr-97 | BC       | 400             |
| 1998   | NS       | 150             |
| Jan-98 | BC       | 184             |
| Feb-98 | BC       | 1,600           |
| May-98 | BC       | 1,300           |
| Jul-98 | BC       | 440             |
| Sep-99 | BC       | 9,000           |
| Jan-00 | BC       | 1,350           |
| Mar-00 | BC       | 900             |
| Aug-00 | BC       | 1,500           |
| Total  |          | 22,213          |

# Table 3.2 - Reported releases of gasoline containing MTBE in Canada,1991-2000

In addition to the above-noted nineteen releases, three companies reported a total of 460 releases of gasoline which may have contained MTBE during 1991 to 2001. These releases occurred in Ontario, Quebec and the Atlantic provinces.

### 3.4 Reported releases of MTBE

Section 1(e) (i) of the CEPA 1999 Notice required the reporting of spills or leaks into the environment of more than 10 litres of MTBE at one time resulting from the operations of the respondents. Table 3.3 presents the dates, volumes and locations of the seventeen reported releases of MTBE in Canada during 1991 to 2000. These releases were reported by six companies.

Eleven of the releases occurred in Alberta. Others occurred in Newfoundland and B.C. Three of the releases were reported to be due to human error (overfilling); others were due to equipment failure, such as leaks at valves, pumps and piping. Seven of the seventeen releases were reported to have been contained. For the ten releases that were not contained, MTBE was detected in ground water in eight cases and the follow-up action taken was:

- ground water and soil were remediated (one case);
- ground water was remediated (one case)
- soil remediated (two cases);

- ground water monitoring (three cases);
- remedial action was not described in one case.

| Date   | Province | Volume released<br>(litres) |
|--------|----------|-----------------------------|
| Mar-92 | AB       | 50                          |
| Apr-92 | AB       | 200                         |
| Feb-96 | AB       | 60                          |
| Jul-96 | AB       | 250                         |
| Jul-96 | AB       | 100                         |
| Jul-96 | BC       | 10                          |
| Oct-96 | BC       | 750                         |
| Jan-97 | BC       | 4,500                       |
| Sep-97 | NF       | 143,100                     |
| Oct-97 | AB       | 100                         |
| Oct-97 | AB       | 10                          |
| Nov-97 | AB       | 10                          |
| Jul-99 | AB       | 18                          |
| 99     | AB       | 155                         |
| Oct-00 | AB       | 12                          |
| May-00 | BC       | 27,500                      |
| May-00 | BC       | 50                          |
| Total  |          | 176,875                     |

#### Table 3.3 - Reported releases of MTBE in Canada in 1991-2000

### 3.5 Reported ground water and drinking water contamination

Section 1 (e) (iii) of the Notice required the reporting of instances of MTBE detected in ground water, surface water or drinking water at a concentration exceeding 0.0005 mg/L (approximately 0.5 ppb).

### 3.5.1 Ground water contamination

MTBE was reported as having been detected in ground water at 250 locations and in every province in Canada but none of the territories. Among these, six locations in PEI were sources of drinking water and are discussed in more detail in section 3.5.2. Figure 3.5 shows the number of sites at which ground water contamination was reported for each province. Approximately three-quarters of the sites are located in western Canada.

Approximately eighty percent of incidents were reported by two companies. These two companies and one other were the only respondents that indicated that they have routine monitoring in place for MTBE contamination of ground water. It is expected, therefore, that the ground water contamination reported under the Notice may under-represent the contamination that exists in some regions. Some form of follow-up to the incidents of ground water contamination reported under the Notice was indicated for 97% of incidents:

- remediation of contaminated soil and/or ground water was being carried out for 36% of the reported incidents;
- respondents indicated that water monitoring programs were in place for a further 20% of incidents;
- a further 27% were being investigated and remediation may have followed;
- for a further 8% of incidents remedial action had been completed.

### Figure 3.5 - Reported number of sites with MTBE contamination of ground water



Figure 3.6 shows the distribution of maximum reported concentrations of MTBE in ground water. Sixty percent of these concentrations were at levels above the EPA's threshold consumer advisory level for aesthetics of 20 ppb, and over seven percent were at levels exceeding B.C.'s guideline for aquatic life of 3400 ppm.

### Figure 3.6 - Distribution of maximum reported concentrations of MTBE in ground water (ppb)<sup>18</sup>



Figure 3.7 shows a breakdown of the type of facilities at which MTBE ground water contamination was reported:

- sixty-seven percent of the reported incidents of ground water contamination were measured at sites that were active or former service stations;
- contamination was also reported at bulk plants (15%), cardlocks (4%), refineries (3%), terminals (2%) and other facilities.

The cause of contamination was reported for approximately a quarter of incidents. At service stations, the most common reason provided was releases from underground storage tank systems; other causes at service stations were identified as releases from piping and handling.

Table D.1 in Appendix D provides a list of the municipalities in which ground water contamination was encountered and the level of MTBE reported.

<sup>&</sup>lt;sup>18</sup> Ranges in the graph were established from: California aesthetic guidelines for MTBE concentration of MTBE in drinking water (5 ppb); lower limit of EPA consumer advisory for MTBE in drinking water (20 ppb); and B.C. guidelines for MTBE in water for marine and estuarine life (440 ppb) and for aquatic life (3400 ppb).





### 3.5.2 Drinking water contamination

Among the 250 locations at which MTBE was detected, six were sites where ground water was used as a source of drinking water. All six sites were located in PEI. The locations and MTBE concentrations for each of these incidents are presented in Table 3.4 below. The reported maximum concentrations of MTBE ranged from 1 to 5 ppb - all below the PEI guideline for aesthetics of 15 ppb and the threshold EPA consumer advisory for aesthetics of 20 ppb.

In all six locations the ground water was being remediated. In fact, by November 2001, the concentration of MTBE had fallen to non-detectable levels in three of the six locations.

| Table 3.4: | Reported incidents of drinking water contamination with MTBE |
|------------|--------------------------------------------------------------|
|            | in Canada, 1991-2000                                         |

|   | Date last sample | City/town  | Province | Max. Rptd Conc. MTBE (ppb) |
|---|------------------|------------|----------|----------------------------|
| 1 | August 2001      | Miscouche  | PEI      | 5                          |
| 2 | August 2001      | New London | PEI      | 4                          |
| 3 | August 2001      | Bedford    | PEI      | 1                          |
| 4 | August 2001      | Mt. Carmel | PEI      | 2                          |
| 5 | August 2001      | Wellington | PEI      | 4                          |
| 6 | August 2001      | O'Leary    | PEI      | 2                          |

### **3.6** Procedures to monitor and prevent MTBE releases and to monitor for contamination

Under section 1(f) of the Notice, companies were requested to provide descriptions of the procedures to monitor and prevent MTBE releases that they have implemented any time after January 1, 1991, or that they plan to implement before April 1, 2002. The nature of the responses was qualitative.

Sub-section 1(f) (i) requested the reporting of procedures to monitor the release of MTBE or gasoline containing at least 0.6 percent by volume MTBE. Twenty-one companies responded to this question. Of the 21 that responded, three responded with 'No Monitoring'.

The companies that did respond cited these procedures to monitor releases:

- Volume management to identify loss (6 firms);
- Visual inspections for evidence of leakage (5 firms);
- Reporting policies and procedures for spill reporting (5 firms);
- Installation of ground water monitoring wells (4 firms);
- Following CCME Environmental Code of Practice for Underground Storage Tanks Containing Petroleum Products (2 firms);
- Leak detection system between primary and secondary containment (1 firm);
- Double-walled underground storage tanks with interstitial leak detection (1 firm);
- Environmental monitoring program (1 firm);
- Transportation of Dangerous Goods audits (1 firm);
- Leak detection system (1 firm);
- Ambient air monitoring (1 firm);
- Fugitive emission survey (1 firm);
- Effluent and cooling water monitoring (1 firm).

In general, a patchwork of procedures was identified without a consistent standard being applied for monitoring of MTBE releases.

Sub-section 1(f) (ii) requested the reporting of procedures to prevent the release of MTBE or gasoline containing at least 0.6 percent by volume MTBE. Twenty-three companies responded to this question. Of the 23 firms that responded, one felt this was not applicable and one firm does not use or intend to use MTBE. One firm indicated there were no specific procedures for the prevention of leaks.

In general, a variety of procedures was identified. Thirteen firms identified work procedures and/or spill prevention procedures. Eleven firms identified various technical solutions for containment at the tanks, piping and connectors. Nine

firms identified secondary containment through the use of double walled tanks, concrete berms, liners or earth.

The companies that responded cited the following as their procedures to prevent the releases of MTBE or gasoline containing MTBE:

- Emergency response procedures (8 firms);
- Standardized work procedures to prevent spills (8 firms);
- Inspection and Maintenance program (5 firms);
- Cathodic protection (4 firms);
- Employee education (4 firms);
- Spill containment at fill locations (4 firms);
- Volume balance in system (3 firms);
- Containment at dispenser locations (3 firms);
- Following CCME Environmental Code of Practice for tanks (2 firms);
- Double-walled tanks (2 firms);
- Double-walled piping (2 firms);
- Vessel inspection before loading (2 firms);
- Volume balance upon receipt of gasoline not to exceed tank capacity (2 firms);
- Liquid accumulators (2 firms);
- Tanks located within polyethylene lined dikes (2 firms);
- Secondary containment around tanks (2 firms);
- ISO 14001 work procedures (2 firms);
- Spill prevention training (1 firm);
- Fibreglass reinforced plastic liner for MTBE storage tanks (1 firm);
- Interstitial leak detection on double-walled tanks (1 firm);
- Interstitial leak detection on double-walled piping (1 firm);
- Turbine pump containment (1 firm);
- Vapour recovery (1 firm);
- Tanks located within earth berm (1 firms);
- Spill kits located by tank system including storm sewer covers (1 firm);
- Internal floating roof tanks with rim seals and wipers (1 firm).

Sub-section 1(f) (iii) requested a description of procedures to test for contamination by MTBE of soil, ground water, surface water or drinking water. Sixteen companies responded to this question. Of the sixteen firms that responded:

- 11 have done some ground water contamination testing;
- 36 locations were identified as having some ground water monitoring or testing;
- 3 firms have performed studies on ground water contamination;
- 6 firms identified ongoing monitoring of ground water through the use of monitoring wells; and
- 1 firm identified testing for MTBE in surface water runoff.

### 3.7 Future use of MTBE

Under section 1(g) of the Notice, companies were requested to provide information on financial impacts, compositional effects, and replacement options if MTBE were not available as a gasoline component.

Sub-section 1(g) (i) requested the costs and financial benefits associated with ceasing the use of MTBE in gasoline. Nineteen companies responded to this question:

- 4 firms felt it was not applicable to them;
- 7 firms were either not using, or plan on phasing out the use of MTBE;
- 4 firms felt there would be an increase in the cost of gasoline;
- 1 firm was performing a cost / benefit analysis;
- 1 firm was unsure of the costs or benefits from ceasing the use of MTBE;
- 1 firm indicated there would be no financial effect of reducing MTBE in gasoline;
- 1 firm identified that ceasing the use of MTBE was not feasible as long as it was required for EPA emissions testing.

Sub-section 1(g) (ii) requested the reporting of the effects, or an estimate of the effects, on the composition characteristics of gasoline if MTBE is not used in gasoline. Thirteen companies responded to this question:

- 5 firms felt it was not applicable to them;
- 2 firms identified requirements to meet Canadian General Standards Board (CGSB) specifications; and
- 2 firms were not using MTBE and therefore identified no compositional changes.

Four firms identified effects on compositional characteristics and these included:

- Replacement of MTBE with ethanol (2 firms);
- Reduction of octane may be compensated by increasing alkylate content of gasoline (2 firms);
- Use of another oxygenate (2 firms);
- Increase in lighter high octane components (1 firm);
- Some gasoline products to become heavier during distillation (1 firm);
- Increased use of t-butanol (1 firm); and
- Increased use of methanol (1 firm).

Sub-section 1(g) (iii) requested options available for replacing MTBE in gasoline with other components, along with the nature of those components. Fourteen companies responded to this question. Of these, three felt the question did not apply to them. Replacements identified for MTBE included:

• Alternative alkylate (6 firms);

- Ethanol (3 firms);
- Toluene (2 firms);
- Reformulate (1 firm);
- Alternative Oxygenates (1 firm);
- Ethyl HiTEC 3046 (MMT) (1 firm); and
- Iso-octane (2 firms).

Under section 1(h) of the Notice, companies were requested to provide information on how they would convert their MTBE production facilities. This was to include alternative uses and estimates of costs and financial benefits associated with the conversion. Nineteen companies responded to this question; eighteen of these firms did not have MTBE production facilities and therefore replied "Not Applicable". The one firm directly responsible for production of MTBE identified converting its facility to produce isooctane in 2002.

Under section 1(i) of the Notice, companies were requested to provide information on the use of other aliphatic ethers other than MTBE. The scope included past use after January 1, 1991, present use, and estimates of future annual use from 2001 through to 2005. Sixteen companies responded to this guestion. Of the respondents:

- 3 responded "Not Applicable";
- 11 firms indicated that they did not plan to use other aliphatic ethers;
- 1 firm identified the possible use of newly developed aliphatic ethers;
- 2 firms identified past use and potential future use of Tertiary Amyl Methyl Ether (TAME). These two firms indicated that they received gasoline that contained TAME from others.
- 1 firm purchased gasoline already containing aliphatic ethers which included Di-Methyl Ether (DME) and Diisopropylether (DIPE); and
- 1 firm mentioned importing gasoline containing Ethyl Tertiary Butyl Ether (ETBE).

### 3.8 Discussion

### 3.8.1 Summary of key findings

### i) Intended future use of MTBE in Canada

Responses to the Notice in July 2001 indicated that by 2002, use of gasoline containing MTBE would be reduced significantly - by over 95% from the 1998 peak level. The Canadian Petroleum Products Institute (CPPI), representing most Canadian refiners, has indicated that its member companies ceased adding MTBE to gasoline by the end of 2001 and that none have the intention of using MTBE in the future. CPPI noted that imports of gasoline by member companies may incidentally contain MTBE. As well, responses to the Notice indicated that

there may be imports of small volumes of gasoline containing MTBE by vehicle manufacturers.

The continued addition of MTBE to gasoline for use Canada will be limited to Atlantic Canada. Only Irving Oil and North Atlantic Refining indicated that they intend to continue producing gasoline containing MTBE after 2001. Both of these Atlantic refiners export to the U.S. reformulated gasoline, which must contain oxygenate. While North Atlantic Refining reported that it plans to continue marketing MTBE-containing gasoline in Canada, Irving Oil has indicated that it will not. North Atlantic reported that 90% of the gasoline it produces containing MTBE will be exported.

### ii) Reported ground water and drinking water contamination

MTBE was detected in ground water at a total of 250 locations across the country. Contamination was reported to have occurred in every province, with most incidents (78%) reported in western Canada. In 60% of cases, MTBE was found to be present at a concentration above the EPA consumer advisory for taste of 20 to 40 ppb.

Approximately 80 percent of incidents were reported by two companies. These two companies and one other were the only respondents that indicated that they have routine monitoring in place for MTBE contamination of ground water. It is expected, therefore, that the ground water contamination reported under the Notice under-represents the contamination that exists in some regions.

Most of the ground water contamination (67%) reported under the Notice occurred at sites that were active or former service stations. In most of these cases, the cause of contamination was not identified. In 11% of cases, the contamination was linked to underground storage tank systems.

Ground water contamination was also reported to have occurred at bulk plants (15% of reported incidents), cardlocks (4%), refineries (3%) and terminals (2%). The cause of the contamination was not identified for most cases.

MTBE was also detected at six sites where ground water was used as a source of drinking water. All six sites were located in PEI. The reported maximum concentrations of MTBE ranged from 1 to 5 ppb, levels below the PEI water quality guidelines for aesthetics and below the EPA consumer advisory for aesthetics of 20 to 40 ppb.

There were few reported releases of gasoline containing MTBE (nineteen) relative to the number of incidents of ground water contamination (250). Based on conversations with respondents and tank system experts, it is understood that most ground water contamination encountered at service station sites is due to leaks from underground storage tank systems, i.e. the tanks themselves and

associated piping and pumps. Some sources, however, have indicated that they believe ground water contamination is due to small releases of gasoline at services stations during fill-up.

### iii) Remediation of contaminated ground water and drinking water

The concentration of MTBE in contaminated water can be expected to decrease slowly without active remediation, as MTBE degrades naturally over time<sup>19</sup>. It is understood from the information provided under the Notice that remediation of contaminated soil and/or ground water was being carried out for 36% of the reported incidents. A further 27% were being investigated and subsequent remediation may have followed. For a further 20% of incidents, respondents indicated that water monitoring programs were in place. Remediation was reported to have been undertaken and completed for a further 8% of incidents. Some form of follow-up to the incidents of ground water contamination reported under the Notice was indicated for 97% of incidents.

All six locations at which MTBE was detected in ground water used as a drinking water source were being actively remediated. In fact, by November 2001, the concentration of MTBE had fallen to non-detectable levels (levels below 0.1 ppb, and below the PEI water quality guidelines of 15 ppb and the EPA consumer advisory level of 20-40 ppb) in three of these six locations.

### 3.8.2 Addressing the problem

### i) Preventing releases of MTBE into the environment

Environment Canada does not expect that there will be significant use of MTBE in Canada outside of the Atlantic region post-2002. Only two refineries, both in Atlantic Canada, plan to use MTBE and one of those will use it only in gasoline that is exported. Nevertheless, it will be important to monitor the use of MTBE and replacement oxygenates in Canada. Environment Canada intends to do this by monitoring reports submitted to the department by gasoline producers and importers pursuant to requirements of the *Benzene in Gasoline Regulations*. Environment Canada will also monitor imports of MTBE into Canada through Statistics Canada's database of imports.

In addition, revisions to the CCME Environmental Codes of Practice are underway for the following: Underground Storage Tank Systems Containing Petroleum Products and Allied Petroleum Products, and Aboveground Storage Tanks containing Petroleum Products. The Codes of Practice, published in 1993

<sup>&</sup>lt;sup>19</sup> The half-life of MTBE in ground water has been estimated to be between 56-360 days under aerobic conditions, and 112 to 720 days under anaerobic conditions (World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 206,Methyl *tertiary*-Butyl Ether, 1998, p. 31).

and 1994, respectively, specify a model set of technical requirements which are designed to protect the environment from leaking storage tank systems. The Codes also provide recommendations concerning design and installation of new systems and the upgrading of existing systems.

The CCME Codes of Practice have been adopted into regulations by all provinces, except B.C. and Newfoundland. Table 3.5 outlines the current requirements in provincial petroleum storage tanks requirements.

| PROVINCE                 | REGULATION | CCME<br>BASED | VOLUME                                                                                                                                                 | INSPECTIONS     | ENFORCEMENT     |
|--------------------------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|
| Newfoundland             | Yes        | No            | Above-ground<br>storage tank<br>(ast) or<br>underground<br>storage tank<br>(ust) ≤ 2500 litres<br>(L) when<br>connected to<br>heating oil<br>appliance | No (see note 4) | Yes             |
| Prince Edward<br>Island  | Yes        | Yes           | None                                                                                                                                                   | Yes             | No (see note 5) |
| Nova Scotia              | Yes        | Yes           | ust < 2000 L ast<br>< 4000 L                                                                                                                           | Yes             | Yes             |
| New Brunswick            | Yes        | Yes           | non-marina ast<br>< 2000 L                                                                                                                             | Yes             | Yes             |
| Quebec                   | Yes        | Partially     | risk based<br>according to<br>product stored                                                                                                           | Yes             | Yes             |
| Ontario                  | Yes        | Yes           | None                                                                                                                                                   | No (see note 4) | Yes             |
| Manitoba                 | Yes        | No            | ast < 1000 gal<br>(4545 L)                                                                                                                             | Yes             | Yes             |
| Saskatchewan             | Yes        | Yes           | ast < 4000 L                                                                                                                                           | Yes             | Yes             |
| Alberta                  | Yes        | Yes           | None                                                                                                                                                   | Yes             | Yes             |
| British<br>Columbia      | No         |               |                                                                                                                                                        |                 |                 |
| Nunavut                  | No         |               |                                                                                                                                                        |                 |                 |
| Northwest<br>Territories | No         |               |                                                                                                                                                        |                 |                 |
| Yukon Territory          | No         |               |                                                                                                                                                        |                 |                 |

### Table 3.5 - Comparison of Provincial Petroleum Storage Regulations

Background: The table was developed by asking the following questions of provincial and territorial regulators.

- 1. Does the authority having jurisdiction have a petroleum storage regulation?
- 2. If yes, is the regulation based on the CCME Codes of Practice?
- 3. Does the regulation apply to all tank sizes or are there volume based exemptions?
- 4. Does the regulation include an inspection programme? This was interpreted to mean a programme outside of the equipment calibration and monitoring that is ongoing and is the responsibility of the owner of the storage tank system.
- 5. Does the regulation include enforcement? This was presented as a separate section within the regulation as opposed to the enforcement permitted by the Act under which the regulation was promulgated.

In 2002, the CCME updated the Codes and combined them to make requirements consistent with advances in technology and operating experience. The revised Code will be published in 2003. The Code will call for secondary containment with interstitial leak detection for all tanks within the scope of the Code, and for the removal of underground steel tanks that have never had cathodic protection. The Code will be an important measure for preventing leaks of gasoline from storage tanks and associated equipment from entering the environment. Some provinces intend to incorporate the Code into their regulations.

It is estimated that that there are approximately 10,000 tanks containing fuels that are operated by the Federal Government. In 2003, Environment Canada is intending to recommend new regulations for fuel storage tanks on federal lands, aboriginal lands, and those fuel tanks owned or operated by the Federal Government, Crown Corporations and federal works and undertakings. The regulations will include requirements consistent with the new CCME codes of practice for above ground and underground storage tanks.

#### ii) Detecting ground water and drinking water contamination with MTBE

Only three respondents reported that they had routine monitoring programs in place to detect ground water contamination with MTBE. It is quite possible, therefore, that the ground water contamination reported under the Notice under-represented the contamination that exists in the environment.

Protection and monitoring of ground and drinking water are areas of provincial jurisdiction. Environment Canada is aware of provincial monitoring programs in PEI, New Brunswick and B.C. as well as source or drinking water monitoring activities in all provinces and territories:

- P.E.I. has shared their data with Environment Canada; responses to the Notice are consistent with that data.
- B.C. has carried out monitoring at wells that are not located adjacent to service stations and found very little contamination. B.C. has no plans for further testing of ground water for MTBE contamination.
- At their June 2001 meeting, the Federal-Provincial-Territorial Subcommittee on Drinking Water requested that provinces and territories share information on MTBE contamination of drinking water contamination with the Subcommittee. Incidents of contamination of private wells were reported by New Brunswick. No other incidents were reported to the Secretary by other provinces or territories during the June-December 2001 response period.

Environment Canada plans to continue to monitor MTBE contamination of ground water and drinking water across Canada through information shared with the department by provinces and territories. On a broader level, Environment Canada will also continue to monitor the use of MTBE in gasoline in Canada as described in the previous section.

#### iii) Remediating contaminated ground water and drinking water

Remediation requirements differ by province. The Atlantic provinces have adopted a risk based approach in which remediation requirements depend upon the potential use of the ground water source. It is Environment Canada's understanding that only PEI and B.C. have guidelines for the remediation of ground water contaminated with MTBE, although guidelines may exist in other provinces for other components of gasoline, such as benzene and toluene. B.C. has set guidelines of 20 ppb for drinking water (aesthetic) and 3400 ppb for aquatic life and PEI has set a guideline of 15 ppb for drinking water (aesthetic).

In 2001, the Federal-Provincial-Territorial Subcommittee on Drinking Water undertook the development of Guidelines for Canadian Drinking Water Quality for MTBE. The CCME has work underway to develop water quality guidelines for MTBE for the protection of aquatic life. Both of these guidelines will be able to be used as clean up standards in remediating releases of MTBE into the environment.

### 4.0 Path forward

While addressing contaminated sites is primarily an area of provincial jurisdiction, the federal government plans to coordinate a number of actions to address the issues related to MTBE contamination. Given the substantial decrease in use of MTBE in Canada, the following initiatives, falling into three areas, are considered appropriate:

- 1. Preventing releases of MTBE into the environment:
  - Codes of practice for underground and above ground storage tanks developed in 1993 by the Canadian Council of Ministers of the Environment (CCME) are being updated (expected to be published in 2003).
  - New federal regulations are being developed to put technical requirements such as leak detection in place for all tanks under federal jurisdiction (expected to be completed in 2003).
- 2. Detecting ground water and drinking water contamination:
  - On a broader level, Environment Canada will continue to study and report on the use of MTBE in gasoline in Canada in order to monitor potentially affected regions;
  - Environment Canada will monitor MTBE contamination of ground and drinking water across Canada through information provided to the department by provinces and territories.
- 3. Remediating contaminated sites:
  - The CCME is developing Canadian water quality guidelines for the protection of aquatic life and the Federal-Provincial-Territorial Subcommittee on Drinking Water is developing Guidelines for Canadian Drinking Water Quality for MTBE. These guidelines may be used to guide clean up for cases where standards do not exist (expected to be completed in 2003-2004).

These actions will provide an ongoing understanding of MTBE usage in Canada, mitigate the potential for further MTBE releases, and give guidance for remediation of contaminated sites.

### Appendix A

### May 26, 2001 CEPA 1999 Notice on MTBE Use and Releases

http://canadagazette.gc.ca/partl/tempPdf/g1-13521.pdf pp.1760-1764

### Appendix B

| States banning | Date ban/phase-out to      | States considering |  |
|----------------|----------------------------|--------------------|--|
| МТВЕ           | take effect                | action             |  |
| Arizona        | 2004                       | Hawaii             |  |
| California     | Jan. 1, 2004               | Maryland*          |  |
| Colorado       | Apr. 30, 2002              | Massachusetts*     |  |
| Connecticut    | Oct. 1, 2003               | Missouri*          |  |
| Illinois       | Jul. 1, 2004               | Mississippi        |  |
| Indiana        | Jul. 23, 2004              | Montana            |  |
| Iowa           | Jan. 1, 2000               | New Hampshire      |  |
| Kansas         | Jul. 1, 2004               | New Jersey*        |  |
| Kentucky       | Jan. 1, 2006               | Pennsylvania*      |  |
| Maine          | Jan. 1, 2003 (state        | Rhode Island       |  |
|                | goal)                      |                    |  |
| Michigan       | Jan. 1, 2003               | Vermont*           |  |
| Minnesota      | Jul. 1, 2000 (limit), Jul. |                    |  |
|                | 2005 (ban)                 |                    |  |
| Nebraska       | Jul. 13, 2000              |                    |  |
| New York       | Jan. 1, 2004               |                    |  |
| Ohio           | Jul. 1, 2005               |                    |  |
| South Dakota   | Mar. 2001                  |                    |  |
| Washington     | Dec. 31, 2003              |                    |  |

### Table B.1: U.S. states having passed or considering legislation to limit orban MTBE

Source: International Fuel Quality Center, February 25, 2003.

\* States that in 1999-2002 considered action on banning MTBE (Source: National Conference of State Legislatures, Issue Brief, MTBE: summarizing state legislative activity for 1999-2002).

### Appendix C

# Figure C.1 - Reported production, imports and exports of gasoline containing MTBE in Canada by region, 1991-2000

|          |          | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 |
|----------|----------|------|------|------|------|------|------|------|------|------|------|
|          |          |      |      |      | •    |      |      |      |      | •    |      |
| Atlantic | Produced |      |      |      |      |      |      |      |      |      |      |
|          | Imported |      |      |      |      |      |      |      |      |      |      |
|          | Blended  |      |      |      |      |      |      |      |      |      |      |
|          | Exported |      |      |      |      |      |      |      |      |      |      |
| Quebec   | Produced |      |      |      |      |      |      |      |      |      |      |
|          | Imported |      |      |      |      | ]    |      |      |      |      | J    |
|          | Blended  |      |      |      |      |      |      |      |      | ]    |      |
|          | Exported |      |      |      |      |      |      |      |      |      |      |
| Ontario  | Produced |      |      |      |      | ]    |      |      |      |      |      |
|          | Imported |      |      |      |      |      |      |      |      |      |      |
|          | Blended  |      |      |      |      |      |      |      | ]    |      |      |
|          | Exported |      |      |      |      |      |      |      |      |      |      |
| West     | Produced |      |      |      |      |      |      |      |      |      |      |
|          | Imported |      |      |      | ]    |      | -    |      |      |      |      |
|          | Blended  |      |      |      |      |      |      |      |      |      |      |
|          | Exported |      |      |      |      |      |      |      |      |      |      |

# Figure C.2 - Reported production, imports and exports of MTBE in Canada by region, 1991-2000



### Appendix D

# Table D.1 - Reported Incidents of Ground Water Contamination with MTBEin Canada, 1991- 2000

|    | Date/ Date Last | City                     | Province  | Max. Rptd        |
|----|-----------------|--------------------------|-----------|------------------|
|    | sample          |                          |           | Conc. MTBE (ppb) |
| 1  | Jul-96          | Close to Edmonton        | AB        | 120,000          |
| 2  | not stated      | Edmonton                 | AB        | 100              |
| 3  | Aug-98          | Calgary                  | AB        | 2,200            |
| 4  | not stated      | Edmonton                 | AB        | not stated       |
| 5  | Apr-00          | Bassano                  | AB        | 480              |
| 6  | Apr-00          | Calgary                  | AB        | 16               |
| 7  | Apr-00          | Medicine Hat             | AB        | 170              |
| 8  | May-00          | Etzikorn                 | AB        | 39               |
| 9  | May-00          | Calgary                  | AB        | 300              |
| 10 | Jun-00          | Red Earth Creek          | AB        | 980              |
| 11 | Jun-00          | Drayton Valley           | AB        | 420              |
| 12 | Jun-00          | Airdrie                  | AB        | 91               |
| 13 | Jui-00          | Red Deer                 | AB        | 580              |
| 14 | Aug-00          | Sangudo                  | AB        | 170              |
| 10 | Sep-00          |                          | AB        | 29               |
| 10 | Sep-00          |                          | AB        | 6                |
| 17 | Nov 00          | Calgal y<br>Modicino Hat | AD        | 410              |
| 10 | Nov-00          | Viking                   | AB        | 17               |
| 20 | Nov-00          | Have                     | <u>AB</u> | 130              |
| 20 | Nov-00          | Cardston                 | AR        | 1,900            |
| 22 | Nov-00          | Edmonton                 | AB        | 16 000           |
| 23 | Nov-00          | Calgary                  | AB        | 11               |
| 24 | Nov-00          | Magrath                  | AB        | 23               |
| 25 | Feb-01          | Edmonton                 | AB        | 54               |
| 26 | Feb-01          | Edmonton                 | AB        | 2,600            |
| 27 | Feb-01          | Calgary                  | AB        | 56               |
| 28 | Mar-01          | Edmonton                 | AB        | 9                |
| 29 | Mar-01          | Calgary                  | AB        | 64               |
| 30 | Mar-01          | Calgary                  | AB        | 20               |
| 31 | Mar-01          | Pincher Creek            | AB        | 15               |
| 32 | Apr-01          | Fort McMurray            | AB        | 6                |
| 33 | Apr-01          | St. Albert               | AB        | 1,000            |
| 34 | May-01          | Calgary                  | AB        | 2,100            |
| 35 | May-01          | Stoney Plain             | AB        | 15,000           |
| 36 | Dec-01          | Edmonton                 | AB        | 410              |
| 37 | not stated      | 7 km East of Jasper      | AB        | not stated       |
| 38 | not stated      | High Prairie             | AB        | 50               |
| 39 | not stated      | Edmonton                 | AB        | 200              |
| 40 | not stated      | Editionion               | AB        | 370              |
| 41 |                 | Kitimat                  | AD<br>BC  | 1 098 000        |
| 43 | Jan-07          | Abboteford               | BC        | not stated       |
| 44 | Oct-97          | Vancouver                | BC<br>BC  | 3 000            |
| 45 | Sep-99          | Houston                  | BC        | 15               |
| 46 | Sep-99          | Oliver                   | BC        | 30               |
| 47 | Oct-99          | Abbotsford               | BC        | 5                |
| 48 | Nov-99          | Victoria                 | BC        | 2                |
| 49 | Nov-99          | Vancouver                | BC        | 16               |
| 50 | Jan-00          | Courtenay                | BC        | 2                |
| 51 | Feb-00          | Clinton                  | BC        | 1                |
| 52 | Mar-00          | Vernon                   | BC        | 7                |
| 53 | Mar-00          | Squamish                 | BC        | 14               |
| 54 | Mar-00          | Chilliwack               | BC        | 11               |
| 55 | Apr-00          | Vancouver                | BC        | 1,420            |
| 56 | Apr-00          | Richmond                 | BC        | 414              |
| 57 | Apr-00          | Vancouver                | BC        | 72               |
| 58 | May-00          | Abbotsford               | BC        | 527              |
| 59 | May-00          | Chilliwack               | BC        | 290              |
| 60 | May-00          | Vancouver                | BC        | 28,000           |
| 62 | May 00          | Port Alberni             | BC        | 80               |
| 62 | May 00          |                          |           | 0                |
| 64 | May 00          | Venion                   |           | 09<br>17         |
| 04 | iviay-00        | viciulia                 |           | 17               |

|     | Date/ Date Last | City            | Province | Max. Rptd        |
|-----|-----------------|-----------------|----------|------------------|
|     | sample          | -               |          | Conc. MTBE (ppb) |
| 65  | May-00          | Vancouver       | BC       | 9,000            |
| 66  | Jun-00          | Fort Nelson     | BC       | 42               |
| 67  | Jun-00          | Nanimo          | BC       | 9                |
| 68  | Jun-00          | Victoria        | BC       | 33,400           |
| 69  | Jun-00          | Rosedale        | BC       | 1                |
| 70  | Jul-00          | Kelowna         | BC       | 30               |
| 71  | Jul-00          | Squamish        | BC       | 440              |
| 72  | Jul-00          | Langley         | BC       | 86               |
| 73  | Jul-00          | Delta           | BC       | 11               |
| 74  | Jul-00          | Kamloops        | BC       | 30               |
| 75  | Aug-00          | Fort Nelson     | BC       | 510              |
| 76  | Aug-00          | Cranbrook       | BC       | 3                |
| 77  | Aug-00          | Fraser Lake     | BC       | 270              |
| 78  | Aug-00          | Langley         | BC       | 55               |
| 79  | Aug-00          | Prince George   | BC       | 60               |
| 80  | Aug-00          | Houston         | BC       | 3                |
| 81  | Aug-00          | Houston         | BC       | 3                |
| 82  | Aug-00          | Vancouver       | BC       | 3                |
| 83  | Aug-00          | Burnaby         | BC       | 3                |
| 84  | Aug-00          | Kamioops        | BC       | 630              |
| 00  | Aug-00          | Viciolia        | BC       | 474              |
| 00  | Sep-00          | Langley         | BC       | 350              |
| 07  | Sep-00          | Morritt         | BC       | 73               |
| 00  | Sep-00          | Vietoria        | BC       | 1 050            |
| 09  | Sep-00          | Now Westminster | BC       | 13 100           |
| 90  | Sep-00          | Burpaby         | BC       | 13,100           |
| 91  | Sep-00          | Burnaby         | BC       | 688              |
| 92  | Sep-00          | Richmond        | BC       | 527              |
| 93  | Sep-00          | Manle Ridge     | BC       | 1 160            |
| 95  | Sep-00          | Delta           | BC       | 3 340            |
| 96  | Sep-00          | Vernon          | BC       | 50               |
| 97  | Sep-00          | Coquitlam       | BC       | 1 090            |
| 98  | Sep-00          | Burnaby         | BC       | 5,790            |
| 99  | Sep-00          | Vancouver       | BC       | 456              |
| 100 | Sep-00          | Smithers        | BC       | 1,630            |
| 101 | Sep-00          | Burns lake      | BC       | 4,100            |
| 102 | Sep-00          | Vancouver       | BC       | 185              |
| 103 | Sep-00          | Vancouver       | BC       | 39               |
| 104 | Sep-00          | Burns Lake      | BC       | 348              |
| 105 | Sep-00          | Prince George   | BC       | 2                |
| 106 | Sep-00          | Prince George   | BC       | 19               |
| 107 | Sep-00          | Prince George   | BC       | 930              |
| 108 | Oct-00          | Vancouver       | BC       | 2                |
| 109 | Oct-00          | Mackenzie       | BC       | 160              |
| 110 | Oct-00          | Nelson          | BC       | 50               |
| 111 | Oct-00          | Terrace         | BC       | 8                |
| 112 | Uct-00          | Vancouver       | BC       | 105              |
| 113 | Nov-00          | Nanimo          | BC       | (1               |
| 114 | Nov-00          | Kelowna         | BC BC    | 2                |
| 115 | NOV-UU          |                 | BC<br>BC | 1                |
| 116 | NOV-UU          | Saimon Arm      | BC       | 260              |
| 110 |                 | Niumat          |          | 2 170            |
| 110 | Nov-00          | Viciona         |          | 2,170            |
| 120 | Nov-00          | Vanderboof      | BC       | 2 670            |
| 120 | Nov-00          |                 | RC       | 2,070            |
| 121 |                 | Vanderboof      | BC       | 112              |
| 123 | Dec-00          | Port Clements   | BC       | 53               |
| 123 | Dec-00          | Prince George   | BC<br>BC | 260              |
| 125 | Dec-00          | Vancouver       | BC       | 610              |
| 126 | Dec-00          | Abbotsford      | BC       | 300              |
| 127 | Dec-00          | Sardis          | BC       | 24               |
| 128 | Dec-00          | Sauamish        | BC       | 3                |
|     |                 |                 | -        |                  |

|     | Date/ Date Last | City            | Province | Max. Rptd        |
|-----|-----------------|-----------------|----------|------------------|
|     | sample          |                 |          | Conc. MTBE (ppb) |
| 129 | Dec-00          | Vancouver       | BC       | 6                |
| 130 | Dec-00          | Норе            | BC       | 1                |
| 131 | Dec-00          | Vancouver       | BC       | 3                |
| 132 | Dec-00          | Surrey          | BC       | 390              |
| 133 | Dec-00          | North Vancouver | BC       | 1,150            |
| 134 | Dec-00          | Vancouver       | BC       | 16               |
| 135 | Dec-00          | Chilliwack      | BC       | 28               |
| 130 | Dec-00          | Valicouvei      | BC       | 73               |
| 137 | Jan 01          | Princo Ruport   | BC       | 27               |
| 130 | Jan-01          | Sidney          | BC       | 15               |
| 140 | Jan-01          | Victoria        | BC       | 3                |
| 140 | Feb-01          | Vancouver       | BC       | 650              |
| 142 | Feb-01          | Surrey          | BC       | 3                |
| 143 | Feb-01          | Masset          | BC       | 44               |
| 144 | Feb-01          | Masset          | BC       | 33               |
| 145 | Feb-01          | Vancouver       | BC       | 86               |
| 146 | Feb-01          | North Vancouver | BC       | 3                |
| 147 | Feb-01          | Richmond        | BC       | 2                |
| 148 | Feb-01          | Port Alberni    | BC       | 84               |
| 149 | Feb-01          | Burnaby         | BC       | 22               |
| 150 | Feb-01          | Surrey          | BC       | 2,000            |
| 151 | Mar-01          | Power River     | BC       | 6                |
| 152 | not stated      | Terrace         | BC       | not stated       |
| 153 | Mar-01          | Kelowna         | BC       | 2                |
| 154 | not stated      | North Vancouver | BC       | not stated       |
| 155 | Apr-01          | Coquitlam       | BC       | 9                |
| 156 | Apr-01          | Chilliwack      | BC       | 1,010            |
| 157 | May-01          | Langley         | BC       | 124              |
| 158 | May-01          | Burnaby         | BC       | 5,100            |
| 159 | May-01          | Vancouver       | BC       | 1,720            |
| 160 | May-01          | Kelowna         | BC       | 13               |
| 161 | May-01          | Salmon Arm      | BC       | 77,000           |
| 162 | May-01          | Vancouver       | BC       | 16               |
| 163 | May-01          | Sidney          | BC       | 122              |
| 164 | May-01          | Sunshine Coast  | BC       | 43               |
| 105 | May 01          | Vancouver       | BC       | 329              |
| 167 | May-01          |                 | BC       | 100              |
| 168 | May-01          | Burnaby         | BC       | 218              |
| 160 | lun_01          | Vancouver       | BC       | 54               |
| 170 | .lun-01         | Kelowna         | BC       | 6                |
| 171 | Jun-01          | Powell River    | BC       | 1 570            |
| 172 | Jun-01          | Surrev          | BC       | 213.000          |
| 173 | Jun-01          | Vancouver       | BC       | 9                |
| 174 | Jun-01          | Surrey          | BC       | 55               |
| 175 | Jun-01          | Surrey          | BC       | 1,380            |
| 176 | Jun-01          | Victoria        | BC       | 2                |
| 177 | Jun-01          | North Vancouver | BC       | 16               |
| 178 | Jun-01          | Coquitlam       | BC       | 3                |
| 179 | Jun-01          | Coquitlam       | BC       | 705              |
| 180 | Jul-01          | Port McNeill    | BC       | 16               |
| 181 | Dec-01          | Sunshine Coast  | BC       | 84               |
| 182 | Feb-01          | Burnaby         | BC       | 169,000          |
| 183 | Apr-01          | Burnaby         | BC       | 2,100            |
| 184 | Jun-00          | Burnaby         | BC       | 5                |
| 185 | Jun-00          | Burnaby         | BC       | 15,000           |
| 186 | Dec-01          | Burnaby         | BC       | 26               |
| 187 | not stated      | Richmond        | BC       | 101              |
| 188 | Apr-00          | Winnipeg        | MB       | 200              |
| 189 | May-00          | Winnipeg        | MB       | 92               |
| 190 | Jan-01          | Virden          | MB       | 36,100           |
| 191 | Aug-00          | Moncton         | NB       | 160              |

|     | Date/ Date Last | City                       | Province   | Max. Rptd        |
|-----|-----------------|----------------------------|------------|------------------|
| 100 | sample          | Ore recents                | ND         | Conc. MIBE (ppb) |
| 192 | Aug-00          | Oromocto                   | NB         | 1                |
| 193 | Dec-00          | Bathurst<br>Callege Dridge | NB         | 46               |
| 194 | Feb-01          |                            | NB         | 1                |
| 195 | Feb-01          | Fredericton                | NB         | 5                |
| 196 | Sep-95          | Newcastle                  | NB         | not stated       |
| 197 | Apr-01          | Campbellton                | NB         | not stated       |
| 198 | Sep-97          | Come By Chance             | NF         | 59,000,000       |
| 199 | Feb-01          | Corner Brook               | NF         | not stated       |
| 200 | Dec-94          | New Glasgow                | NS         | not stated       |
| 201 | May-99          | Sydney                     | NS         | not stated       |
| 202 | Jul-00          | Bridgewater                | NS         | 1                |
| 203 | Oct-00          | Bedford                    | NS         | 6,000            |
| 204 | Jan-01          | Halifax                    | NS         | 50               |
| 205 | Apr-01          | Barrington Passage         | NS         | 6                |
| 206 | Jul-01          | Seal Island                | NS         | 370              |
| 207 | Apr-00          | Orangeville                | ON         | 86               |
| 208 | Jul-00          | Ottawa                     | ON         | 1                |
| 209 | Sep-00          | London                     | ON         | 67               |
| 210 | Oct-00          | Kitchener                  | ON         | 2                |
| 211 | Oct-00          | Ajax                       | ON         | 60               |
| 212 | Oct-00          | Erin                       | ON         | 141              |
| 213 | Nov-00          | Belleville                 | ON         | 2,700            |
| 214 | Aug-01          | Miscouche                  | PEI        | 8                |
| 215 | Aug-01          | O'Leary                    | PEI        | 28               |
| 216 | Aug-01          | Bedford                    | PEI        | 220              |
| 217 | Jan-92          | Vernon Bridge              | PEI        | not stated       |
| 218 | Oct-91          | Wood Island                | PEI        | not stated       |
| 219 | Aug-01          | New London                 | PEI        | 4                |
| 220 | Sep-94          | Elmsdale                   | PEI        | not stated       |
| 221 | Aug-01          | Richmond                   | PEI        | 160              |
| 222 | Jan-92          | Mt. Pleasant               | PEI        | not stated       |
| 223 | Aug-01          | Bloomfield                 | PEI        | 4                |
| 224 | Aug-01          | Bedeque                    | PEI        | 4                |
| 225 | Aug-01          | Miminegash                 | PEI        | 1                |
| 226 | Aug-01          | Summerside                 | PEI        | 1                |
| 227 | Aug-01          | St. Eleanors               | PEI        | 290              |
| 228 | Aug-01          | Parkdale                   | PEI        | 700              |
| 229 | Aug-01          | Dundas                     | PEI        | 10               |
| 230 | Aug-01          | Georgetown                 | PEI        | 30               |
| 231 | Aug-01          | Hunter River               | PEI        | 250              |
| 232 | Aug-01          | Charlottetown              |            | 3                |
| 233 | Aug-01          | vveiiington                | PEI<br>BEI | 4                |
| 234 | Jan-92          | Baltic                     | PEI DE'    | not stated       |
| 235 | JUN-93          |                            | PEI DE'    |                  |
| 236 | Aug-01          | MIL Carmel                 |            | 51               |
| 231 | FED-UU          |                            | PEI        |                  |
| 238 | Aug-00          | Charlottetown              |            |                  |
| 239 | Jui-U'i         | CharlottetoWh              | PEI        | 153              |
| 240 | Sep-00          | Longueuil                  |            | 4                |
| 241 | Sep-00          | Boucherville               |            | 2                |
| 242 | Sep-00          | IVIONTREAL                 |            | 1,300            |
| 243 | Sep-00          | Iviontreal                 |            | /0               |
| 244 | NOV-UU          | Iviontreal                 |            | 580              |
| 245 | NOV-UU          | Verdun                     |            | 610              |
| 246 | Mar-01          | Saint Hubert               |            | 2                |
| 247 | Jun-00          | Regina                     | SK         | 1,250            |
| 248 | Sep-00          | Langenbury                 | SK         | 85               |
| 249 | Nov-00          | Meiville                   | SK         | 28               |
| 250 | Dec-00          | Melville                   | SK         | 11               |