

Hydrogeology of the Ribstone Creek Aquifer in Western Canada

by

H. Maathuis and M. Simpson

Saskatchewan Research Council 15 Innovation Blvd. Saskatoon, SK S7N 2X8 SRC Publication No. 11500-1E02

Prepared for: Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration North Saskatchewan Region 1011-11 Innovation Blvd. Saskatoon, SK S7N 3H5

Funded by the Canada-Saskatchewan Farm Livestock Watering Program -Strategic Initiatives

© Her Majesty the Queen in Right of Canada (2002), as represented by the Minister of Agriculture and Agri-Food, and © Saskatchewan Research Council

March, 2002

Hydrogeology of the Ribstone Creek Aquifer in Western Saskatchewan

by

H. Maathuis and M. Simpson

Saskatchewan Research Council 15 Innovation Blvd. Saskatoon, SK S7N 2X8 SRC Publication No. 11500-1E02

Prepared for:

Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration North Saskatchewan Region 1011-11 Innovation Blvd. Saskatoon, SK S7N 3H5

Funded by the Canada – Saskatchewan Farm Livestock Watering Program – Strategic Initiatives.

© Her Majesty the Queen in Right of Canada (2002), as represented by the Minister of Agriculture and Agri-Food, and © Saskatchewan Research Council

March, 2002

Hydrogeology of the Ribstone Creek Aquifer in Western Saskatchewan

by

H. Maathuis and M. Simpson

Saskatchewan Research Council 15 Innovation Blvd. Saskatoon, SK S7N 2X8 SRC Publication No. 11500-1E02

Prepared for:

Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration North Saskatchewan Region 1011-11 Innovation Blvd. Saskatoon, SK S7N 3H5

Funded by the Canada – Saskatchewan Farm Livestock Watering Program – Strategic Initiatives.

© Her Majesty the Queen in Right of Canada (2002), as represented by the Minister of Agriculture and Agri-Food, and © Saskatchewan Research Council

March, 2002

SUMMARY

The Ribstone Creek Tongue in western Saskatchewan covers an area of approximately 45,350 km² and occurs at depths ranging greater than 500 m beneath the Cypress Hills area to less than 25 meters in the Lloydminster area where the Ribstone Creek Tongue is near the ground surface.

The Ribstone Creek Tongue ranges in thickness from less than 3 meters along the edges of its extent to locally exceeding 35 m. However, throughout most of the study area it is between 5 and 25 m thick. The thickness of the Ribstone Creek aquifer is less than that of the Tongue since the sands and sandstones only comprise part of the sediments of the Tongue. The Ribstone Creek aquifer is a heterogeneous aquifer throughout its extent, due to the varying thickness and lithology of its sand/sandstone units. The Ribstone Creek aquifer south of Township 42 forms a continuous unit but north of it occurs as isolated pockets.

The transmissivity of the aquifer is low because the aquifer is relatively thin and the fine-grained sands/sandstones have a reported hydraulic conductivity which ranges from less than one to several meters/day. Over most of its extent the Ribstone Creek aquifer is overlain by the silts and clays of the Grizzly Bear Tongue which is typically between 20 and 60 meters thick. The Grizzly Bear Tongue forms an aquitard with a low vertical hydraulic conductivity. Because of the combination of a low aquifer transmissivity and low vertical hydraulic conductivity of the overlying aquitard it is estimated that the aquifer south of Township 42 at best will not yield more than 1,000 m³/day. Drawdowns may extend over distances of several tens of kilometers. Drillers recommended pumping rates in the order of 50 ± 20 m³/day provide an experience based guideline for the yield of individual wells in the aquifer north of Township 42.

South of Township 42 the aquifer yields water of the Na-Cl type with a sum of ions in the 3,000 to 15,000 mg/L range. Water in his portion of the aquifer is unsuitable as a water supply source for domestic and municipal purposes. North of Township 42 water in the Ribstone Creek aquifer is variable in term of both composition (water type) and concentration (*i.e.* sum of ions). Water is predominantly of the Na type, either Na- SO_4 or Na-HCO₃. The sum of ions ranges from 800 to 3,500 mg/L, but typically is less than 2,500 mg/L.

A more detailed study of the Ribstone Creek aquifer in the area covered by Ranges 23 - 28 and Townships 43 - 52 is recommended, as the aquifer in this area is a major source of domestic water supply.

TABLE OF CONTENTS

SUMMA	IRY	i
LIST OF	FIGURESi	ii
LIST OF	TABLESi	v
LIST OF	APPENDICES	v
1. II	NTRODUCTION	1
1.1	Background	1
1.2	Study Area	1
1.3	Objectives	1
1.4	Geology and Groundwater Data	2
1.5	Previous Studies	3
1.6	Topography	4
1.7	Groundwater Usage	4
1.8	Acknowledgements	5
2. G	EOLOGY	6
2.1	Introduction	6
2.2	Bedrock Geology	6
2.2.	1 Mannville Group	6
2.2.	2 Lea Park Formation and Colorado Group	6
2.2.		
2.2.	4 Bearpaw Formation	7
2.2.	5 Eastend to Ravenscrag Formations	7
2.2.	6 Cypress Hills Formation and Tertiary Undifferentiated	8
2.2.		
2.3	Quaternary Geology	8
3. H	YDROGEOLOGY OF THE RIBSTONE CREEK AQUIFER1	0
3.1	Introduction1	0
3.2	Ribstone Creek Aquifer1	0
3.2.	1 Extent and thickness of the Ribstone Creek and Grizzly Bear Tongue	0
3.2.1	2 Hydrogeological Models for the Ribstone Creek Aquifer	1
3.2.	3 Wells in the Ribstone Creek Aquifer	2
3.2.	4 Water Quality in the Ribstone Creek Aquifer	2
3.2.	5 Hydraulic Properties of the Ribstone Creek Aquifer1	3
3.2.	6 Groundwater Flow in the Ribstone Creek Aquifer1	3
3.2.	7 Withdrawals from the Ribstone Creek Aquifer	4
3.2.	8 Yield of Wells in the Ribstone Creek Aquifer1	4
4. C	THER AQUIFERS1	
4.1	Judith River Formation Aquifer1	6
4.2	Aquifers in the Bearpaw Formation1	
4.3	Eastend to Ravenscrag Aquifer and Cypress Hills Unit1	6
4.4	Drift Aquifers	6
5. R	ECOMMENDATIONS1	7
6. R	EFERENCES1	8

LIST OF FIGURES

- Figure 1 Extent of the Ribstone Creek Tongue in Alberta and Saskatchewan
- Figure 2 Extent of the Ribstone Creek study area
- Figure 3 3-D surface elevation model of the Ribstone Creek study area
- Figure 4 Location of licensed production wells, coded by formation in which the well is completed
- Figure 5 Schematic stratigraphical, lithological and hydrogeological settings of western Saskatchewan
- Figure 6 Schematic cross section through Late Cretaceous sediments in eastern Alberta and western Saskatchewan
- Figure 7 Extent of the Mannville Group in the Prairie Provinces
- Figure 8 Extent of the Judith River Formation in the Prairie Provinces
- Figure 9 SRC testhole log showing lithological characteristics of the Ribstone Creek Tongue
- Figure 10 Oil log showing the geophysical characteristics of the Late Cretaceous sediments
- Figure 11 Distribution of bedrock units outcropping at the bedrock surface
- Figure 12 Bedrock surface topography in the Ribstone Creek Tongue study area
- Figure 13 Thickness of the drift in the Ribstone Creek Tongue study area
- Figure 14 Extent and thickness of the Ribstone Creek Tongue
- Figure 15 Location of wells/testholes indicating the presence of the Ribstone Creek Tongue
- Figure 16 Depth to the top of the Ribstone Creek Tongue
- Figure 17 Extent and thickness of the Grizzly Bear Tongue
- Figure 18 Hydrogeological models for the Ribstone Creek aquifer
- Figure 19 Location of wells completed in the Ribstone Creek aquifer
- Figure 20 Location of water quality data for the Ribstone Creek aquifer
- Figure 21 Water quality in the northern part of the Ribstone Creek aquifer
- Figure 22 Water levels in the northern part of the Ribstone Creek aquifer
- Figure 23 Location of industrial and municipal withdrawals from the Ribstone Creek aquifer
- Figure 24 Hypothetical drawdowns in the Ribstone Creek aquifer, for representative aquifer and aquitard properties and pumping rates between 100 and 1,000 m³/day
- Figure 25 Extent and thickness of the Judith River Formation in the Ribstone Creek study area
- Figure 26 Extent of aquifers formed by sand members of the Bearpaw Formation
- Figure 27 Extent of aquifer formed by the Eastend to Ravenscrag formations and Cypress Hills Formation
- Figure 28 Extent of drift aquifers in the Ribstone Creek study area.

The Figures follow the text of the report

LIST OF TABLES

Page Table 1 Allocated volumes of groundwater withdrawals from relevant geological units in the Ribstone Creek Tongue study area......4 Table 2 Listing of wells completed in the Ribstone Creek aquifer.....in back Water quality data for the Ribstone Creek aquifer.....in back Table 3 Table 4 Drillstem test water quality data for the Ribstone Creek aquifer.....in back Table 5 Table 6 Reported water consumption data for the Town of Marsden.....in back Withdrawals from the Ribstone Creek aquifer by the oil industry.....in back Table 7

LIST OF APPENDICES

Appendix A: Map A-1: Extent of Ribstone Creek Tongue and location of cross sections Cross section log index Cross section: A – A', B – B', C – C', D – D', E – E', F – F', G – G', H – H1, H1 – H2, I – I1, I1 – I2

1. INTRODUCTION

1.1 Background

Sands and sandstones of the Late Cretaceous Ribstone Creek Tongue form a regional aquifer in western Saskatchewan and eastern Alberta (Figure 1). The aquifer, referred to in this report as the Ribstone Creek aquifer, is being used for domestic and municipal water supplies and as source water for secondary oil recovery.

Portions of the Ribstone Creek Tongue have been identified as part of various studies but the aquifer in its entirety has not been investigated. The current study describes and characterizes the Ribstone Creek Tongue throughout its occurrence in western Saskatchewan.

The Ribstone Creek study presented in this report was a project within the Canada -Saskatchewan Farm Livestock Watering Program - Strategic Initiatives, a joint Federal and Provincial government program. The project was administered by the Prairie Farm Rehabilitation Administration (PFRA), Agriculture and Agri-Food Canada, Saskatoon (PFRA File 4590-1-6-4-1).

1.2 Study Area

The study area is defined as the area covered by NTS map sheet areas: Cypress Lake (73F), Prelate (72K), Kindersley (72N), North Battleford (73C), and the southern half of St Walburg (73F).

The location of the study area is shown in Figure 2.

1.3 Objectives

The primary objective of the study is to evaluate the groundwater resources of the Ribstone Creek Tongue in western Saskatchewan. While the study focused on the Ribstone Creek aquifer, major aquifer units above the Ribstone Creek aquifer have been identified and are briefly described.

As part of the current study the following maps were prepared:

- Location of selected testholes and cross sections
- Bedrock surface topography and geology
- Thickness of Quaternary deposits
- Extent of Quaternary aquifers
- Extent of the Eastend Ravenscrag aquifer
- Extent of aquifers within the Bearpaw Formation
- Extent and thickness of the Judith River Formation
- Extent and thickness of the Grizzly Bear Tongue
- Extent, depth to, and thickness of the Ribstone Creek Tongue

A total of nine (9) cross sections were prepared: seven (7) west - east sections, two (2) south - north sections. The cross sections have a horizontal scale of 1: 250,000 and a vertical scale of 1: 5,000, resulting in a vertical exaggeration of 50 times. The south - north cross sections, because of their length, were split into two parts. A map showing the extent of the Ribstone Creek Tongue in relation to the cross section lines, the cross section log index and the cross sections are included in Appendix A.

The current study is based on available information only.

1.4 Geology and Groundwater Data

Available maps and cross sections for the study area date back to 1990 (Millard, 1990a, b, c, d, e). These maps and cross sections are primarily based on testhole logs with a geophysical log (wildcat, oil and potash holes), and E-logs (spontaneous potential and single point resistance logs) obtained/collected by the Saskatchewan Research Council (SRC), and the Saskatchewan Water Corporation (SWC).

For the purpose of this report, the E-logs which have become available after the publication of the 1990 maps were reviewed and relevant information was used in updating the map information. The cross sections presented in this report were taken from Millard (1990a, b, c, d, e). They were prepared in AutoCAD 2000.

A review of the testhole dated contained in the SWC Water Well Drillers Report database was not conducted. The SWC database only provides lithological data for testhole/well sites and such data alone are in most cases not sufficient to determine if a well is completed in the aquifer formed by the Ribstone Creek Tongue.

The wildcat, oil and potash hole database of Saskatchewan Energy and Mines (SEM) was searched for Ribstone Creek Tongue picks. The search yielded tops and bottoms for the Ribstone Creek Tongue for about 18,400 sites. The tops and bottoms were determined by staff of SEM.

Water quality data used in this report were compiled from the following sources: Rutherford water quality database (Rutherford, 1967), SRC water quality database, SEM drillstem test water quality database, and water quality data in consultant reports.

Information regarding licensed withdrawals and actual withdrawals were obtained from the Saskatchewan Water Corporation and Saskatchewan Energy and Mines.

Water level information for the Ribstone Creek aquifer was obtained from information on the E-logs.

For plotting purposes Dominion Land Locations were converted to UTM coordinates (extended zone 13, NAD83). Locations were determined to the centroid of a Quarter or Legal Sub Division (LSD).

ArcInfo 8.1 was used to prepare many of the maps and figures in this report. Tabular data from a variety of sources were brought into ARCINFO in dbf file format. Point data were used to produce continuous surface grids and other graphic output. The procedure used in constructing grids consisted of compiling the point data in a database file format (*.dbf), converting this data to a shape file, and using the inverse distance weighted (IDW) interpolation method to produce a grid. All grids with the exception of the ground elevation data were prepared with a cell size of 500 meters. The ground elevation data, Canadian Digital Elevation Data (CDED), acquired from Natural Resources Canada (NRCAN), had a grid cell size of approximately 75 meters. These data sets consisted of 5 -1:250,000 scale NTS map areas. Those figures which indicate the depth to or thickness a particular unit were determined by performing various calculations on the grid files (*i.e.* Drift thickness = Ground elevation – bedrock surface). The resulting grids were then presented as color coded maps.

1.5 Previous Studies

As part of the first generation of NTS-based groundwater maps prepared by the Saskatchewan Research Council, the groundwater resources in the study area were initially mapped by Christiansen (1967), Christiansen and Whitaker (1973), Christiansen *et al.* (1980), David and Whitaker (1973), and Whitaker (1976). Bedrock aquifers and major buried valley aquifers were identified but not the aquifers in the glacial deposits. Each map was accompanied by four (4) cross sections. These cross sections show the Judith River Formation, and where present, the Ribstone Creek Tongue and Bearpaw sand members.

For the study area, Millard (1990a, b, c, d, e) prepared the second generation groundwater maps. NTS map sheets areas were divided into four (4) quadrants, and both bedrock as well as Quaternary aquifers were identified. The maps are accompanied by up to 10 cross sections. Maps showing the extent of the Ribstone Creek Tongue were prepared for the Cypress Lake (72F), North Battleford (73B), and St. Walburg (73F). The extent is based on cross sections and wildcat/oil/potash logs on file at SRC. SRC has only a limited number of logs for wildcat/oil/potash holes on file and no additional copies were obtained since the mid 1970s. Consequently, maps and cross sections were updated using the information available in the SEM database.

Relevant studies include those by Le Breton (1963), McLean (1971), Whitaker (1980, 1982a, b), Kewen and Schneider (1979), and Tokarsky (1985).

Le Breton (1963) described the Ribstone Creek aquifer in the vicinity of the City Of Lloydminster. He prepared a map showing the piezometric surface and discussed water quality and yields. McLean (1971) conducted a major study of the Judith River Formation in Alberta and Saskatchewan. He defined the extent of the Ribstone Creek Tongue in this area (McLean, 1971, Figure 16). The Ribstone Creek Tongue and Bearpaw sand members are shown in cross sections. A study by Kewen and Schneider (1979) focused on the Judith River Formation in west-central Saskatchewan but they mapped (extent, depth to and thickness) the Ribstone Creek in the Lloydminster area. Whitaker (1980; 1982a, b) described the Judith River Formation in southwestern Saskatchewan. The Ribstone Creek Tongue is shown in cross sections but is not further discussed. The extent of several of the Bearpaw sand members in that area were also defined as part of this study. Tokarsky (1985) prepared hydrogeological maps and cross sections along the Alberta – Saskatchewan border and shows the Ribstone Creek Tongue in cross sections.

The only study specifically focusing on the hydrogeology of the Ribstone Creek Tongue was conducted by the PRFA (1993). The PFRA studied the Ribstone Creek Tongue in an area in Alberta (Tp 21 - 40, Rg 1 - 14, W4), bordering Saskatchewan.

The areas covered by the studies mentioned above are shown in Figure 2.

1.6 Topography

The topographical setting of the study area is shown in Figure 3, in the form of a digital elevation map. The topographical elevation may range from 1385 m asl in the Cypress Hill area to 440 m asl in the North Saskatchewan River valley at the eastern boundary of the study area. The overall slope is from the south to the north. The main topographical features are the Cypress Hills and the valleys of the North and South Saskatchewan Rivers.

1.7 Groundwater Usage

For groundwater withdrawals other than for domestic use, the Saskatchewan Water Corporation requires a license for abstraction of groundwater and allocates a volume that can be withdrawn annually from the licensed well. For relevant geological units Figure 4 shows the distribution of groundwater allocations in the study area. The total volumes allocated are listed in Table 1.

Formation	Total volume allocated dam ³ /annually
Glacial (undifferentiated)	18,210
Cypress Hills Formation	65
Ravenscrag Formation	460
Bearpaw Formation	145
Judith River Formation	8,640
Ribstone Creek	2,240
TOTAL	29,760

Table 1Allocated volumes of groundwater withdrawals from relevant geological
units in the Ribstone Creek Tongue study area

Source: Saskatchewan Water Corporation, February 2002 1 dam³ equals 1,000 m³

For a particular formation, the total groundwater allocations listed in Table 1 represent the maximum volumes which can be withdrawn from all the wells licensed. Typically, the actual volumes withdrawn annually will be significantly less than the allocated annual volumes.

From Table 1, it is evident that within the study area most of the groundwater for municipal and industrial use is being withdrawn from aquifers within the glacial deposits and the aquifer formed by the Judith River Formation. Of the licensed withdrawals from the glacial deposits 83% is for municipal purposes. In contrast, 71% of the licensed withdrawals from the aquifer formed by the Judith River Formation are for industrial purposes.

Withdrawals from the Ribstone Creek aquifer are further discussed in section 3.2.7.

The total volume of surface water allocated in the study area is 198,000 dam³/annually. In contrast to licenses for groundwater, this figure includes allocations for domestic use.

1.8 Acknowledgements

B. Troyer, Saskatchewan Energy and Mines, provided data for the wildcat, oil and potash holes in the study area. He also provided data on water quality and water production from the Ribstone Creek aquifer.

The Saskatchewan Water Corporation (Nolan Shaheen, Melvyn Szabo, and Joanne Sketchell) provided well/testhole information, water quality data and groundwater and surface water use data.

H. Maathuis, hydrogeologist, Saskatchewan Research Council (SRC) led SRC's project team. Mark Simpson, geologist/GIS specialist prepared data for GIS use, prepared maps and contributed to the report. Terri Warkentin, AutoCad specialist, prepared the cross sections and a number of maps.

2. GEOLOGY

2.1 Introduction

The top of the Mannville Group was taken as the base of exploration for the present study. The stratigraphy and lithology of the formations between the ground surface and the Mannville Group is shown in Figure 5. Because of its complexity, the nomenclature of the Cretaceous sediments in western Saskatchewan is also shown in Figure 6.

The term bedrock applies to pre-Quaternary sediments. All the materials between bedrock and the ground surface are collectively referred to as "drift".

2.2 Bedrock Geology

2.2.1 Mannville Group

The Mannville Group occurs throughout the Western Sedimentary basin (Figure 7). The Mannville Group in southern Saskatchewan has been described by Christopher (1984). The Group consists of sand, silts and clays.

2.2.2 Lea Park Formation and Colorado Group

The Mannville Group is overlain by a sequence of overconsolidated marine clays and silts of the Colorado Group and the Lea Park Formation. The Colorado Group has been subdivided into Lower and Upper Colorado. The boundary between the Upper and Lower Colorado Group is formed by the bottom of the Second White Speckled Shale, a calcareous clay and silt unit which is a regional marker bed. Since the Lea Park Formation often cannot be separated from the Upper Colorado Group on electric logs the units are commonly combined. The Eagle Shoulder is a regional marker bed within this unit. Both the Lea Park Formation – Upper Colorado Group and the Lower Colorado Group are composed of marine silts and clays.

2.2.3 Judith River Formation

The Late Cretaceous Judith River Formation, also referred to as the Belly River or Oldman Formation, is an eastward thinning sedimentary wedge. The extent of this Formation (and its equivalents in Alberta) is shown in Figure 8.

The Formation is composed of non-marine and marine, multi-colored, sands (very fine to medium-grained), silts and clays, with carbonaceous and concretionary zones, deposited in a deltaic environment (McLean, 1971). The deltaic environment is a composite environment including alluvial, lacustrine, aeolian, lagoonal, swamp, beach and marine environments. Typically, individual units are heterogeneous, rarely are greater than 3 m thick and laterally can only be followed over a few kilometers (McLean, 1971).

Tongues splitting of from the top of the main body of the Judith River Formation are included in the Bearpaw Formation (see section 2.2.4), whereas the tongues splitting from the bottom of the main body are part of the Judith River Formation (see Figure 6).

Where present beneath the main body of the Judith River Formation, the Ribstone Creek Tongue is separated from the main body by the Grizzly Bear Tongue of the Lea Park Formation (see Figure 5). The Grizzly Bear Tongue is composed of non-calcareous marine silts and clays.

There are relatively few detailed descriptions of the sediments of the Ribstone Creek Tongue. In SRC testholes logs the Ribstone Creek Tongue is described as consisting of non-calcareous, very fine to fine grained sand, friable to very hard, locally with a clayey matrix and non-calcareous clays and silts. In drillers logs the sands are often described as sandstone and the silts and clays as shale. Within the Ribstone Creek Tongue the thickness of the sand unit(s) may vary locally.

A typical SRC testhole log and oil log showing the Ribstone Creek Tongue are shown in Figures 9 and 10, respectively. On oil logs the Ribstone Creek Tongue can be identified by its higher spontaneous potential and resistivity compared to the overlying Grizzly Bear Tongue and underlying silts and clays of the Lea Park Formation and Upper Colorado Group.

In parts of the study area the Victoria Tongue, also a tongue splitting from the bottom of the main body of the Judith River Formation, has been identified (McLean, 1971). The Victoria Tongue underlays the Ribstone Creek Tongue and is separated from it by the Vanesti Tongue of the Lea Park Formation (see Figure 10). This unit is not discussed further in this report.

2.2.4 Bearpaw Formation

In central Saskatchewan the sand tongues splitting off from the top of the main body of the Judith River Formations have been named and described by Caldwell (1968). The sand members are, in ascending order, named: Outlook Member, Matador Member, Demaine Member, Ardkenneth Member and Cruikshank Member. These sand members are separated by silt and clay members of the Bearpaw Formation (see Figure 5).

Beneath the Cypress Hills area additional sand members have been identified. These are stratigraphically higher than the Cruikshank Member and have been named the Oxarart, Belanger and Thelma units (Lomenda, 1973). Whitaker (1976) and Millard (1990a) identified these units in cross sections but spelled them differently than Lomenda (1973).

2.2.5 Eastend to Ravenscrag Formations

When the sea retreated from Saskatchewan during the Late Cretaceous, non-marine sands and silts were deposited in an advancing delta and in the following alluvial deltaic plain (Whitaker *et al.*, 1978).

The Eastend Formation is composed of grayish and greenish sand, silt and clay, with thin coal seams in the upper part. The Whitemud is composed of kaolinitized, white sand and clay, separated by a carbonaceous zone and overlain by a purplish shale of the Battle Formation. The

Frenchman Formation is composed of sand and clays. The Ravenscrag Formation is comprised of sands, silts, clays and coals. Since these formations can not be separated in the subsurface they have been lumped together into one unit (*e.g.* Whitaker *et al.*, 1978; Christiansen, 1983).

2.2.6 Cypress Hills Formation and Tertiary Undifferentiated

The Tertiary Cypress Hills Formation is composed of conglomerate, gravel, sand and silt (Vonhof, 1965a, b; 1969). It unconformably overlies the Ravenscrag Formation (or Eastend to Ravenscrag formations), or directly overlies the Bearpaw Formation.

The youngest bedrock unit occurring in the study area is comprised of sands, silts and clays of Tertiary to Quaternary age. The extent of this undifferentiated Tertiary unit is limited to the Kindersley (72N) map sheet area.

2.2.7 Bedrock Surface Geology and Topography

The distribution of bedrock units outcropping at the bedrock surface is shown in Figure 11. The distribution is a function of the bedrock units in the Western Sedimentary basin gently sloping upward from south to north and preglacial and glacial erosion. The spatial distribution of bedrock units has also been influenced to some degree by structural disruption due to salt dissolution.

The bedrock topography is shown in Figure 12. The topography ranges from 398 meters asl in the Battleford Valley aquifer at the eastern boundary of the study area to 1350 meters asl in the Cypress Hills area. The major bedrock surface topography features are the Cypress Hills (bedrock surface high), and bedrock surface lows in the Tyner Valley, Battleford Valley and Bronston Lake Valley aquifer systems, and the valley of the North Saskatchewan River.

2.3 Quaternary Geology

The "drift" can be separated into the Empress Group, Sutherland and Saskatoon groups and their formations and subdivisions. Drift consists of till and stratified deposits. Till is an unsorted and unstratified material deposited directly by the glaciers and is comprised of a mixture of clay, silt, sand, gravel and boulders. Stratified drift consists of sand, gravel, silt and clay deposited by water.

The Empress Group is composed of sand, gravel, silt and clay of fluvial, lacustrine and colluvial origin that overlies Cretaceous bedrock and non-marine Tertiary bedrock and underlies till of Quaternary age (Whitaker and Christiansen, 1972). In preglacial valleys (such as the Tyner Valley), the Empress Group may include a preglacial unit identified by the presence of quartzite and chert gravel and the absence of carbonate and shield-derived material. The upper sands and gravels are of glacial origin and contain igneous, metamorphic and carbonate fragments (Christiansen, 1992).

The Sutherland Group, originally described by Christiansen (1968a), is defined as the drift between the Empress Group and Saskatoon Group or the drift between bedrock and the

Saskatoon Group (Christiansen, 1992). The Sutherland Group has been further subdivided, in ascending order, into the Mennon, Dundurn and Warman formations (Christiansen, 1992).

The Saskatoon Group includes, in ascending order: Floral and Battleford formations and surficial stratified deposits. The Floral and Battleford formations were initially described by Christiansen (1968a, b). Christiansen (1992) subdivided the Floral Formation into a lower and upper till, separated by the Riddell Member (stratified sands).

The term 'surficial stratified deposits' is an informal designation for sediments between the Battleford Formation and the present land surface (Christiansen, 1992).

In Figure 13, the thickness of the drift is shown. The drift thickness ranges from zero meters where bedrock units outcrop at the ground surface to about 270 meters. In the Cypress Hills area, bedrock units are exposed at the ground surface in part because parts of the Cypress Hills have not been glaciated (see cross section H - H1, Appendix A). Bedrock units in this area are also exposed in valley slopes (see cross section I - I1, Appendix A). Similarly, in the northern part of the study area the Ribstone Creek Tongue is exposed in river valley slopes (*e.g* cross sections A-A' and B-B', Appendix A). Bedrock may also be exposed as a result of glacial erosion. Drift is the thickest where preglacial valleys were deeply incised into the bedrock and where the present land surface represents topographical highs.

3. HYDROGEOLOGY OF THE RIBSTONE CREEK AQUIFER

3.1 Introduction

With respect to water supply, an aquifer is defined commonly as a saturated geological unit in which a well can be constructed which yields economic quantities of water. Aquifers are separated by aquitards which are layers which are sufficiently permeable to transmit water but not sufficiently permeable to allow completion of a production well. Typically, flow in aquitards is vertical whereas flow in aquifers is horizontal. Depending on the dimensions of an aquifer, flow is controlled by the large-regional, regional or local topographic setting.

Within the study area bedrock aquifers, in ascending order, are formed by sediments of the (see Figure 5): Mannville Group, the Ribstone Creek Tongue, the Judith River Formation, sand members within the Bearpaw Formation, the Eastend to Ravenscrag formations, Cypress Hills Formation, and undifferentiated Tertiary to Quaternary deposits. Major aquitards are formed by the silts and clays of the Lower Colorado Group, the Lea Park Formation – Upper Colorado Group, and the Bearpaw Formation (see Figure 5).

Aquifers within the Quaternary deposits are formed by sediments of the Empress Group, by sands and gravels within and between the Sutherland and Saskatoon groups and by surficial sands and alluvial deposits. Aquitards are formed mainly by tills.

The hydrogeology of the Ribstone Creek aquifer is discussed in more detail in the following sections. Other aquifers within the study area are briefly discussed in section 5.

3.2 Ribstone Creek Aquifer

3.2.1 Extent and thickness of the Ribstone Creek and Grizzly Bear Tongue

The extent and thickness of the Ribstone Creek Tongue is shown in Figure 14. The thickness of the Ribstone Creek Tongue is based mainly on the SEM data since only for the area north of Township 40 other testhole data are available (Figure 15).

In the area south of Township 43, the Ribstone Creek Tongue forms a virtual continuous geological unit with its eastern boundary being the depositional edge. North of Township 43 the Ribstone Creek Tongue is a discontinuous unit. The discontinuity in this area is caused by removal of the Ribstone Creek Tongue by fluvial erosion which formed the Battleford and Lloydminster bedrock valleys and the present Big Gully Creek and Battle River valleys. Glacial erosion may also have contributed to the removal of the Ribstone Creek Tongue in this area. As a result, the northern boundary of the Ribstone Creek Tongue is an erosional boundary. Although the Ribstone Creek Tongue occurs in isolated areas north or Township 43, within these areas the sediments of the Tongue are continuous.

The Ribstone Creek Tongue ranges in thickness from less than 3 meters along the edges of its extent to locally exceeding 35 m. However, throughout most of the study area it is between 5 and 25 m thick.

From a hydrogeological point of view, it is important to note that the extent of the Ribstone Creek aquifer likely will coincide with that of the Ribstone Creek Tongue. However, since only part of the Tongue is comprised of sand or sandstone, the thickness of the Ribstone Creek aquifer will be less than the thickness of the Tongue.

Despite the fact that the Ribstone Creek Tongue is continuous over its extent and because of the variability in the thickness and characteristics of its sands and sandstones, the Ribstone Creek aquifer is a heterogeneous aquifer.

The Ribstone Creek aquifer in western Saskatchewan covers an area of approximately 45,350 km^2 and occurs at depths ranging from greater than 500 meters beneath the Cypress Hills area (see cross section H – H1, Appendix A) to less than 25 meters in the northern part of the study area. The depth to the top of the Ribstone Creek Tongue is shown in Figure 16.

The Grizzly Bear Tongue is defined as the silt and clay unit between the bottom of the main body of the Judith River Formation and the top of Ribstone Creek Tongue. Consequently, the extent of the Grizzly Bear Tongue coincides with that of the Ribstone Creek Tongue, except in the narrow zone where the Ribstone Creek Tongue forms the bedrock surface.

The distribution of the thickness of the Grizzly Bear Tongue is shown in Figure 17. Similarly as with the Ribstone Creek Tongue, the thickness is based mainly on the SEM data as only for the area north of Township 40 other testhole data are available.

The Grizzly Bear Tongue ranges in thickness from less than 3 meters to about 125 m. However, typically, the thickness is in the 20 to 60 meter range.

3.2.2 Hydrogeological Models for the Ribstone Creek Aquifer

Based on the geological setting of the Ribstone Creek aquifer (see Appendix A: cross sections), three basic hydrogeological models can be distinguished (Figure 18). The models have in common that the top of the Lea Park Formation and Upper Colorado Group forms an impermeable base with respect to groundwater flow above it.

Model A is applicable to most of the area over which the Ribstone Creek aquifer occurs. The aquifer is overlain by an aquitard formed by the Grizzly Bear Tongue which in turn is overlain by the aquifer formed by the Judith River Formation. Recharge to the Ribstone Creek aquifer is controlled by the vertical hydraulic conductivity of the overlying aquitard formed by the Grizzly Bear Tongue. The source of the recharge is the Judith River aquifer.

Very little is known about the hydraulic conductivity of the Cretaceous silts and clays (Maathuis *et al.*, 1993). Unfractured Cretaceous silts and clays can be expected to have a vertical hydraulic conductivity of less then 8.6 x 10^{-6} m/day (10^{-10} m/s). Since vertical gradients greater than unity are unlikely to occur, recharge through an aquitard will be maximal when the head difference is equal to the thickness of the aquitard (*i.e.* a gradient of unity). It can be shown that in this case the recharge equals the vertical hydraulic conductivity. Consequently, for a hydraulic conductivity less than 8.6 x 10^{-6} m/day, the recharge will be less than 0.003 m/year. Similarly,

any upward discharge from the Ribstone Creek aquifer into the Judith River aquifer will be small.

Model B is applicable to the area where the Judith River Formation is absent but sediments of the Grizzly Bear Tongue overlie the Ribstone Creek aquifer and, in turn, are overlain by an aquitard formed by tills. In this case the recharge is controlled by the bulk hydraulic conductivity of the Grizzly Bear Tongue and the tills.

In Model C, drift directly overlies the Ribstone Creek aquifer. Recharge to the aquifer is controlled by the bulk vertical hydraulic conductivity of the tills making up the drift aquitard. In particular in the area where the drift is thin, and characterized by fracture permeability, recharge to the aquifer might be appreciable.

The implications of the models with respect to aquifer yields are discussed further in section 3.2.8.

3.2.3 Wells in the Ribstone Creek Aquifer

Based on the extent of the Ribstone Creek Tongue, available E-logs, and wells documented in consultant reports, Table 2 lists wells known to have been completed in the Ribstone Creek aquifer. This Table also provides information on the top and bottom of the Ribstone Creek Tongue, well depth, depth to water, water level elevation, available drawdown and recommended pumping rate. Since the SWC Water Well Drillers Report database was not used in identifying wells completed in the aquifer, the actual number of wells completed in the aquifer will be greater than the 170 listed in Table 2. In addition to the wells listed, SEM records indicate that there are an additional 21 wells completed in the aquifer. The location of wells known to be completed in the Ribstone Creek aquifer is shown in Figure 19.

3.2.4 Water Quality in the Ribstone Creek Aquifer

Available water quality data for wells completed in the Ribstone Creek aquifer are listed in Table 3. In Table 4, water quality data obtained from drill stem tests are provided. The locations of the sample points are shown in Figure 20.

Inspection of the water quality data for the area south of Township 40 shows that the aquifer typically yields water of the Na-Cl type with a sum of ions in the range of 3,000 to 15,000 mg/L. This water is unsuitable for domestic, municipal and agricultural use, due to the high sodium (Na) and chloride (Cl) concentrations. However, it has been used by the oil industry for enhanced oil recovery.

The characteristics of the water quality in the Ribstone Creek aquifer in the area between Township 40 and 52 are shown in more detail in Figure 21. This Figure shows that in this area the quality of the water in the Ribstone Creek aquifer is variable in term of both composition (water type) and concentration (*i.e.* sum of ions). Water is predominantly of the Na type, either Na- SO₄ or Na-HCO₃. The sum of ions ranges from 800 to 3,500 mg/L, but typically is less than 2,500 mg/L.

3.2.5 Hydraulic Properties of the Ribstone Creek Aquifer

Reported transmissivity and hydraulic conductivity data for the Ribstone Creek aquifer are summarized in Table 5.

Location	Transmissivity	Hydraulic Conductivity	Reference
	m²/d	m/d	
11-06-31-22-W3	2.5 - 6	0.2 - 0.4	UMA, 1964
01/02-19-33-27-W3	1.9 - 14	0.2 - 1.3	AGRA, 1995
NW-13-35-44-27-W3	21	5	Rohde and Lebedin, 1987
11-16-36-28-W3	33		Hydrogeological
			Consultants Ltd. ,1992
16-19-36-28-W3	22 - 33	1.3 – 1.8	Golder, 1996
16-27-35-28-W3	11.3 - 22.4	0.8 - 1.6	Campbell Geoscience,
			1985

 Table 5 Reported hydraulic properties for the Ribstone Creek aquifer

It is evident from Table 5 that the hydraulic conductivity of the aquifer ranges from less than one to several meters/day, consistent with the lithology of the aquifer sediments. Since the aquifer is relatively thin, it has a low transmissivity.

3.2.6 Groundwater Flow in the Ribstone Creek Aquifer

Point water level data are available only for the Ribstone Creek aquifer north of Township 42. South of Township 42 water level data are scarce and limited to a few sites where the oil industry uses the aquifer as a water supply source for enhanced oil recovery.

From a large-scale regional perspective, and based on the general topographical setting, and with the Cypress Hills area in the south being a topographical high, flow in the Ribstone Creek aquifer south of Township 42 will be in a northerly direction. Because of the absence of water level data, areas of recharge and discharge to and from the Ribstone Creek aquifer can not be identified.

Point water level data for the Ribstone Creek aquifer north of Township 42 are shown in Figure 22. Because of the large variability in the reported water level data, the data can not be used to determine flow direction within the various portions of the aquifer. The large variability in water levels is in part due to the fact that the reported depths to water data cover a time span of three decades. In addition, the depths to water measurements are subject to errors.

The Ribstone Creek aquifer north of Township 42 occurs as isolated portions and consequently, groundwater flow within these portions is controlled by and will reflect, the local topographical setting. Where the aquifer outcrops along the Big Gully Creek and Battle River valley slopes, springs can be expected since these outcrop areas represent discharges areas.

3.2.7 Withdrawals from the Ribstone Creek Aquifer

The Ribstone Creek aquifer is used as a water supply source for domestic, municipal and industrial purposes. The locations of wells licensed for withdrawals for municipal and industrial sources are shown in Figure 23. The industrial use is exclusive the use by the oil industry.

Throughout most of the study area the Ribstone Creek aquifer is either too deep or yields water which is unsuitable for drinking water purposes. Only in the area covered by Ranges 15 - 29, Twp 40 - 52, is the aquifer used as a source of domestic water supply.

The Town of Marsden uses water from the Ribstone Creek and Quaternary aquifers for its municipal water supply. Marsden wells No. 5 and 6 have been completed in the Ribstone Creek aquifer (Rohde and Lebedin, 1987). In the period 1985 - 2000, the Town withdrew a reported average annual volume of groundwater of about 30 dam³ (Table 6). However, it is not known what percentage of this volume came from the Ribstone Creek aquifer.

The oil industry has been using the Ribstone Creek aquifer as a source of water for enhanced oil recovery (see Figure 23). Details about the water produced from the aquifer by the oil industry are provided in Table 7. At the end of 2001, water was being produced from eight (8) wells.

3.2.8 Yield of Wells in the Ribstone Creek Aquifer

Based on drillers recommended pumping rates (see Table 2), the yield of domestic wells is in the order of $50 \pm 20 \text{ m}^3/\text{day}$ (0.6 ± 0.2 L/s) The yield of wells currently used by the oil industry ranges from about 150 to 480 m³/day (see Table 7).

The yield of individual wells completed in the Ribstone aquifer is a function of a number of variables, including: transmissivity of the aquifer, pumping rate, available drawdown and the characteristics of the overlying aquitard (thickness and vertical hydraulic conductivity). For the Ribstone Creek aquifer south of Township 42 the theoretical yield of a well can by estimated by considering the steady-state drawdown model for an aquifer with leakage through an overlying aquitard (*e.g.* Kruseman and de Ridder, 1990):

$$s = \frac{Q}{2pT} K_0(\frac{r}{L}) \tag{1}$$

where:

s = drawdown (meters) Q = pumping rate (m³/day) r = distance (meters) T = transmissivity of the aquifer (m²/day) $L=\sqrt{Tc}$ = leakage length (meters) $c=b'/K_v$ = vertical resistance (days) b' = thickness of the overlying aquitard (meters) K'_v = vertical hydraulic conductivity of aquitard (m/day) K_0 = modified Bessel function of the second kind and zero order Applying equation 1, assuming that the Grizzly Bear Tongue has a thickness ranging between 20 and 50 meters and a hydraulic conductivity of 8.64 $\times 10^{-6}$ m/day, an aquifer transmissivity between 10 and 30 m²/day and a well diameter of 15.2 cm (6"), Figure 24 shows drawdowns near the well in the 7 to 180 m range for pumping rates between 100 and 1,000 m³/day. The actual drawdown in the well itself will be greater than that directly adjacent because of well losses. Data on the available drawdown in the area south of Township 42 are extremely scarce but yields in excess of 1,000 m³/day are unlikely except under very favorable conditions. Figure 24 also shows that the drawdowns may extend over significant distances, up to several tens of kilometers. Equation 1 assumes that the aquifer is homogeneous over these distances but this is unlikely the case considering the variable thickness and lithology of the aquifer. The heterogeneity will result in increased drawdowns and thus a lower well yield.

It is also noted that because of the low vertical hydraulic conductivity of the Grizzly Bear Tongue establishing steady state conditions may take years. Similarly, recovery of water levels after pumping ceased will also take years.

Theoretical analyses of well yields north of Township 42 have little meaning since the aquifer occurs as isolated pockets and boundary conditions would have to be taken into account. North of Township 42, the range in the drillers recommended pumping rates provides a practical guideline of potential well yields.

4. OTHER AQUIFERS

Other major aquifers in the study area include aquifers formed by sediments of the Judith River Formation, sand members within the Bearpaw Formation, the Eastend to Ravenscrag formations, and the aquifers within the glacial deposits. These aquifers are briefly discussed below.

4.1 Judith River Formation Aquifer

Within the Western Sedimentary Basin, the aquifer formed by the sediments of the Judith River Formation is a major regional aquifer (see Figure 8). The extent of the aquifer in the study area is shown in Figure 25. The aquifer occurs virtually throughout the entire study area but is absent in the area where the Tyner Valley cut through the aquifer and north of Township 42 where it has been removed by erosion except for two isolated remnants. Where it is present, it overlies the Ribstone Creek aquifer (see also cross sections, Appendix A).

4.2 Aquifers in the Bearpaw Formation

Based on the work by Whitaker (1982) and Millard (1990a), Figure 26 shows the area in which sand members of the Bearpaw Formation occur. Within this area one or more sand members may occur, but at different stratigraphical positions. In terms of a water supply source, sand members of the Bearpaw Formation do not appear to be a significant source. SWC records indicate that within the study area six (6) wells completed in a Bearpaw sand member area have been licensed, for a total allocation of about 110 dam³/year.

4.3 Eastend to Ravenscrag Aquifer and Cypress Hills Unit

The extent of the aquifer formed by the Eastend to Ravenscrag formations in the study area is shown in Figure 27. This Figure also shows the extent of the Cypress Hills Formation. Where the Cypress Hills Formation overlies the Eastend to Ravenscrag formations, the Eastend to Cypress Hills formations form one aquifer unit.

The Eastend to Ravenscrag aquifer unit in the vicinity of the Town of Shaunavon has been referred to by Meneley (1983) as the Shaunavon aquifer system. Meneley (1983) estimated that the yield of individual wells from this system is in the 125 to 350 m³/day range. Water from this system is of the Na+K – HCO₃ type and has an average sum of ions of about 1,050 mg/L. The Town of Shaunavon is a major user of groundwater from this system. In the period 1985 – 2000, the Town withdrew about 360 dam³ annually (source: Saskatchewan Water Corporation).

4.4 Drift Aquifers

Aquifers within the Quaternary deposits occur at various stratigraphical levels and vary in extent and thickness. Figure 28 shows the extent of aquifers formed by sediments of the Empress Group and of alluvial, surficial, intertill (undifferentiated) aquifers. Within the study area, the drift aquifers form an important source of water for domestic, municipal and industrial purposes.

5. **RECOMMENDATIONS**

- A more detailed study of the Ribstone Creek aquifer in the area covered by Ranges 23 28 and Townships 43 52 should be considered as the aquifer in this area is a major source of domestic water supply.
- Characterization of the water quality in the Ribstone Creek aquifer north of Township 42 can be greatly improved by conducting a targeted water quality program based on the wells identified in this report as being completed in the aquifer. Water should be analyzed for major ions, trace elements, arsenic, selenium and selected isotopes such as deuterium and oxygen-18.
- Since long-term water level records are not available for the Ribstone Creek aquifer it is recommended to construct two groundwater level observation wells in the aquifer, one north and one south of Township 42. These wells should be incorporated into the provincial network of observation wells.
- The aquifer formed by the Judith River Formation, and its equivalents in Alberta, is a major aquifer within the Western Sedimentary Basin. Because it is an important source of water for domestic, municipal and industrial purposes, a study of this aquifer in its entirety is warranted.

6. **REFERENCES**

- AGRA Earth and Environmental Ltd. (AGRA). 1995. Norcen-Court Injection water supply LSD 1-19-33-27-W3M. AGRA Earth and Environmental Ltd., Calgary, 12 p.
- Caldwell, W.G.E. 1968. The Late Cretaceous Bearpaw Formation in the South Saskatchewan River valley. Saskatchewan Research Council, Geology Division, Report No. 8, 86 p.
- Campbell Geoscience Ltd. 1985. Groundwater exploration and testing Petro-Canada Cactus Lake battery site. Campbell Geoscience Ltd., Calgary, 43 p.
- Christiansen, E.A. 1967. Geology and groundwater resources of the Battleford area (73-C), Saskatchewan. Saskatchewan Research Council, Geology Division, Map No. 4.
- Christiansen, E.A. 1968a. Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada. Canadian Journal of Earth Sciences, Volume 5, pp. 1167-1173.
- Christiansen, E.A. 1968b. A thin till in west-central Saskatchewan, Canada. Canadian Journal of Earth Sciences, Volume 5, pp. 329-336.
- Christiansen, E.A. 1979. The Wisconsian deglaciation of southern Saskatchewan. Canadian Journal of Earth Sciences, Volume 8, No. 12, pp. 1505-1513.
- Christiansen, E.A. 1983. Geology of the Eastend to Ravenscrag Formations, Saskatchewan.
 E.A. Christiansen Consulting Ltd., Saskatoon, Report 0088-001, 26 p. *In* Meneley, W.A., 1983, Hydrogeology of the Eastend to Ravenscrag Formations in Southern Saskatchewan. W.A. Meneley Consultants Ltd., Saskatoon. Report prepared for Saskatchewan Environment.
- Christiansen, E.A. 1992. Pleistocene stratigraphy of the Saskatoon area, Saskatchewan, Canada: an update. Canadian Journal of Earth Sciences, Volume 29, No. 8, pp. 1767-1778.
- Christiansen, E.A., and Whitaker, S.H. 1973. Geology and groundwater resources of the St. Walburg area (73F). Saskatchewan Research Council, Geology Division, Map No. 18.
- Christiansen, E.A., Kewen, T.J., and Schneider, A.T. 1980. Geology and groundwater resources of the Kindersley area (72N). Saskatchewan Research Council, Geology Division, Map No. 23.
- Christopher, J.E. 1984. The Lower Cretaceous Mannville Group, northern Williston Basin region, Canada. *In* Scott, D.F., and Glass, D.J. (eds), The Mesozoic of Middle America, Canadian Society of Petroleum Geologists, Memoir 9, pp. 109 126.
- David, P.P., and Whitaker, S.H. 1973. Geology and groundwater resources of the Prelate area (72-K). Saskatchewan Research Council, Geology Division, Map No. 16.

- Golder Associates Ltd. 1996. Results of groundwater supply investigation Ribstone Creek aquifer, Cactus Lake, Saskatchewan. Golder Associates Ltd., Calgary, 14 p.
- Hydrogeological Consultants Ltd. 1992. Elan Energy Inc. Cactus Lake area. 1992 Groundwater monitoring 11B-16-36-28-W3. Hydrogeological Consultants Ltd., Alberta, 5 p.
- Kewen, T.J., and Schneider, A.T. 1979. Hydrogeological evaluation of the Judith River Formation in west–central Saskatchewan. Saskatchewan Research Council, Report G79-2, 78 p.
- Kruseman, G.P., and de Ridder, N.A. 1990. Analysis and evaluation of pumping test data. ILRI Publication 47, Wageningen, Netherlands, 377 p.
- Le Breton, E.G. 1963. Groundwater geology and hydrology of the Lloydminster area, Alberta. *In* Early contributions to the groundwater hydrology of Alberta, Farvolden, R.N., Meneley, W.A., Le Breton, E.G., Lennox, D.H., and Meyboom, P., Research Council of Alberta, Bulletin 12, pp. 25 -37.
- Lomenda, M.G. 1973. Cretaceous Bearpaw Formation in the Cypress Hills of Saskatchewan. M.Sc Thesis, Department of geological Sciences, University of Saskatchewan, 235 p.
- Maathuis, H., Sauer, E.K., and Haug, M.D. 1993. Characterization of Cretaceous "Shales" in southern Saskatchewan: a preliminary review. Conference Proceedings 46th Canadian Geotechnical Conference, September 27 29, 1993, Saskatoon, Supplementary Volume.
- Meneley, W.A. 1983. Hydrogeology of the Eastend to Ravenscrag formations in southern Saskatchewan. W.A. Meneley Consultants Ltd., Report 0089-001, 21 p.
- Millard, M.J. 1990a. Geology and groundwater resources of the Cypress Lake area (72F), Saskatchewan. Saskatchewan Research Council, SRC Publication No. R-1210-11-E-90, 39 p, maps, cross sections.
- Millard, M.J. 1990b. Geology and groundwater resources of the Prelate are area (72K), Saskatchewan. Saskatchewan Research Council, SRC Publication No. R-1210-12-E-90, 39 p, maps, cross sections.
- Millard, M.J. 1990c. Geology and groundwater resources of the Kindersley area (72N), Saskatchewan. Saskatchewan Research Council, SRC Publication No. R-1210-9-E-90, 34 p, maps, cross sections.
- Millard, M.J. 1990d. Geology and groundwater resources of the Battleford area (73C), Saskatchewan. Saskatchewan Research Council, SRC Publication No. R-1210-5-E-90, 36 p, maps, cross sections.

- Millard, M.J. 1990e. Geology and groundwater resources of the St. Walburg area (73F), Saskatchewan. Saskatchewan Research Council, SRC Publication No. R-1210-7-E-90, 30 p, maps, cross sections.
- McLean, J.R. 1971. Stratigraphy of the Upper Cretaceous Judith River Formation in the Canadian Great Plains. Saskatchewan Research Council, Geology Division, Report No. 11, 96 p.
- Prairie Farm Rehabilitation Administration (PFRA). 1993. Alberta special areas. Environmental sustainability initiative. Deep groundwater exploration study. Agriculture Canada, Prairie Farm Rehabilitation Administration, Earth Sciences Division, Regina, 59 p.
- Rohde, H and Lebedin, J. 1987. Village of Marsden. Installation of well No.6. Phase 3 report. Prairie Farm Rehabilitation Administration, Geology and Air Surveys Division, Regina, 20 p.
- Rutherford, A.A. 1967. Water quality survey of Saskatchewan ground-waters. Saskatchewan Research Council, Chemistry Division, Report C-66-1, 267 p.
- Tokarsky, O. 1985. Hydrogeologic profile Alberta Saskatchewan boundary. Geoscience Consulting Ltd., Edmonton, 64 p. Prepared for Prairie Provinces Water Board.
- Underwood McLellan & Associates Ltd. 1964. Water source well evaluation 11-6-31-22-W3. Underwood McLellan & Associates Ltd., Calgary, 21 p.
- Vonhof, J.A. 1965a. The Cypress Hills Formation and its reworked deposits in southwestern Saskatchewan. *In* Alberta Society of Petroleum Geologists, 15th Annual field conference guidebook, Part 1, Cypress Hills Plateau, pp. 142- 161.
- Vonhof, J.A. 1965b. Tertiary gravels and sands in southern Saskatchewan.M.Sc Thesis, Department of Geological Sciences, University of Saskatchewan, 99 p.
- Vonhof, J.A. 1969. Tertiary gravels and sands in the Canadian Great Plains. Ph.D Thesis, Department of Geological Sciences, University of Saskatchewan, 279 p.
- Whitaker, S.H. 1976. Geology and groundwater resources of the Cypress area (72-F). Saskatchewan Research Council, Geology Division, Map No. 22.
- Whitaker, S.H. 1980. Groundwater resources of the Judith River Formation in southwestern Saskatchewan. Phase I study. Silverspoon Research and Consulting Ltd., Saskatoon, 43 p.
- Whitaker, S.H. 1982a. Groundwater resources of the Judith River Formation in southwestern Saskatchewan. Volume I: report. Silverspoon Research and Consulting Ltd., Saskatoon, 50 p. Prepared for Saskatchewan Environment.

- Whitaker, S.H. 1982b. Groundwater resources of the Judith River Formation in southwestern Saskatchewan. Volume I: Well site data. Silverspoon Research and Consulting Ltd., Saskatoon, 107 p. Prepared for Saskatchewan Environment.
- Whitaker, S.H., and Christiansen, E.A. 1972. The Empress Group in southern Saskatchewan. Canadian Journal of Earth Sciences, Volume 9, No. 4, pp. 353-360.
- Whitaker, S.H., Irving, J.A., and Broughton, P.L. 1978. Coal resources of southern Saskatchewan: a model for evaluation methodology. Geological Survey of Canada, Economic Geology Report 30, Saskatchewan Department of Mineral Resources, Report No. 209; Saskatchewan Research Council, Report No. 20, 151 p.

index No.	Cross Section	Name	Land Location
1	A-A'	FFIB	4-23-50-28-W3
2	A-A'	SRC Lloydminster	NW-5-24-50-28-W3
3	A-A'	FFIB	15-24-50-28-W3
4	A-A'	SRC Northminster	NW-13-19-50-27-W3
5	A-A'	OIL Husky Northminster STH 12	13-19-50-27-W3
6	A-A'	OIL Husky Northminster STH 22	13-17-50-27-W3
7	A-A'	FFIB	3-17-50-27-W3
8	A-A'	FFIB	1-17-50-27-W3
9	A-A'	OIL Husky Northminster STH 6	4-16-50-27-W3
10	A-A'	FFIB	1-16-50-27-W3
11	A-A'	FFIB	16-10-50-27-W3
12	A-A'	FFIB	NW-11-50-27-W3
13	A-A'	FFIB	4-12-50-27-W3
14	A-A'	OIL Husky Britannia STH 6	4-6-50-26-W3
15	A-A'	FFIB	3-6-50-26-W3
16	A-A'	FFIB	9-6-50-26-W3
17	A-A'	OIL Husky McLaren STH 6	16-5-50-26-W3
18	A-A'	FFIB	NE-16-5-50-26-W3
19	A-A'	Husky McLaren STH 2	5-2-50-26-W3
20	A-A'	FFIB	3-2-50-26-W3
21	A-A'	FFIB	SE-2-50-26-W3
22	A-A'	OIL Elks Oil 3	9-1-50-26-W3
22	A-A'	OiL SCC McLaren 12	13-6-50-25-W3
23 24	A-A'	OIL Husky McLaren STH 14	13-3-50-25-W3
2 4 25	A-A'	-	
25 26	A-A A-A'	OIL Mobil Husky McLaren	3-13-50-25-W3
20 27		OIL Husky McLaren STH 9	3-17-50-24-W3
	A-A'	FFIB	16-10-50-24-W3
28 29	A-A' A-A'	FFIB FFIB	SE-24-50-24-W3
29 30	A-A A-A'	OIL Wilrich Trans Era Strat Test 8	1-17-50-23-W3
30 31	A-A A-A'	FFIB	14-11-50-23-W3
-			12-7-50-22-W3
32	A-A' A-A'	OIL Mobil Standard Hill	4-17-50-22-W3
33		FFIB	9-14-50-22-W3
34	A-A'	OIL Husky Westhazel	1-32-50-21-W3
35	A-A'	FFIB	10-10-50-20-W3
36	A-A'	OIL Battleford Mervin 1	1-15-50-20-W3
37	A-A'	OIL Rio-tinto Edam STH 4	4-14-50-20-W3
38	A-A'		12-16-50-19-W3
39	A-A'	OIL Husky Long Hope	13-21-50-18-W3
40	A-A'	FFIB	SE-9-14-50-18-W3
41	A-A'	EPD Glaslyn	14-20-50-17-W3
42	A-A'	FFIB	15-21-50-17-W3
43	A-A'	FFIB	SW-9-25-50-17-W3
44	A-A'	FFIB	NW-34-50-16-W3
45	A-A'	FFIB	3-13-50-15-W3
46	A-A'	FFIB	NE-1-13-50-15-W3
47 48	A-A'	FFIB	1-18-50-14-W3
48	B-B'	OIL Husky Buzzard STH 6	1-27-46-28-W3
49 50	B-B'		13-23-46-28-W3
50 51	B-B'	OIL Husky Buzzard STH 7	4-25-46-28-W3
51 50	B-B'	SRC Unwin	NE-13-19-46-27-W3
52 50	B-B'	OIL Husky Buzzard STH 22	7-29-46-27-W3
53	B-B'	OIL Husky Buzzard STH 30	16-21-46-27-W3
	B-B'	OIL Husky Buzzard STH 9	4-30-46-26-W3
54 55	B-B'	OIL Husky Buzzard STH 11	4-20-46-26-W3

Index	Cross	Name	Land Location
No.	Section B-B'		4 16 46 06 W2
56		OIL Husky Wycollar STH 5	4-16-46-26-W3
57 59	B-B'	FFIB	NW-2-16-46-26-W3
58 50	B-B'	OIL Husky Wycollar STH 2	12-10-46-26-W3
59 00	B-B'	OIL Husky Wycoliar R/A	1-15-46-26-W3
60	B-B'	OIL Husky Wycollar STH 4	4-24-46-26-W3
61	B-B'	FFIB	2-17-46-25-W3
62	B-B'	OIL Husky Freemont R/a	4-16-46-25-W3
63	B-B'	OIL Sun Core Hole	4-15-46-25-W3
64	B-B'	FFIB	16-10-46-25-W3
65	B-B'	FFIB	8-14-46-25-W3
66	B-B'	OIL Socony Battle River STH W7	12-7-46-24-W3
67	B-B'	OIL Mobil Hillsdale	1-16-46-24-W3
68	B-B'	OIL Socony Battle River STH NW15	5-15-46-24-W3
69	B-B'	OIL Socony Soda Lake STH SW 29	3-29-46-23-W3
70	B-B'	OIL Mobil Hillsdale	1-29-46-23-W3
71	B-B'	OIL Socony Soda Lake STH NE 16	13-15-46-23-W3
72	B-B'	OIL Socony Mobil C65J09	1-15-46-23-W3
73	B-B'	OIL Mobil Hillsdale	2-14-46-23-W3
74	B-B'	OIL Socony Mobil 65J09	12-12-46-23-W3
75	B-B'	OIL Husky Birling R/A	13-9-46-22-W3
76	B-B'	OIL Husky Paynton FA	4-3-46-21-W3
77	B-B'	SRC Paynton	SW 13-6-46-20-W3
78	B-B'	FFIB	SE 5-34-45-20-W3
7 9	B-B'	OIL Sun Delmas	S 31-45-19-W3
80	B-B'	OIL Husky Delmas	1-4-46-19-W3
81	B-B'	OIL Gallop Delmas	SE 9-31-45-18-W3
82	B-B'	EPD Highgate	SE 3-18-45-17-W3
83	B-B'	FFIB	S 15-45-17-W3
84	B-B'	FFIB	8-15-45-17-W3
85	B -B'	FFIB	15-12-45-17-W3
86	B-B'	SRC Hamlin	SW 4-17-45-16-W3
87	B-B'	FFIB	SW 4-23-45-16-W3
88	B-B'	OIL Texas Gulf Battleford	4-19-45-15-W3
8 9	B-B'	FFIB	13-17-45-15-W3
90	B-B'	OIL Total Jackfish Lake R/A 1	13-16-45-15-W3
91	B-B'	OIL Total Jackfish Lake R/A 2	13-36-45-15-W3
92	C-C'	OIL Superior Bata Manitou 3	6-2-42-28-W3
93	C-C'	FFIB	4-31-41-27-W3
94	C-C'	OIL Consumers Co-op STH 48	3-6-42-26-W3
95	C-C'	FFIB	12-34-41-26-W3
96	C-C'	FFIB	16-26-41-26-W3
97	C-C'	OIL Consumers Co-op STH 18	1-1-42-26-W3
98	C-C'	SRC Winter	NW-9-10-42-25-W3
99	C-C'	OIL Consumers Co-op STH 42	1-1-42-25-W3
100	C-C'	OIL Consumers Co-op STH 39	3-2-42-24-W3
101	C-C'	OIL BA Round Valley Watt ST	4-14-42-23-W3
102	C-C'	FFIB	4-18-42-22-W3
103	C-C'	FFIB	3-14-42-22-W3
104	C-C'	OIL Sun Cutknife SH	15-17-42-21-W3
105	C-C'	SRC Rockhaven	NW 13-22-42-21-W3
106	C-C'	EPD Rockhaven	16-24-42-21-W3
107	C-C'	EPD Wilkie	13-9-42-20-W3
108	C-C'	FFIB	1-15-42-20-W3
109	C-C'	OIL Can Oxy et al Wilkie	6-13-42-20-W3
110	C-C'	OIL Sun Core Hole	13-5-42-19-W3

Index	Cross Section	Name	Land Location
No. 111	C-C'	OIL Jeff Lake Oxy Silver Park	12-4-42-19-W3
112	C-C'	OIL Jen Lake Oxy Silver Park OIL Husky Prongua SH	4-6-42-18-W3
112	C-C'	FFIB	NW 26-41-18-W3
113	C-C'	OIL Calstan S. Battleford Prov.	3-16-42-17-W3
	C-C'	SRC lbstone	SW 4-11-42-17-W3
115	C-C'	FFIB	2-8-42-16-W3
116			
117	C-C'	OIL Calstan S. Battleford Prov.	14-11-42-16-W3 7-4-42-15-W3
118	C-C'		
119	C-C'	U of S Denholm No. 9A U of S Denholm No. 2	SE 13-3-42-15-W3 NW 2-10-42-15-W3
120	C-C'		SE 7-10-42-15-W3
121	C-C'	U of S Denholm No. 6	
122	C-C'	U of S Denholm No. 17	SW 12-11-42-15-W3
123	C-C'	U of S Denholm No. 4	SW 4-14-42-15-W3
124	C-C'	U of S Denholm No. 3	SW 4-20-42-14-W3
125	D-D'	FFIB FFIB	NE-35-26-28-W3
126	D-D'		9-33-36-27-W3
127	D-D'	OIL Husky Cactus Lake R/A	4-36-36-27-W3
128	D-D'	FFIB	4-32-36-26-W3
129	D-D'	FFIB	13-23-36-26-W3
130	D-D'	FFIB	12-24-36-26-W3
131	D-D'	FFIB	SE-2-13-36-26-W3
132	D-D'	SRC Hearts Hill Obs.Well	NE-14-7-36-25-W3
133	D-D'	FFIB	5-8-36-25-W3
134	D-D'	FFIB	16-9-36-25-W3
135	D-D'	FFIB	1-15-36-25-W3
136	D-D'	FFIB	4-20-36-24-W3
137	D-D'	FFIB	13-27-36-24-W3
138	D-D'	FFIB	4-35-36-24-W3
139	D-D'	OIL Woodley Paramount Tramping Lake R/A	4-29-36-23-W3
140	D-D'	FFIB	13-27-36-23-W3
141	D-D'	FFIB	14-32-36-22-W3
142	D-D'	FFIB	1-3-37-22-W3
143	D-D'	FFIB	8-2-37-22-W3
144	D-D'	FFIB	1-17-37-21-W3
145	D-D'	FFIB	4-14-37-21-W3
146	D-D'	FFIB	NW-13-2-37-20-W3
147	D-D'	FFIB	15-31-36-20-W3
148	D-D'	SHT Trampling Lake No. 1	NW-15-32-36-20-W3
149	D-D'	FFIB SUIT Trampling Lake No. 0	2-5-37-20-W3
150	D-D'	SHT Trampling Lake No. 2	NW-16-32-36-20-W3
151 152	D-D'	SHT Trampling Lake No. 3 FFIB	NE-13-33-36-20-W3 NW-13-2-37-20-W3
152	D-D' D-D'	FFIB	NE-16-6-37-19-W3
153	D-D'	EPD Landis	2-18-37-18-W3
154	D-D'	OIL Albercan STH 2	13-13-37-18-W3
155	D-D'	OIL Albercan STH 2 OIL Albercan STH 9	4-31-37-17-W3
157	D-D'	OIL Albercan STH 11	1-22-37-17-W3
158	D-D'	FFIB	NW-13-37-17-W3
159	D-D'	OIL Albercan STH 47	4-17-37-16-W3
160	D-D'	OIL Albercan STH 46	16-11-37-16-W3
161	D-D'	EPD Oban	NE-1-17-37-15-W3
162	D-D'	OIL Albercan STH 40	13-14-37-15-W3
163	E-E'	OIL Phillips Husky Grattle	16-3-30-29-W3
164	E-E'	OIL Imperial Roslyn	10-35-29-28-W3
165	E-E'	OIL Alminex STH 5-57	4-36-29-28-W3

Index No.	Cross Section	Name	Land Location
166	E-E'	OIL Alminex STH 6-57	13-30-29-27-W3
167	E-E'	OIL Alminex STH 7-57	4-29-29-27-W3
168	E-E'	FFIB	SE 11-21-29-27-W3
169	E-E'	FFIB	SW 5-22-29-26-W3
170	E-E'	FFIB	3-13-29-26-W3
170	E-E'	OIL Phillips Husky Ormstown 1	1-32-29-25-W3
172	E-E'	OIL Phillips Husky Sawde 1	16-19-29-24-W3
172	E-E'	FF1B	1-23-29-24-W3
173	E-E'		4-30-29-23-W3
174	E-E'	OIL Phillips Husky Merrington FFIB	1-21-29-23-W3
175	E-E'		SW 12-19-29-22-W3
		EPD Kindersley	1-22-29-22-W3
177	E-E'	EPD Kindersley	SE 4-13-29-22-W3
178 179	E-E' E-E'	FFIB	NE 16-8-29-21-W3
179	E-E'	FFIB FFIB	NE 1-15-29-21-W3
180	E-E'	FFIB	10-11-29-21-W3
182	E-E'	OIL Imperial Brock	6-5-29-20-W3
183	E-E'	FFIB	8-15-29-20-W3
	E-E'		10-13-29-20-W3
184	E-E'	OIL Imperial Netherhill	10-13-29-20-W3
185		OIL Socony Sohio Netherhill	
186	E-E'	FFIB	16-36-29-19-W3
187	E-E'	OIL Sohio Standard Fiske 1	14-21-29-18-W3
188	E-E'	FFIB	4-32-29-17-W3
189	E-E'	FFIB	16-36-29-17-W3
190	E-E'	FFIB	SW 5-20-29-16-W3
191	E-E'	FFIB	1-33-29-16-W3
192	E-E'	FFIB	9-24-29-16-W3
193	E-E'	OIL Socony Sohio Ridpath	11-19-29-15-W3
194	F-F'	OIL United Canso Horsham	11-23-17-29-W3
195	F-F'		SE-21-17-28-W3
196	F-F'	OIL Can Exp Fox Valley	6-12-17-28-W3
197	F-F'	FFIB	NW-5-35-18-27-W3
198	F-F'	DOE DOE	NE-26-17-26-W3
199	F-F'		NW-16-17-25-W3
200	F-F'	SRC Fox Valley	SW-13-11-17-25-W3
201	F-F'	SRC Fox Valley	NW-13-12-17-25-W3
202	F-F'		SE-20-17-24-W3
203	F-F' F-F'	OIL Socony Western CH 123-36	4-22-17-24-W3
204	F-F'	OIL Socony Western CH 123-29	6-1-18-24-W3 SW-14-3-18-23-W3
205 206	F-F'	SRC Freefight Lake OIL Socony West CH 123-23	16-36-17-23-W3
208	F-F'	•	3-33-17-22-W3
207	F-F'	OIL Socony Woodley Southern Bestville OIL Socony Western CH 123-17	4-6-18-21-W3
208	F-F'	SE Hazlet JR.1	4-6-16-21-W3 NE-3-4-18-21-W3
209	F-F'	SE Hazlet JR.9	SW-2-4-18-21-W3
210	F-F'	FFIB	1-4-18-21-W3
212	F-F'	DOE	NE-34-17-21-W3
212	F-F'	OIL Socony West CH 123-11	1-1-18-21-W3
213	F-F'	FFIB	NW-17-17-20-W3
214	F-F'	OIL Socony Western CH 124-50	13-15-17-20-W3
215	F-F'	FFIB	SW-23-17-20-W3
210	F-F'	OIL Socony Western CH 124-122	13-28-17-19-W3
217	F-F'	FFIB	16-28-17-19-W3
219	F-F'	OIL Socony Western CH 124-20	1-1-18-19-W3
219	F-F'	SRC Roseray	NW-16-31-17-18-W3
220	1 -1	Und hoseray	1444-10-01-17-10-440

Index	Cross	Name	Land Location
No. 221	Section F-F'	OIL Socony Western STH 124-24	4-4-18-18-W3
221	F-F'	OIL Socony Western CH 124-16	12-35-17-18-W3
222	F-F'	-	1-2-18-18-W3
	F-F'	OIL Socony Western STH 124-80 OIL Sedco Fosterton Wildcat	3-1-18-18-W3
224	г-г F-F'		
225		OIL Socony Western STH 124-62	1-1-18-18-W3
226	F-F'	DOE	SW-4-18-17-W3
227	F-F'	OIL Socony Western CH 124-63	4-3-18-17-W3
228	F-F'	OIL Socony Western CH 124-64	13-31-17-16-W3
229	F-F'	OIL Socony Western CH 124-78	13-34-17-16-W3
230	F-F'	OIL Socony Western CH 124-79	1-1-18-16-W3
231	F-F'	OIL Tidewater Wildcat STH 339	4-5-18-15-W3
232	F-F'	OIL Garvey STH 1	7-5-18-15-W3
233	G-G'	SRC-RCA Green Lake	NE-2-8-6-30-W3
234	G-G'	OIL Can Delhi Cypress Hills 1	9-9-6-30-W3
235	G-G'	SRC Battle Creek OIL Texaco Battle Creek	SW-2-15-5-29-W3 14-11-5-29-W3
236	G-G'		
237	G-G'	OIL Imperial Senate	14-7-5-27-W3
238	G-G'		SW-13-5-27-W3 12-10-5-26-W3
239	G-G'	OIL BA Oil Cypress Lake	
240	G-G'	OIL Imperial Robsart	1-1-5-25-W3 1-23-4-24-W3
241	G-G'	OIL Socony STH 75-143	14-18-4-23-W3
242	G-G'	OIL Socony STH 75-96A	7-21-4-23-W3
243	G-G'	OIL Socony STH 75-93B	16-13-4-23-W3
244	G-G'	OIL Socony STH 75-87	NW-28-4-22-W3
245	G-G'	FFIB	NW-5-34-4-22-W3
246	G-G'	SRC Clay Centre	14-13-4-22-W3
247	G-G'	OIL Socony STH 75-142	12-18-4-21-W3
248	G-G'	OIL Socony STH 75-139	
249	G-G'	OIL Socony Woodley Southern Eastbrook	13-17-4-21-W3
250	G-G' G-G'	OIL Socony STH 75-138	4-16-4-21-W3 13-15-4-21-W3
251		OIL Socony STH 75-62	13-18-4-20-W3
252	G-G' G-G'	OIL Socony STH 75-66 SMDC 91-9	4-29-4-20-W3
253	G-G'	OIL Tidewater Frenchman Crown 1	8-29-4-20-W3
254 255	G-G'	OIL Tidewater Rapdan Crown	16-24-4-20-W3
			4-19-4-19-W3
256	G-G'	OIL Oliphant Tidewater Rapdan Crown	NW-13-16-4-19-W3
257 258	G-G' G-G'	SRC Climax SMDC Frenchman S.2	4-18-4-18-W3
258 259	G-G'	SMDC Frenchman S.2 SMDC Frenchman S.4	3-18-4-18-W3
260	G-G'	SMDC Frenchmand S.3	4-17-4-18-W3
261	G-G'	FFIB	13-31-3-17-W3
262	G-G'	OIL BA Oil Climax Foss	8-31-4-16-W3
263	G-Gʻ	DOE	SW-1-5-16-W3
264	H-H1	OIL Can Exp Govenlock	10-20-1-30-W3
265	H-H1	OIL Can Exp Govenlock	10-23-2-30-W3
266	H-H1	SRC-RCA Altawan	NW-12-23-3-30-W3
267	H-H1	OIL Can Delhi Fox 1	2-23-7-30-W3
268	H-H1	OIL Can Delhi Husky Phillips Harris L	10-23-8-30-W3
269	H-H1	FFIB	NW-5-4-10-29-W3
270	H-H1	DOE	SW-19-10-29-W3
271	H-H1	OIL Albercan Boxelder Creek 1	4-12-11-30-W3
272	H-H1	OIL Cypress Nuco Cypress	10-17-11-29-W3
273	H-H1	OIL Can Southern Boxelder Creek	5-21-11-29-W3
274	H-H1	OIL Cypress Nuco Cypress	7-27-11-29-W3
275	H-H1	OIL Amurex Canso Cummings	10-17-12-29-W3
		-	

Index No.	Cross Section	Name	Land Location
NO. 276	H-H1	DOE	SE-16-13-29-W3
270	H-H1	OIL Amurex Hatton Unit	6-33-13-29-W3
278	H-H1	OIL Amurex Canso Bitter Lake	7-10-14-29-W3
278	H-H1	OIL Amurex Canso Bider Lake	10-33-14-29-W3
			4-16-15-29-W3
280	H-H1	OIL Inter-City Gas 4 Golden Prairie	4-16-15-29-W3 10-7-16-29-W3
281	H-H1	OIL NCO Hatton	
282	H-H1	SRC-RCA Surprise	NW-13-7-16-29-W3 10-21-16-29-W3
283	H-H1	OIL Amurex Canso Kuest	
284	H-H1	OIL NCO Horsham	11-3-17-29-W3
285	H-H1	OIL Boundary Horsham 1	10-26-17-29-W3
286	H-H1	SRC-RCA Burstall	SE-8-25-18-30-W3
287	H-H1	DOE	NE-33-19-29-W3
288	H-H1	OIL Inter-City Gas Burstall 5	7-4-20-29-W3
289	H-H1	OIL Inter-City Gas Burstall 1	10-21-20-29-W3
290	H-H1	SRC-RCA Gascoigne	SW-12-21-21-29-W3
291	H-H1	OIL Inter-City Gas Section Burstall 3	10-29-21-29-W3
292	H-H1	SRC Empress	SW-6-9-22-29-W3
293	H-H1	DOE	NW-9-22-29-W3
294	H-H1	SRC Empress	NE-2-20-22-29-W3
295	H-H1	OIL Charter Canadian Devonian #5-21	5-21-22-29-W3
296	H-H1	SRC Empress	SW-7-29-22-29-W3
297	H-H1	SRC Empress	SE-12-29-22-29-W3
298	H-H1	OIL American Climax STH 5-8	4-3-23-29-W3
299	H-H1	SRC-RCA Empress	SE-4-16-23-29-W3
300	H-H1	SRC-RCA Empress	NW-13-22-23-29-W3
301	H-H1	SRC Empress	SE-1-35-23-29-W3
302	H1-H2	OIL American Climax STH 3	13-3-24-29-W3
303	H1-H2	FFIB	SW 15-24-29-W3
304	H1-H2	OIL Phillips Husky Border 1	7-9-25-29-W3
305	H1-H2	SRC Cuthbert	SW 5-34-25-29-W3
306	H1-H2	FFIB	3-26-27-29-W3
307	H1-H2	FFIB	8-34 - 27-29-W3
308	H1-H2	FFIB	NW 11-28-29-W3
309	H1-H2	OIL Phillips Husky Saskal	7-2-29-29-W3
310	H1-H2	OIL Phillips Husky Grattle	6-25-30-29-W3
311	H1-H2	OIL Phillips Hoosier 1	13-11-31-28-W3
312	H1-H2	SRC Loverna	SE 3-5-32-28-W3
313	H1-H2	OIL Phillips Husky Antelope 2	2-19-32-28-W3
314	H1-H2	OIL Phillips Husky Compeer 1	13-18-33-28-W3
315	H1-H2	SRC Court	NE-8-15-34-28-W3
316	H1-H2	FFIB	NE-14-35-34-28-W3
317	H1-H2	FFIB	15-6-35-27-W3
318	H1-H2	FFIB	9-24-35-28-W3
319	H1-H2	SRC Cactus Lake	SW-4-32-35-27-W3
320	H1-H2	OIL Highwood Sarce Barryville	7-31-35-27-W3
321	H1-H2	FFIB	1-6-36-27-W3
322	H1-H2	FFIB	13-1-36-28-W3
323	H1-H2	FFIB	5-12-36-28-W3
324	H1-H2	FFIB	4-18-36-28-W3
325	H1-H2	FFIB	5-15-37-28-W3
326	H1-H2	FFIB	NW-13-2-38-28-W3
327	H1-H2	OIL Husky Macklin	10-17-38-28-W3
328	H1-H2	FFIB	14-31-38-28-W3
329	H1-H2	FFIB	14-3-39-28-W3
330	H1-H2	FFIB	9-9-39-28-W3

Index	Cross	Name	Land Location
No.	Section	5510	10 10 00 00 100
331	H1-H2	FFIB	13-16-39-28-W3
332	H1-H2	OIL Murphy Canadian Res. Eye Hill	4-34-39-28-W3
333	H1-H2	FFIB	9-33-39-28-W3
334	H1-H2	FFIB	13-3-40-28-W3
335	H1-H2	FFIB	15-22-40-28-W3
336	H1-H2	FFIB	2-27-40-28-W3
337	H1-H2	FFIB	13-1-41-28-W3
338	H1-H2	OIL Canadian Res. Yonker R/A	4-18-41-27-W3
339	H1-H2	SRC Auger	4-7-42-27-W3
340	H1-H2	OIL Amerada Cr Reflex	13-7-42-27-W3
341	H1-H2	OIL King Triad Reflex	3-24-42-28-W3
342	H1-H2	SRC Auger	3-25-42-28-W3
343	H1-H2	OIL Kanata Reflex Lake STH 11	5-2-43-28-W3
344	H1-H2	OIL Kanata Reflex Lake STH 10	1-10-43-28-W3
345	H1-H2	OIL Kanata Reflex Lake STH 6	9-10-43-28-W3
346	H1-H2	OIL Kanata Reflex Lake STH 5	12-14-43-28-W3
347	H1-H2	FFIB	3-22-43-28-W3
348	H1-H2	OIL Husky Chauvin STH 10	1-27-43-28-W3
349	H1-H2	FFIB	16-28-43-28-W3
350	H1-H2	OIL Husky Chauvin STH 13	13-27-43-28-W3
351	H1-H2	OIL Husky Marsden SH	8-3-44-28-W3
352	H1-H2	OIL Husky Marsden	5-15-44-28-W3
353	H1-H2	OIL Husky Marsden	16-22-44-28-W3
354	H1-H2	OIL Husky Marsden STH 7	4-26-44-28-W3
355	H1-H2	OIL Husky Marsden SH	4-35-44-28-W3
356	H1-H2	FFIB	15-34-44-28-W3
357	H1-H2	FFIB	SW-2-45-28-W3
358	H1-H2	FFIB	12-2-45-28-W3
359	H1-H2	OIL Husky Marsden STH 14	5-11-45-28-W3
360	H1-H2	OIL Husky Marsden STH 2	4-13-45-28-W3
361	H1-H2	OIL Canadian Res. Unwin	12-19-45-27-W3
362	H1-H2	OIL Husky Marsden STH 4	4-25-45-28-W3 4-36-45-28-W3
363	H1-H2	OIL Husky Unwin	
364	H1-H2	OIL Husky Maisden STH 3	12-36-45-28-W3 13-1-46-28-W3
365	H1-H2	OIL Husky Marsden STH 9	3-13-46-28-W3
366	H1-H2	FFIB	4-24-46-28-W3
367	H1-H2	OIL Husky Marsden STH 19	5-30-46-27-W3
368 369	H1-H2 H1-H2	OIL Husky Marsden STH 19 OIL Husky Wilton STH 8	4-35-46-28-W3
370	H1-H2	FFIB	8-2-47-28-W3
370	H1-H2	FFIB	4-18-47-27-W3
372	H1-H2	OIL Husky West Epping STH 1	8-23-47-28-W3
373	H1-H2	OIL Husky Silverdale STH 24	1-36-47-28-W3
374	H1-H2	OIL Husky Silverdale STH 23	13-31-47-27-W3
375	H1-H2	FFIB	SW-4-17-48-27-W3
376	H1-H2	OIL Husky Furness STH 1	13-17-48-27-W3
377	H1-H2	FFIB	14-20-48-27-W3
378	H1-H2	FFIB	NE-29-48-27-W3
379	H1-H2	OIL Husky Wilton STH 6	6-8-49-27-W3
380	H1-H2	OIL Husky Aberfeldy STH 3	13-8-49-27-W3
381	H1-H2	OIL Husky Wilton STH 4	12-17-49-27-W3
382	H1-H2	OIL Husky North Dulwich Slim Hole	14-20-49-27-W3
383	H1-H2	SRC Lloydminster	NW-5-32-49-27-W3
384	H1-H2	SRC Lloydminster	SE-2-2-50-28-W3
385	H1-H2	FFIB	8-11-50-28-W3

Index	Cross	Name	Land Location
No. 386	Section H1-H2	FFIB	SE-26-50-28-W3
380 387	H1-H2	FFIB	16-35-50-28-W3
388	H1-H2	OIL Husky Northminster STH 11	4-6-51-27-W3
389	H1-H2	FFIB	13-6-51-27-W3
390	H1-H2	OIL Husky Northminster STH 17	1-12-51-28-W3
390 391	H1-H2	FFIB	SE-12-51-28-W3
392	H1-H2	OIL Texaco Northminster	4-18-51-27-W3
393	H1-H2	OIL Husky Fargo Lloyd	1-24-51-28-W3
394	H1-H2	OIL Husky Rex 1	5-28-51-27-W3
395	H1-H2	SRC Rex	SW-12-33-51-27-W3
396	H1-H2	OIL Lloydminster Rex 1	13-4-52-27-W3
397	H1-H2	OIL Husky Hewitt R/A	12-16-52-27-W3
398	1-11	OIL Tidewater Imperial Climax 2	16-20-1-18-W3
399	I-I1	OIL TW Climax 3	9-7-2-18-W3
400	I-I1	OIL Imperial TW Climax 6	6-10-3-18-W3
401	I-I1	DOE	NE-32-3-18-W3
402	I-I1	SMDC Frenchman S.5	4-8-4-18-W3
403	I-I1	SHT Frenchman R. No. 01	NW-16-19-4-18-W3
404	I-I1	U of S Eagle No. 99 - Climax	SE-1-30-4-18-W3
405	I-I1	U of S Eagle No. 100 - Climax	NE-8-30-4-18-W3
406	I-I1	U fo S Eagle No. 101 - Climax	SW-16-30-4-18-W3
407	I-I1	SHT Frenchman R. No. 05	SW-2-31-4-18-W3
408	I-I1	U of S Eagle No. 105 - Climax	SE-7-31-4-18-W3
409	I-I1	SHT Frenchman R. No. 08	NE-14-31-4-18-W3
410	1-11	SHT Frenchman R. No. 09	NW-3-6-5-18-W3
411	1-11	FFIB	2-8-5-18-W3
412	I-I1	DMR-SRC-EMR Cypress No. 8	SE-1-16-5-18-W3
413	I-I1	OIL Imperial Tidewater Chambery	5-20-5-18-W3
414	I-I1	SMDC White Creek 5	3-10-6-18-W3
415	I-I1	FFIB	9-17-6-18-W3
416	I-I1	FFIB	14-20-6-18-W3
417	I-I1	SMDC 93-3	13-28-6-18-W3
418	I-I1	DMR-SRC-EMR Cypress No. 55	NW-12-4-7-18-W3
419	1-11	OIL TW East Dollard Crown	13-18-7-18-W3
420	- 1	DMR-SRC-EMR Cypress No. 67	SW-12-19-7-18-W3
421	I-I1	DMR-SRC-EMR Cypress No. 1	SW-12-32-7-18-W3 NW-13-33-7-18-W3
422 423	- 1 - 1	DMR-SRC-EMR Cypress No. 42 DMR-SRC-EMR Cypress No. 52	SW-12-4-8-18-W3
423	I-I1	OIL TW Shaunavon Crown 1	13-4-8-18-W3
425	I-I1	HRD Town of Shaunavon TH 2	NW-2-17-8-18-W3
426	I-I1	HRD Town of Shaunavon TH 1	SE-17-8-18-W3
427	I-I1	OIL TW Shaunavon North	11-33-8-18-W3
428	I-I1	DMR-SRC-EMR Cypress No. 64	1-1-9-18-W3
429	I-I1	DMR-SRC-EMR Cypress No. 60	SW-4-2-9-18-W3
430	I-I1	DMR-SRC-EMR Cypress No. 53	4-11-9-18-W3
431	I-I1	DMR-SRC-EMR Cypress No. 2	SW-4-14-9-18-W3
432	I-I1	DMR-SRC-EMR Cypress No. 56	SW-4-23-9-18-W3
433	I-I1	SIP Shaunavon 82-2-104	NW-2-28-9-18-W3
434	I-I1	OIL TW North Shaunavon	11-28-9-18-W3
435	I-I1	OIL TW Instow Crown	11-33-9-18-W3
436	I-I1	FFIB	1-7-10-18-W3
437	I-I1	SMDC 91-61	16-7-10-18-W3
438	I-I1	SMDC 91-42	4-28-10-18-W3
439	I-I1	SMDC 91-43	13-28-10-18-W3
440	I-I1	SMDC 91-44	13-32-10-18-W3

Index No.	Cross Section	Name	Land Location
NO. 441	Section	FFIB	3-16-11-18-W3
441	I-I1	SMDC 91-41A	13-22-11-18-W3
443	I-I1	OIL Mobil Southern Illerbrun	2-28-11-18-W3
443	I-I1	OIL Whitehall Illerbrun 62	1-32-11-18-W3
445	1-11	OIL Whitehall Illerbrun	4-5-12-18-W3
446	I-I1	OIL Socony North Illerbrun	4-17-12-18-W3
447	I-I1	OIL Whitehall Illerbrun 64	10-18-12-18-W3
448	I-I1	OIL Anglo American Gridoil Gull Lake	15-33-12-19-W3
449	I-I1	FFIB	9-16-13-19-W3
450	I-I1	FFIB	10-27-13-19-W3
451	1-11	OIL Socony Woodley Southern SE Midway	9-3-14-19-W3
452	1-11	FFIB	1-22-14-19-W3
453	I-I1	FFIB	SW-35-14-19-W3
454	I-I1	OIL Socony Western CH 126-38	14-34-14-29-W3
455	I-I1	OIL Socony Western CH 126-41	13-15-15-19-W3
456	I-I1	OIL Socony Western CH 126-25	4-2-16-19-W3
457	I-I1	OIL Sedco Verlo	6-11-16-19-W3
458	I-I1	OIL Socony Western Tompkins STH 124-107	13-11-16-19-W3
459	I-I1	OIL Sedco Verlo	10-15-16-19-W3
460	I-I1	OIL Sedco Verlo	14-15-16-19-W3
461	I-I1	OIL Mobil Woodley Southern Verlo	8-28-16-19-W3
462	I-I1	FFIB	13-35-16-19-W3
463	I-I1	OIL Socony Western Tompkins CH 124-104	13-11-17-19-W3
464	I-11	OIL Socony Western Ch 124-23	12-22-17-19-W3
465	I-I1	FFIB	8-28-17-19-W3
466	I-I1	OIL Socony Western CH 124-124	4-17-18-19-W3
467	I-I1	DOE	SW-31-18-19-W3
468	I-I1	OIL Tidewater South Shackleton Crown 1	1-5-19-19-W3
469	I-I1	FFIB	NW-13-8-19-19-W3
470	I-I1	FFIB	4-33-19-19-W3
471	I-I1	OIL Tidewater Cabri STH 143	4-3-20-19-W3
472	I-I1	OIL Tidewater Cabri STH 174	6-11-20-19-W3
473	I-I1	OIL Tidewater Cabri STH 129	1-21-20-19-W3
474	I-I1	OIL Tidewater Cabri STH 123	1-4-21-19-W3
475	I-I1	OIL Tidewater Cabri STH 118	4-22-21-19-W3
476	I-I1	OIL Tidewater Cabri STH 113	1-4-22-19-W3
477	I-I1	OIL Tidewater Cabri STH 108	6-15-22-19-W3
478 470	I-I1	OIL Tidewater Cabri STH 212 OIL Tidewater Cabri STH 104	10-27-22-19-W3 1-3-23-19-W3
479 480	- 1 - 1	OIL Tidewater Cabit STH 104 OIL Tidewater Kyle STH 92	12-11-23-19-W3
480 481	I-I1	FFIB	5-13-23-19-W3
482	I-I1	SRC Lacadena	SE-1-36-23-19-W3
483	11-12	SRC Isham	NE-8-3-24-19-W3
484	11-12	SRC Isham	SE-1-15-24-19-W3
485	11-12	OIL Tidewater Imperial Plato Crown 1	9-22-24-19-W3
486	11-12	OIL Tidewater Elrose STH 350	1-27-24-19-W3
487	11-12	SRC Isham	NW-13-34-24-19-W3
488	11-12	OIL Tidewater Kyle STH 93	1-4-25-19-W3
48 9	11-12	SRC Richlea	NE 9-27-25-19-W3
490	11-12	OIL Socony Sohio Richlea	7-11-26-19-W3
491	11-12	FFIB	9-1-27-20-W3
492	11-12	OIL Pennant Penkill	9-31-27-19-W3
493	11-12	FFIB	7-1-28-20-W3
494	11-12	OIL Pennant Brock	14-19-28-19-W3
495	11-12	OIL Socony Sohio D'Arcy	2-31-28-19-W3
		-	

Index	Cross Section	Name	Land Location
No. 496	Section 1- 2	OIL Socony Sohio Hutford	10-28-30-19-W3
490 497	11-12	FFIB	5-9-31-19-W3
497 498	11-12	FFIB	13-32-31-19-W3
498	11-12	OIL Royalite Plenty	11-10-32-19-W3
499 500	11-12	FFIB	13-15-32-19-W3
500 501	11-12	FFIB	15-21-32-19-W3
502	11-12	OIL Royalite Plenty	4-35-32-19-W3
502	11-12	EPD Plenty	12-35-32-19-W3
503 504	11-12	OIL Royalite Plenty	4-2-33-19-W3
504 505	11-12	FFIB	SW 10-33-19-W3
505 506	11-12	FFIB	1-21-33-19-W3
500 507	11-12	FFIB	12-32-33-19-W3
508	11-12	U of S Eagle No. 75	SW 12-24-34-20-W3
508	11-12	SRC Eagle Creek	NW 12-24-34-20-W3
509 510	11-12	SDH Eagle Creek 2	NE 13-24-34-20-W3
510	11-12	FFIB	NE 1-36-34-20-W3
512	11-12	FFIB	NE-8-26-35-20-W3
512	11-12	FFIB	SE-8-34-35-20-W3
514	11-12	OIL Arco Handle	6-22-36-20-W3
515	11-12	FFIB	14-22-36-20-W3
516	11-12	FFIB	2-26-37-20-W3
517	11-12	FFIB	1-34-37-20-W3
518	11-12	FFIB	1-15-38-20-W3
519	11-12	SRC Reford	SE-8-6-39-19-W3
520	11-12	FFIB	15-8-39-19-W3
521	11-12	EPD Wilkie	NW-13-32-39-19-W3
522	11-12	OIL Hunter Campana Wilkie	16-18-40-19-W3
523	11-12	FFIB	12-20-40-19-W3
524	11-12	OIL Murphy Wilkie	10-30-40-19-W3
525	11-12	OIL Murphy Wilkie	10-30-40-20-W3
526	11-12	FFIB	NW 7-41-19-W3
527	11-12	FFIB	12-30-41-19-W3
528	11-12	FFIB	1-35-41-20-W3
529	11-12	OIL BA Cutknife Finley	1-14-43-20-W3
530	11-12	EPD Gallivan	8-8-44-20-W3
531	11-12	OIL Sun Cutknife SH	5-14-44-20-W3
532	11-12	OIL BA Cutknife Bushy R/A	13-22-44-20-W3
533	11-12	OIL BA Cutknife Bushy R/A	4-27-44-20-W3
534	11-12	FFIB	SW 4-34-45-20-W3
535	11-12	FFIB	1-9-46-20-W3
536	11-12	OIL Texas Gulf Paynton	4-16-46-20-W3
537	11-12	FFIB	13-16-46-20-W3
5 38	l1-l2	FFIB	14-19-46-20-W3
539	11-12	OIL Husky Paynton SH	1-35-46-21-W3
540	11-12	FFIB	1-35-46-21-W3
541	l1-l2	FFIB	16-26-47-20-W3
542	11-12	FFIB	NW-24-48-20-W3
543	l1-l2	OIL Rio-tinto Edam STH 7	13-11-49-20-W3
544	11-12	OIL Rio-tinto Edam STH 5	1-27-49-20-W3
545	11-12	OIL BA Forsberg	2-11-50-20-W3
546	11-12	FFIB	SE-14-2-51-20-W3
547	11-12	OIL Husky Hartwell R/A	13-21-51-20-W3
548	11-12	DPW Thunderchild IR 01	SW-5-4-52-20-W3
549	11-12	DPW Thunderchild IR 03	SW-2-16-52-20-W3

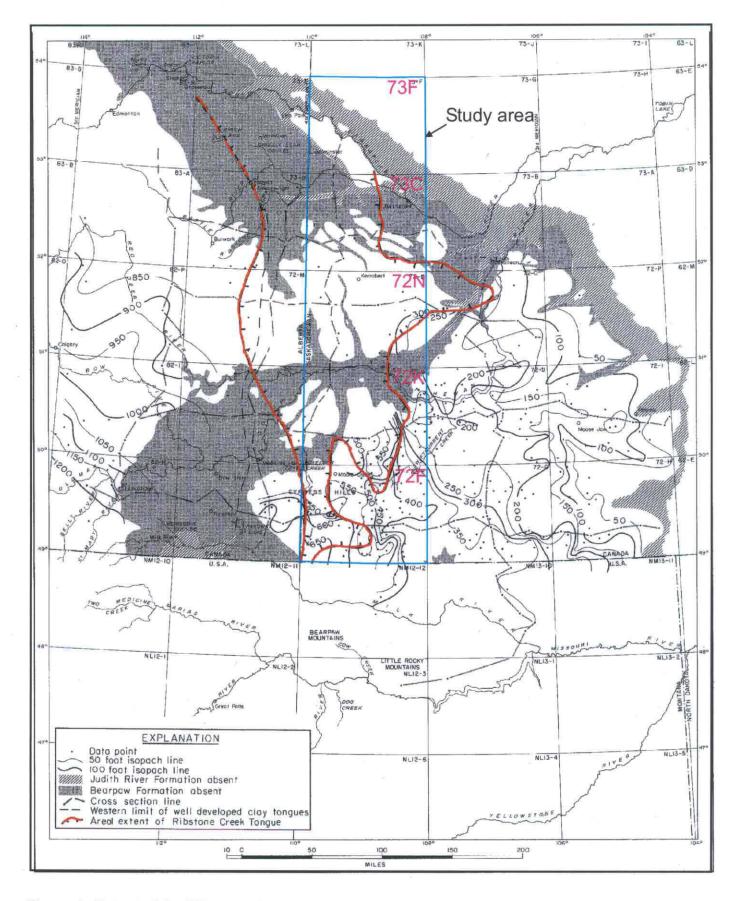


Figure 1 Extent of the Ribstone Creek aquifer in Alberta and Saskatchewan (McLean, 1971)

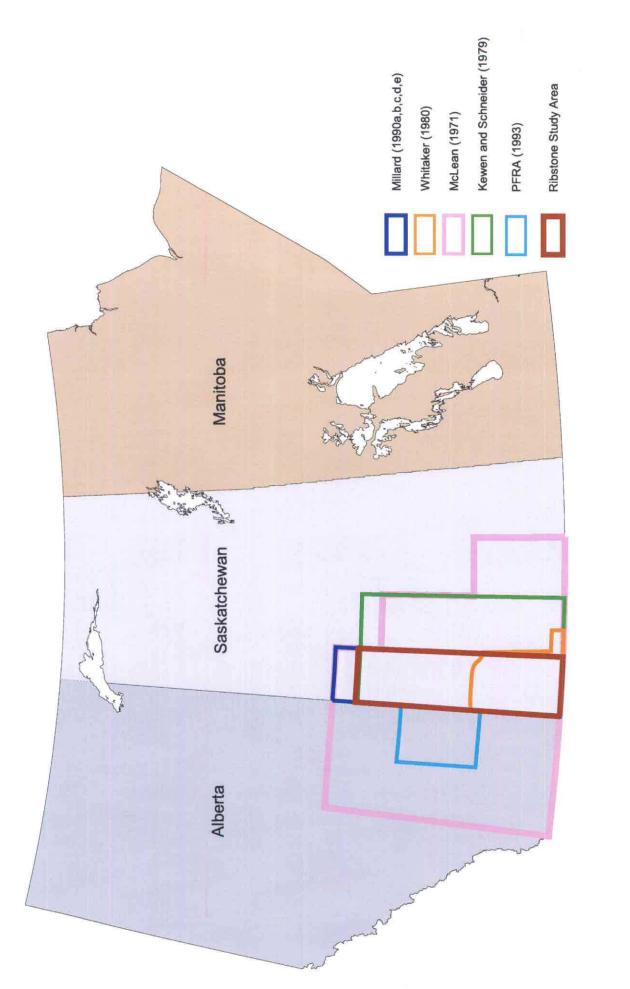
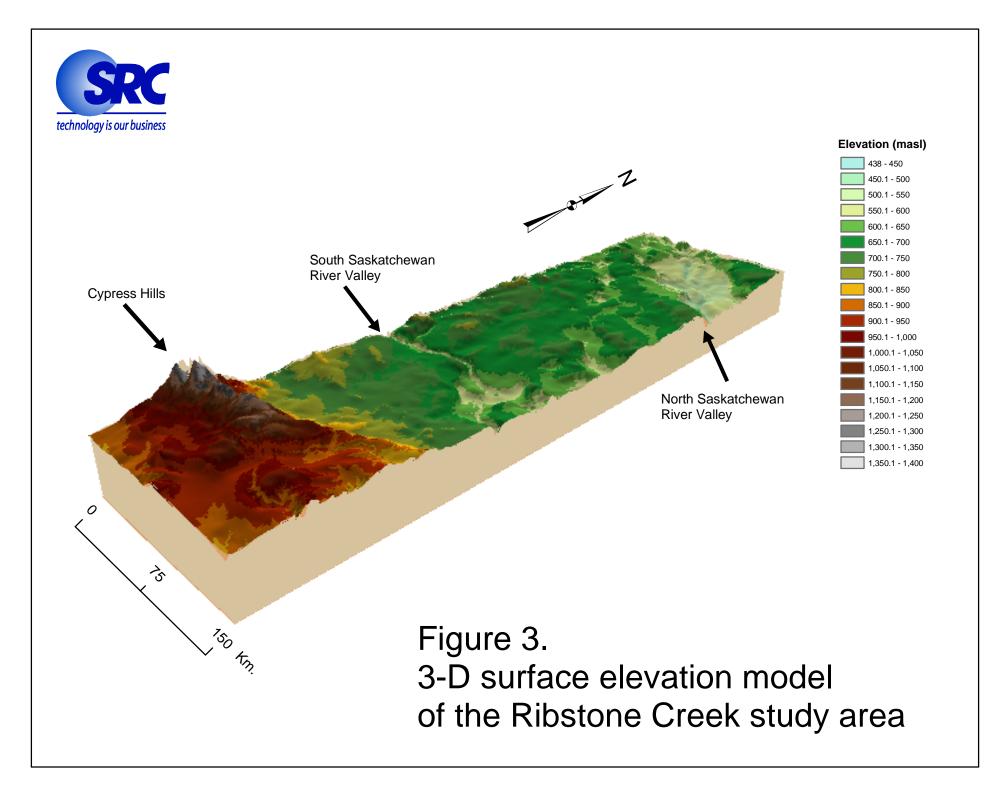
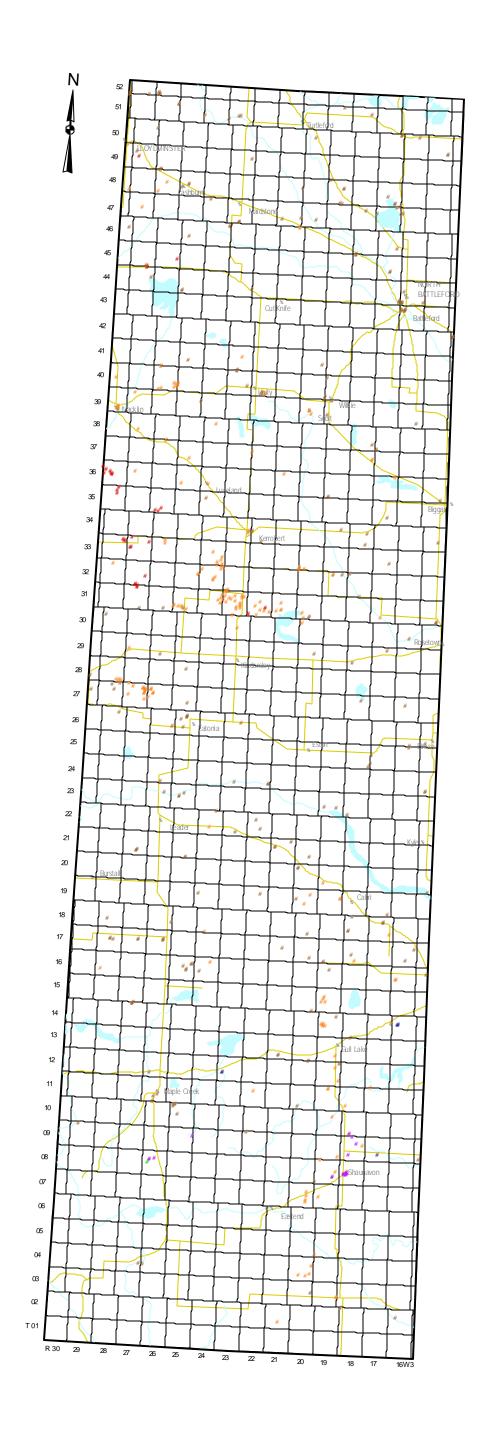




Figure 2 Extent of the Ribstone Creek Tongue study area.

Data Sources: data- Saskatchewan Water Corp. February, 2002. base map- 2000 Government of Canada with permission from Natural Resource of Canada

50 0 50 Kilometers

1:1,500,000 scale UTM Extended Zone 13 Nad 83 Projection

Legend

- # Bearpaw Formation
- # Cypress Hills Formation
- # Glacial deposits
- # Judith River Formation
- # Ravenscrag Formation
- # Ribstone Creek Tongue

Figure 4. Location of licensed production wells, coded by formation in which the well is completed.

PERIOD		STRATIGR	APHY	LITHOLOGY	HYDROGEOLOGY
QUATERNARY		Drift (undiffer (Saskatoon G Sutherland G	Broup	Till and stratified sediments (sand, gravel, silt and clay)	Undifferentiated Quaternary aquifers and aquitards
	Emp	ress Group	Upper unit Lower unit	Sand, gravel, silt, clay, Tertiary rocks in lower unit	Aquifer
RY		Undifferentiat	ed	Sand and silt	Aquifer
TIA		Cypress Hills	Fm	Sand and gravel	Aquifer
TERTIARY		Ravencrag Fr	n	Sand, silt and coal	
		Frenchman F	'n	Sand and silt	Aquifer
		Whitemud Fr	n	Sand and silt	(undifferentiated)
		Eastend Fm		Sand and silt	
		Oxarart, Belan	ger, Thelma	Silt and clay Sand and silt	Aquifer
		Aquadell M	b	Silt and clay	Aquitard
		Cruikshank		Sand and silt	Aquifer
	c	Snakebite M	ЛЬ	Silt and clay	Aquitard
	mation	Ardkenneth		Sand and silt	Aquifer
S		Beechy Mb		Silt and clay	Aquitard
IO I	ν Η Ε	Demaine		Sand and silt	Aquifer
CE	pav	Sherrard M	b	Silt and clay	Aquitard
TA	Bearpaw For	Matador		Sand and silt	Aquifer
CRETACEOU	m	Broderick N	1b	Silt and clay	Aquitard
0		Outlook		Sand and silt	Aquifer
				Silt and clay	Aquitard
		Judith River F (Belly River F		Sand and silt	Aquifer
	Ribstor	Grizzly ne Creek	Bear		
		ark Fm & Upper	Colorado Gr	Silt and clay	Aquitard
		Lower Colorad Mannville Grou		Silt and clay Sand and silt	Aquitard Aquifer

Figure 5 Schematic stratigraphical, lithological and hydrogeological settings of western Saskatchewan (after Caldwell, 1968; Lomenda, 1973; Christiansen, 1992)

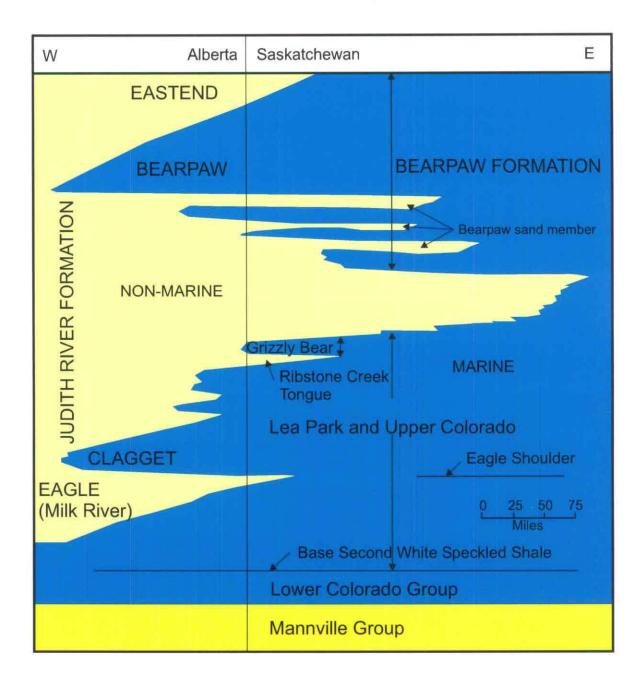
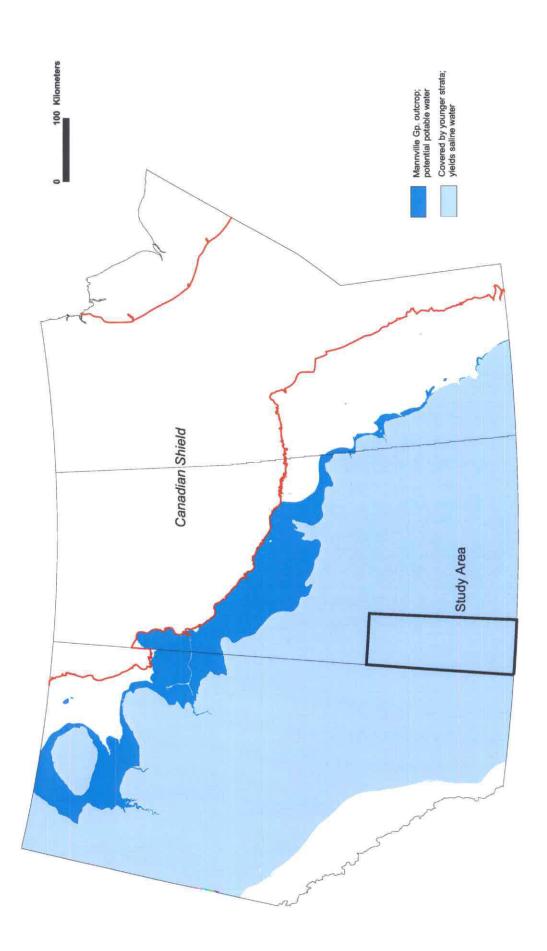
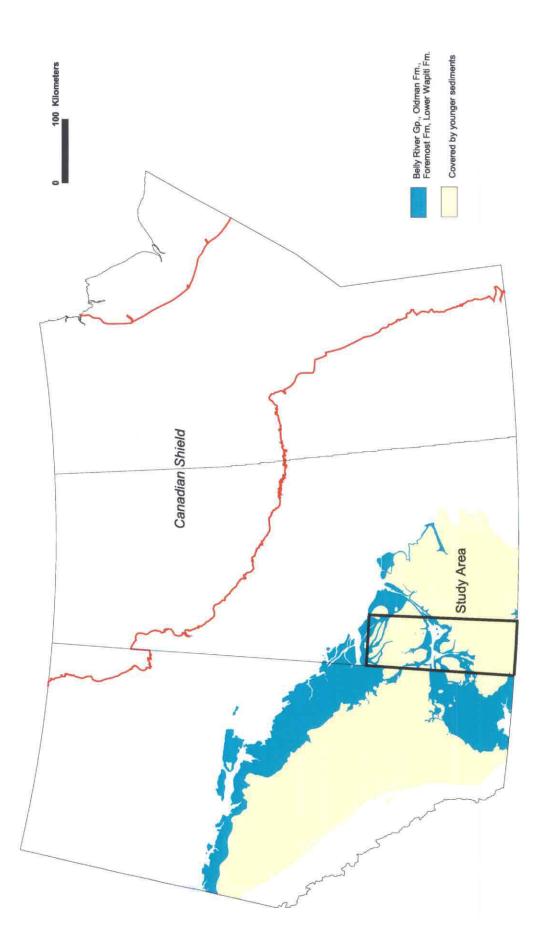




Figure 6 Schematic cross section through Late Cretaceous sediments in eastern Alberta and western Saskatchewan (after McLean, 1971)

REFERENCES (New J.). Inst. (1982). Conciony, imaginalis, Agrandy imagi at Manhabar. I officiane J.). Inst. (1982). Conciony, interprints, Alambaha Ensergy and Manhabar. Alaschonetri, et al. (1982). Conciony and anti 2015. Concional and anti-Salaschonetri. Fact (1982). Conciony and Manhabar. Salaschonetri. Parto Hane, Regina Salaschonenti vici). cul Salaschonetri. Parto Union Bankar. (1982). Conciony of Manha, May 2018 verz, ot Alberta Encorgend Sarvey, Entranction Alberta.

REFERENCES. Vilovan, J. J. 1990. Consoly, mapredis, Agranty mapre of Mantholes. Analogonet 1990. Consoly anagonetic Agranty mapre of Mantholes. MacDonet J. et al. (1980. Consolytati alian of Sankathoneman ver2. ori Sankathonemi Emroy and Maney. Regina Saskathoneman ver2. ori Alianti Geological Savery. Elementari Alembi.

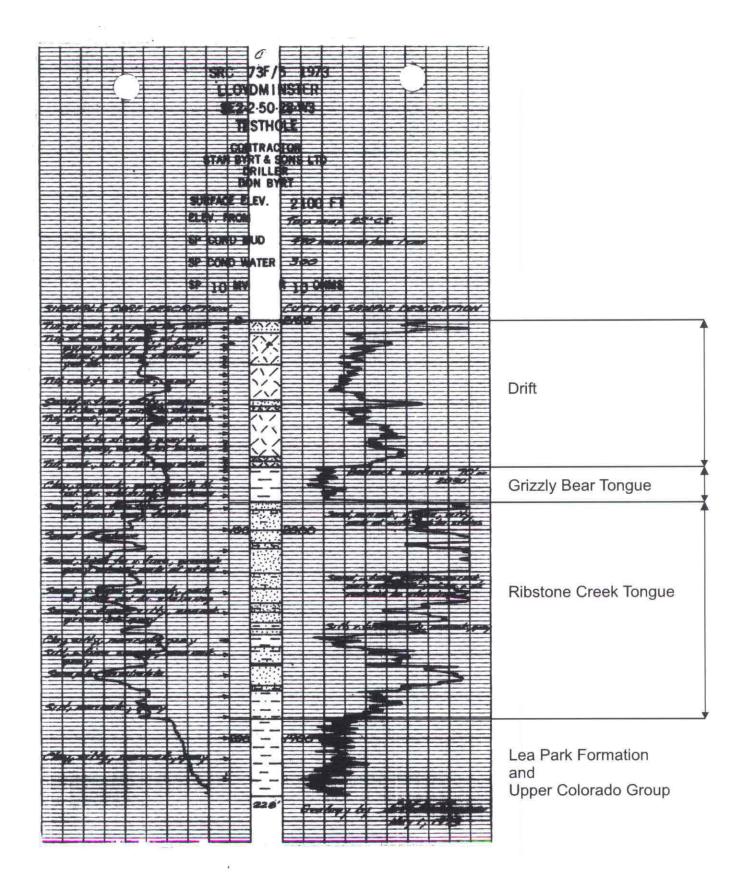
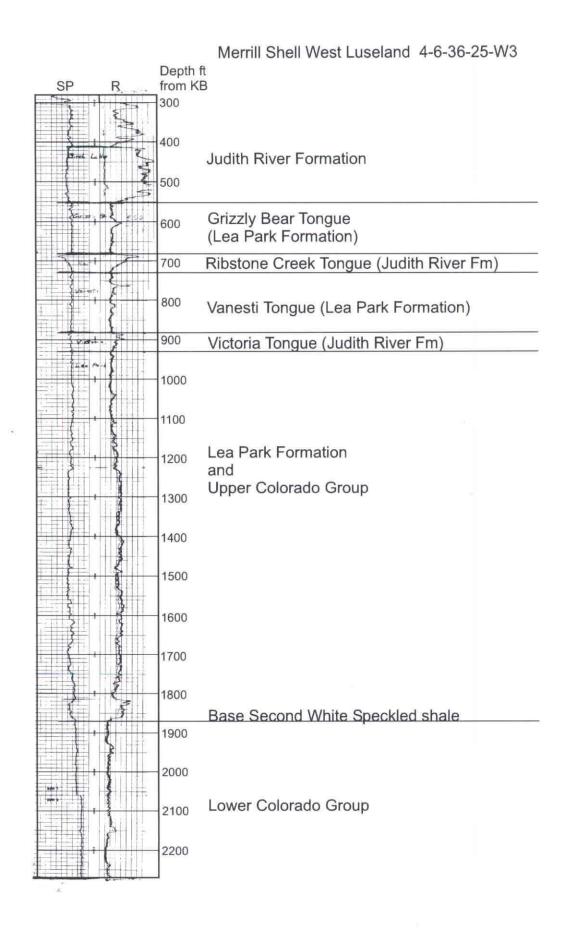
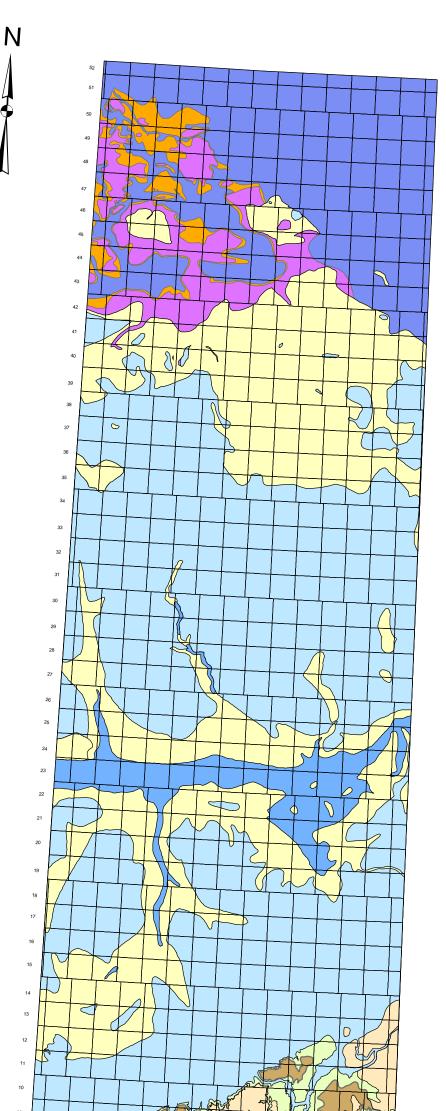




Figure 9 SRC testhole log showing lithological characteristics of the Ribstone Creek Tongue

1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Bedrock Geology

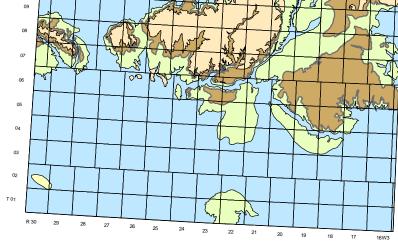
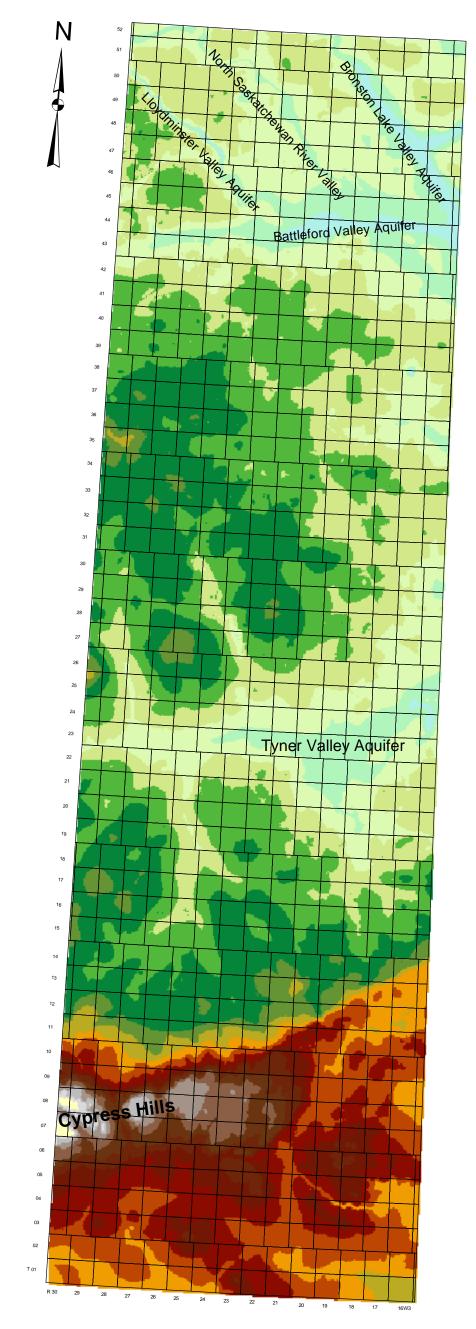
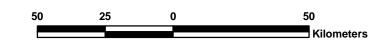




Figure 11. Distribution of bedrock units outcropping at the bedrock surface

1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Elevation (masl)

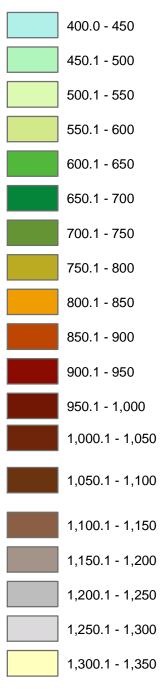
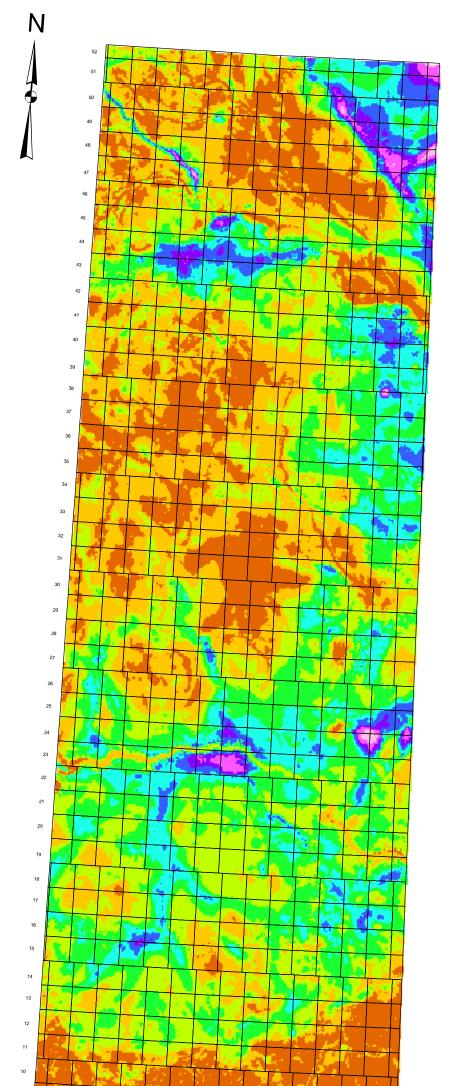
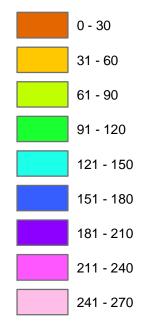
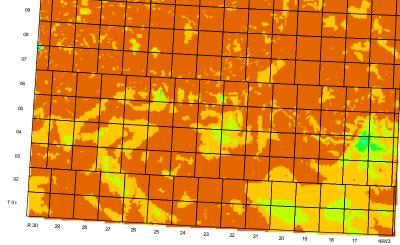



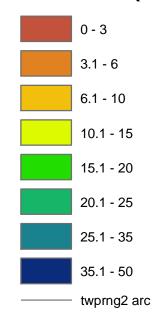
Figure 12. Bedrock surface topography in the Ribstone Creek Tongue study area

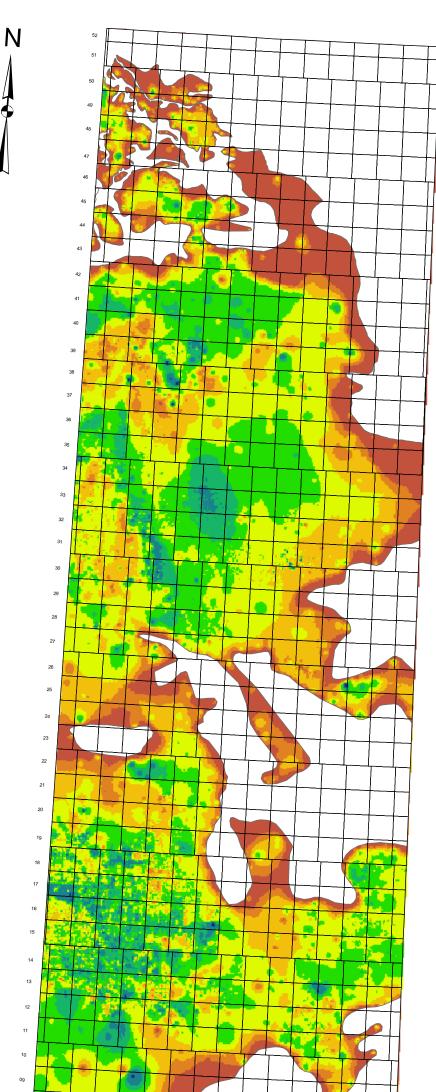


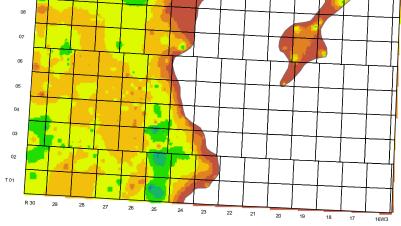
Data Sources: Base map 2000 Government of Canada with permission from Natural Resources Canada

1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection




Figure 13. Thickness of Drift in the Ribstone Creek Tongue study area





1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

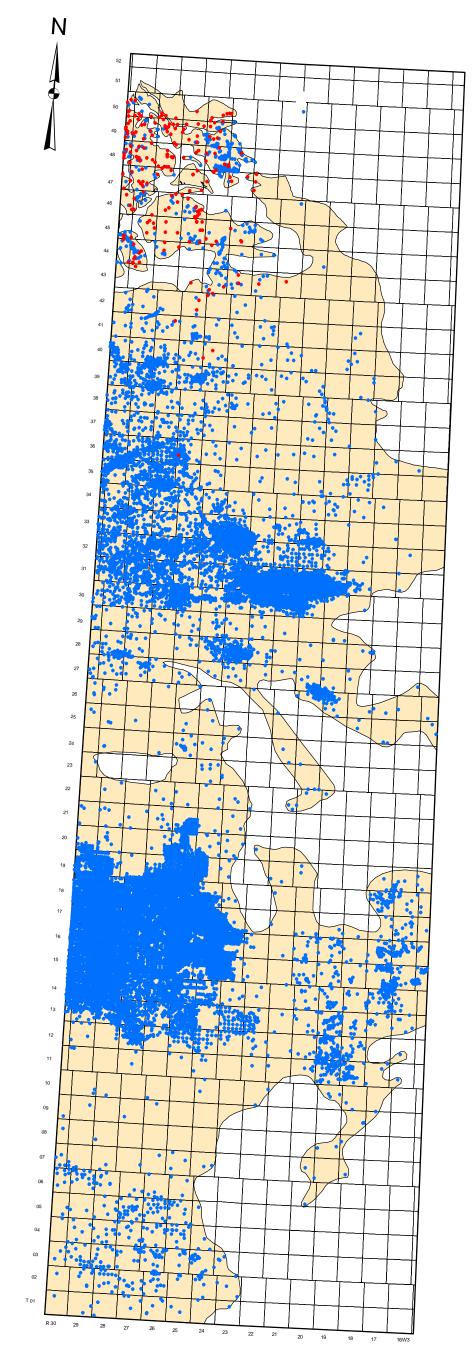


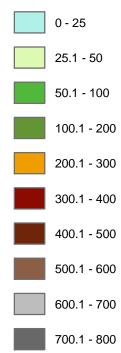
Figure14. Extent and thickness of Ribstone Creek Tongue

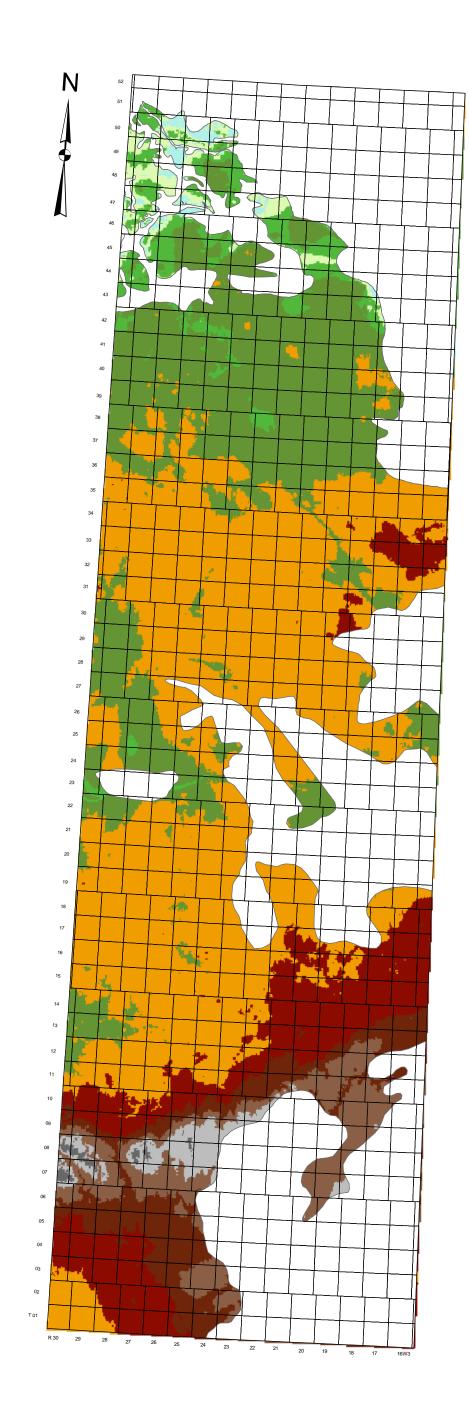
1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Legend

- SEM data
- Water well data

Ribstone Creek Tongue extents


Figure 15. Location of wells/testholes indicating presence of Ribstone Creek Tongue



1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

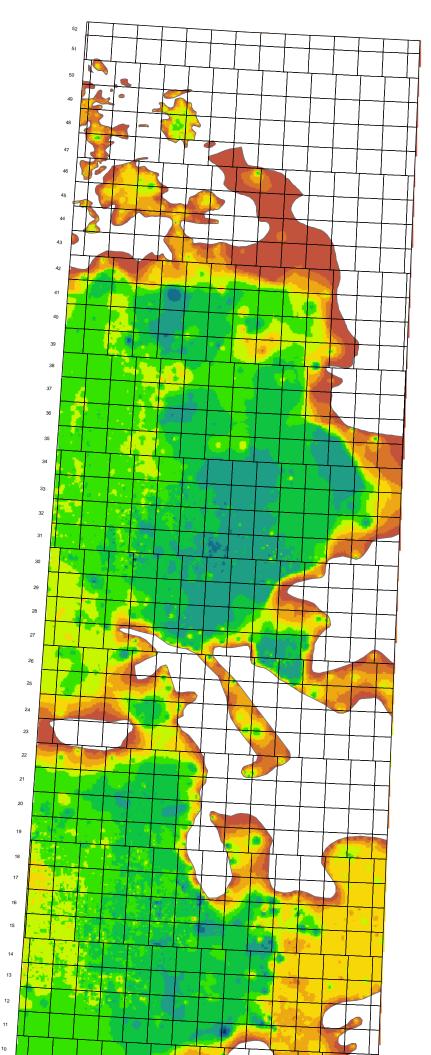
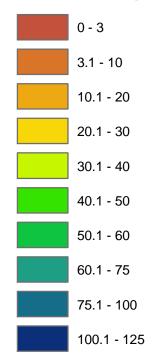
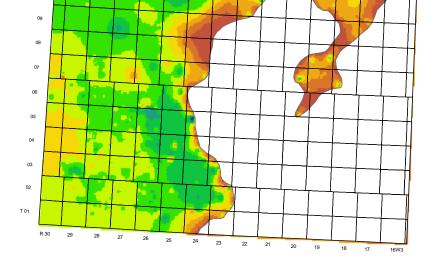


Figure 16. Depth to top of the Ribstone Creek Tongue


Ν


Data Sources: Base map 2000 Government of Canada with permission from Natural Resources Canada

1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Thickness (m)

Figure 17. Extent and thickness of the Grizzly Bear Tongue

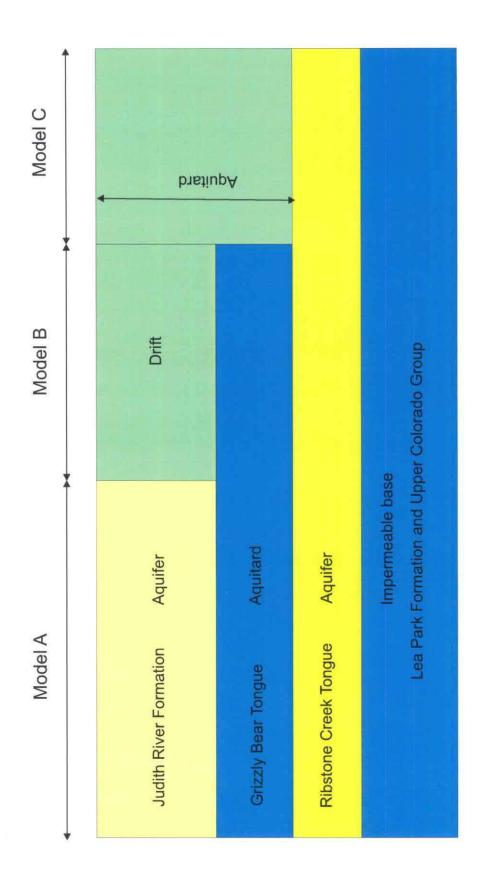
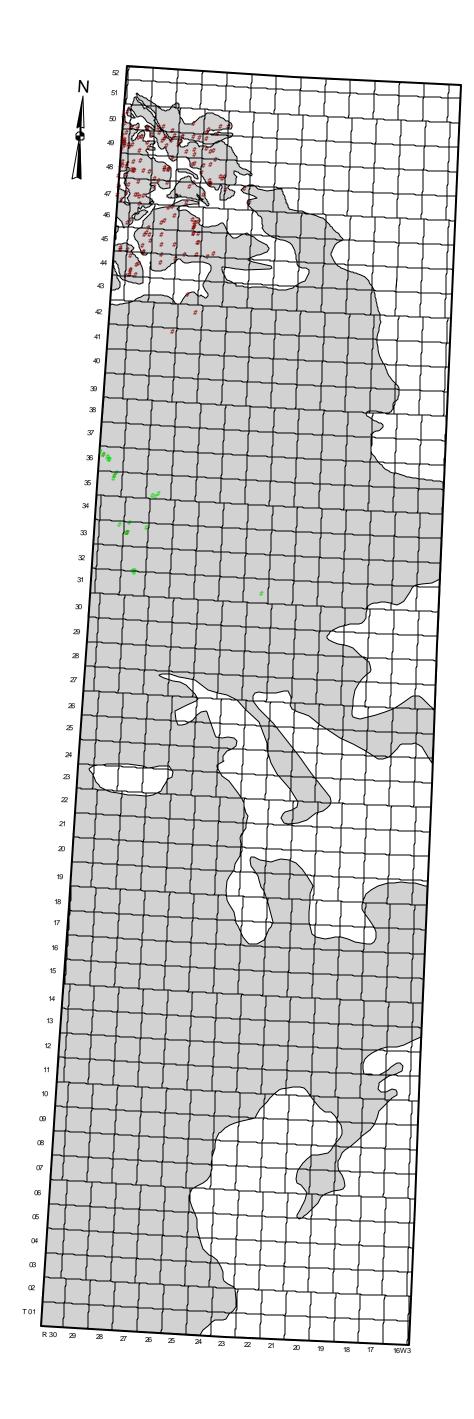
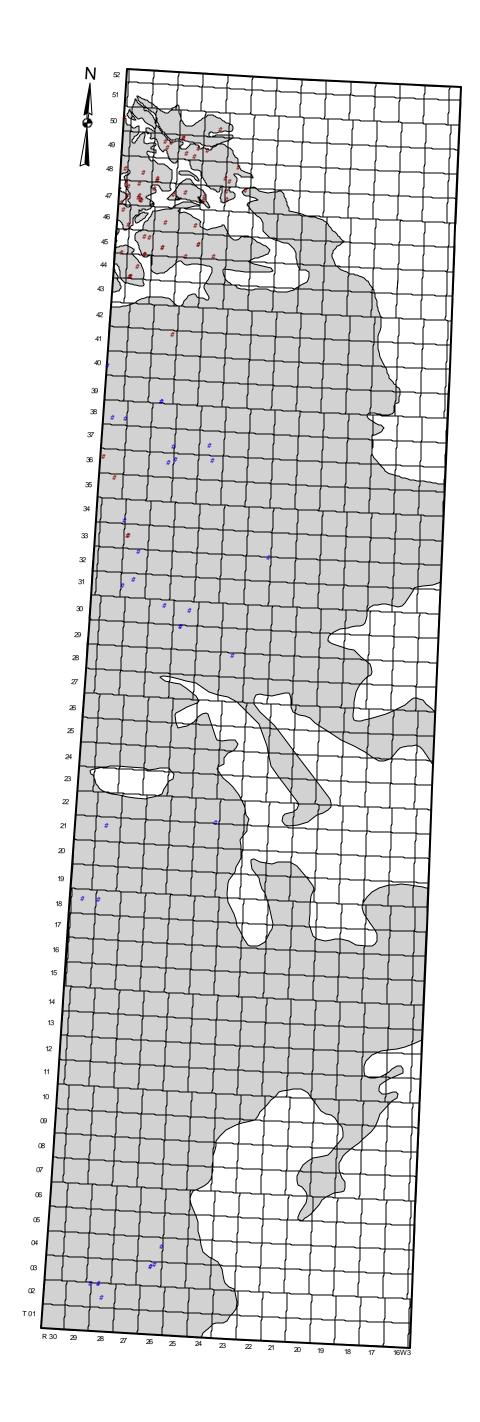



Figure 18 Schematic hydrogeological models for the Ribstone Creek aquifer

1:1,500,000 scale UTM Extended Zone 13 Nad 83 Projection

Legend


#

Ribstone Creek aquifer

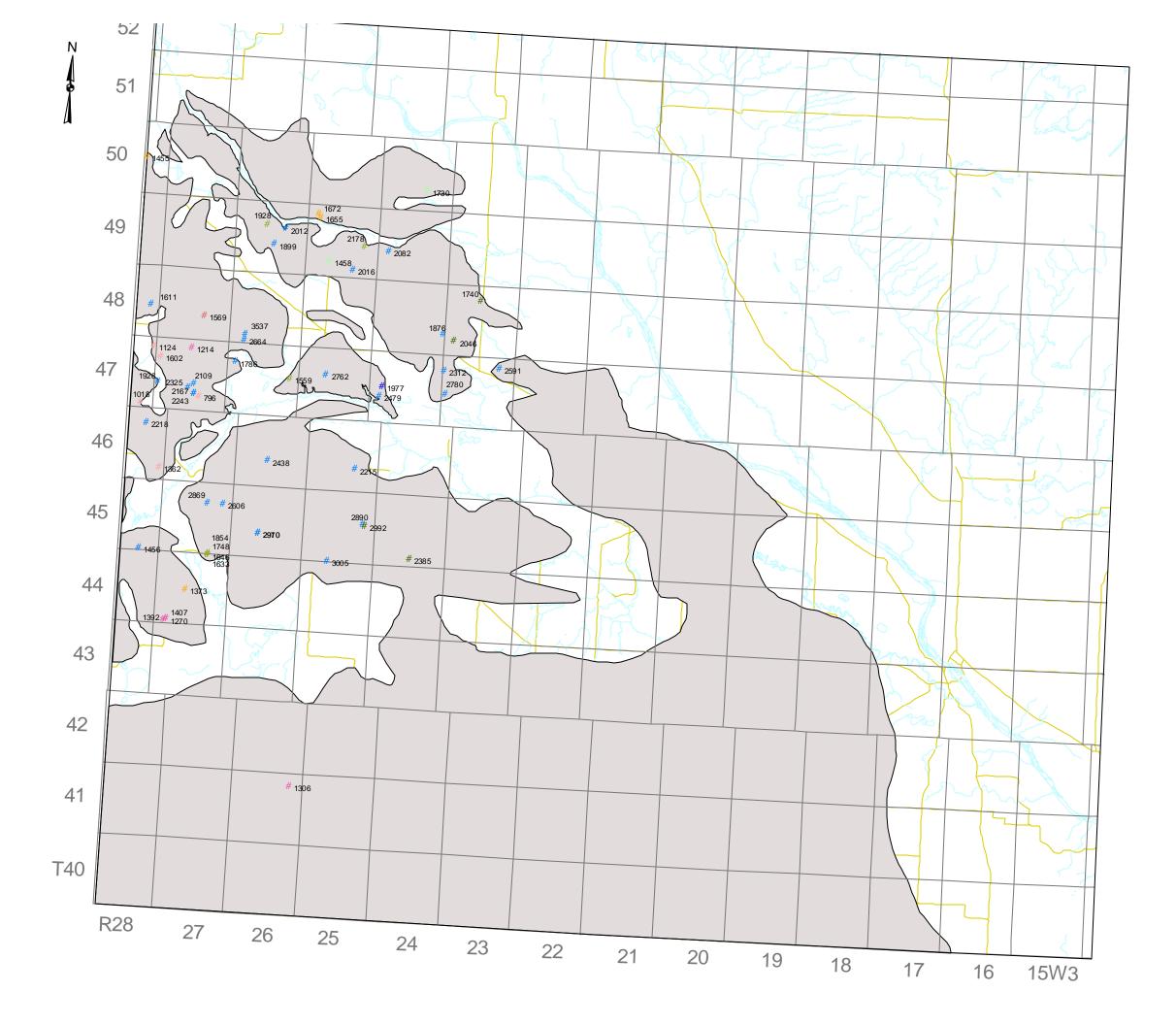
- Water well records with electric log
- # Well in SEM records

Figure 19. Location of wells completed in the Ribstone Creek aquifer.

Data Sources: data- Saskatchewan Water Corp. February, 2002. base map- 2000 Government of Canada with permission from Natural Resource of Canada

1:1,500,000 scale UTM Extended Zone 13 Nad 83 Projection

Legend


Ribstone Creek aquifer

#

#

- SEM drillstem test water quality data
- Water quality data for wells

Figure 20. Location of water quality data for the Ribstone Creek aquifer.

Legend

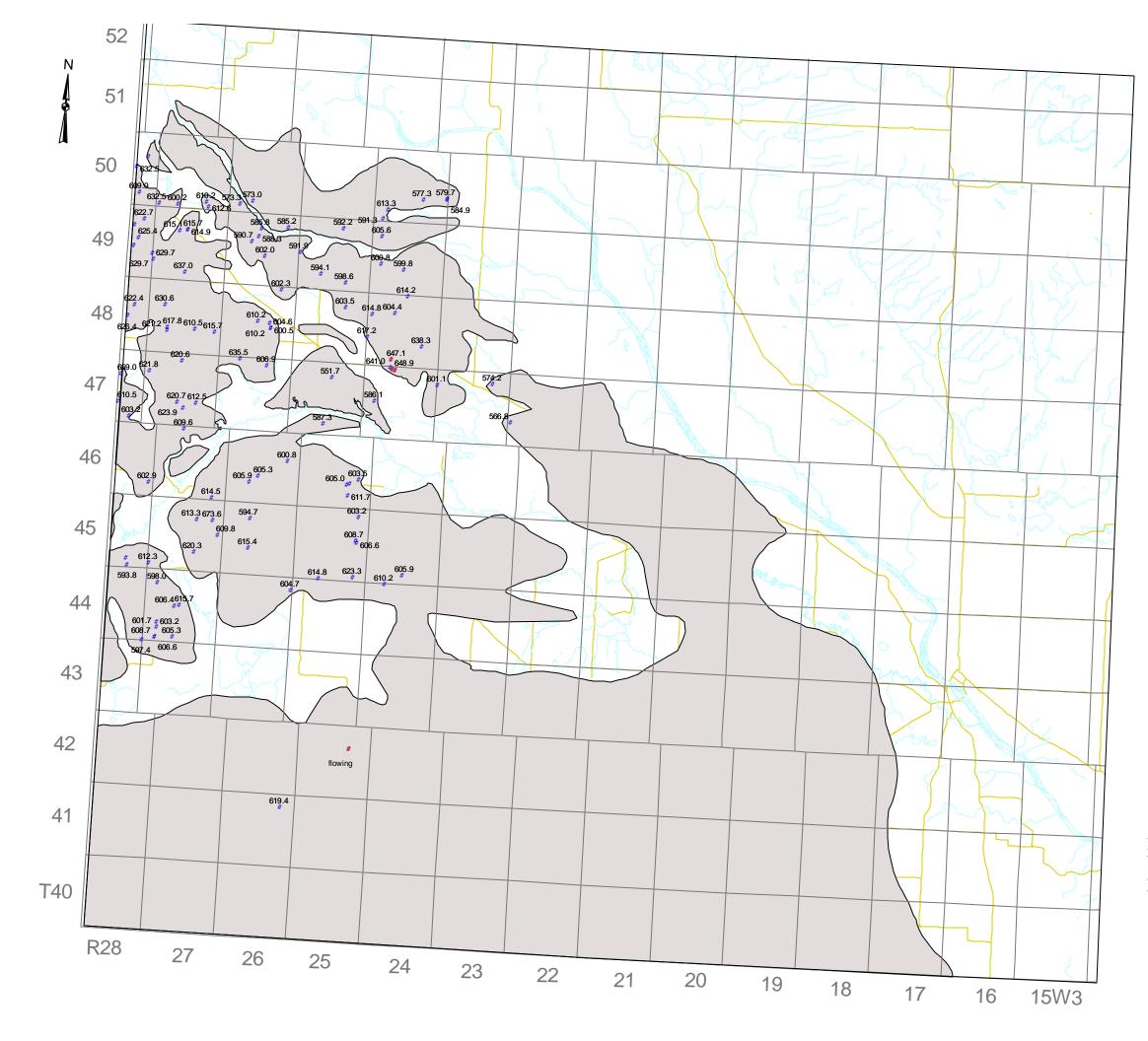
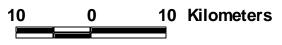

Ribstone Creek aquifer 1200 sum of ions, mg/L Ca/Mg-HCO3 Ca/Mg-HCO3/SO4 Ca/Mg-SO4 # Ca/Mg-SO4/CI # # Ca/Mg/Na-SO4 Na-HCO3 Na-HCO3/SO4 # Na-SO4 Na-SO4/CI # detailed area township/range lines rivers lakes roads

Figure 21. Water quality in the northern part of the Ribstone Creek aquifer.

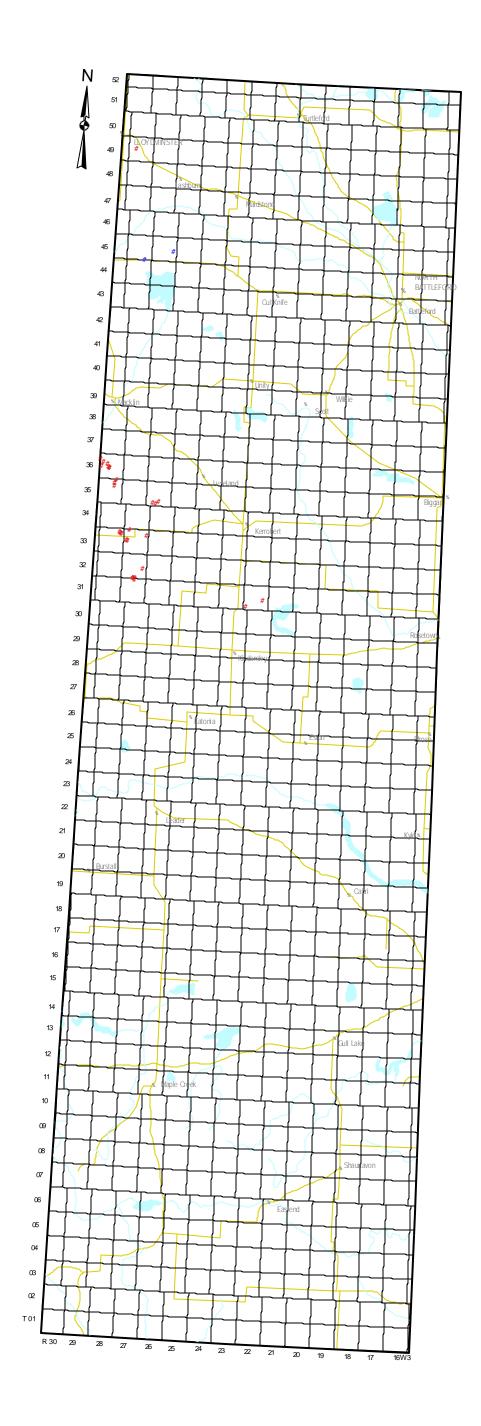
Data Sources: base map- 2000 Government of Canada with permission from Natural Resource of Canada

1:500,000 scale UTM Extended Zone 13 Nad 83 Projection



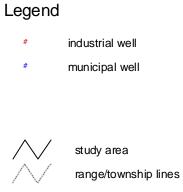
Legend

flowing well
well - water level elevation (masl)
Ribstone Creek aquifer
detailed area
township/range lines
nvers
lakes
roads


Figure 22. Water levels in the northern part of the Ribstone Creek aquifer.

Data Sources: base map- 2000 Government of Canada with permission from Natural Resource of Canada

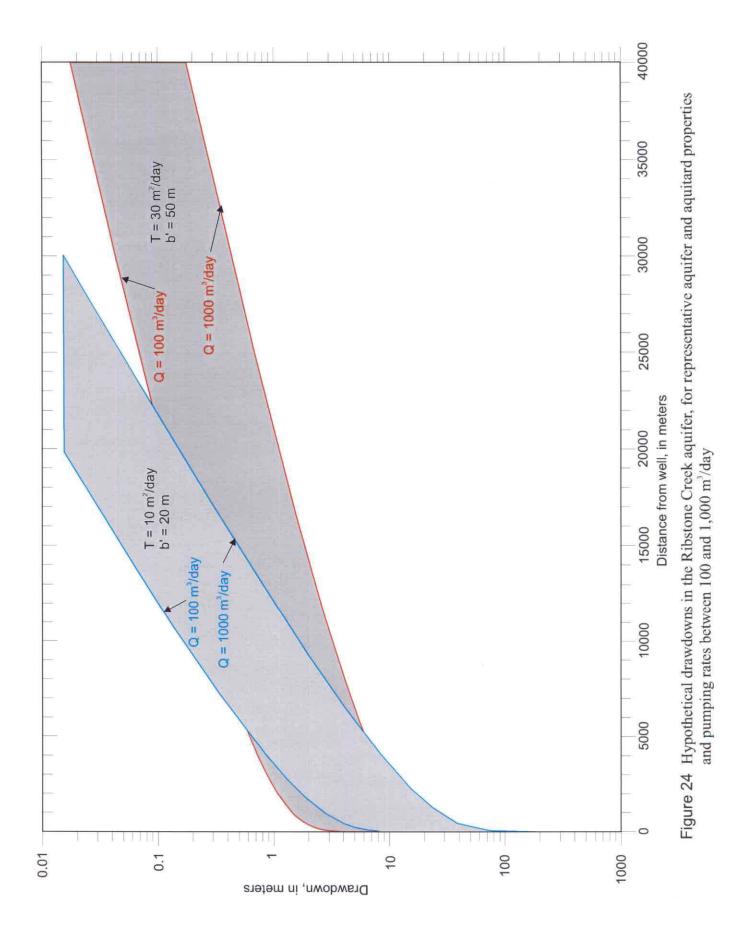
1:500,000 scale UTM Extended Zone 13 Nad 83 Projection

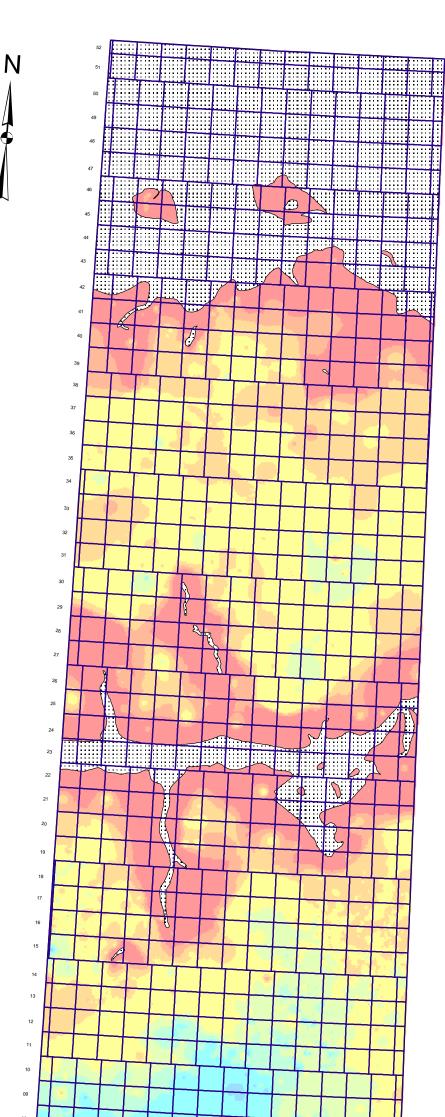


Data Sources:

data- Saskatchewan Energy and Mines, February 2002 and Saskatchewan Water Corp. February, 2002. base map- 2000 Government of Canada with permission from Natural Resource of Canada

50 0 50 Kilometers

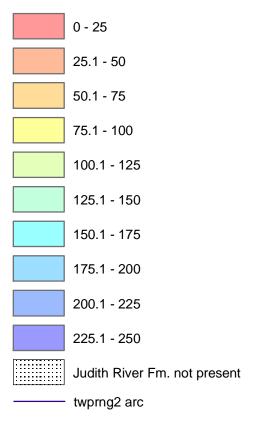

1:1,500,000 scale UTM Extended Zone 13 Nad 83 Projection

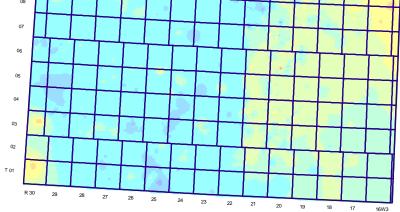


rivers lakes

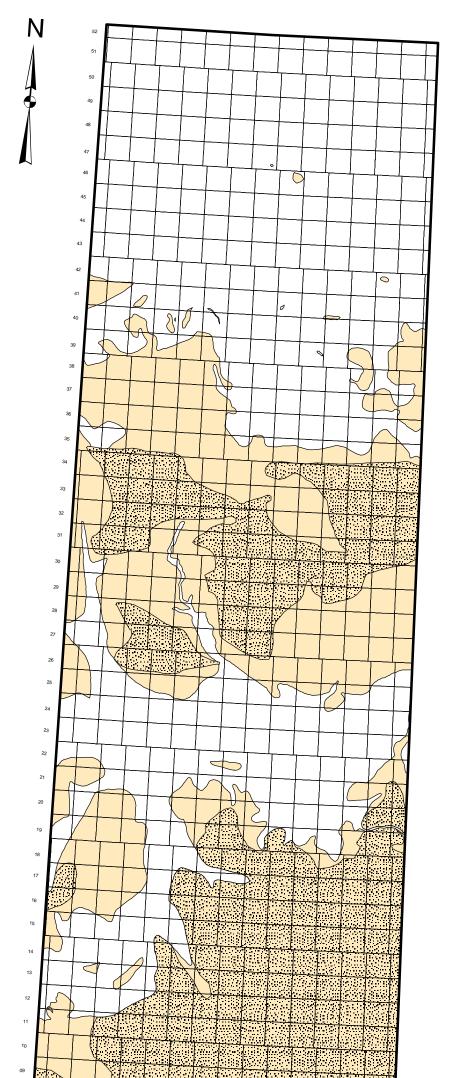
roads

Figure 23. Location of industrial and municipal withdrawals from the Ribstone Creek aquifer.





1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection


Thickness (m)

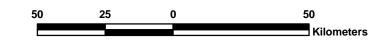


Figure 25. Extent and thickness of the Judith River Formation in the Ribstone Creek study area

1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Legend

Bearpaw sand extents

Bearpaw Formation

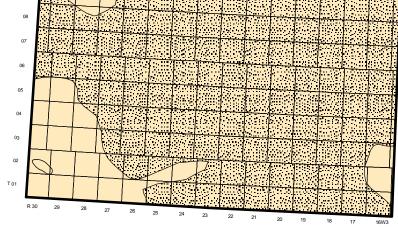


Figure 26. Extent of aquifers formed by sand members of the Bearpaw Formation

50

Kilometers

Data Sources: Base map 2000 Government of Canada with permission from Natural Resources Canada 50 25 1:1,500,000 scale UTM Extended Zone 13 NAD 83 Projection

Legend

Cypress Hills Fm.

Ravenscrag Fm.

Eastend Whitemud, Battle, Frenchman Fms.

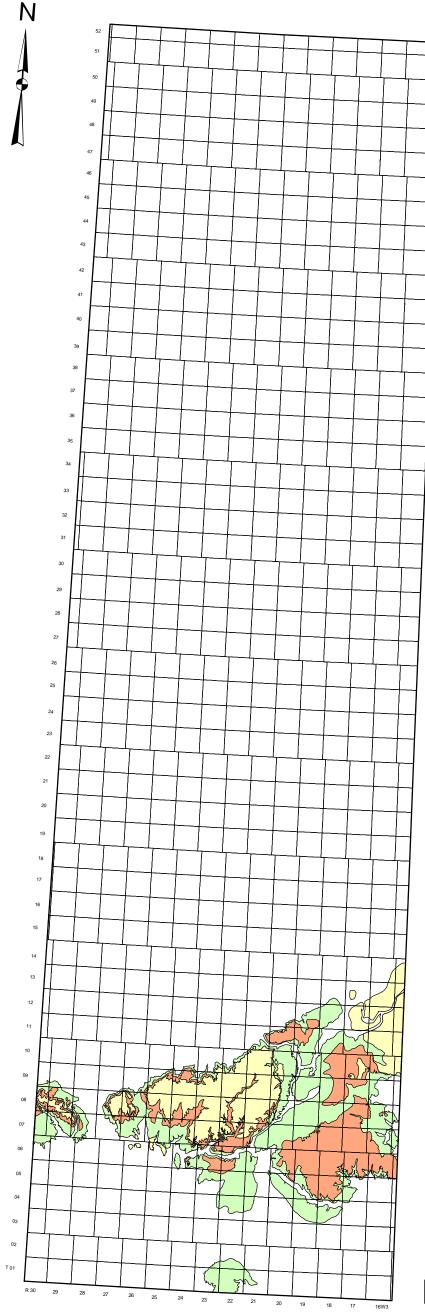
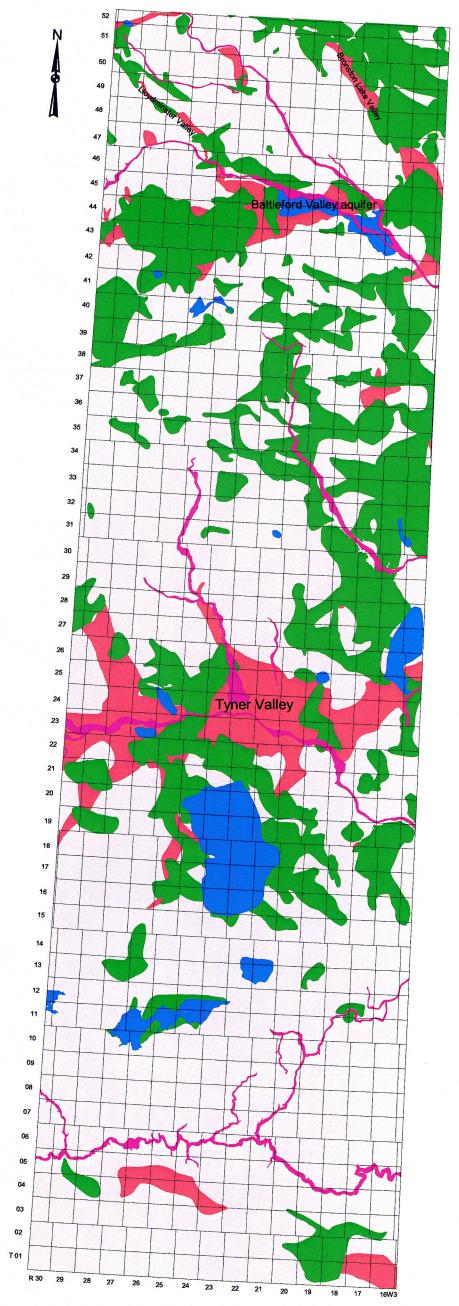



Figure 27. Extent of the aquifer formed by Eastend, Whitemud, Battle, Frenchman, Ravenscrag and **Cypress Hills Formations**

UTM Extended Zone 13 Nad 83 Projection Source - Millard (1990 a, b, c, d, e)

Figure 28 Extent of drift aquifers in the Ribstone Creek study area.

Table 2 Listing of wells completed in the Ribstone Creek aquifer

_						<u>.</u> <u>.</u>						-										test data				0
			Land L	ocatior	1	- l	TM Extende	ed Zone 13	Owner	Year	Elevation	Ribsto	ne Creek To		Well	Completion	· ·	WL		Drawdown	Duration	Pump	oing rate		mended	Comm
						е	ast83_13_r	north 83_13		Drilled		depth to	bottom	thickness	depth	-	water		drawdown				3.		ng rate	-
	Qtr	Lsd	Sec	Тр	Rg	М	m	m			m asl	m	m	m	m		m	m asl	m	m	hrs	L/s	m ³ /day	L/s	m ³ /day	
	NE	13	7	47	22	WЗ	217221	5885509	Darrel Jurke	1984	573	21.3	32.6	11.3	29.0		6.25	566.8	15.1	10.4	0.5	0.80	69	0.76	65	
2 1	NW	12	30	47	23	WЗ	207492	5890565	Bob Stevenson	1986	610	50.6	59.4	8.8	55.5		8.53	601.1	42.1	36.6	3	0.91	79	0.91	79	
3	SW	2	35	47	23	WЗ	214868	5890732	Cal Ballan	1994	579	25.9	39.3	13.4	31.4		4.88	574.2	21.0	21.9	1.5	0.38	33	.	70	
1 1	NW	15	32	44	24	WЗ	200336	5863875	George Melchoir	1998	657	84.7	104.5	19.8	92.4		46.63	610.2	38.1	42.1	3	1.52	131	0.91	79	
5	NE	9	4	45	24	WЗ	202651	5864955	Jerry Ducherer	1982	646	68.9	88.1	19.2	82.3		40.23	605.9	28.7	1.3	1	0.76	65	0.76	65	
3	SE	1	19	47	24	WЗ	198967	5888458	Walter Campbell	1975	620	46.0	54.9	8.8	48.2	open	33.53	586.1	12.5	4.0	2	0.45	39			
7	NE	11	33	47	24	WЗ	201679	5892545	Bruce McFayden	1977	646	75.0	88.4	13.4	72.2	open										flow
3	NW	13	33	47	24	WЗ	201093	5892985	Bill Snell	1982	645	75.6			76.5		3.66	641.0	71.9	15.2	5	0.38	33			
ЭI	NW		33	47	24	WЗ	201380	5892665	Bruce McFayden	1997	646	75.0			80.5		-2.74	648.9	77.7	14.9	0.5	0.95	82			flow
)	SW	12	4	48	24	WЗ	201156	5894002	Peter Donovan	1982	645	74.7			76.2	open	-2.44	647.1	77.1	7.0	20	0.95	82			flov
1 :	SW	15	11	48	24	WЗ	205357	5895765	Jim Maxwell	1981	674	69.2	80.5	11.3	73.5		35.36	638.3	33.8							
	NW	10	12	48	24	W3	206974	5895464	D. Brimacombe	1980	634	58.8			61.0	open				47.2	1	0.76	65			
	SW		12	48	24	WЗ	206421	5894792	Daryl Young	1976	634	58.5	67.1	8.5	62.8	open				42.7	1	0.76	65			
	SW	5	18	48	24	W3	198074	5897031	Dale Kramer	1977	674	88.7			93.3	open	56.39	617.2	32.3	3.4	2	0.53	46	0.76	65	
	NE	5	28	48	24	W3	201751	5900254	Garry Benkendorf	1986	655	80.5	93.6	13.1	90.2		50.90	604.4	29.6	23.8	1	0.42	36	0.42	36	
-	NW	3	30	48	24	W3	198673	5900037	lan Morrison	1984	661	76.5	97.2	20.7	85.6		46.63	614.8	29.9	24.4	1	0.45	39	0.45	39	
7		13	34	48	24	W3	203422	5902481	Alvin Pike	1974	666	66.4			68.6		51.82	614.2	14.6	9.1	6	0.38	33			
, B	NE		8	49	24	W3	201374	5905650	Murray Blyth	1997	-	31.1	42.7	11.6	34.4		17.98		13.1	14.0	2	0.38	33	0.38	33	
	SE	2	16	49	24	W3	202929	5906059	Keith Pike	1990	613	20.1	36.0	15.8	30.5		12.80	599.8	7.3	15.2	1	0.53	46	0.45	39	
	NW	8	18	49	24	W3	199920	5906856	Art Pinder	1974	613	14.6	26.2	11.6	22.9	open	11.89	600.8	2.7							
	NE	0	30	49	24	W3	200055	5910599	Jordy Fortin	1985	646	30.5	48.5	18.0	54.9	-	40.54	605.6	-10.1	4.3	3	0.45	39	0.45	39	
2	1 14	3	3	50	24	W3	204457	5912555	Irvin Carson	1978	648	30.2	41.8	11.6	35.7											
	NW	13	5	50	24	W3	200786	5914105	Ernie Squiar	1988	617	3.7	14.0	10.4	13.1		3.93	613.3	-0.3		2	0.45	39	0.45	39	
	NE	2	6	50	24	W3	200100	5912921	Kevin James	1989	610	2.7	32.9	30.2	24.1	open	18.29	591.3	-15.5	2.0	15	0.53	46	0.53	46	
-	NE	16	10	50	24	W3	205554	5915430	Ken Lundquist	1977	617	51.8	66.1	14.3	54.3	•	39.93	577.3	11.9	4.6	6	0.91	79	0.91	79	
		10	13	50 50	24	W3	208718	5915543	Dan Lamont	1985	585	14.3	27.7	13.4	26.8		5.49	579.7	8.8	17.7	1	0.61	52	0.53	46	
3,	S1/2	1	13	50 50	24	W3	208711	5915468	Dan Lamont	1985	585	7.0	15.5	8.5	14.0		0.30	584.9	6.7	11.0	0.5	0.61	52	0.45	39	
		4		42	24 25	W3	195536	5841675	Anna Middleton	1989	610	57.9	64.6	6.7	57.9	open										fio
	SE	4	26		25	W3	192340	5848655	Sask Wheat Pool	1997	010	100.9	123.1	22.3	109.7		42.67		58.2							
	SW	0	15	43		W3 W3	192340	5864749	George Hall	1977	678	97.5	122.8	25.3	108.2		54.86	623.3	42.7	15.2	1	0.61	52	0.38	33	
	SE	8	2	45	25	W3 W3	191413	5864639	Ted Klassen	1979	686	115.2	125.0	9.8	123.4		71.02	614.8	44.2	39.6	4	0.45	39	0.61	52	
	SW	4	4	45	25	W3 W3	196409	5869605	Norm Hallet	1976	687	94.5	123.1	28.7	118.9	open	78.64	608.7	15.8	18.9	6	0.91	79	0.45	39	
	SE	8	23	45	25			5869391	Grant Doolittle	1976	683	109.1	115.8	6.7	110.3	open?	76.20	606.6	32.9	15.2	6	0.45	39	0.45	39	
	NW	4	24	45	25	W3	196600	5872861	Sask Wheat Pool	1970	005	117.0	130.5	13.4	129.1	opon .	92.05	000.0	25.0		-					
4	SE		34	45	25	W3	194684			1997		114.6	100.0	10.4	118.9		02.00									
	SE		34	45	25	W3	194684	5872861	Sask Wheat Pool	1997		114.0	128.6	14.6	126.2		93.27		20.7							
	SE	_	34	45	25	W3	194684	5872861	Sask Wheat Pool		690	93.3	105.5	12.2	104.9		76.50	603.2	16.8	5.8	2	0.38	33	0.61	52	
	SW	5	36	45	25	W3	196816	5872826	Russel Goodfellow	1989	680		105.5	12.2	104.9		88.39	500.Z	23.8	17.7	12	0.76	65	5.51		
	NE		3	46	25	W3	194837	5875287	Sask Wheat Pool	1997		112.2	126.2	14.0	124.1		87.48		25.9			0.70	50			
	NE		3	46	25	W3	194837	5875287	Sask Wheat Pool	1997	666	113.4 76.8	82.9	6.1	85.3		60.96	605.0	15.8	18.3	2	0.45	39	0.45	39	
-	NE	16	10	46	25	W3	195261	5877181	Gordon Goodfellow	1978	666 679		82.9 102.1	11.9	98.5		66.45	611.7	23.8	15.8	~ 6	0.53	46	0.53	46	
	SW	4	11	46	25	W3	195375	5875763	Norman Lindsay	1976	678	90.2		11.9	98.5 72.8		50.60	613.9	12.8	14.9	2	0.38	33	0.38	33	
	SE	4	14	46	25	W3	195677	5877358	Sawtell Farms	1989	664	63.4 67.1	74.4				50.80 51.82	603.5	15.2	6.4	ĥ	0.53	46	0.53	46	
3		8	14	46	25	W3	196822	5877796	Sawtell Farms	1976	655	67.1	73.2	6.1	73.2 76.2		51.62	003.0	22.9	21.6	2	0.68	40 59	0.61	52	
	NW		15	46	25	W3	194231	5878574	Richard Toews	1996	000	74.4	84.1	9.8	76.2			E07 0	22.9 11.0	26.2	2	0.68	46	0.53	46	
5		16	4	47	25	W3	192113	5885348	Grant Tarleton	1978	602	25.6	44.5	18.9	48.8		14.63 57.01	587.3 551.7		20.2	0	0.00	-+0	0.33	39	
6	SW	14	27	47	25	W3	193232	5891665	Greg Cressman	1988	610	57.9	64.0	6.1	63.1		57.91	551.7	0.0	15.5	12	0.08	7	0.45	35 7	
7			35	47	25	WЗ	194857	5893076	Fran Rodgers	1998		44.5	56.1	11.6	56.7		39.62	600 F	4.9	10.5	12	0.00	'	0.08	65	
8	W	12	26	48	25	WЗ	195177	5900981	Tighduin Farms	1977	639	57.9	75.9	18.0	65.2		35.05	603.5	22.9					0.70	00	
9	SE		27	48	25	WЗ	194507	5900406	Jack Alex & Lee E R	2040	622	48.8	61.6	12.8	57.0		00.40	500.0	0.0					0.45	20	
0	NE	9	3	49	25	WЗ	195064	5904331	Bruce Hardy	1977	637	48.2	77.7	29.6	71.6		38.40	598.6	9.8					0.45	39 65	
1	SE	8	8	49	25	WЗ	191875	5905550	Ed Winter	1981	626	46.3			54.9		32.31	594.1	14.0					0.76	65 22	
2	SE	1	15	49	25	WЗ	195205	5906546	Neil Reece	1977	619	23.5	35.4	11.9	25.0						-			0.38	33	
53	NW	13	18	49	25	W3	188998	5908378	Burt Napper	1989	607	14.6	27.4	12.8	22.6		14.63	591.9	0.0	5.2	3	0.76	65			
54	SE	12	19	49	25	WЗ	189266	5909371	Francis Harris	1978	607	28.3	38.1	9.8	25.9									0.53	46	
	NW	13	25	49	25	WЗ	197332	5911078	Darrel Squair	1980	631	40.2			49.4	open				_	_			0.45	39	
56	NE	16	30	49	25	W3	190631	5911519	Harold & Frank Turvey	1989	619	46.9			47. 9	open				2.1	2	1.14	98	1.14	98	
	-	16	30	49	25	W3	190631	5911519	Harold & Turvey Frank	1989	619	46.9			47.9	open				2.1	2	1.14	98	1.14	98	

Table 2 Listing of wells completed in the Ribstone Creek aquifer

]		Pump	test data				
			Land	Locatior	ı		UTM Extende	ed Zone 13	Owner	Year	Elevation	Ribsto	ne Creek To	ngue	Well	Completion	Depth to	WL	Available	Drawdown	Duration	Pump	ing rate	Recon	nmended	Comment
							east83_13 r	north 83_13		Drilled		depth to	bottom	thickness	depth		water	elevation	drawdown					pump	oing rate	4
	Qtr	Lsd	Sec	Тр	Rg	М	m	m			m asl	m	m	m	m		m	m asl	m	m	hrs	L/s	m ³ /day	L/s	m³/day	
	58 NW	2	34	49	25	W3	194921	5911641	Don Retzlaff	1982	632	40.2	54.3	14.0	49.7		40.23	592.2	0.0	4.9	1	0.19	16	0.19	16	
	59 SW	1	15	50	25	WЗ	194732	5916621	Russel Waldron	1995		5.2	19.5	14.3	19.5		5.18		0.0	14.9	15	0.30	26	0.38	33	
	60 NW	16	26	41	26	WЗ	186311	5833946	Viola Bowey		658	123.4	139.3	15.8	128.3		39.01	619.4	84.4	52.4	5	0.68	59	0.45	39	
	61 NW		21	44	26	WЗ	181716	5861521	Bruce Graham	1998		78.3	82.9	4.6	80.5		48.77		29.6	23.8	2	0.98	85	0.91	79	
	62 C	16	25	44	26	WЗ	187741	5862957	Brian Gibb	1977	672	111.3	119.5	8.2	117.7		67.36	604.7	43.9	39.6	2	0.76	65	0.76	65 70	
	63 NW		33	44	26	W3	181927	5864750	Doug Graham	1998		85.3	88.4	3.0	87.2		38.40		46.9	33.8	2	1.59	137	0.91	79 50	
	64 SW		13	45	26	W3	187075	5868473	Church of God	1998		109.1	113.4	4.3	111.3		68.88	01E A	40.2	22.6 10.1	2 0.83	1.14 0.64	98 56	0.61	52 98	
	65 NE		16	45	26	W3	182084	5868698	Kerry Weils	1979	666	89.0	95.1	6.1	92.0		50.60 85.04	615.4 594.7	38.4 7.6	10.1	0.65	0.04	50	1.14 0.68	98 59	
	66 67 W	12	28	45	26	W3	182243	5872651	Charann Farms	1979	680 671	92.7 74.4	107.0 87.2	14.3 12.8	105.2 87.2		64.62	605.9	9.8	13.9	1.3	0.44	38	0.08	65	
	67 W	9	8	46	26	W3	182154	5877523 5878360	Joe Koch	1989	671 671	74.4 78.6	90.2	12.8	89.3		65.23	605.3	9.0 13.4	6.4	3	0.30	26	0.38	33	•
	68 NW		16	46 46	26 26	W3 W3	183333 187332	5880333	Rawlyn Thiessen George Maclvor	1981 1978	663	75.6	82.9	7.3	81.4		62.18	600.8	13.4	15.2	4	0.45	39	0.45	39	
	69 SE 70 SW		23 34	40 46	26 26	W3	184772	5883237	Murray McDonnell	1990	643	54.3	58.2	4.0	54.9		02.10	000.0	10.4	10.2	-	0.10	00	0.10		
	70 SW 71 NW		34 35	40 46	20 26	W3	186445	5883917	Travis Minish	1996	040	18.3	00.2	4.0	22.6		13.26		5.0	5.8	1	0.95	82			
	72 SE		30	40	26	W3	179203	5891662	Paul Mihalich	1977		14.6	27.7	13.1	24.4		10.67		4.0	5.5	4	0.91	79	0.76	65	
	73 SE		32	47	26	W3	180901	5894088	Lorne Phipps	1988	652	38.4	45.7	7.3	44.2		16.76	635.5	21.6	19.8	2	0.61	52	0.61	52	
	74 NE		34	47	26	W3	184530	5893242	Gordon E. Marlatt	1994	620	40.8	50.3	9.4	49.4		13.41	606.9	27.4	32.3	2	0.30	26	0.30	26	
	75 SE		6	48	26	W3	179420	5894896	Melvin Oddan	1994		51.2			57.9		41.45		9.8	12.2	2	0.45	39	0.61	52	
	76 SW		14	48	26	W3	185067	5898282	Bob Bower	1985	617	31.7	42.1	10.4	41.5	open	12.65	604.6	19.1					0.68	59	
	77 SW		14	48	26	W3	185067	5898282	Gordon Kitching	1986	617	24.4	42.7	18.3	48.8	•	16.76	600.5	7.6	28.3	3	0.30	26	0.45	39	
	78 NE		15	48	26	W3	184903	5898905	Abraham G. Shapansky	1982	616	31.7	42.7	11.0	42.1		5.49	610.2	26.2					0.61	52	
	79 SE		16	48	26	W3	183234	5898403	Ed Lowe	1976		15.8	24.4	8.5	21.3	open	2.74		13.1	18.3	1	1.89	164	0.76	65	
	80 SE		21	48	26	W3	183288	5899215	Al Weston	1981	616	16.2	28.3	12.2	24.1	open	5.49	610.2	10.7							
	81 CN		35	48	26	W3	186526	5903358	Paul Fisher	1980	605	22.9	42.7	19.8	28.3	open	2.74	602.3	20.1	0.8	1	1.10	95	0.91	79	
	82 NE		15	49	26	W3	184271	5907875	Guy Pierce	1981	602	12.5	35.1	22.6	20.7	open		602.0	12.5							
	83 SV		21	49	26	W3	182563	5909815	Harold Holtby Farms Ltd	1989	602	17.7			21.9	open	11.28	590.7	6.4	2.4	2	0.98	85	1.14	98	
	84 NV		23	49	26	W3	186138	5909881	Tim McDougall	1984		10.7			40.2		25.60			9.4	2	0.23	20	0.15	13	
	85 NE	16	26	49	26	W3	187382	5911733	Ronald Christie	1986	610	9.4	33.5	24.1	21.9	open?	24.38	585.2	-14.9	9.1	24	0.11	10	0.11	10	
	86 SV		28	49	26	W3	183430	5910566	Sam Rollheiser	1989	604	13.4	25.6	12.2	23.5		15.24	588.3	-1.8	6.7	2	0.38	33	0.38	33	
	87 NE		28	49	26	WЗ	183809	5911664	Grerg Lutes	1986	604	16.8	28.7	11.9	61.0		17.68	585.8	-0.9	28.0	3	0.68	59	0.53	46	
	88 SV	/ 12	32	49	26	WЗ	181155	5913157	Fred Hippe	1977		26.5	34.1	7.6	32.3	open	21.52		5.0	1.8						•
	89	3	2	50	26	WЗ	186595	5913706	Tanya Jensen	1979	652	52.4	82.6	30.2	72.8	open										
	90 NE	E 16	5	50	26	WЗ	182724	5915291	W m Christie	1979	607	41.5			39.9	open	33.53	573.0	7.9					0.23	20	
	91 W	9	6	50	26	W3	180974	5914895	Gordon Thiessen	1975	611	24.4	43.6	19.2	40.2	open	37.80	573.3	-13.4	1.8	2	0.30	26	0.15	13	
	92	1	19	33	27	WЗ	168602	5754157	Norcen WSW B1-19	1995																
	93	2	19	33	27	WЗ	168195	5754184	Norcen WSW B2-19	1995																
	94 NE		4	44	27	WЗ	171881	5856802	Evelyn Paterson	1989	636	67.1	73.8	6.7	68.0		30.18	605.3	36.9	2.4	16	0.61	52	0.76	65	
	95 SE		6	44	27	WЗ	169418	5856761	Artland Dairy	1998	648	69.5	75.9	6.4	75.6		39.01	608.7	30.5	29.3	2	0.61	52	0.53	46	
	96 SE		6	44	27	WЗ	169418	5856761	Artland Dairy	1988	648	70.7	78.0	7.3	77.4		41.15	606.6	29.6	27.4	16	0.61	52	0.61	52	
	97 NV	• •	8	44	27	WЗ	169719	5858166	Bob Watson	1989	640	67.1	75.6	8.5	67.7	open	38.40	601.7	28.7	3.0	2	0.53	46 50	0.53	46	
	98 SV			44	27	WЗ	169760	5858769	Wayne Bosch	1983	640	62.5	74.7	12.2	68.0		36.88	603.2	25.6	24.1	1	0.68	59 70	0.53	46	
1	99 NE			44	27	W3	172154	5860845	Thomas Gray	1977	631	56.7	66.8	10.1	63.7+		24.54	606.4	32.2	2.6	0.3	0.91	79	0.91	79	
	100 SV		21	44	27	W3	172779	5861007	Leslie Graham	1974	642	62.5	73.2	10.7	76.8		25.91	615.7	36.6	27	e	0.50	46			
	101 C			44	27	W3	169818	5864147	John Proctor	1975	646	66.4	79.6	13.1	71.6		48.16	598.0	18.3	3.7	6	0.53	46	4 4	05.0	
l	102 NV			44	27	W3	175126	5865506	Town of Marsden No. 6	1987														1.1	95.0 86.4	
	103 SV		2	45	27	W3	175139	5865707	Town of Marsden No. 5	1000	055		70 4	<i>c c</i>	60.0		40.00	610.0	01.0	10.1	4	0 45	20	1.0	86.4	
	104 NV		6	45	27	W3	168667	5866758	Alvin Scholin	1988	655	64.6	70.1	5.5	68.0		42.98	612.3 620.3	21.6 21.0	10.1 32.0	1	0.45 0.45	39 30	0.45	39 39	
	105 SE			45	27	W3	174692	5868178	Hugh Polkinghorne	1985	646	46.9	65.8 93.5	18.9	61.6		25.91 51.66	620.3 609.8	21.0 18.4	32.0 14.3	1	0.45	39 52	0.45 0.68	39 59	
ļ	106 SV		24	45	27	W3	177906	5870402	John Gray	1985	661 674	70.1	83.5	13.4	83.5 80.6	0000	00.16	609.8 673.6	10.4	14.3	1	0.01	52	0.68	59 46	
1	107 SV		25	45	27	W3	177229	5872472	Neil Tindall	1980	674	79.9	90.8 07.5	11.0	89.6 06.2	open	76 05	0/3.0	8.1	80	2	0.61	50	0.53	46 52	
	108 NV		26	45	27	W3	175955	5873273	David Scott	1996	640	84.1	97.5	13.4	96.3		76.05 26.82	613.3	15.2	8.8 7.0	2	0.81	52 39	0.01	52	
	109 SV		27	45	27	W3	175196	5872609	David Cunningham	1976	640 671	42.1	47.5	5.5	46.0 76.9		26.82 56.08	614.5	16.5	7.0 2.6	2 86	0.45	39	0.45	39	
	110 C		2	46	27	W3	177120	5875422	Camil Lebreque	1986	671	72.5	82.9 50.6	10.4 6.7	76.8 51.8		56.08 44.81	014.0	-0.9	2.6 5.2	00 24	0.45	39 20	0.45	39 20	
	111 NV		7	46	27	W3	169784	5878560	W Savage	1989	674	43.9 69.2	0.00	0.7	51.8 78.0		44.81 60.96	609.6	-0.9 8.2	J.2	2 4	0.20	20	0.20	20	
	112 NV		33	46	27	W3	173470	5884783	Ernie Kenyon	1976	671 640	69.2 24 1			78.0 38.4		19.35	620.7	6.2 4.7	17.4	1	0.91	79	0.76	65	
1	113 NV			47	27	W3	172525	5888357	William Findlay	1985	640 671	24.1 53.3			38.4 64.0		46.63	620.7 623.9	4.7 6.7	6.4	1	0.91	39	0.78	46	
	114 NV	V 6	10	47	27	W3	173286	5887497	Gerald Lamb	1986	671	00.0			04.0		-0.00	020.0	0.7	0.7		0.70	00	0.00		

Table 2 Listing of wells completed in the Ribstone Creek aquifer

																					Pump	test data				
		I	Land Lo	ocation			UTM Extend	ed Zone 13	Owner	Year	Elevation	Ribsto	ne Creek T		Well	Completion	Depth to	WL	Available	Drawdown	Duration	Pump	ing rate	Recom	mended	Comment
							east83_13	north 83_13		Drilled		depth to	bottom	thickness	depth	_	water	elevation	drawdown						ing rate	
			Sec	Тр	Rg	М	m	m			m asl	m	m	m	m		m	m asl	m	m	hrs	L/s	m ³ /day	L/s	m ³ /day	
115 N		14	11	47	27	W3	174973	5888189	F Lamb	1990	632	25.6			36.6		19.96	612.5	5.6	11.6	1	0.68	59	0.68	59	
116 S		3	16	47	27	W3	171925	5888600	William Findley	1980	637	21.3	42.7	21.3	38.9	open	40.44					0.04		0.91	79	
117 S	W	~	18	47	27	W3	168376	5889149	Blair Sarestsky	1998	0.40	36.9	F0 7	15.0	40.8		13.11	001.0	13.4	0.6	8	0.61	52	0.00	50	
118	·-	6	30	47	27	W3	168818	5892572	J.W. Anderson	1987	646	40.8	56.7	15.8	49.7		24.38	621.8	16.5	474	0	0.00	70	0.68	59	
119 S 120 N	IE	8 15	33 8	47 48	27 27	W3 W3	173101 171354	5893806 5898184	Murray Martin	1987 1995	664	59.1 51.8	58.5	6.7	68.9 56.1		43.89 24.99	620.6	15.2 26.8	17.1 14.6	2 3	0.83 1.06	72 92	0.61 0.76	52 65	
120 N		15	8	40 48	27	W3 W3	171354	5897997	Blue Ridge Gardens Leonard Long	1995	649	49.4	61.3	11.9	61.0		24.99	621.2	20.8	14.0	3 1	0.61	92 52	0.78	59	
121 S		14	12	48	27	W3	177464	5897766	David caruthers	1984	631	32.9	01.5	11.5	46.3		15.24	615.7	17.7	9.1	2	0.30	26	0.38	33	
123 S		1	15	48	27	W3	174830	5898149	William Noves	1987	640	43.6			51.8		29.57	610.5	14.0	6.7	1	0.53	46	0.00	00	
124 S		2	17	48	27	W3	171165	5898400	Jim Long	1988	646	50.0			58.2	open	28.35	617.8	21.6	4.0	1	0.76	65	0.68	59	
125 S		4	17	48	27	W3	170350	5898456	Joe Holden	1976	0.0	34.7			41.1	opon	14.33	017.0	20.4	13.4	2	0.91	79	0.91	79	
126 N		14	20	48	27	W3	170967	5901459	Donald Bartminas	1981	640	32.3	50.3	18.0	49.1		9.45	630.6	22.9	23.8	2	0.61	52	0.45	39	
127 N		8	28	48	27	WЗ	173667	5902091	Maurice Young	1989	637	30.5			40.5									0.53	46	
	IE	10	4	49	27	W3	173511	5905760	Wayne Burzinski	1980	637	37.8	53.6	15.8	49.4	open		637.0	37.8					0.91	79	
129 S	W	12	7	49	27	WЗ	169338	5907463	Lorne Foot	1985	649	43.0	54.9	11.9	52.7	•	19.51	629.7	23.5	14.6	0.5	0.68	59	0.68	59	
130 N	IE		11	49	27	WЗ	176981	5907243	R Penny	1990		39.0	56.4	17.4	51.8	open	7.01		32.0	19.8	2	1.14	98	0.76	65	
131 S	W	14	14	49	27	W3	176387	5909016	Norman Helm	1981	623	37.2			42.4									0.53	46	
	ε		18	49	27	WЗ	170533	5908497	Dave Bryson	1996		36.0	51.2	15.2	50.3									0.76	65	
133 N		14	25	49	27	W3	178245	5912342	All Test Land Livestock	1982	611	33.5	55.5	21.9	50.3									0.98	85	
134 S		4	28	49	27	W3	172868	5911279	John Dzuz	1988	625	18.3			28.7		9.75	615.1	8.5	14.3	1	0.45	39	0.45	39	
	SΕ		28	49	27	WЗ	174006	5911508	Jake Jacobson	1986	616	20.1	42.1	21.9	41.5		0.00	615.7	20.1	17.7	1	0.61	52	0.68	59	
	SE		28	49	27	W3	174006	5911508	Dennis J. Noyes	1985	622	31.7	46.0	14.3	44.8		6.89	614.9	24.8	20.4	1	0.61	52	0.61	52	
137		12	2	50	27	W3	176501	5915199	Jim Krykowski	1980	617	38.4	42.7	4.3	40.5	open	7.01	610.2	31.4	19.5	2	0.61	52	0.45	39	
138 S			2	50	27	W3	176663	5914575	Wilf Jurke	1978	613	21.3	33.5	12.2	30.5	cpen		612.6	21.3	45.0				0.00		
	SE.		5	50	27	W3	172604	5914853	Gary Lindquist	1987	616	37.5	42.1	4.6	41.5		15.54	600.2	21.9	15.2	0.5	0.38	33	0.38	33	
140 S			6	50	27	W3	170168	5915020	Cliff Kenyan	1990	600	21.3	36.6	15.2	35.1		6.71	600 F	14.6	15.2	1	0.68	59 46	0.61	52	
141 S	vv	10	6	50 25	27	W3 W3	170168	5915020	C. Fanthorpe	1990	632	23.5 228.7	38.4 241.3	14.9 12.7	36.3 242.9		65.08	632.5 665.34	23.5 163.6		3	0.53	46	0.45	39	
142 143		16 16	27 19	35 36	28 28	W3 W3	163299 158959	5776854 5785266	Petro-Canada PW WSW 13D16	1985 1996	730.4 728.5	228.7	241.3	16.2	242.9 234.7		83.79	644.75	138.1							
	ε	1	1	44	20 28	W3	167756	5856461	Twilight Land	1950	622	49.7	238.0 56.1	6.4	51.8		24.38	597.4	25.3					0.76	65	
145 N		3	2	45	28	W3	165786	5866515	Hen-Lea Farms	1982	620	38.7	41.8	3.0	39.3	open	26.52	593.8	12.2	6.4	1	0.23	20	0.19	16	
	1E	12	2	45	28	W3	165638	5867340	Darrel Ostrom	1982	625	40.2	43.9	3.7	42.1	open	28.04	596.8	12.2	3.4	20	0.38	33	0.38	33	
140 N		2	12	46	28	W3	168589	5877524	Kenneth Waring	1980	640	37.8	43.9	6.1	42.1	opon	37.19	602.9	0.6	4.9	6	0.38	33	0.38	33	
	ΝE	8	2	47	28	W3	166034		Charles/Raymond Knowlson	1973	634	49.7	60.4	10.7	57.9		30.78	603.2	18.9	6.1	2	0.42	36			
149 N		-	10	47	28	W3	164577	5888391	Orest Andony	1985	634	20.1	40.2	20.1	38.1		23.47	610.5	-3.4	12.8	2	0.34	29	0.34	29	
150 N		13	23	47	28	WЗ	164998	5892122	Allen N. Anderson	1978	668	35.4	50.0	14.6	39.3		8.53	659.0	26.8	11.9	0.5	0.76	65	0.76	65	
151 N	١E		1	48	28	W3	168065	5896486	Jason Plandowski	1996		21.9	44.2	22.3	44.2		7.01		14.9					0.61	52	l
152 S	SΕ		3	48	28	W3	165099	5895887	Bill Mclennan	1976		37.2	57.0	19.8	55.5	open	15.85		21.3	2.4	2	0.91	79			1
153 N	١E		13	48	28	W3	168289	5899721	Norbert Weinkauf	1994	664	32.3	44.2	11.9	41.8									0.53	46	1
154 N			14	48	28	WЗ	166661	5899834	Garry Gagnon	1997		26.5	49.1	22.6	48.2		12.80		13.7							1
155 N			14	48	28	W3	165847	5899890	Jim Martens	1987	640	31.7			43.9		13.72	626.4	18.0	13.7	3	0.68	59	0.61	52	
156 N	١E		23	48	28	W3	166773	5901446		1986	646	36.3	56.7	20.4	53.0		23.77	622.4	12.5				<u>.</u> .	0.76	65	
157		8	24	48	28	W3	168563	5900716		1980	648	37.2	65.8	28.7	52.7	open				6.4	2	0.45	39	0.45	39	
158 N			2	49	28	W3	166299	5906359		1998		43.0			62.5		18.29		24.7	35.7	2	0.76	65	0.76	65	
159 N			11	49	28	W3	167224	5907915		1998	6 4 6	49.4	50.0	10.4	58.5		24.69	000 7	24.7	30.2	2	0.68	59	0.61	52	ł
	SE	1	13	49	28	W3	169190	5908283	Jim & Dorthy Hill	1990	646	36.6	50.0	13.4	46.9		16.46	629.7	20.1	7.0	4		00	0.76	65 65	1
161	1	11	14	49	28	W3	166714	5909375	5	1989	646	42.4	64.9	22.6	60.0	open	26.52	619.7	15.8	7.0	1	1.14	98 70	0.76	65 65	
162 N			14	49 40	28	W3	167337	5909536		1998		42.1	60.0	10.0	54.9 57.9		25.91		16.2	27.7	2 2	0.83	72 85	0.76	65 85	1
163 S			14 22	49 40	28	W3	167281 167393	5908723	R. H. MCormick Erwin Harder	1998	REE	43.9 38.4	62.2 57.3	18.3 18.9	57.9 55.8		19.81 29.87	625.4	24.1 8.5	18.3 21.9	2 3	0.98 0.76	85 65	0.98 0.53	85 46	
164 S 165 S	SE		23	49 40	28	W3 W3	167393	5910345 5910401	Erwin Harder E X L Millings	1989 1997	655	38.4 40.8	57.3 62.8	21.9	55.8 57.3		29.01	020.4	0.0	21.9	3	0.70	00	0.53	40 52	
165 5	9 V V	13	23 25	49 49	28 28	W3 W3	168186	5910401	Justamere Farms	1997 1987	643	40.8 31.1	62.8 51.5	21.9	57.3 45.7		20.42	622.7	10.7	16.5	2	0.91	79	0.81	52 72	
167 S	.w	6	25 26	49 49	28 28	W3	166803	5912931		1987	649	38.7	61.0	20.4	43.7 54.9	open	20.42	649.2	38.7	10.0	<u> </u>	0.01	13	0.00	12	
167 S		2	11	49 50	28	W3	167520	5916533		1988	632	45.7	56.7	11.0	52.7	opon	23.47	609.0	22.3	4.6	2	0.53	46	0.38	33	
169		4	23	50	28	W3	167044	5919919		1980	632	41.1	52.7	11.6	51.2		LV.7/	632.5	41.1		-	0.00		0.45	39	
170 S	w	4	25	50	28	W3	168669	5921318	-	1988	617	52.4	55.5	3.0	55.5		32.61	584.6	19.8	16.2	2	0.45	39	0.45	39	
1/0 0		-					100008	0021010	iton Groonnay			T						00410				0.10		0.70		

Table 3 Water quality data for wells completed in the Ribstone Creek aquifer

Owner	ОТВ		SEC T	WN F	NG MI		Extended Zo Easting N		Date	Depth	Ca	Mg	Na	к	Fe	Mn	CO₃	HCO₃	SO₄	CI	NO3 -	PO₄ -	F	рН	Cond	Sum	тн 1	A	Cations	Anions	Error	Water	Source
Uwilei	Gun	200 .	. 020			_,,	0	NAD83	Sampled			Ũ					-				NO ₃	PO₄			~			_				Туре	
										m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L 1358	mg/L 156	mg/L	mg/L	mg/L	μ	S/cm	mg/L n 2780	ng/L as CaC 933	O₃ 370	epm 40.09	epm 40.20	% -0.11	Na-SO₄	GSC pre1964
	NW	10	18	47	23		207606.3 5		1/11/1996	51.2 55.5	222 111	92 64	493 470	8.7	7.1	0.14		459 709	815	127	0.01			7.70	2780	2312	541	581	31.47	32.17		Na-SO ₄	SRC
Bob Stevenson Cal Ballan	NW	12	30 35	47 47	23 23		207492.2 5 214976.8 5		1/11/1996	30.8	37	18	747	6.8	0.19	0.01		494	1130	158	0.17			7.99	3390	2591	167	405	36.00	36.08		Na-SO₄	SRC
Cal Dallan	SE	2	7	48	23		208866.2 5			57.9	179	81	300					657	721	108						2046	780	530	28.65	28.83	-0.33	Ca/Mg-SO₄/Cl	GSC pre1964
Bob Bullock	NE		28	48	23	32	212466.2 5	900107	11/24/1998	27.7	138	75	237	8.8	1.2	0.13	1	639	535	108	0.04			7.96	2030	1740	653	524	23.59	24.69		Ca/Mg-SO₄/Cl	SWC
Jerry Ducherer	NE	9	4	45	24		202651.2 5		11/29/1984	82.3	257	133	218	7.4	8.9	0.12		673	1050	37 107	0.03	0.01	0.25	7.21	2520	2385 2479	1180 484	552 445	33.44 34.61	33.95 34.76		Ca/Mg-SO₄/Cl Na-SO₄	SRC GSC pre1964
	SE		18	47	24		198580.6 5		10/0/1000	51.2 48.2	100 131	57 82	573 302	12	0.17	0.03		552 570	1090 852	28				7.31	2320	1977	665	467	26.73	27.87		Ca/Mg/Na-SO ₄	Husky/SRC
Walter Campbell	SE NE	1	19 12	47 48	24 24		198967.1 5 207285.7 5	8888458 895545	10/9/1996	48.∠ 64	67	46	438	10	1.4	0.00	27	440	712	136				8.4		1876	356	406	26.44	26.77		Na-SO₄	ARDA 1964-65
Brent/Art Pinder	NW	8	12	49	24		199919.6 5		10/9/1996	22.9	107	39	428	7.4	0.1	0.04		669	766	56	9.48			7.47	2570	2082	428	549	27.36	28.65	-2.30	Na-SO₄	Husky/SRC
Dienzyste i moor	NE	-	10	50	24	3 2	205231.2 5	5915148		50.3	183	62	208	9	6.2			687	565	16				7.71		1730	712	563	23.51	23.47		Ca/Mg-HCO ₃ /SO ₄	ARDA 1964-65
Ted Klassen	SW	4	4	45	25	31	191413.5 5	6864639	11/29/1984		124	68	676	9.8	3.6	0.03		527	1480	116	0.005	0.01	0.27	7.59 7.36	3480 3380	3005 2890	586 961	432 396	41.44 41.59	42.74 41.40		Na-SO₄ Na-SO₄	SRC SRC
Norman Hallet	SE	8	23	45	25	_	196408.9 5		1/11/1996	118.9	213 269	104 108	508 438	12 12	5.6 0.98	0.11 0.31		483 550	1440 1540	124 74	0.01 0.03	0.09		7.30	3320	2992	1120	451	41.53	43.17		Ca/Mg-SO ₄ /Cl	SRC
Grant Doolittle Gordon Goodfellow	NW NE	4 16	24 10	45 46	25 25	-	196599.9 5 195260.8 5		11/26/1986 11/26/1986		114	46	451	9.3	2	0.03		644	905	44	0.03	0.06		7.58	2570	2215	473	528	29.33	30.64		Na-SO₄	SRC
Goldon Goodleilow	NW	10	21	47	25	3		5890051		37.5	29	20	767					937	980	30						2762	155	755	36.46	36.61		Na-SO₄	GSC pre1964
Bruce Hardy	NE	9	3	49	25	3 1	195064.2 5	5904331	11/4/1996	71.6	65	54	477	7.8	0.82	0.05		688	682	41				7.91	2430	2016	385	564	28.64	26.63		Na-SO₄	Husky/SRC
Darry/Ed Winter	SE	8	8	49	25	3 1	191874.7 5	5905550	10/9/1996	54.9	138	61	160	6.4	0.1	0.3		620	459	11	1.76			7.86	1750	1458	596	508 485	19.03	20.06		Ca/Mg-HCO ₃ /SO ₄	Husky/SRC GSC pre1964
	NE		14	49	25	3		5907577		30.5	186	87	322		0.0	0.00		602 625	939 522	43 38	7.83			7.72	1990	2178 1655	822 391	465 513	30.45 22.06	30.63 22.31		Ca/Mg-SO₄ Na-HCO₃/SO₄	Husky/SRC
Frank Turvey	NE	16	30	49	25		190630.9 5		10/9/1996 10/9/1996	47.9 49	92 81	39 34	324 355	6.6 8.5	0.2	0.08 0.05		625	508		12.4			7.74	1980	1655	343	512	22.50	22.39		Na-HCO ₃ /SO₄	Husky/SRC
Frank Turvey	SE NW	16	31 26	49 41	25 26	-	190358.5 5 186311.4 5	5912042 5833946	11/26/1986		6	1	404	2	0.38	0.01	79	572	1	239	0.03	1.44		8.59	1750	1306	172	492	18.01	18.82	-2.20	Na-HCO ₃	SRC
Viola Bowey Kerry Wells	SE	4	16	45	26	-	182069.9 5		11/2/1984	92	22	20	818	5.7	2.8	0.052		790	1230	81	0.005	0.06	0.16	7.91	3430	2970	648	142	38.47	40.85	-3.00	Na-SO₄	SRC
Kerry Wells	SE	4	16	45	26	3	182069.9 5	5868495	4/13/2000	96.6	22	19	844	3.9	2.1	0.058	25	750	1140	106	0.04			8.59	3610	2910	657	133	39.48	39.85		Na-SO₄	SWC
Rawlyn Thiessen	NW	2	16	46	26		183332.6 5		11/2/1986	89.3	88	34	559	8.7	12	0.15		644 560	1080	12 9	0.03	0.01	0.14	7.7 7.7	2990	2438 1559	384 860	528 466	31.73 21.81	33.39 21.85		Na-SO₄ Ca/Mg-SO₄	SRC ARDA 1964-65
	SW		24	47	26		186441.6 5		4/40/4000	30.5	183	98 42	99 265	12	9.6 1.2	0.054		568 601	590 648	9 29	0.06			7.63	2190	1786	405	400	21.01	24.16		Na-SO ₄	SRC
Paul Mihalich		7	30	47	26 26	-	179013.5 5 180289.2 5	5891879	1/10/1996	22.6 45.7	91 65	43 38	365 960	0 11	1.2	0.034		642	1800	21	0.00			8.1	2.00	3537	319	546	48.41	48.59		Na-SO4	ARDA 1964-65
	NW SW		5 5	48 48	26 26		180234.9 5			50.9	82	47	655	11	3.7			555	1290	24				7.8		2664	398	455	36.73	36.63	0.12	Na-SO₄	ARDA 1964-65
Guy Pierce	NE	5	15	49	26			5907875	1/10/1996		87	46	402	5.8	0.31	0.037		631	692	34	1.20			7.79	2180	1899	407	517	25.76	25.73	0.07	Na-SO₄	SRC
Tim McDougall	SW	13	23	49	26	3	185839.7 5	5910001	1/11/1996	40.2	121	59	367	7.8	4.4	0.092		715	725	13	0.02			7.43	2300	2012	546	586	27.06	27.18		Na-SO₄	SRC
Sam Rolheiser	SW	2	28	49	26	3	183429.7 5	5910566	1/10/1996	23.5	190	84	226	8.8	1.4	0.028		692	718	8	0.02			7.27	2100	1928	821	567	26.45	26.52		Ca/Mg-SO₄	SRC
Norcen Energy Resources WSW B1-19		1	19	33	27	3	168602 5	5754157	7/25/1995		20	4	1010	5		0.05	19	278	3.05	1700 1520	13.9		0.5 0.5	8.79 8.4	5700 5880	3039 3059	66 55	228 296	45.39 50.86	53.46 40.38		Na-Cl Na-Cl	AGRA AGRA
Norcen Energy Resources WSW B2-19	05	2	19	33	27	3 3	168195 5		8/28/1995	235.1 87.5	15.9 A	3.7 1	1140 385	6.8 4	0.2	<0.05	10 44	361 803	1.2 142	1520	12.4		0.5	8.43	3880	1392	14	732	17.13	17.84		Na-HCO ₃	ARDA 1964-65
Arlayne Dairy	SE SE	8	6	44 44	27 27		169104.9 5 169418.2 5		11/1/1984			1	362	2.2	12	0.09	29	738	136	12	4.43	0.46	0.09	8.31	1500	1270	17	653	16.14	16.32	-0.58	Na-HCO3	SRC
Arlayne Dairy	SE	8	6	44	27		169418.2		10/23/1970		6.4	1	383	4	0.2	0	22	783	195	12	1	· 1	0	8.35	1490	1407	20	678	17.16	18.01	-2.41	Na-HCO ₃	SRC
Thomas/James Gray	NE	14	16	44	27	3	172154.2 5	5860845	11/26/1986	63.7	39	25	310	6.2	0.25	0.01		579	357	56	0.02	0.06		7.82	1690	1373	204	474	17.65	18.50		Na-HCO ₃ /SO ₄	SRC
Town of Marsden Well No.6	NW	13	35	44	27		175126.4		3/31/1987	73.5	99	95	215		6.2	< 0.01		653	580 570	4				7.5 7.6		1646 1633	639 616	535 537	22.11 21.69	22.89 22.77		Ca/Mg-SO₄ Ca/Mg-SO₄	PFRA PFRA
Town of Marsden Well No.6	NW	13	35	44	27		175126.4		4/1/1987	73.5	93 140	93	216		1.7 4.3	<0.01 0.01		655 625	570 675	14				7.6		1748	707	513		24.69		Ca/Mg-SO₄	PFRA
Town of Marsden Well No.5	SW	4	2	45 45	27 27		175139.2 ! 175139.2 !	5865707	4/15/1981 4/15/1981	68.2 68.2	140	83 86	205 225		4.3 2.9	<0.01		654	720	14				7.5		1854	742	536	24.60	26.10		Ca/Mg-SO₄	PFRA
Town of Marsden Well No.5 Neil Tindal	SW SW	4 5	2 25	45 45	27		177228.9		1/11/1985		63	41	640	8.1	2.9	0.07		666	1140	44	0.04	0.03	0.56	7.73	3060	2606	323	546	34.56	35.92	-1.93	Na-SO ₄	SRC
David Cunningham	sw	8	27	45	27	-	175195.8		11/29/1984		80	36	739	7.4	4.4	0.62		615	1360	26	0.03	0.01	0.12	7.6	3590	2869	346	504	39.29	39.14		Na-SO₄	SRC
William Findley	NW	16	9.	47	27	3	172524.5	5888357	10/2/1996	38.4	82	49	558	6.1	0.04	0.01	38		983	12	1.50			8.20	2930	2325	407	488	32.55	31.85		Na-SO₄	Husky/SRC
Gerald Lamb	NW	6	10	47	27		173286.3		1/11/1996		37	18	620	5.5	0.32	0.003		619	928 871	15 14	0.06 0.50			8.00 8.18	2730 2800	2243 2167	167 156	508 480	30.44 29.87	29.89 29.09		Na-SO₄ Na-SO₄	SRC Husky/SRC
Gerald Lamb	NW	6	10	47	27		173286.3		10/2/1996		31 86	19 50	612 43	5.5	0.16	0.01	29	585 546	66	5	0.50			0.10	2000	796	420	440	10.28			Ca/Mg-HCO ₃	GSC pre1964
	SE SW		10 15	47 47	27 27		173979.4 173273.3			39.6 29	29	11	592					589	877	11						2109	118	475	28.10			Na-SO₄	GSC pre1964
Blair Saretzky/Bill Sinfield	SW		18	47	27		168375.9		10/2/1996		89	50	390	7.3	0.08	0.02		658	709	9	13.3			7.81	2350	1926	429	540	25.71	26.01	-0.59	Na-SO₄	Husky/SRC
J.W. Anderson	0	6	30	47	27		168818.1		1/10/1996	49.7	132	66	210	7.1	2	0.013		698	480	7	0.08			7.43	1800	1602	602	572				Ca/Mg-HCO ₃	SRC
Murray Martin	SE	8	33	47	27	3	173100.7	5893806	1/10/1996	68.9	14	7.1	330	2.9	0.17	0.008		592	261	7	0.03			8.07	1470	1214	64	485	15.71	15.33		Na-HCO ₃	SRC
Bill Noyes	sw	1	15	48	27	3	174830	5898149	10/2/1996		16	7.5	429	3.6	0.05	<0.01		580	474	55	4.30			7.92	2000	1569	71 04	476 320	20.17	21.00		Na-SO₄/CI Na-Ci	Husky/SRC
Petro Canada Cactus LK Prod Well		16	27	35	28		163298.7		7/21/1985		28.1	5.7	1320	4.3	0.1			390 359	2 1.5	1850 1950	0.05			8.1 8.2	6370 6320	3600 3704	94 79	320 294	59.40 60.88	58.62 60.93	0.66 -0.04	Na-Cl Na-Cl	CGL Golder
Murphy Oil WSW-13D16	K 1144	16	19	36	28		158958.8		11/10/1996		22.2 6.3	5.8 1.4	1360 425	5.3 2.5	0.03	0.01	38		510	1950	3.54	0.25		8.3	1810	1456	21	442	18.98	19.73		Na-SO4	SRC
Hen Lea Farms Kenneth/J Waring	NW SW	3 2	2 12	45 46	28 28		165786.1 168589.4				108	66	167	6.6	2.3	0.04		615	392	5	0.04	0.01	0.24	7.47	1630	1362	528	504	18.25	18.40	-0.39	Ca/Mg-HCO ₃	SRC
nennenvo manny	NW	2	26	46	28			5883610		51.8	64	20						509	800	221						2218	242	410	31.11	31.23		Na-SO ₄	GSC pre1964
Charles Raymond Knowlson	NE	8	2	47	28	3	166034.1	5886389	10/2/1996		136	57	32	7.6	0.04	0.73		522	256	6.5				7.35	1163	1018	575	428	13.06	14.07		Ca/Mg-HCO ₃	Husky/SRC
	SE		36	47	28			5894062		36	122	59	98					509 496	328 595	8 37						1124 1611	547 72	410 400	15.21 21.45			Ca/Mg-HCO₃ Na-SO₄	GSC pre1964 GSC pre1964
	NW	-	13	48	28		167475.1		10/0/1000	35.7	14	9 38	460 279	4.2	0.08	0.84		496 571	595 409	37 65	1.89			7.64	1790	1455	372	400 468	19.66			Na-HCO ₃ /SO ₄	Husky/SRC
Walter Tarapacki	SW	4	23	50	28	3	166935.4	S919825	10/9/1996	51.2	86	30	219	4.2	0.00	0.04		5,1														J 4	-

TH = Total Hardness

TA = Total Alkalinity

Table 4 Drillstem test water quality data for the Ribstone Creek aquifer

	D Se	~ 1	[n	Rg	м	Extende	d Zone 13	DST #	QUALITY	COMMENTS	TOP	Bottom FORMATION	Ca	Mg	Na	Na+K	κ	Fe	CO3	HCO3	SO4	CI	pН	Sum Water	Temp	SP.Gr Comments
			• •	ng		Easting	Northing				m	m	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L. Type	С	
- 1	1 3	3 :	32	22	3	224440.39	5745091.7	2	GOOD	Bottom	229.8	235.9 RIBSTONE CK.	34	2	1194			1	19	381	64	1617	8.4	3312 Na-Cl	23.3	1.001 Filtrate recovered from sample containing approx. 5% sediment
			28	23	3	210098.70	5706229.49	3	GOOD	Bottom	210.3	217 RIBSTONE CK.	41	56	1780			1	10	366	132	2658	8.5	5044 Na-Cl		1.0035
-			22	24	3	203159.45	5640063.45	1	GOOD	10' above tool	216.4	231.6 RIBSTONE CK.	26	10		1019		1		537	13	1323	8.25	2929 Na-Cl		1.003
1	1 2	-	36	24	3	202193.48	5783705.64	2	GOOD	Top of Tool	228.6	237.7 RIBSTONE CK.	273	6		1404		1	29	39	40	2580	8.9	4372 Na-Cl		1.0037
	· –		37	24	3	200931.58	5789865.69	2	GOOD	Top of Tool	182.9	191.1 RIBSTONE CK.	18	8	1003		9	1		366	135	1298	8.2	2838 Na-Cl	23	1 Filtrate recovered from muddy water containing trace hydrocarbons
1	03	5	29	25	3	189166.83	5718014.59	2	GOOD	60' above test tool	233.5	239.3 RIBSTONE CK.	37	9		1779			50	285	15	2600	8.7	4775 Na-Cl		1.006 Sample appears to be a mud filtrate contaminated with fresh water
1	03		29	25	3	189166.83	5718014.59	2	GOOD	Just above tool	233.5	239.3 RIBSTONE CK.	30	8		1735			67	260	31	2500	3.9	4631 Na-Cl	.	1.006 Sample appears to be a mud filtrate contaminated with fresh water
1	0 2	2	30	25	3	192812.57	5724287.62	2	GOOD	Bottom	216.1	225.9 RIBSTONE CK.	16	15	1425		5	1		598	184	1875	8.2	4119 Na-Cl	24	0.998 Filtrate recovered from sample containing approx. 50% sediment
	5 3	-	36	25	3	187513.87	5784194.29	4	GOOD	Тор	191.1	199 RIBSTONE CK.	12	7		891		1	54	488	357	805	8.6	2615 Na-Cl	24	0.998 Filtrate recovered from watery mud
1	2 2	7	3	26	3	177349.40	5463782.1	3	GOOD	Top of Tool	424.6	440.4 RIBSTONE CK.	8	8	1983			1		776	54	2605	8.2	5435 Na-Cl	25.5	1.008 Filtrate recovered from water containing approx. 5% sediment
1	22	7	3	26	3	177349.40	5463782.1	8	GOOD	Bottom	431.6	435.9 RIBSTONE CK.	17	8	1891			1	29	500	16	2634	8.4	5096 Na-Cl	24.4	1.008 Filtrate rec'd fr water cont thin layer of sediment
	. 3	5	3	26	3	179029.19	5464497.1	1	GOOD	Bottom hole sampler	449.8	465 RIBSTONE CK.	58	8	1850		21	1	24	317	126	2540	8.25	4945 Na-Cl	25	1.001
1	0 2	-	4	26	3	181896.56	5471629.08	1	GOOD	Top of Fluid	560.8	614.2 RIBSTONE CK.	10	1	3476				1	6408	1500	550		11946 Na-Cl	25	1.017 Filtrate recovered from mud
	7 2	7	30	26	3	183148.18	5726099.45	2	GOOD	Middle	229	234 RIBSTONE CK.	9	3	850		38			362	93	1087	7.8	2442 Na-Cl		1.0036
1	0 2	3	36	26	3	184587.50	5783162.11	6	GOOD	At tool	199.9	205.1 RIBSTONE CK.	20	7	1114		1	1		451	245	1488	8	3327 Na-Cl	25	1 Filtrate recovered from sample containing approx. 50% sediment
1	0 1	2	37	26	3	186625.30	5789529.68	2	GOOD	Bottom hole sampler	210	215 RIBSTONE CK.	16	3	1000		40	2		415	22	1220	7.68	2718 Na-Cl	25	0.997
	5 :	_	39	26	3	181847.79	5807339.54	1	GOOD	Mud Tank	171.9	182.9 RIBSTONE CK.	28	10	1099		31	1	336	1202	463	393	9.3	3563 Na-Cl	23	0.997 Filtrate recovered from muddy water
	5	, 1	39	26	3	181847.79	5807339.54	1	GOOD	Middle	171.9	182.9 RIBSTONE CK.	8	8	1122		31			1068	303	828	8.9	3368 Na-Cl	24	0.997 Filtrate recovered from muddy water
-	1 1	8	31	27	3	166447.63	5733990.38	2	GOOD	Тор	230.1	235.9 RIBSTONE CK.	14	24	1460		1	1		360	127	2198	8.3	4185 Na-Cl	23	1 Filtrate recovered from sample containing approx. 70% sediment
	R 2	8	31	27	3	170723.44	5736550.59	1	GOOD	Bottom hole sampler	205	211.1 RIBSTONE CK.	7		1600		9		24	374	69	2144	8.8	4227 Na-Cl		0.9994
	7 3	4	32	27	3	172688.51	5747795.17	5	GOOD	Bottom	242.9	253.9 RIBSTONE CK.	14		869		3	1	60	586	38	965	8.9	2536 Na-Cl	24	0.998 Filtrate recovered from muddy water
	71	6	2	28	3	158021.35	5451552.11	1	GOOD	Bottom hole sampler	330	331 RIBSTONE CK.	621	90	2140		12100	305		3	1000	13900		30159 K-CI	25	1.02
	n s	2	2	28	3	156725.22	5456909.55	3	GOOD	Bottom	340.5	345 RIBSTONE CK.	65	14	1520		25			596	2550	1740	7.61	6510 Na-SO₄	25	0.992
	0 3	2	2	28	3	156725.22	5456909.55	1	GOOD	Bottom	342	346.5 RIBSTONE CK.	69	19	1740		28			442	2810	1670	8.01	6778 Na-SO₄	25	0.997
	1 1	- 0	18	28	3	156647.67	5609620.75	1	GOOD	Тор	228.6	239.6 RIBSTONE CK.	20	1		676			48		86	955	9.4	1786 Na-Cl	24	1.006 Filtrate recovered from sample containing approx. 50% sediment
	4 3	1	21	28	3	159884.61	5639063.4		GOOD	Bottom hole sampler	203	219 RIBSTONE CK.	373	0.5	217		55.1	0.1	0	30.5	1290	110	7.92	2076 Ca-SO₄	25	0.994 Opening pressure was nil and the recovery was 11 of water.
	- ·		34	28	å	166942.96	5759949.91		GOOD	Top of Tool	259.1	265.2 RIBSTONE CK.	16	9	1323			1	54	433	91	1713	8.9	3640 Na-Cl	22.2	1.002 Filtrate recovered from sample containing trace sediment
		' `	20	28	3	162480.26	5800870.15		GOOD	Bottom	167.6	176.8 RIBSTONE CK.	16	4	1289			1	18	390	109	1700	8.6	3527 Na-Cl	26.7	1.003 Filtrate recovered from sample with thin layer of sediment
	11 14 -	3 2	38	28	3	167351.88	5800537.86		GOOD	Bottom hole sampler	198	203 RIBSTONE CK.	4	2	380		7		12	274	133	399	8.5	1211 Na-Cl		0.9974 NaCI EQUIV. 949
			40	20 28	3	160197.00	5821496.00		GOOD	Bottom	137	171 RIBSTONE CK.	4	1	707		17		99	383	113	765	9.23	2089 Na-CI	25	0.999
	4 10	i e	+	20	3	153479.58	5457111.21		GOOD	Bottom hole sampler	312.5	316.6 RIBSTONE CK.	328	73	2400		4880			355	106	8520	7.92	16662 Na-Cl	25	1.01
		ю	∠ 10	29 29	3	150560.80	5610023.92		GOOD	Top	224	231 RIBSTONE CK.	48	32	2827		1134	1	60	885	2111	3525	8.9	10623 Na-Cl	24	1.004 Filtrate recovered from watery mud
	10 2		10	29	3	100000.00	5010023.92		0000	· ~																

Source: Saskatchewan Energy and Mines

.

Year	Jan m ³	Feb m ³	Mar m ³	Apr m ³	May m ³	Jun m ³	Jul m ³	Aug m ³	Sep m ³	Oct m ³	Nov m ³	Dec m ³	Annual m ³
	m	m	m	m	m	m	m	m	m	m	m	m	m
1985	2540	2480	2890	4010	3170	3090	4370	3900	2540	2960	2460	2190	36600
1986	2130	2450	2440	2490	2630	3270	3380	2840	2990	2590	2470	2140	31820
1988	2269	2121	2422	3520	4663	4610	3025	2425	2506	1880	1999	1930	33370
1989	2017	2071	2247	2132	3344	2557	3255	0	2261	2317	1776	2196	26173
1990	1718	1469	1653	1865	11625	3373	2851	2316	2544	3585	1677	1987	36663
1991	2468	2008	2085	2600	2476	3256	3419	4789	3252	2758	2296	2248	33655
1992	2254	1945	2200	2274	3049	4099	3915	3814	2705	3203	2359	2613	34430
1993	2416	2456	2317	2282	3341	3279	2139	2560	3203	2705	2055	2037	30790
1994	2076	1765	2063	2004	3257	2823	3304	3390	3831	2694	2283	2362	31852
1995	2300	1993	2290	2359	3771	4020	3393	2767	3310	3190	2087	2239	33719
1996	2415	2385	2469	2375	2599	2792	2368	3702	2529	2278	2145	2196	30253
1997	2395	2105	2678	2434	2350	2714	3890	3167	2353	2193	2038	3046	31363
1998	2232	1927	2272	2651	3951	3932	3315	4761	3598	2683	2933	2502	36757
1999	2414	2272	2225	2516	2891	3727	2673	2628	2847	3130	2372	2520	32215
2000	2522	2660	2416	2692	3507	3307	3033	2968	2706	2965	2715	2980	34471
										1	Annual av	erage	32942

Table 6 Reported water comsumption data for the Town of Marsden

Source: Saskatchewan Water Corporation, February, 2002

LSD	Sec	Тwp	Rge	м	UTM Coordinates Easting Northing	Year	january	february	march	april	may	june	july	august	september	october	november	december
6	14	31	22	3	Ext Zone 13 Nad83 221984.2 5730216.5	1972	95.4	0	0	0	0	0	0	0	0	0	0	0
5	4	35	26	3	179554.9 5768474.2	1990											67	190
						1991	0	0	0	0	103	8750	7450	3150	1133	3707	5100	9223
						1992	4509	5260	2529.7	3727	7193	9320	9318	8781	7601	8399	7748	7322
						1993	7654	6860	7283	6918	6952	2268	335	81	111	2777.5	241	8935
						1994	5008	7062	6160	9584	9641	8319	10156	8976	9218	9554	8275	7271
						1995	8936	8148	8685	7748	8318.3	7383	8062	7132	7249	8148	7679	7698
						1996	8293	8029	8746	7832	6517	7575	8838	9109	9160	9091	8141	5991
						1997	6155	8597	8327	6496	8720	8220	9042	7881	6857	7314	8723	9109
						1998	8887	8064.9	8558.9	8546.9	8052.6	7841.1	8319.6	7600.1	7767.6	8523	8092.8	8420.6
						1999	7824	7394.6	8197.5	8165.8	8771.4	7785.7	8414.3	7614.9	8481.4	9101.6	8659.1	8887.2
						2000 2001	8846.2 8318.8	8074.5 7935.7	8725.7 6616.2	7695.4 7494.7	8900.9 8335.9	7961 8563.6	7748.6 8505.1	7692.4 8548.2	8599.2 8416	8902.5	7551.2	8655.1
11	5	35	26	3	178355.9 5768954.2	1989										745	0	0
	Ŭ	00	20	Ū		1990	0	2911.5	1138	36	0	0	0	0	0	67	0	0
						1991	0	0	0	0	9974	6763.5	15424.2	4836.3	3787	7288	14668	7156
						1992	3267	6821	15687.9	10739	2601	5793.8	11298	6611.5	8461.3	4798	3774.5	1063
						1993	2406	3607	3204	1490	2770	8863	9356	8906	9206	7069	9998	1182
						1994	4176	1617	3671	615	587	760	530	737	1086	1116	1274	1620
						1995	61	0	202	594	498	425	96	0	176	0	386	298
						1996	28.5	0	190	0	0	577	1196	1939	1725	1781	1166	1359
						1997	1428	1550	1887	958	839	498	938	1105	1445	1391	1459	1059
						1998	2214	2765.4	2078.3	999.4	1781.1	1549.8	1438.4	1624.4	1471.7	1439.4	896	524.1
						1999	484.4	736.8	1810.8	877.2	840.3	588	1082.3	5681.9	5800.1	4801.3	2372.9	3631.5
						2000	3791.8	3777.9	2702.3	6181	3854.6	5998	3815.2	3734.3	4081.4	4015.5	5205.1	4733.4
						2001	5558.3	4485.4	10286.6	9226	8136.1	7329.9	8466.1	8002.6	7396.2			
1	9	35	26	3	180856.5 5769600.2	1989			548.2									
12	34	31	27	3	171264.7 5738546.4	1973		1214.9	2938.1	4368	3722.5	3486.9	4720.9	5179.4	5522.2	4081.8	4390.2	3275.8
						1974	4702.6	4551.6	4360.2	4875.8	5740	2023.8	2244.8	932.4	0	0	0	0
						1975	0	0	0	0	2713.2	481.6	1013.5	0	0	0	914.1	0
						1976	0	0	0	230.5	2364.4	0	0	0		4359.4	3952.4	0
						1977	0	0	0	0	0	1012.1	0	134.7		250.6	0	0
						1978	0	0	0	52.3	967.9	235.8	0	0	470.9	0	0	0
4	3	32	27	3	171318.1 5739352.7	1970								1801.4	5592.3	5664.6	5665.1	5737.7
•	-			-		1971		5967.3	5871.4	4327	4962.4	4236.2	4404.2	2338.1	1517.3	203	1247.8	4844.3
						1972			4652.9	3907.1	2930.6	2324.3	1461.5	1497.6	1171.5	1093.8	329.4	618.8
						1973			3591	3615	3699.6	3606.3	5115.8	4088		4385.5	3735.2	493.6
						1974	0	1085	3534.6	4199.8	5019.6	1729.7	1469	3179.1	442.8	0	0	0
						1978	C	0	0	0	0	0	0	0		0	81.9	0
						1993				2611	5179	5048	4783	4903		5345	3635	4575
						1994	4813	4374	4059	4817	4346	3635	4290	4292	3772	4795	2907	3801

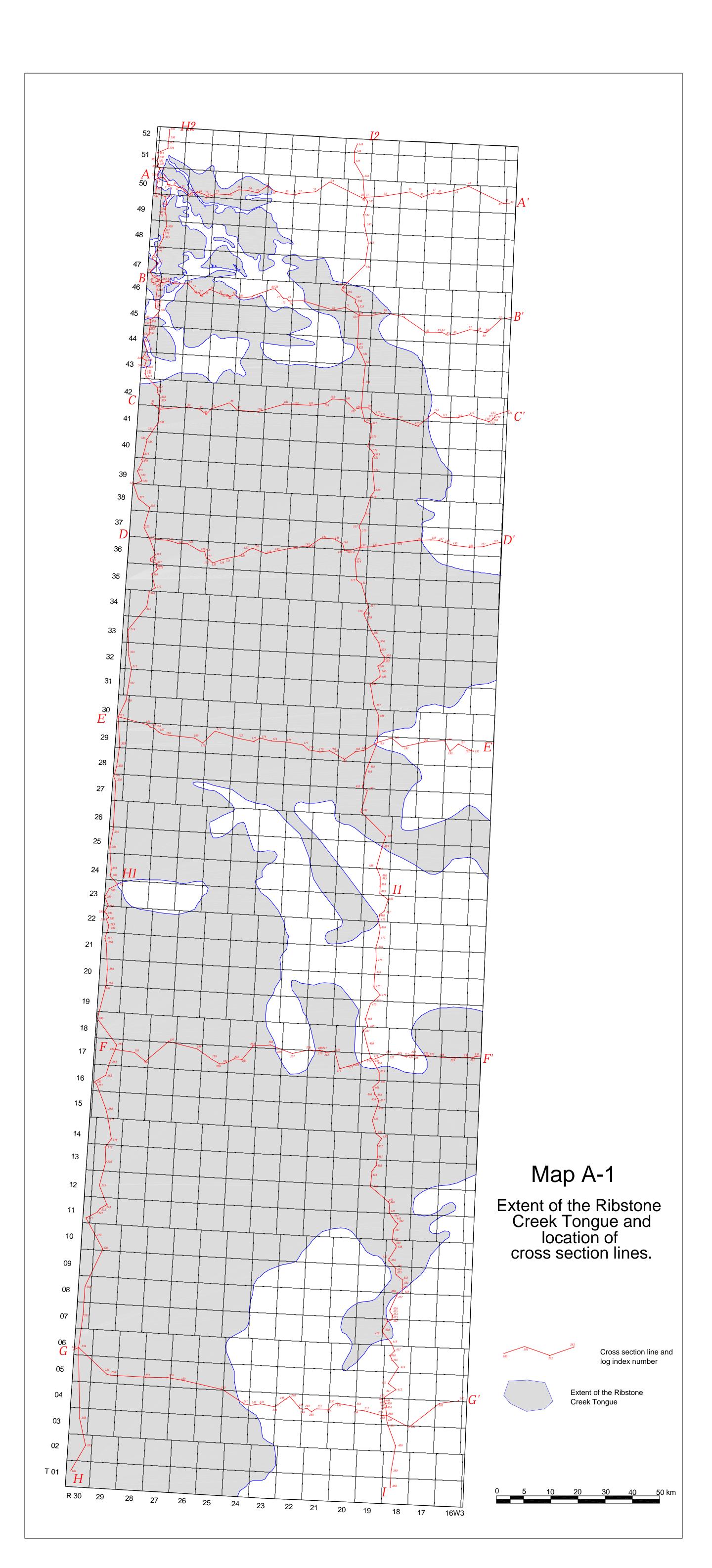
Total		Hours	Rate
m³	m ³	Pumped	m³/day
95.4	95.4	480	4.8
257	257		
38616	38873		
81707.7	120580.7		
50415.5	170996.2		
99224	270220.2		
95186.3	365406.5		
97322	462728.5		
95441	558169.5		
98675.1	656844.6		
99297.5	756142.1		
99352.7	855494.8		
72734.2	928229	78330	284
12104.2	ULULLU	,	204
745	745		
4152.5	4897.5		
69897	74794.5		
80916	155710.5		
68057	223767.5		
17789	241556.5		
2736	244292.5		
9961.5	254254		
14557	268811		
18782	287593		
28707.5	316300.5		
51890.5	368191		
68887.2	437078.2	48990	214
548.2	548.2	96	137
42900.7	42900.7		
29431.2	72331.9		
5122.4	77454.3		
12810.2	90264.5		
1692.6	91957.1		
1726.9	93684	19584	115
24461.1	24461.1		
46625.3	71086.4		
29901.8	100988.2		
40766.5	141754.7		
20659.6	162414.3		
81.9	162496.2		
39963	202459.2		
49901	252360.2		

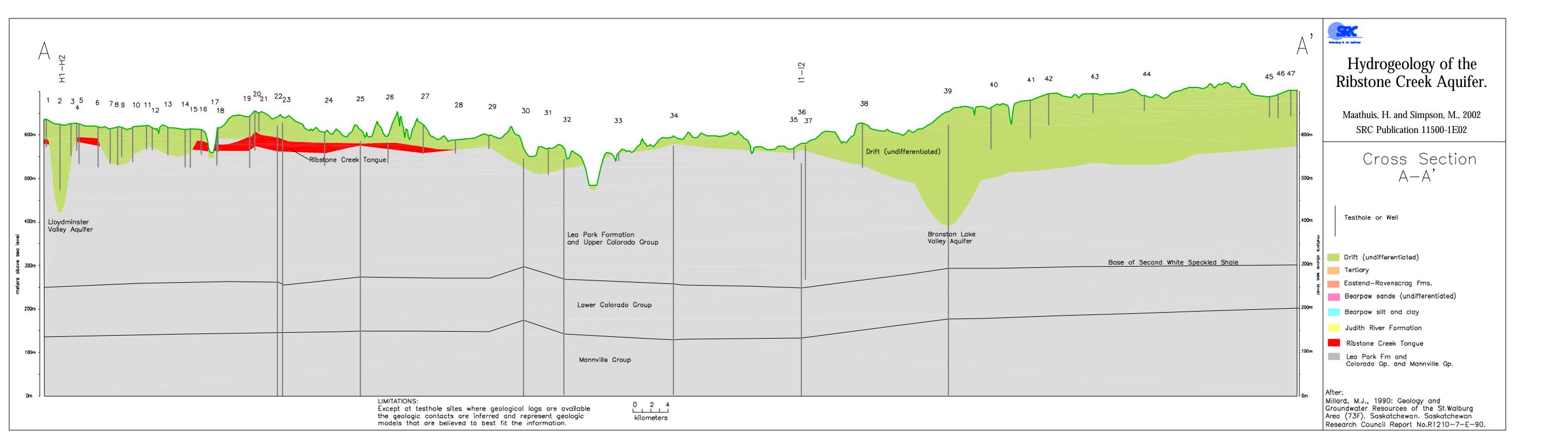
LSD	Sec	Тwp	Rge	м	UTM Coordinates Easting Northing Ext Zone 13 Nad83	Year	january	february	march	april	may	june	july	august	september	october	november	december
						1995	3177.8	2475.9	3146.2	6742	9803	10886	11750	10233	11991.1	10516	8231.8	4973
						1996	4824	3965.1	3907	2004.6	1242.3	3278.4	5780.7	3271.1	2185.1	0	0	0
2	4	32	27	3	170500.7 5739406.1	1973										3981.7	4013.5	3891
						1974	5151.7	3295.7	2818.7	4545.2	4086.1	1200.8	2937.2	2338.6	1019.9	428.8	109.2	591.1
						1975	2327	3886.6	3690.4	3776.4	973.6	1862.3	2085.7	778.2	1313.5	1181.7	1025.1	236.1
						1976	0	63.1	979.5	2962.8	3356.7	1728.4	2096.9	897.3	1473.4	3468.8	294.7	0
						1977	0	0	0	0	2461.5	2576.1	0	3168.6	2701.5	1244.2	3227.1	3858.8
						1978	2771.3	3133.3	2292.5	3211.2	2561.2	2291.7	2466.4	1598.1	2206.6	918.7	625	0
						1981	0	0	0	0	0	0	0	12	0	30	0	0
						1982	0	0	0	0	0	0	0	0	20	0	0	0
1	19	33	27	3	168602.4 5754157.4	1996		3898.3	3898.3	2029.5	1791.9	1197	654.3	633.6	1311.3	1005.6	866.2	3630.4
						1997	3090.3	766.6	1482.9	636.5	205.2	63.6	156.9	267	1261.6	20	442.7	452.6
						1998	31.2	209.8	485.4	753.4	1673.2	1374.5	1150.1	974.7	331.3	399.4	520. 9	988.2
						1999	1560.6	1535.7	2321	2622.4	2496.9	3043.5	3303	1570.7	490.3	2432.7	2236.9	1932
						2000	2395.1	1734.8	1746.6	610.8	762.9	1339.3	1589.8	1506.7	710.3	0	0	0
						2001	0	0	0	0	157	816	668	215	68			
2	19	33	27	3	168194.7 5754184.1	1996		2873.9	2873.9	4231.8	4573.8	3266.1	1375.2	1743.3	3084.3	3161.2	2082.5	1116
						1997	217.6	343.4	3.4	6.8	0	10.2	28.9	11.1	131.8	0	69.7	5.8
						1998	0	19.4	5.7	9.9	15.2	21.1	10.4	24.5	0	0	43.1	0
						1999	0	0	0	0	11.5	0	0	0	0	0	0	0
						2001	0	0	0	0	903	2342	2263.8	1889	1184			
12	32	33	27	3	169277.3 5758168.6	2000								1432	5073	9782	11754	12601
						2001	10749	5429	6416	5030	3857	3946	2289	2334	3212	•		
11	25	33	27	3	176093.7 5756100.5	1988							823	207	0	0	0	1939
				•		1989	2680	2466	2656	2715	4798	5988	6034	6006	4882	4882	4354	4570.9
						1990	5320	1476	5657	2636	5336	4516	3269	2336	2573	5426	3393	4732
						1991	3594	2928	2080	65	0	0	0	0	0	0	0	0
						1994	0	0	0	0	3367	793	3856	4164	780	3693	0	0
						1995	0	334	0	0	0	2743	991	0	0	0	0	0
						1996	2084	3788	3787	3611	3645	3021	4334	3679	2384	2506	1825	1310
						1997	1743.7	0	0	496	208	0	34	0	0	0	0	0
						1998	0	0	0	0	772	4547	348	0	0	0	0	0
						1999	0	0	0	0	0	0	0	0	0			4343
						2000	3611.5	4233.2	3045.7	2894.3	1500	2791.5	1941.8	14051.1	158.2	1595	2019	291
1	35	33	28	3	165562.9 5757608.4	1988						1091	19341.7	18149.3	21077.6	22936.8	22815.2	27509.7
						1989	18413.1	20472.5	21090.6	25507.2	21925.1	15330.7	14881.4	18861.4	16228.7	22320.9	18160.8	19481.5
						1990	16842.6	12868	13635	14094	14800	16191	17473	19391	17314	15898	15783	18019
						1991	14266	14990	16666	12877	10100	13495	14640	14679	13529	14751	14927	14725
						1992	13092	14338	16842	14930	15521	10560	9384	13312	14390	11725	7575	13922
						1993	9830	5080.9	5013.4	8760	11918.5	12761.4	8169.4	10150.7	9818.2	12030.2	9238.4	16156.9

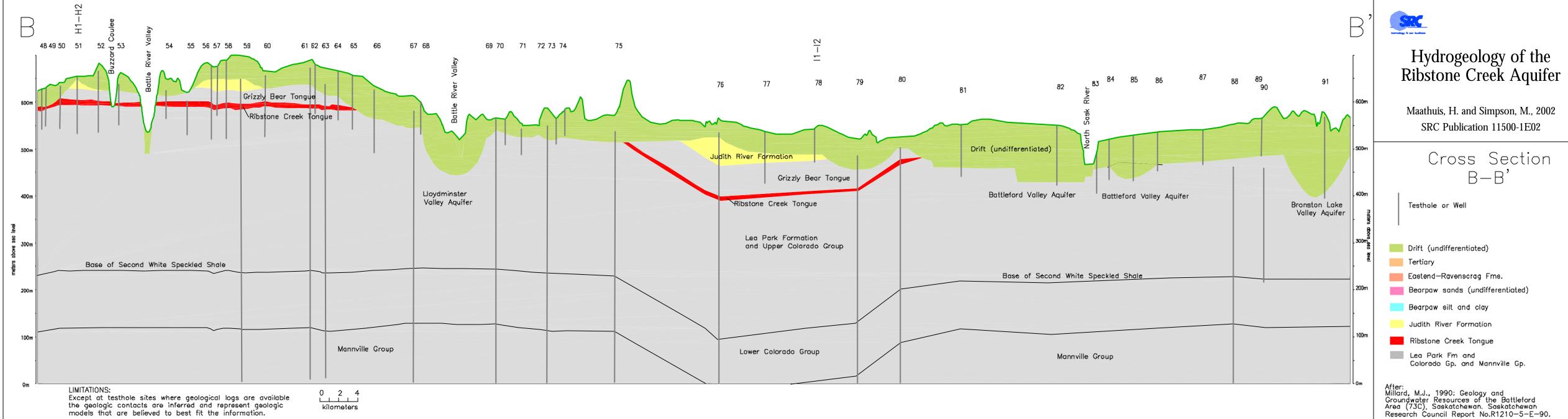
Total	Cumulative	Hours	Rate
m³	m ³	Pumped	m³/day
93925.8	346286		
30458.3	376744.3	64152	141
11886.2	11886.2		
28523	40409.2		
23136.6	63545.8		
17321.6	80867.4		
19237.8	100105.2		
24076	124181.2		
42	124223.2		
20	124243.2	29256	102
20916.4	20916.4		
8845.9	29762.3		
8892.1	38654.4		
25545.7	64200.1		
12396.3	76596.4		
1924	78520.4	12781	147
30382	30382		
828.7	31210.7		
149.3	31360		
11.5	31371.5		
8581.8	39953.3	8514	113
40642	40642		
43262	83904	8920	226
2969	2969		
52031.9	55000.9		
46670	101670.9		
8667	110337.9		
16653	126990.9		
4068	131058.9		
35974	167032.9		
2481.7	169514.6		
5667	175181.6		
4343	179524.6		
38132.3	217656.9	40789	128
132921.3	132921.3		
232673.9	365595.2		
192308.6	557903.8		
169645	727548.8		
155591	883139.8		
118928	1002067.8		

LSD	Sec	Twp	Rge	м	UTM Coordinates Easting Northing	Year	january	february	march	april	may	june	july	august	september	october	november	december
			-		Ext Zone 13 Nad83													
						1994	5326.3	6783.4	10532.2	20869	21394	18721	14672	18617.2	17980	15635	12875	17015
						1995	15005	17340	22131	21885	24824.2	1768 1	12593	23533.5	21559	19932	19784.8	20706.9
						1996	21861	10804	9638	21667	17896	7389	7408	5533	5729	15960	4336.3	4953
						1997	8530.3	4296	6374	7702	0	8762.4	7909	0	0	5419	3669.4	0
						1998	6945	4371	7611	8639	4215	7736	18128	9299.2	3333	1774	0	0
						1999	11516	16076	10856	11668	12490	13477	10870	2875	14843.8	18174.6	21174.8	21720.1
						2000	21386.5	14719	13334.1	14810.7	13182.8	18351.1	15967.8	0	10183.2	9197.6	13803	536
						2001	0	0	0	2278	2862	5899	6354	7676.2	13907			
1	27	35	28	3	163216.8 5775633.5	1998								4596	3509	0	0	0
16	27	35	28	3	163298.7 5776853.5	1988						6821	7761	0	10838	21297	20830	21953
						1989	22033	19437	21827	20614	22172	21612	21464	21093	20313	21612	20630	21575
						1990	21595	19276	21025	20752	20609	20023	19047	16997	18738	17104	17780	18531
						1991	19323	17178	19381	18440	17987	17776	18616	15999	17012	17237	15980	15147
						1992	12322	16784	16037	13175	0	8756	17371	16654	16497	16851	16811	17513
						1993	17391	14747	15977	17119	17098	15084	17130	16719	16321	16971	7651	16265
						1994	13163	8773	13551	13838	13329	11911	12338	12379	11280	10461	11889	10635
						1995	10361	8859	11218	10017	6488	5353	2581	1876	1332	0	910	4171
						1996	4328	3169	3157	3584	7446	5301	6986	7067	4039	933	0	2911
						1997	2695	4378	6167	8470	6173	8868	6493	3204.2	2045	65	0	3977
						1998	15842	7102	5234	5989	9154	7790	4192	0	3939	381	0	0
						1999	0	771	0	0	0	0	0	0	0	0	0	0
						2001							877	6173	0			
11	35	35	28	3	164195.9 5778006	1988		55	845	0	418	0	6909.5	7240.4	5191.1	5462.9	7082.1	6960.9
						1989	6663.7	5334.5	5748.5	5360.6	5100.5	4892.1	5079.5	4826.8	4049.1	4334.6	3783.2	3730.7
						1990	4254.9	3608.9	3918.8	3863.8	4356.8	4260.2	1803.9	2534.1	2405.7	2639.1	2415.8	2865.9
						1991	2742.7	1901.8	3700.9	3273.8	3142.3	3100.7	2792.9	2294.8	2251.2	1678.8	1572.2	2436.4
						1992	2189.8	1984	2407.7	2281.5	2118.5	1904.2	1258.3	1654.1	2120.1	1813.1	1309.4	2503.7
						1993	2894.1	1908.9	1923.9	3644.6	1331.6	743.1	321	30.8	7.8	283.6	603.9	359.1
						1994	449	320.6	762.3	926.2	0	0	0	. 0	0	• 0	0	0
11	16	36	28	3	161264.7 5783082.8	1993				5263.7	6115.4	5241.2	5572.5	5727	5143	5698.8	3842.5	2853
						1994	3402	5070.6	5153	6118	7454.9	7647	7267	6356.3	6152	6727.8	6562.8	7343.7
						1995	6553	6667.9	6419	6860	7522	7418.2	7634.8	8096.3	7735.7	7161	3459	0
						1996	0	0	0	0	0	0	0	0	0	0	4689	5313
						1997	4338	4493	1107	0	0	0	0	0	0	0	0	0
44	16	36	28	3	161264.7 5783082.8	3 1992						2478.3	4519	5501.5	6289.5	6561	6050	6570
11	16	30	20	3	101204.7 0700002.0	1992		5910.4	6643.6	6488.4	5612	3210.9	2789.5	0	0_0010	0	0	0
						1993			0040.0	4.00+0 0	1778.1	2884	2739	4083.7	3928	4139.2	3932.2	3902.3
						1994			4100	4086	4797	4477	2435.3	0	00	0	0	0
						1000	0010					,		·	-	-	_	
13	16	36	28	3	160885.8 5783518.2	2 1995	2135.7	2247.3	2821	2721	2663	2720.5	2409	2699	2921	3045	3587	3381
						1996			4820	5449	5362	5755	4453	2928	5155	3923	4068	4270

	Total m ³	Cumulative m ³	Hours Pumped	Rate m ³ /day
5	180420.1	1182487.9		,
9	236975.4	1419463.3		
3	133174.3	1552637.6		
5	52662.1	1605299.7		
5	72051.2	1677350.9		
1	165741.3	1843092.2		
і 5	145471.8	1988564		
5		2027540.2	101345	480
	38976.2	2027540.2	101345	400
)	8105	8105	964	202
3	89500	89500		
5	254382	343882		
1	231477	575359		
7	210076	785435		
3	168771	954206		
5	188473	1142679		
5	143547	1286226		
1	63166	1349392		
1	48921	1398313		
7	52535.2	1450848.2		
0	59623	1510471.2		
D	771	1511242.2		
	7050	1518292.2	82379	442
9	40164.9	40164.9		
7	58903.8	99068.7		
9	38927.9	137996.6		
4	30888.5	168885.1		
7	23544.4	192429.5		
1	14052.4	206481.9		
0	2458.1	208940	49987	100
3	45457.1	45457.1		
7	75255.1	120712.2		
, 0	75526.9	196239.1		
3	10002	206241.1		
0	9938	216179.1	26379	197
0	3330	210175.1	20379	197
0	37969.3	37969.3		
0	37215.5	75184.8		
3	27386.5	102571.3		
0	27881.4	130452.7	20123	156
1	33350.5	33350.5		
0	52585	85935.5		
U	52363	00900.0		

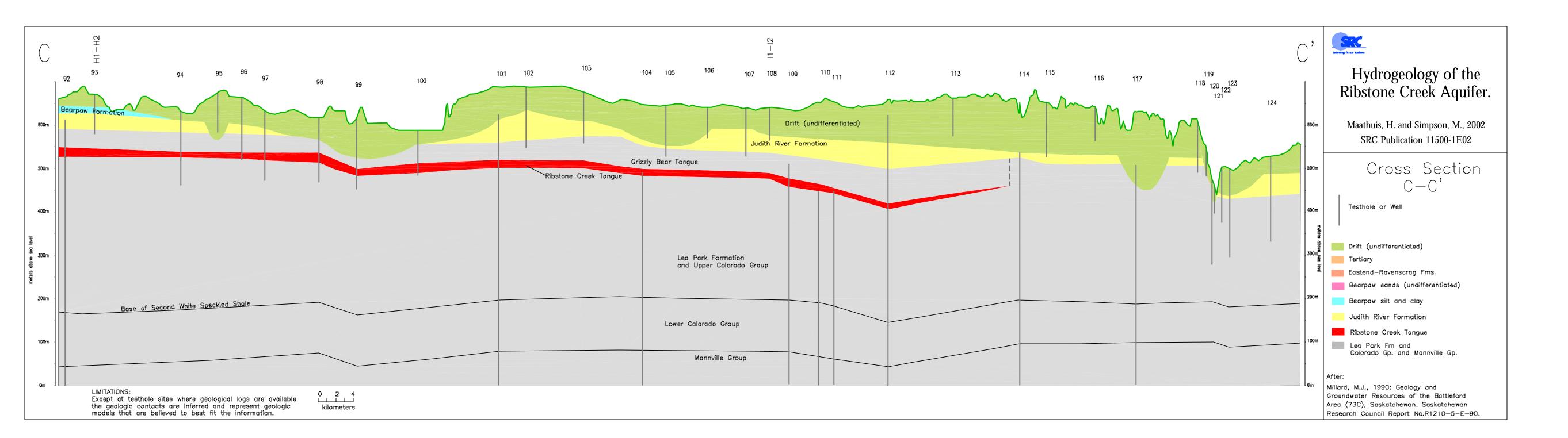

					UTM Co	ordinates													
LSD	Sec	Twp	Rge	М	Easting	Northing	Year	january	february	march	april	may	june	july	august	september	october	november	december
					Ext Zone	13 Nad83													
							1997	4994	2825	2781	3290	3522	3082	2941	3157	3097	3237	0	3186
							1998	1992	0	0	0	0	0	0	0	0	0	0	0
16	19	36	28	3	158958.8	8 5785266.5	1997				3506.9	7477.1	8820.3	9408.1	21319	21556	22124	8939	14594
							1998	14375	8612	0	0	0	0	0	0	0	0	0	0
							1999	0	0	0	0	0	0	0	0	0	0	7310	10949
							2000	11114	13135	15523	12989	13012	12692	12935	12865	15472	9166	3130	0
8	20	36	28	3	160532.9	9 5784352.2	1996						988	7419	7396	6847	7008	5592	6062
							1997	4591	4612	2737	3603	3834	3781	3730	3157	3027	2928	0	3761
							1998	3799	962	0	0	0	0	0	0	0	0	0	0
12	30	36	28	3	157821.8	8 5786568.5	1997					882.3	0	2817.9	0	0	1748	0	0
							2000	0	0	0	0	0	0	0	0	0	13536	13617	7035
							2001	14500	0	0	0	0	0	0	0	0			

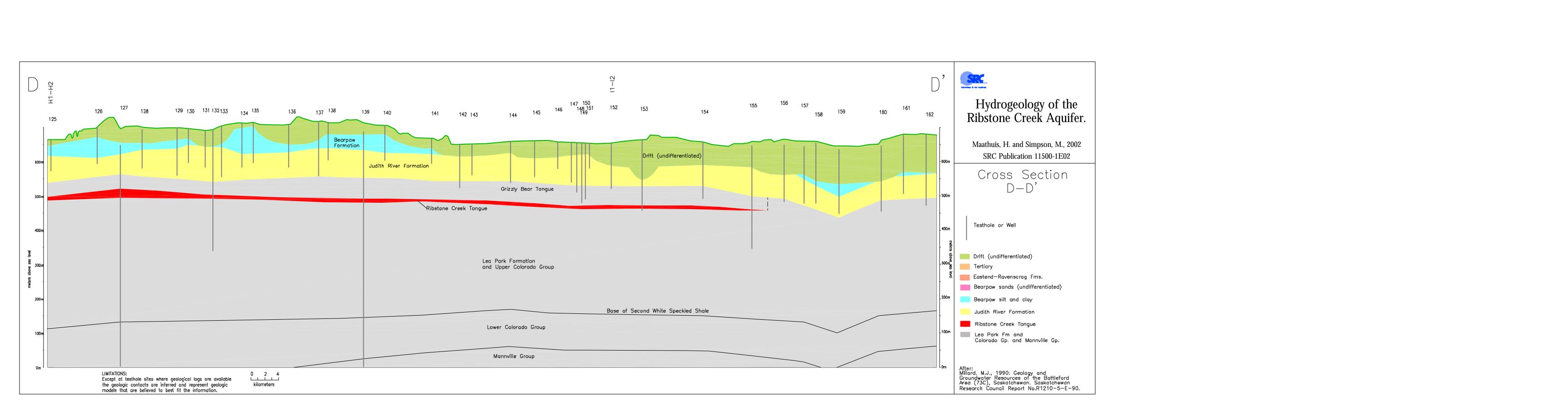

Source: Saskatchewan Enegy and Mines, February 2002

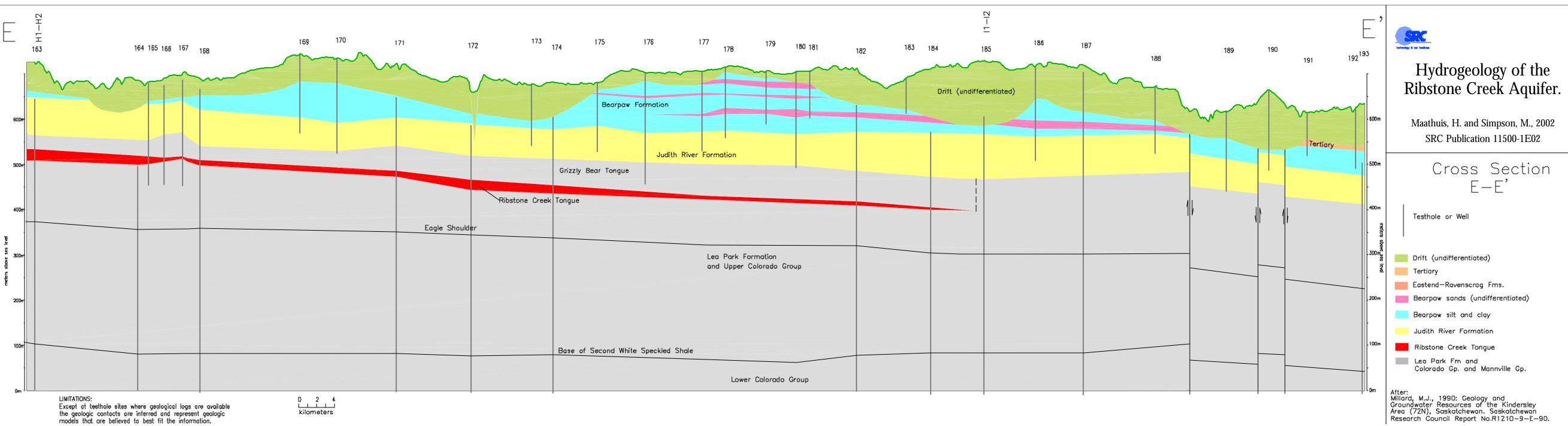

.

Total m ³	Cumulative m ³	Hours Pumped	Rate m ³ /day
36112	122047.5		
1992	124039.5	25279	118
117744.4	117744.4		
22987	140731.4		
18259	158990.4		
132033	291023.4	16680	419
41312	41312		
39761	81073		
4761	85834	13218	156
5448.2	5448.2		
34188	39636.2		
14500	54136.2	2880	451

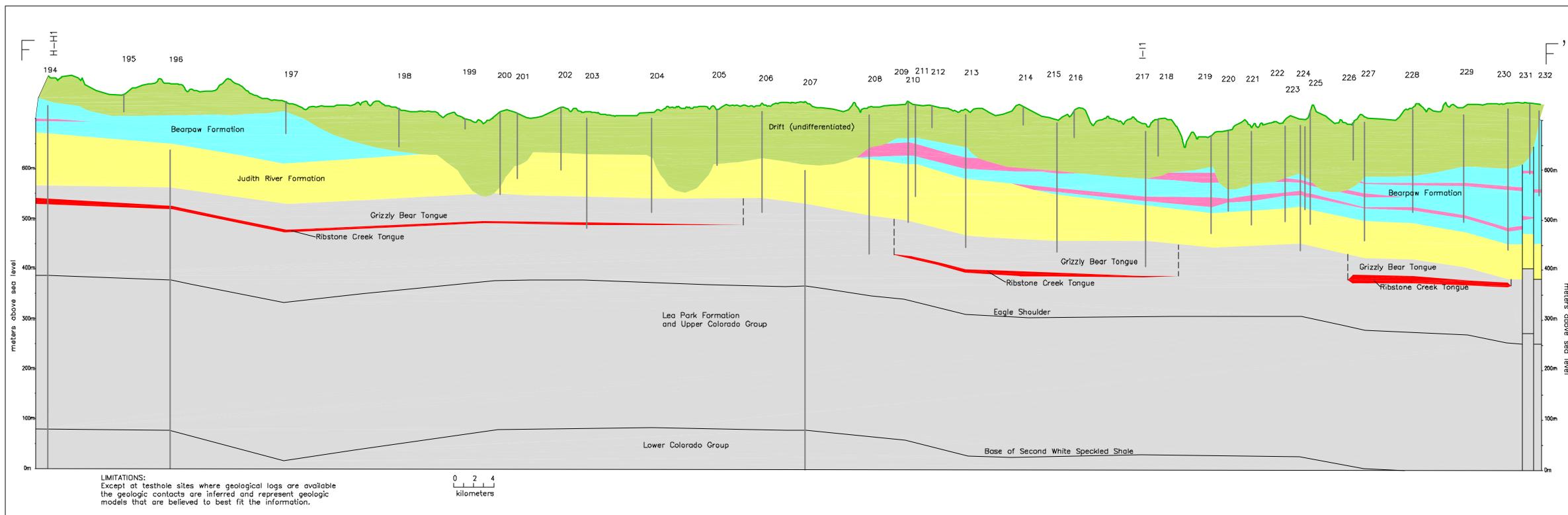
.

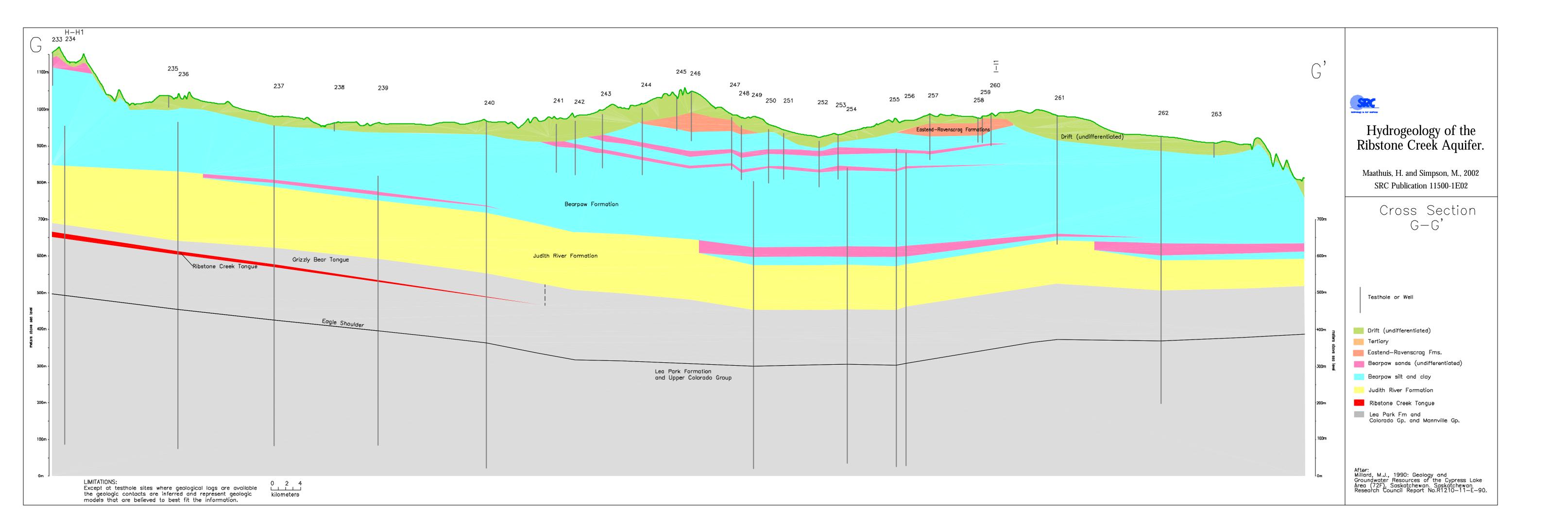


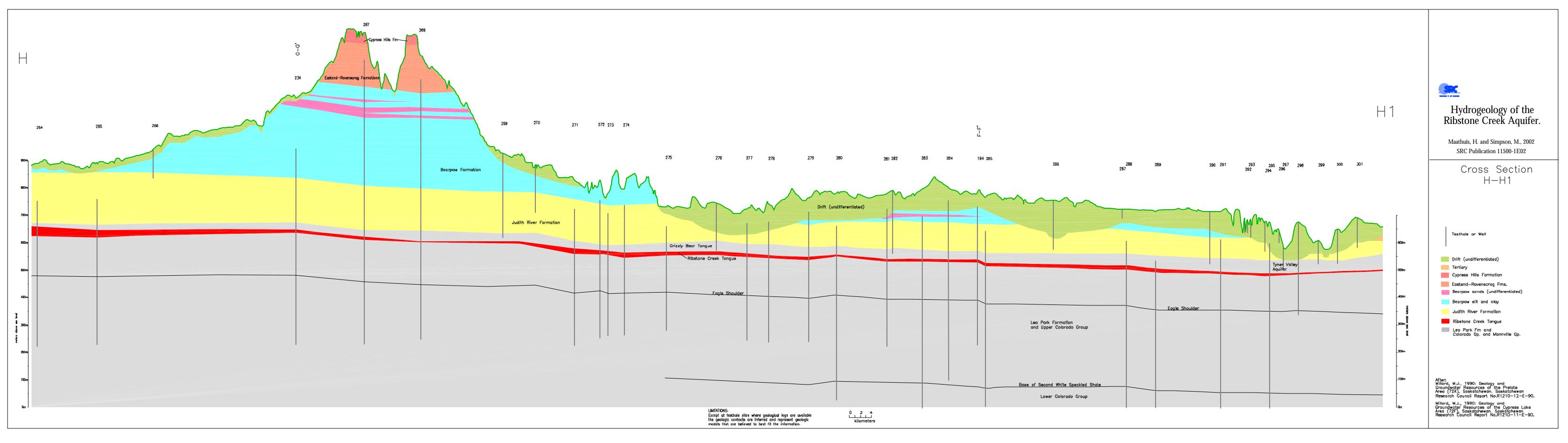


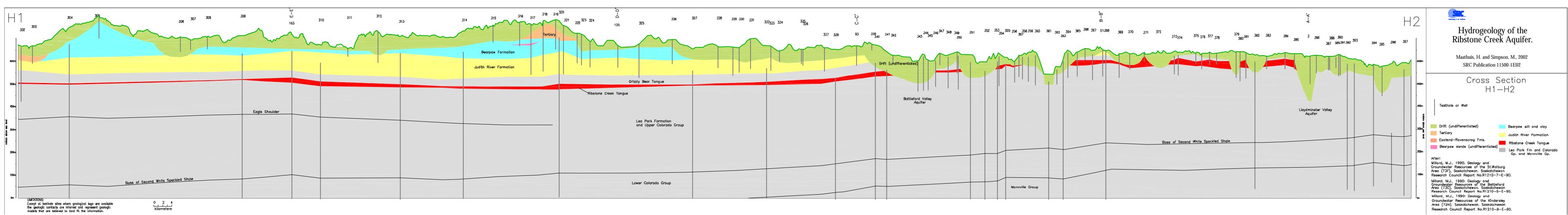

Maathuis, H. and Simpson, M., 2002 SRC Publication 11500-1E02

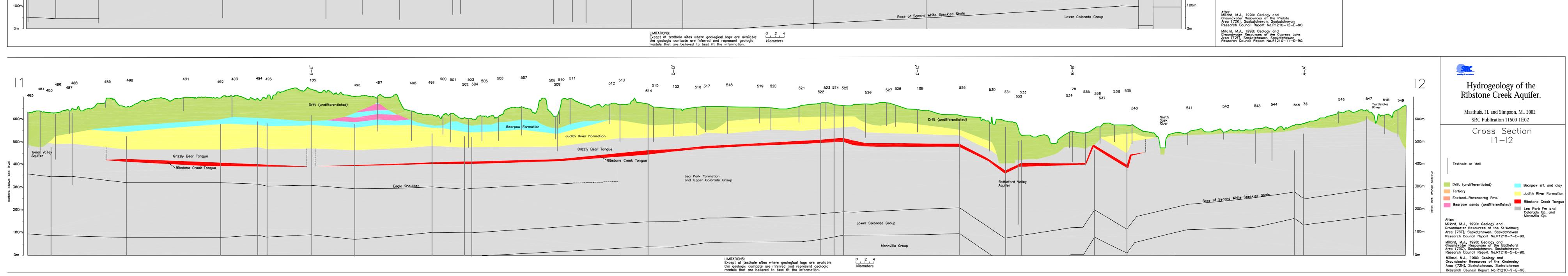
> Cross Section B-B'

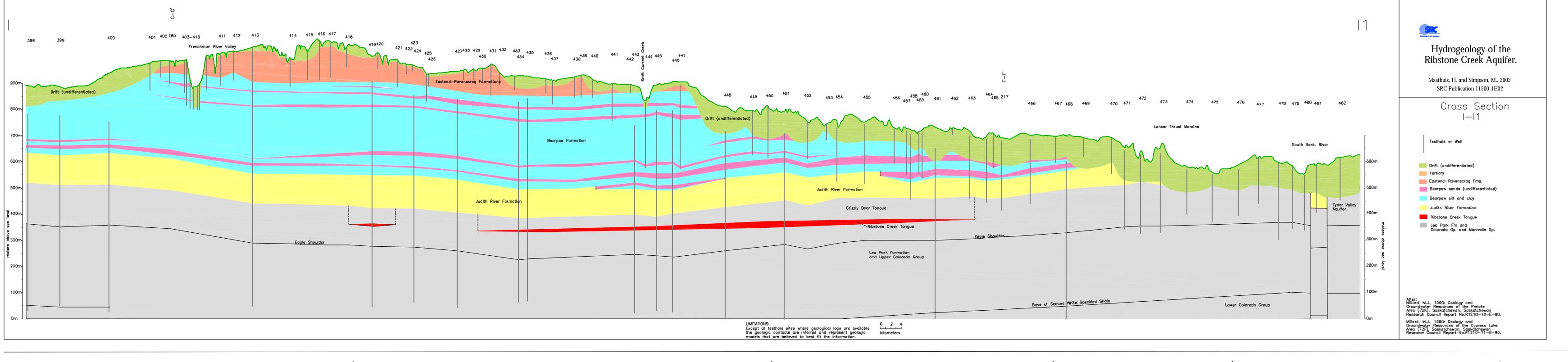

Research Council Report No.R1210-5-E-90.










	Sector Sectors
	Hydrogeology of the Ribstone Creek Aquifer.
	Maathuis, H. and Simpson, M., 2002 SRC Publication 11500-1E02
	Cross Section F-F'
	Testhole or Well
-	Drift (undifferentiated)
	Tertiary
	Eastend-Ravenscrag Fms.
	Bearpaw sands (undifferentiated)
-	Bearpaw silt and clay
-	Judith River Formation
	Ribstone Creek Tongue
	Lea Park Fm and Colorado Gp. and Mannville Gp.
	After: Millard, M.J., 1990: Geology and Groundwater Resources of the Prelate Area (72K), Saskatchewan. Saskatchewan Research Council Report No.R1210-12-E-90.



