4 METHODOLOGY

4.1 Data Collection and Synthesis

The AEP groundwater database is the main source of groundwater data. The present revision includes 1,454 records added to the database by AEP in February 1999. The database includes the following:

- 1) water well drilling reports;
- 2) aquifer test results from some water wells;
- 3) location of some springs;
- 4) water well locations determined during water well surveys;
- 5) chemical analyses for some groundwaters;
- 6) location of flowing shot holes;
- 7) location of structure test holes; and
- 8) a variety of data related to the groundwater resource.

The main disadvantage to the database is the absence of quality control. Very little can be done to overcome this lack of quality control in the data collection, other than to assess the usefulness of control points relative to other data during the interpretation. Another disadvantage to the database is the lack of adequate spatial information.

The AEP groundwater database uses a land-based system with only a limited number of records having a value for ground elevation. The locations for records usually include a quarter section description; a few records also have a land description that includes a Legal Subdivision (Lsd). For digital processing, a record location requires a horizontal coordinate system. In the absence of an actual location for a record, the record is given the coordinates for the centre of the land description.

The present project uses the 10TM coordinate system. This means that a record for the SE ¼ of section 36, township 050, range 19, W4M would have a horizontal coordinate with an Easting of 156,936 metres and a Northing of 5,911,867 metres, the centre of the quarter section. Once the horizontal coordinates are determined, a ground elevation is obtained from the 1:20,000 Digital Elevation Model (DEM) from the Resource Data Division of AEP.

After assigning spatial control to the records in the groundwater database, the data are processed to determine values for hydrogeological parameters. As part of the processing, obvious keying errors in the database are corrected.

Where possible, determinations are made from individual records for the following:

- 1) depth to bedrock;
- 2) total thickness of sand and gravel;
- 3) thickness of first sand and gravel when present within one metre of ground surface;
- 4) total thickness of saturated sand and gravel; and
- 5) depth to the top and bottom of completion intervals.

Also, where sufficient information is available, values for apparent transmissivity³ and apparent yield⁴ are calculated, based on the aquifer test summary data supplied on the water well drilling reports. The apparent transmissivity results are then used to estimate a value for hydraulic conductivity⁵. The conductivity values are obtained by dividing the apparent transmissivity by the completion interval. To obtain a value for regional transmissivity of the aquifer, the hydraulic conductivity is multiplied by the effective thickness of the aquifer based on nearby e-log information. Where valid detailed aquifer test results exist, the interpreted data provide values for aquifer transmissivity and effective transmissivity.

The Alberta Energy and Utilities Board (EUB) well database includes records for all of the wells drilled by the oil and gas industry. The information from this source includes:

- 1) spatial control for each well site;
- 2) depth to the top of various geological units;
- 3) type and intervals for various down-hole geophysical logs; and
- 4) drill stem test (DST) summaries.

Unfortunately, the EUB database contains very little information from above the Base of Groundwater Protection. Because the main interest for a groundwater study comes from data above the Base of Groundwater Protection, the data from the EUB database have limited use.

Values for apparent transmissivity, apparent yield and hydraulic conductivity are calculated from the DST summaries.

Published and unpublished reports and maps provide the final source of information to be included in the new groundwater database. The reference section of this report lists the available reports. The only digital data from publications are from the Geological Atlas of the Western Canada Sedimentary Basin (Mossop and Shetsen, 1994). These data are used to verify the geological interpretation of geophysical logs but cannot be distributed because of a licensing agreement.

4.2 Spatial Distribution of Aquifers

Determination of the spatial distribution of the aquifers is based on:

- 1) lithologs provided by the water well drillers;
- 2) geophysical logs from structure test holes;
- 3) wells drilled by the oil and gas industry; and
- 4) data from existing cross-sections.

The identification of aquifers becomes a two-step process: first, mapping the tops and bottoms of individual geological units; and second, identifying the porous and permeable parts of each geological unit in which the aquifer is present.

After obtaining values for the elevation of the top and bottom of individual geological units at specific locations, the spatial distribution of the individual surfaces can be determined. Digitally, establishment of

For definitions of Transmissivity, see glossary

For definitions of Yield, see glossary

See glossary

the distribution of a surface requires the preparation of a grid. The inconsistent quality of the data necessitates creating a representative sample set obtained from the entire data set. If the data set is large enough, it can be treated as a normal population and the removal of extreme values can be done statistically. When data sets are small, the process of data reduction involves a more direct assessment of the quality of individual points. Because of the uneven distribution of the data, all data sets are gridded using the Kriging⁶ method.

The final definition of the individual surfaces becomes an iterative process involving the plotting of the surfaces on cross-sections and the adjusting of control points to fit with the surrounding data.

The porous and permeable parts of the individual geological units have been mainly determined from geophysical logs.

4.3 Hydrogeological Parameters

Water well records that indicate the depths to the top and bottom of their completion interval are compared digitally to the spatial distribution of the various geological surfaces. This procedure allows for the determination of the aquifer in which individual water wells are completed. When the completion interval of a water well cannot be established unequivocally, the data from that water well are not used in determining the distribution of hydraulic parameters.

After the water wells are assigned to a specific aquifer, the parameters from the water well records are assigned to the individual aquifers. The parameters include non-pumping (static) water level (NPWL), transmissivity and projected water well yield. The total dissolved solids, chloride and sulfate concentrations from the chemical analysis of the groundwater are also assigned to applicable aquifers.

Once the values for the various parameters of the individual aquifers are established, the spatial distribution of these parameters must be determined. The distribution of individual parameters involves the same process as the distribution of geological surfaces. This means establishing a representative data set and then preparing a grid. Even when only limited data are available, grids are prepared. However, the data from these grids must be used with extreme caution because the gridding process can be unreliable.

4.3.1 Risk Criteria

The main source of groundwater contamination involves activities on or near the land surface. The risk is high when the near-surface materials are porous and permeable and low when the materials are less porous and less permeable. The two sources of data for the risk analysis include (a) a determination of when sand and gravel is or is not present within one metre of the ground surface, and (b) the surficial geology map. The presence or absence of sand and gravel within one metre of the land surface is based on a geological surface prepared from the data supplied on the water well drilling reports. The information available on the surficial geology map is categorized based on relative permeability. The information from these two sources is combined to form the risk assessment map.

See glossary

4.4 Maps and Cross-Sections

Once grids for geological surfaces have been prepared, various grids need to be combined to establish the extent and thickness of individual geological units. For example, the relationship between an upper bedrock unit and the bedrock surface must be determined. This process provides both the outline and the thickness of the geological unit. The thickness of the porous and permeable part(s) of the geological unit is used to determine the aquifer transmissivity by multiplying the hydraulic conductivity by the thickness.

Grids must also be combined to allow the calculation of projected long-term yields for individual water wells. The grids related to the elevation of the NPWL and the elevation of the top of the aquifer are combined to determine the available drawdown⁷. The available drawdown data and the transmissivity values are used to calculate values for projected long-term yields for individual water wells, completed in a specific aquifer.

Once the appropriate grids are available, the maps are prepared by contouring the grids. The areal extent of individual parameters is outlined by masks to delineate individual aquifers. Appendix A includes page-size maps from the text, plus additional page-size maps and figures that support the discussion in the text. A list of maps and figures that are included on the CD-ROM is given in Appendix B.

Cross-sections are prepared by first choosing control points from the database along preferred lines of section. Data from these control points are then obtained from the database and placed in an AutoCAD drawing with an appropriate vertical exaggeration. The data placed in the AutoCAD drawing include the geo-referenced lithology, completion intervals and NPWLs. Data from individual geological units are then transferred to the cross-section from the digitally prepared surfaces.

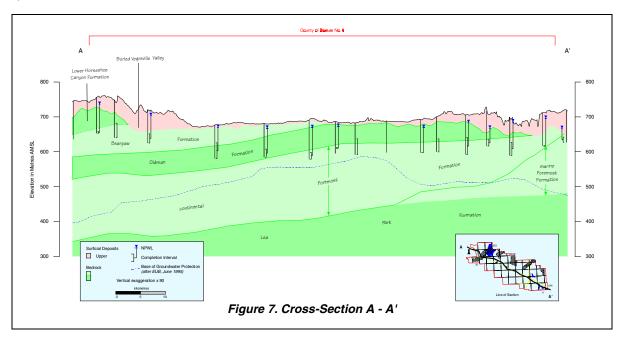
Once the technical details of a cross-section are correct, the drawing file is moved to the software package CorelDRAW! for simplification and presentation in a hard-copy form. These cross-sections are presented in this report and as poster-size drawings forwarded with this report. The cross-sections also are in Appendix A, and are included on the CD-ROM; page-size maps of the poster-size cross-sections are included in Appendix D of this report.

4.5 Software

The files on the CD-ROM have been generated from the following software:

- Microsoft Professional Office 97
- Surfer 6.04
- ArcView 3.1
- AutoCAD 14.01
- CorelDRAW! 8.0
- Acrobat 3.0

See glossary

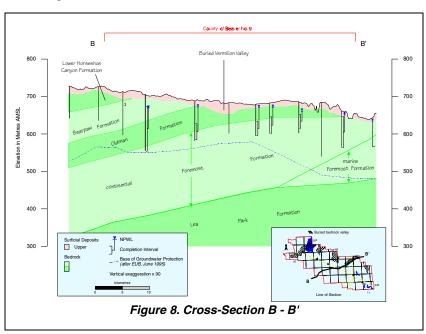

5 AQUIFERS

5.1 Background

An aquifer is a porous and permeable rock that is saturated. If the NPWL is above the top of the rock unit, this type of aquifer is an artesian aquifer. If the rock unit is not entirely saturated and the water level is below the top of the unit, this type of aquifer is a water-table aquifer. These types of aquifers occur in one of two general geological settings in the County. The first geological setting is the sediments that overlie the bedrock surface. In this report, these are referred to as the surficial deposits. The second geological setting includes aquifers in the upper bedrock. The geological settings, the nature of the deposits making up the aquifers within each setting, the expected yield of water wells completed in different aquifers, and the general chemical quality of the groundwater associated with each setting are reviewed separately.

5.1.1 Surficial Aquifers

Surficial deposits in the County are mainly less than 40 metres thick, except in areas of linear bedrock lows where the thickness of the surficial deposits can exceed 60 metres. The Buried Vegreville and Vermilion valleys are two of the main linear bedrock lows that pass through the County of Beaver and into the County of Minburn. The Buried Vegreville Valley is present in the northwestern part of the County of Beaver and trends generally from southwest to northeast. The Buried Vermilion Valley is present in the northeastern part of the County and also trends generally from southwest to northeast. Cross-section A-A' below crosses the Buried Vegreville Valley, and shows the thickness of the surficial deposits varies from less than 20 to more than 60 metres.


The main aquifers in the surficial materials are sand and gravel deposits. In order for a sand and gravel deposit to be an aquifer, it must be saturated; if not saturated, a sand and gravel deposit is not an aquifer. The top of the surficial aquifers has been determined from the NPWL in water wells less than 15 metres deep. The base of the surficial aquifers is the bedrock surface.

For a water well with a small-diameter casing to be effective in surficial deposits and to provide sand-free groundwater, the water well must be completed with a water well screen. Some of the water wells completed in the surficial deposits are completed in low-permeability aquifers and have a large-diameter casing. The large-diameter water wells may have been hand dug or bored and because they are completed in very low permeability aquifers, most of these water wells would not benefit from water well screens. The groundwater from an aquifer in the surficial deposits usually has a chemical hardness of at least a few hundred mg/L and a dissolved iron concentration such that the groundwater is usually treated before being used for domestic needs. Within the County, 13% of the water wells completed in the surficial deposits have a casing diameter of greater than 450 millimetres or no reported diameter for the surface casing, and are assumed to be dug or bored water wells.

5.1.2 Bedrock Aquifers

The upper bedrock includes rocks that are less than 200 metres below the bedrock surface. Some of this bedrock contains porous, permeable and saturated rocks that are permeable enough to transmit groundwater for a specific need. Water wells completed in bedrock aguifers usually do not require water well screens, though some of the sandstones are friable⁸ and water well screens are necessity. The groundwater from the bedrock aquifers is usually chemically soft. The

data for 1,202 water wells show that the top of the water well completion interval is below the bedrock surface, indicating that the water wells are completed in at least one bedrock aquifer. Of these 1,202 water wells, more than 95% have surface casing diameters of less than 275 mm and 20% of these bedrock water wells have been completed with water well screens. Of the drilled water wells completed in bedrock aquifers without water well screens, 55% have completion intervals of 20 metres or less.

The upper bedrock includes parts of the Lower Horseshoe Canyon and Bearpaw formations and the Belly River Group, as shown on cross-section B-B' above. The Belly River Group, which includes the Oldman and the *continental* and *marine* facies⁹ of the Foremost formations, has a maximum thickness of 250 metres in the County. Near the base of the Foremost Formation is a sandstone unit that is referred to as the Basal Belly River Sandstone Zone. This unit extends eastward and becomes the Brosseau Member of the *marine* Foremost Formation.

The Lea Park Formation underlies the Belly River Group. In the County, the Lea Park Formation is a regional aquitard¹⁰.

See glossary

See glossary

See glossary