8 RECOMMENDATIONS

The present study has been based on information available from the groundwater database. The database has three problems:

- 1) the quality of the data;
- 2) the coordinate system used for the horizontal control; and
- 3) the distribution of the data.

The quality of the data in the groundwater database is affected by two factors: a) the technical training of the persons collecting the data, and b) the quality control of the data. The possible options to upgrade the database include the creation of a "super" database, which includes only verified data. The level of verification would have to include identifying the water well in the field, obtaining meaningful horizontal coordinates for the water well and the verification of certain parameters such as water level and completed depth. An attempt to update the quality of the entire database is not recommended.

There is a shortage of hydrogeological information for the Lower Sand and Gravel Aquifer and the Aquifer needs to be better defined. The Lower Sand and Gravel Aquifer may be a source of large volumes of groundwater for the Village of Mannville. The development of water wells to ease drought conditions or disaster relief programs could be very significant. There is a water well used for domestic purposes in 01-29-050-09 W4M that is completed in the Lower Sand and Gravel Aquifer. An apparent yield of more than 300 m³/day was calculated from the available aquifer testing data recorded on the drilling log. It is recommended that a water test hole be drilled within 150 metres of this water well and completed within the Lower Sand and Gravel Aquifer. The water test hole should be used to conduct an extended aquifer test to better evaluate the Aquifer in the eastern part of the County.

There are very significant meltwater channels present in the northern part of the County. There is a domestic water well in NW 32-052-09 W4M that has a projected yield of in the order of 1,000 m³/day. There are indications that other significant meltwater channels are present and investigation of the aquifers associated with these features could be used to establish locations for high-yield water wells.

The present analysis has shown that the groundwater flow in the Victoria Aquifer may not be sufficient to sustain the authorized diversion by AEP. However, because this analysis is based on a regional study, the results should be considered no more than an indication. It is recommended that a detailed study be completed to assess the volume of groundwater flowing through the Victoria Aquifer. The study would need to obtain all of the data for individual water wells authorized to divert groundwater from the Victoria Aquifer, document the quantity of groundwater being diverted, establish the water-level trends, and evaluate the hydraulic parameters for the Aquifer. The best method to analyze the data would be through the use of a computer model study.

One of the main shortages of data for the determination of a groundwater budget is water levels as a function of time. There are only five observation-water-well-data sources in the County from which to obtain water levels for the groundwater budget. One method to obtain additional water-level data is to solicit the assistance of the water well owners who are stakeholders in the groundwater resource. In the M.D. of Rocky View, for example, water well owners are being provided with a tax credit if they accurately measure the water level in their water well once per week for a year. A pilot project indicated that approximately five years of records are required to obtain a reasonable data set. The cost of a five-

year project involving 50 water wells would be less than the cost of one drilling program that may provide two or three observation water wells.

In general, for the next level of study, the database needs updating. It requires more information from existing water wells, and additional information from new ones.

Before an attempt is made to upgrade the level of interpretation provided in this report and the accompanying maps and groundwater query, it is recommended that all water wells for which water well drilling reports are available be subjected to the following actions:

- The horizontal location of the water well should be determined within 10 metres. The coordinates must be in 10TM NAD 27 or some other system that will allow conversion to 10TM NAD 27 coordinates.
- 2. A four-hour aquifer test (two hours of pumping and two hours of recovery) should be performed with the water well to obtain a realistic estimate for the transmissivity of the aquifer in which the water well is completed.
- 3. Water samples should be collected for chemical analysis after 5 and 115 minutes of pumping, and analyzed for major and minor ions.

In addition to the data collection associated with the existing water wells, all available geophysical logs should be interpreted to establish a more accurate spatial definition of individual aquifers.

There is also a need to provide the water well drillers with feedback on the reports they are submitting to the regulatory agencies. The feedback is necessary to allow for a greater degree of uniformity in the reporting process. This is particularly true when trying to identify the bedrock surface. The water well drilling reports should be submitted to the AEP Resource Data Division in an electronic form. The money presently being spent by AEP and Prairie Farm Rehabilitation Administration (PFRA) to transpose the paper form to the electronic form should be used to allow for a technical review of the data and follow-up discussions with the drillers.

An effort should be made to form a partnership with the petroleum industry. The industry spends millions of dollars each year collecting information relative to water wells. Proper coordination of this effort could provide significantly better information from which future regional interpretations could be made. This could be accomplished by the County taking an active role in the activities associated with the construction of lease sites for the drilling of hydrocarbon wells and conducting of seismic programs.

Groundwater is a renewable resource and it must be managed.

9 REFERENCES

- Carrigy, M. A. 1971. Lithostratigraphy of the Uppermost Cretaceous (Lance) and Paleocene Strata of the Alberta Plains. Research Council of Alberta. Bulletin 27.
- Catuneanu, Octavian, Andrew D. Miall and Arthur R. Sweet. 1997. Reciprocal Architecture of Bearpaw T-R Sequences, Uppermost Cretaceous, Western Canada Sedimentary Basin. Bulletin of Canadian Petroleum Geology. Vol. 45, No. 1 (March 1997), P. 75-94.
- Currie, D. V. and N. Zacharko. 1976. Hydrogeology of the Vermilion Area, Alberta. Alberta Research Council. Report 75-5.
- EBA Engineering Consultants Ltd. 1975. Groundwater Evaluation. Ground Water Supply for Department of Environment's Laboratory at Vegreville. Prepared for Alberta Environment, Earth Sciences and Licensing Division, Groundwater Development Branch.
- Hackbarth, D. A. 1975. Hydrogeology of the Minburn Area, Alberta. Earth Sciences Report No. 75-1. Alberta Research Council.
- Mossop, G. and I. Shetsen (co-compilers). 1994. Geological Atlas of the Western Canada Sedimentary Basin. Produced jointly by the Canadian Society of Petroleum Geology, Alberta Research Council, Alberta Energy, and the Geological Survey of Canada.
- Ozoray, G., M. Dubord and A. Cowen. 1990. Groundwater Resources of the Vermilion 73E Map Area, Alberta. Alberta Environmental Protection.
- Pettijohn, F. J. 1957. Sedimentary Rocks. Harper and Brothers Publishing.
- Shetsen, I. 1990. Quaternary Geology, Central Alberta. Produced by the Natural Resources Division of the Alberta Research Council.
- Strong, W.L. and K. R. Legatt, 1981. Ecoregions of Alberta. Alta. En. Nat. Resour., Resour. Eval. Plan Div., Edmonton as cited <u>in Mitchell</u>, Patricia and Ellie Prepas (eds.). 1990. Atlas of Alberta Lakes. The University of Alberta Press. Page 12.
- Thornthwaite, C. W. and J. R. Mather. 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance. Drexel Institute of Technology. Laboratory of Climatology. Publications in Climatology. Vol. 10, No. 3, P. 181-289.

10 GLOSSARY

Aquifer a formation, group of formations, or part of a formation that contains saturated

permeable rocks capable of transmitting groundwater to water wells or

springs in economical quantities.

Aquitard a confining bed that retards but does not prevent the flow of water to or from an

adjacent aquifer.

Available Drawdown in a confined aquifer, the distance between the non-pumping water level and

the top of the aquifer.

in an unconfined aquifer (water table aquifer), two thirds of the saturated

thickness of the aquifer.

Facies the aspect or character of the sediment within beds of one and the same age

(Pettijohn, 1957).

Fluvial produced by the action of a stream or river.

Friable poorly cemented.

Hydraulic Conductivity the rate of flow of water through a unit cross-section under a unit hydraulic

gradient; units are length/time.

Kriging a geo-statistical method for gridding irregularly-spaced data.

Lacustrine fine-grained sedimentary deposits associated with a lake environment and not

including shore-line deposits.

Surficial Deposits includes all sediments above the bedrock.

Transmissivity the rate at which water is transmitted through a unit width of an aquifer under a

unit hydraulic gradient: a measure of the ease with which groundwater can

move through the aquifer.

Apparent Transmissivity: the value determined from a summary of aquifer test

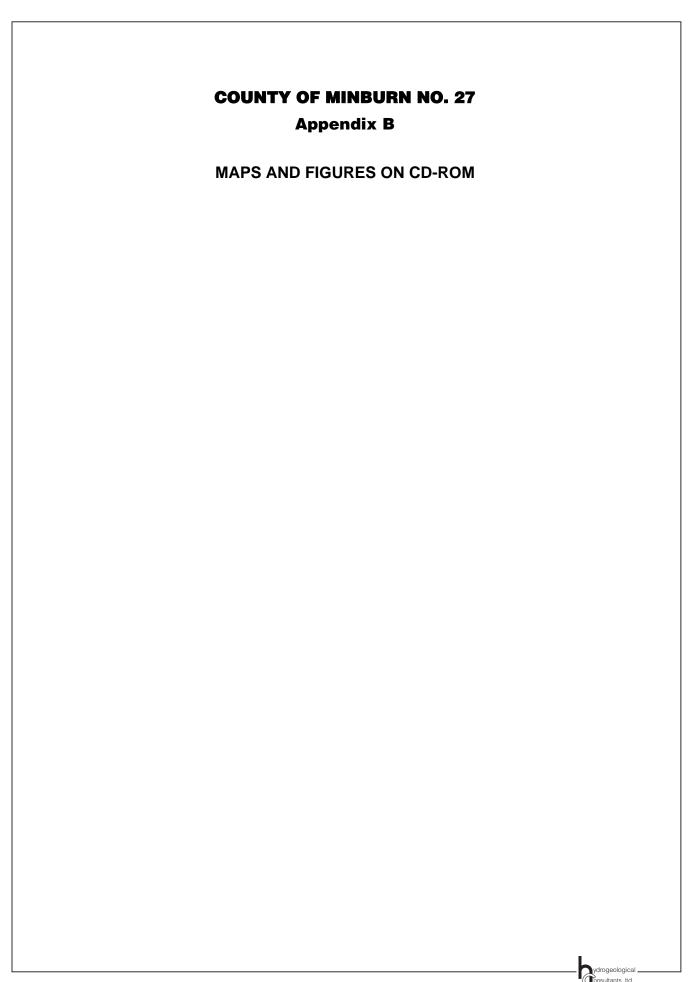
data, usually involving only two water-level readings.

Effective Transmissivity: the value determined from late pumping and/or late

recovery water-level data from an aquifer test.

Aquifer Transmissivity: the value determined by multiplying the hydraulic

conductivity of an aquifer by the thickness of the aquifer.


Yield a regional analysis term referring to the rate a properly completed water well

could be pumped, if fully penetrating the aquifer.

Apparent Yield: based mainly on apparent transmissivity.

Long-Term Yield: based on effective transmissivity.

CD-ROM

- A) Database
- **B) ArcView Files**
- C) Querv
- D) Maps and Figures

1) General

Index Map

Surface Casing Types used in Drilled Water Wells

Location of Water Wells

Depth of Existing Water Wells

Depth to Base of Groundwater Protection

Bedrock Topography

Bedrock Geology

Cross-Section A - A'

Cross-Section B - B'

Geologic Column

Generalized Cross-Section (for terminology only)

Risk of Groundwater Contamination

Relative Permeability

Hydrographs - AEP Observation Water Wells

2) Surficial Aquifers

a) Surficial Deposits

Thickness of Surficial Deposits

Non-Pumping Water-Level Surface in Surficial Deposits

Total Dissolved Solids in Groundwater from Surficial Deposits

Sulfate in Groundwater from Surficial Deposits

Chloride in Groundwater from Surficial Deposits

Fluoride in Groundwater from Surficial Deposits

Total Hardness of Groundwater from Surficial Deposits

Piper Diagram - Surficial Deposits

Amount of Sand and Gravel in Surficial Deposits

Thickness of Sand and Gravel Aquifer(s)

Water Wells Completed in Surficial Deposits

Apparent Yield for Water Wells Completed in Sand and Gravel Aquifer(s)

b) First Sand and Gravel

Thickness of First Sand and Gravel

First Sand and Gravel - Saturation

c) Upper Sand and Gravel

Thickness of Upper Surficial Deposits

Thickness of Upper Sand and Gravel (not all drill holes fully penetrate surficial deposits)

Apparent Yield for Water Wells Completed through Upper Sand and Gravel Aquifer

d) Lower Sand and Gravel

Structure-Contour Map - Top of Lower Surficial Deposits

Depth to Top of Lower Sand and Gravel Aquifer

Thickness of Lower Surficial Deposits

Thickness of Lower Sand and Gravel (not all drill holes fully penetrate surficial deposits)

Apparent Yield for Water Wells Completed through Lower Sand and Gravel Aquifer

Non-Pumping Water-Level Surface in Lower Sand and Gravel Aquifer

3) Bedrock Aquifers

a) General

Apparent Yield for Water Wells Completed in Upper Bedrock Aquifer(s)

Total Dissolved Solids in Groundwater from Upper Bedrock Aquifer(s)

Sulfate in Groundwater from Upper Bedrock Aquifer(s)

Chloride in Groundwater from Upper Bedrock Aquifer(s)

Fluoride in Groundwater from Upper Bedrock Aquifer(s)

Total Hardness of Groundwater from Upper Bedrock Aquifer(s)

Piper Diagram - Bedrock Aquifers

Recharge/Discharge Areas between Surficial Deposits and Upper Bedrock Aquifer(s)

Non-Pumping Water-Level Surface in Upper Bedrock Aquifer(s)

b) Oldman Aquifer

Depth to Top of Oldman Formation

Structure-Contour Map - Top of Oldman Formation

Non-Pumping Water-Level Surface - Oldman Aquifer

Apparent Yield for Water Wells Completed through Oldman Aquifer

Total Dissolved Solids in Groundwater from Oldman Aquifer

Sulfate in Groundwater from Oldman Aquifer

Chloride in Groundwater from Oldman Aquifer

Piper Diagram - Oldman Aquifer

Recharge/Discharge Areas between Surficial Deposits and Oldman Aquifer

c) continental Foremost Aquifer

Depth to Top of continental Foremost Formation

Structure-Contour Map - Top of continental Foremost Formation

Non-Pumping Water-Level Surface - continental Foremost Aquifer

Apparent Yield for Water Wells Completed through continental Foremost Aquifer

Total Dissolved Solids in Groundwater from continental Foremost Aquifer

Sulfate in Groundwater from continental Foremost Aguifer

Chloride in Groundwater from continental Foremost Aquifer

Piper Diagram - continental Foremost Aquifer

Recharge/Discharge Areas between Surficial Deposits and continental Foremost Aquifer

d) Birch Lake Aquifer

Depth to Top of Birch Lake Member

Structure-Contour Map - Top of Birch Lake Member

Non-Pumping Water-Level Surface - Birch Lake Aquifer

Apparent Yield for Water Wells Completed through Birch Lake Aguifer

Total Dissolved Solids in Groundwater from Birch Lake Aquifer

Sulfate in Groundwater from Birch Lake Aquifer

Chloride in Groundwater from Birch Lake Aquifer

Piper Diagram - Birch Lake Aquifer

Recharge/Discharge Areas between Surficial Deposits and Birch Lake Aquifer

e) Ribstone Creek Aquifer

Depth to Top of Ribstone Creek Member

Structure-Contour Map - Top of Ribstone Creek Member

Non-Pumping Water-Level Surface - Ribstone Creek Aquifer

Apparent Yield for Water Wells Completed through Ribstone Creek Aquifer

Total Dissolved Solids in Groundwater from Ribstone Creek Aquifer

Sulfate in Groundwater from Ribstone Creek Aquifer

Chloride in Groundwater from Ribstone Creek Aquifer

Recharge/Discharge Areas between Surficial Deposits and Ribstone Creek Aquifer

f) Victoria Aquifer

Depth to Top of Victoria Member

Structure-Contour Map - Top of Victoria Member

Non-Pumping Water-Level Surface - Victoria Aquifer

Apparent Yield for Water Wells Completed through Victoria Aquifer

Total Dissolved Solids in Groundwater from Victoria Aquifer

Sulfate in Groundwater from Victoria Aquifer

Chloride in Groundwater from Victoria Aquifer

Recharge/Discharge Areas between Surficial Deposits and Victoria Aquifer

g) Brosseau Aquifer

Depth to Top of Brosseau Member

Structure-Contour Map - Top of Brosseau Member

h) Lea Park Aquitard

Depth to Top of Lea Park Aquitard

Structure-Contour Map - Top of Lea Park Aquitard

COUNTY OF MINBURN NO. 27 Appendix C

GENERAL WATER WELL INFORMATION

Domestic Water Well Testing	2
Site Diagrams	
Surface Details	
Groundwater Discharge Point	3
Water-Level Measurements	3
Discharge Measurements	4
Water Samples	4
Environmental Protection and Enhancement Act Water Well Regulation	5
Additional Information	6