f) Oldman Formation

Depth to Top of Oldman Formation Structure-Contour Map - Oldman Formation Non-Pumping Water-Level Surface - Oldman Aquifer Apparent Yield for Water Wells Completed through Oldman Aquifer Total Dissolved Solids in Groundwater from Oldman Aquifer Sulfate in Groundwater from Oldman Aquifer Chloride in Groundwater from Oldman Aquifer Fluoride in Groundwater from Oldman Aquifer Piper Diagram - Oldman Aquifer Recharge/Discharge Areas between Surficial Deposits and Oldman Aquifer

g) Birch Lake Member

Depth to Top of Birch Lake Member Structure-Contour Map - Birch Lake Member Non-Pumping Water-Level Surface - Birch Lake Aquifer Apparent Yield for Water Wells Completed through Birch Lake Aquifer Total Dissolved Solids in Groundwater from Birch Lake Aquifer Sulfate in Groundwater from Birch Lake Aquifer Chloride in Groundwater from Birch Lake Aquifer Fluoride in Groundwater from Birch Lake Aquifer Piper Diagram - Birch Lake Aquifer Recharge/Discharge Areas between Surficial Deposits and Birch Lake Aquifer

h) Ribstone Creek Member

Depth to Top of Ribstone Creek Member Structure-Contour Map - Ribstone Creek Member

STURGEON COUNTY Appendix C

General Water Well Information

Domestic Water Well Testing
Purpose and Requirements
Procedure
Site Diagrams
Surface Details
Groundwater Discharge Point
Water-Level Measurements
Discharge Measurements
Water Samples
Water Act - Water (Ministerial) Regulation
Water Act – Flowchart
Interpretation of Chemical Analysis of Drinking Water
Additional Information

Domestic Water Well Testing

Purpose and Requirements

The purpose of the testing of domestic water wells is to obtain background data related to:

- 1) the non-pumping water level for the aquifer Has there been any lowering of the level since the last measurement?
- 2) the specific capacity of the water well, which indicates the type of contact the water well has with the aquifer;
- 3) the transmissivity of the aquifer and hence an estimate of the projected long-term yield for the water well;
- 4) the chemical, bacteriological and physical quality of the groundwater from the water well.

The testing procedure involves conducting an aquifer test and collecting of groundwater samples for analysis by an accredited laboratory. The date and time of the testing are to be recorded on all data collection sheets. A sketch showing the location of the water well relative to surrounding features is required. The sketch should answer the question, "If this water well is tested in the future, how will the person doing the testing know this is the water well I tested?"

The water well should be taken out of service as long as possible before the start of the aquifer test, preferably not less than 30 minutes before the start of pumping. The non-pumping water level is to be measured 30, 10, and 5 minutes before the start of pumping and immediately before the start of pumping which is to be designated as time 0 for the test. All water levels must be from the same designated reference, usually the top of the casing. Water levels are to be measured during the pumping interval and during the recovery interval after the pump has been turned off; all water measurements are to be with an accuracy of \pm 0.01 metres.

During the pumping and recovery intervals, the water level is to be measured at the appropriate times. An example of the time schedule for a four-hour test is as follows, measured in minutes after the pump is turned on and again after the pump is turned off:

1,2,3,4,6,8,10,13,16,20,25,32,40,50,64,80,100,120.

For a four-hour test, the reading after 120 minutes of pumping will be the same as the 0 minutes of recovery. Under no circumstance will the recovery interval be less than the pumping interval.

Flow rate during the aquifer test should be measured and recorded with the maximum accuracy possible. Ideally, a water meter with an accuracy of better than \pm 1% displaying instantaneous and total flow should be used. If a water meter is not available, then the time required to completely fill a container of known volume should be recorded, noting the time to the nearest 0.5 seconds or better. Flow rate should be determined and recorded often to ensure a constant pumping rate.

Groundwater samples should be collected as soon as possible after the start of pumping and within 10 minutes of the end of pumping. Initially only the groundwater samples collected near the end of the pumping interval need to be submitted to the accredited laboratory for analysis. All samples must be properly stored for transportation to the laboratory and, in the case of the bacteriological analysis, there is a maximum time allowed between the time the sample is collected and the time the sample is delivered to the laboratory. The first samples collected are only analyzed if there is a problem or a concern with the first samples submitted to the laboratory.

Procedure

Site Diagrams

These diagrams are a map showing the distance to nearby significant features. This would include things like a corner of a building (house, barn, garage etc.) or the distance to the half-mile or mile fence. The description should allow anyone not familiar with the site to be able to unequivocally identify the water well that was tested. In lieu of a map, UTM coordinates accurate to within five metres would be acceptable. If a hand-held GPS is used, the post-processing correction details must be provided.

Surface Details

The type of surface completion must be noted. This will include such things as a pitless adapter, well pit, pump house, in basement, etc. Also, the reference point used for measuring water levels needs to be noted. This would include top of casing (TOC) XX metres above ground level; well pit lid, XX metres above TOC; TOC in well pit XX metres below ground level.

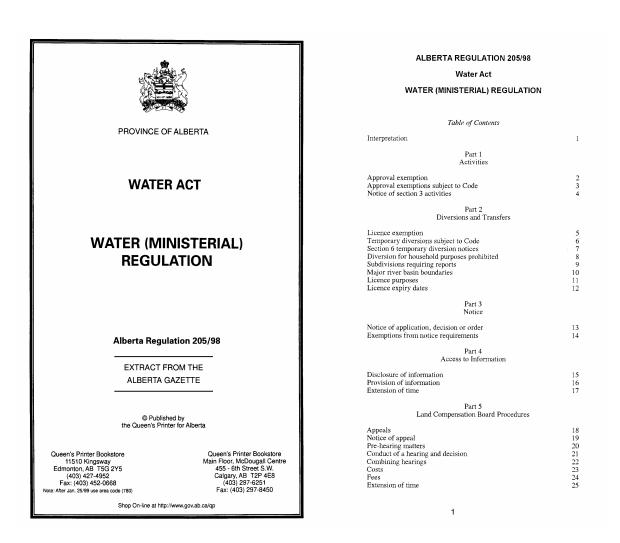
Groundwater Discharge Point

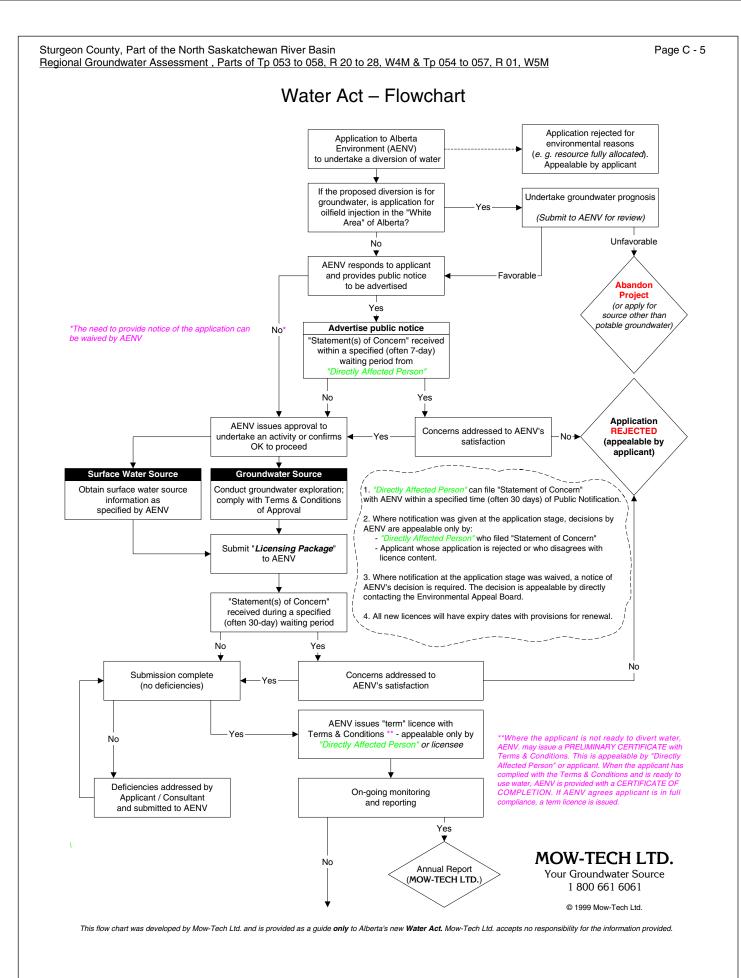
Where was the flow of groundwater discharge regulated? For example was the discharge through a hydrant downstream from the pressure tank; discharged directly to ground either by connecting directly above the well seal or by pulling the pump up out of the pitless adapter; from a tap on the house downstream from the pressure tank? Also note must be made if any action was taken to ensure the pump would operate continuously during the pumping interval and whether the groundwater was passing through any water-treatment equipment before the discharge point.

Water-Level Measurements

How were the water-level measurements obtained? If obtained using a contact gauge, what type of cable was on the tape, graduated tape or a tape with tags? If a tape with tags, when was the last time the tags were calibrated? If a graduated tape, what is the serial number of the tape and is the tape shorter than its original length (i.e. is any tape missing)?

If water levels are obtained using a transducer and data logger, the serial numbers of both transducer and data logger are needed and a copy of the calibration sheet. The additional information required is the depth the transducer was set and the length of time between when the transducer was installed and when the calibration water level was measured, plus the length of time between the installation of the transducer and the start of the aquifer test. All water levels must be measured at least to the nearest 0.01 metres.


Discharge Measurements


Type of water meter used. This could include such things as a turbine or positive displacement meter. How were the readings obtained from the meter? Were the readings visually noted and recorded or were they recorded using a data logger?

Water Samples

A water sample must be collected between the 4- and 6-minute water-level measurements, whenever there is an observed physical change in the groundwater being pumped, and 10 minutes before the end of the planned pumping interval. Additional water samples must be collected if it is expected that pumping will be terminated before the planned pumping interval.

Water Act - Water (Ministerial) Regulation

Interpretation of Chemical Analysis of Drinking Water

Stony Plain · Lac Ste. Anne Health Unit HEAD OFFICE P.O. Box 210 Stony Plain, Alberta Canada TOE 200 Telephone: 963-2206

Fax: 963-7612

SUB-OFFICES Box 4323 Spruce Grove, Alberta T7X 385 Telephone: 962-4072

163 Provincial Bldg. Box 430 Whitecourt, Alberta Fox Creek, Alberta TOH 1PO Telephone: 778-5555 Telephone: 622-3730 Fax: 778-3852

HOME CARE: Box 210 Stony Plain, Alberta TOE 200 Telephone: 963-3366

INTERPRETATION OF CHEMICAL ANALYSIS OF DRINKING WATER

TOE 21.0

- 1. TOTAL DISSOLVED SOLIDS (TDS) The recommended limit is 1000 mg/L for untreated and 500 mg/L for treated waters. TDS indicates the approximate organic and inorganic substances in the water. It will be high if other components of the analysis are high.
- 2. IRON Amounts over 0.3 mg/L, usually stain laundry and plumbing fixtures and cause undesirable tastes. Iron filtration can be utilized. Iron bacteria may also be the cause of increased iron content.
- 3. CALCIUM This is a constituent of hardness. Excessive calcium in drinking water may be a factor in disorders of the kidneys, bladder and urinary system.
- 4. MAGNESIUM This is a constituent of hardness.
- 5. HARDNESS A maximum acceptable concentration has not been established. Hardness is caused mainly by calcium and magnesium. Levels between 80 and 100 mg/L are satisfactory: 100 to 200 mg/L are less acceptable: more than 200 mg/L are considered to be poor and in excess of 500 mg/L are unacceptable for most domestic purposes. Softening can be helpful in given circumstances.
- 6. SODIUM Ideally, there should be no more than 200mg/L. The average intake of sodium from water is only a small fraction of that consumed in a normal diet. Persons suffering from hypertension or congestive heart failure may require a sodium-restricted diet, in which case the intake of sodium from drinking water could become significant. Your physician should be informed of the sodium content.
- 7. <u>NITRITE-NITROGEN & NITRATE-NITROGEN (NO2 + NO3)</u> The maximum acceptable concentration is 10 mg/L. Any amount over that may be harmful to children up to 12 months of age, causing a condition known as methaemoglobinaemia. Presence may indicate a contaminating source although other instances, e.g. fertilizer and decomposing vegetation can cause an elevated figure.
- 8. <u>NITRITE-NITROGEN</u> The maximum acceptable concentration is 1.0 Mg/L. Nitrite is unstable in water and converts to nitrate. An elevated figure may indicate a pollution problem.
- 9. FLUORIDE Approximately 1 mg/L of fluoride is recommended in drinking water in order to give developing teeth some protection against decay. If the fluoride is higher than 1.5 mg/L you should talk to the dental staff of the Health Unit about the possibility of mottled enamel; if the fluoride is lower than 0.7 mg/L please ask about fluoride supplements for your children.
- 10. SULPHATE The maximum acceptable concentration is 500 mg/L. Taste becomes noticeable between 250 and 600 mg/L and a laxative effect may be noticed by new users when sulphate combines with sodium or magnesium.

-2-

- 11. <u>CHLORIDE</u> The recommended limit is 250 mg/L. Chloride content is usually low and an increase may indicate a nearby source of pollution (particularly if NO2 and NO3 and nitrite are high). Some wells contain naturally occurring chlorides. A salty taste may be evident.
- 12. <u>ALKALINITY T (Total)</u> Alkalinity below 500 mg/L is generally accepted. Excessive alkalinity may result in incrustations on utensils, service pipes and water heaters.
- 13. <u>BICARBONATE</u> Upper limit not established. Relates to alkalinity as bicarbonate of sodium, calcium and magnesium.

NOTE: mg/L = milligrams per litre.

The preceding notes and standards are for your guidance only based on an intake of 2 litres of water per day. The figures may be interpreted in a variety of ways and the public health inspector for your area can be contacted for further advice. Telephone: Stony Plain - 963-2206; Spruce Grove - 962-4072; Whitecourt - 778-5555.

For stock water and other agricultural uses the requirements are not necessarily the same as for domestic use. Please consult your District Agriculturalist for that kind of advice.