Government of Canada
Public Key Infrastructure
(GoC PKI)

GOC PKI Certificate and Key
Management Interface Specification

Version 1.0
March 2000

Table of Contents
1 Overview of PKI Management ... e e e e e e e ees 5
I A [o o [0 o 1T I PSPPI 5
1.2 Definitions Of PKI @NEHESiiii i e 5
1.2.1 Subjects and ENd ENItIESc.iiiiiiii e 5
1.2.2 Certification AUTNOIILY.......ouii e 5
1.2.3 Registration AULNOKILYuii e e 6
1.2.4 Time Stamp AULNOTILY . ..o e e 6
S o N =T o 01 | (o] AP 6
1.3 PKI Management REQUIFEMENTSc.uiiuiii et e e e e e e e e e eeans 7
1.4 PKI Management OPErationSc..euueiuiiineiieriieeee e e e e e e e e et et e e e e st e et e eaaeenns 8
2 Subscriber and CA Registration MOdelS..........ooouuiiiiiiiiiiiii e 10
2.1 Assumptions and RESIICHONSiiuiiiiiiiii e 10
2.1.1 Initialization (initialization/registration/certification)ccccooiiiiii i 10
2.1.2 CHItBHA USEA ...ttt ettt e e e e et e et e eaa e eaes 10
2.1.2.1 Initialization (initialization/initial registration/certification)........................... 10
2.1.2.2 End-entity message origin authentication................cccoeeiieiiiiiiiiiie e, 10
2.1.2.3 Location of Key generation.............cooeieiiiiiiiii i 11
2.1.2.4 Confirmation of successful certificationccooveiiiiiiiiiiii e, 11
2.1.2.5 Basic authenticated sSCheme ..o 11
2.2 Proof of Possession (POP) of Private KeYc.oiiiiiiiiiiiii e 12
2.2.1 SIGNATUIE KBYS ...t ettt ettt ettt e e aes 12
2.2.2 ENCIYPLION KEYS. ..ttt ittt ettt et e e e e e eea e eees 12
3 PKIX-CMP management ProtOCO|o i 13
T R @) 4 PP 13
3.1.1 Messaging format and ProtoCol............ooeuiiiiiiiiiiii e 13
N I o Nl o =T To T PP 14
N S = (I = To o Y PP 16
3.1.4 PKI MeSsage ProteCtioncoiuiiiiiiii e 16
3.1.4.1 MAC-based ProteCtioncoiuiiiiiiii e 17
3.1.4.2 Signature-based proteCtion.........c.c.veiiiiiiiiiii e 17
3.1.5 Message Origin AUthENtiCAtiONc.uiiiiiiii e 17
3.1.5.1 Password-based MACc.ui e 17
3.1.5.2 Digital SIgNatUre..........iiuiiiiii i 18
3.1.6 Proof Of POSSESSION.ttt e 18
3.1.7 Protection Of Private KBYScuiiiiiiiei e 18
3.0.8 AlGOItNMS e 18
3.1.8.1 Digital signature algorithmscccoiiiiiiiiii e 18
3.1.8.2 Message Authentication Code algorithms...........c..cooiiiiiiiiiicie, 19
3.1.8.3 Encryption algorithmsooiiiii i 19
3.1.8.4 Mandatory algorithm identifiers and specificationscccoccevvieennnnn. 19
B L84 L DSAISHA- L. ... 19
3.1.8.4.2 PasswordBasedMACc.uieiuuiiiiiei e 19
3.1.8.4.3TrHPIE-DESooniiiiiie e 19
3.2 GENEIAI MESSAGE ...euiiiiei ettt e e et e e e 19
3.2.1 General MeSSage REQUESTciuiiiieii et e s 20
3.2.1.1 Policy certificate reqUEST.........ciuiii e 20

3.2.1.2 CA protocol encryption certificate request...........ccceeiiieiiieiiiiiiceeceee, 20

3.2.2 General MeSSage RESPONSE.cuuiiii ettt e e e e e aas 21
3.2.2.1 Policy certificate reSPONSEcvvuiiii e 21

3.2.2.2 CA protocol encryption certificate reSpoNSe...........ccevvveiieiiiiiiiiiiieeeein, 21

3.3 Initialization (initialization/registration/certification)ccocoiiiiiiiii i, 22
3.3.1 Verification REQUESE ONIY.......cuuiiiiiiie e 22
3.3.2 Verification and ENCryption REQUEST..........oiiiiiiiiiiciie e 22
3.3.2.1 Encryption key pair originates at the CA..........occoiiiiiiiiiiici e, 22

3.3.2.2 Encryption key pair originates at the client.............ccccoeeiiiiiiiiiiiiee, 22

3.3.2. 2.1 Private KBY SENL.....ccuiiiiii it 23

3.3.2.2.2 Private K&Y NOL SENtceuiiiiiiii i 23

3.3.3 Message AUtNENTICALION.c.iiii e e s 23
3.3.4 Message FIOW BENAVIONcoouiiiiiiic e 23
3.3.5 MESSAQE FIOWS . .oe it e e 23
3.3.5.1 InitialiZation FEOUEST.........iieiii i 23

3.3.5.2 Initialization rESPONSEiiuiii i 26

3.3.5.3 Initialization confirmationcouiiiiiiiii 27

3.4 CertifiCate REQUESTceuiii i e e 27
3.4.1 Message AUtNENTICALION.c.iiii e eaas 28
3.4.2 Message FIOW BENAVIONccoiiiiiiic e e 28

3. 4.3 MESSAGE FIOWS . .eeiiii e e 28
3.4.3.1 CertifiCate rEQUESEiieii e 28

3.4.3.2 CertifiCate MESPONSE. .. .ciu it ie et 31

3.4.3.3 Certificate request confirmation.............ccccccoviiiiiiiiii i 32

T ST =)V U o o - = P 32
3.5.1 Message AUtNENTICALION.c.iiiiii e e e s 33
3.5.2 Message FIOW BENAVIONo.iiiiiiic e 33
3.5.2.1 Single Certificate Update..........c.oveviiiiiiiiii i 33

3.5.2.1.1 Verification certificate update.............ccoevieiiiiiiiiiiee 33

3.5.2.1.2 Encryption certificate update............coccoeviiiiiiiiii 33

3.5.2.2 Two Certificate Update...........coouiiiiiiici e 33

3.5.3 MESSAQE FIOWS . .ouiiiiiii e e 34
3.5.3.1 KeY UPUALe rEQUESTiuiiitiii i e e e e e ees 34

3.5.3.2 KeY UPAAte FESPONSE. .. .uuiitiiiiii et e e e e ees 35

3.5.3.3 Key update confirmation............ccooiiiiiiiiii e 37

3.6 CrOSS-CeItIfICAION ... ittt e e e e e e e 37
3.6.1 MESSAQE FIOWS . ..uiiiiiii e e e 37
3.6.1.1 Cross-certification reqUEST..........coiviiiiii i 37

3.6.1.2 Cross-certification reSPONSEccvuiiiiiii e 39

3.6.1.3 Cross-certification confirmationccooooiiiiiiiiini e 40

T A (= VA =T oo 1Y T Y PPN 41
3.7.1 Message AUthENtICAtION.iiiiii e e e s 41
3.7.2 Message FIOW BENAVIONcoiiiiiii e 41

3. 7.3 MESSAQE FIOWS . .eu it e 41
3.7.3.1 KEY rECOVEIY FEOUEST . vuitititiieieeeie e e e et e et e e e e e e e e aeaaanas 41

3.7.3.2 KEY IECOVEIY FBSPONSE. .. tuuttuitetnetnetneteteaeteaetneaetneanetneanesneanesneenesnaanns 43

3.7.3.3 Key recovery confirmationc.oeeuieiiieiiiiiiec e e 43

NS T S (=Y (o1 Lo o PP 44
3.8.1 Message AUtNENTICALION.iiii e e e s 44
3.8.2 Message FIOW BENAVIONcooiiiiiii e 44
3.8.3 MESSAGE FIOWS . .eeiiiiiii e e 44
3.8.3.1 REVOCAION FEOUESEttt e e e ees 44

3.8.3.2 REVOCAION FESPONSE. ... euuiitiiiieie e et e e e e e e e e e e e e e e e e e e aaees 45

R 7 N Q= VAL o Lo = |- 47

o R o1 1o To [8 o1 i To] o PP 47

o o To | O AN =) VAU] o = =Y 47

O B O AN @] o 1= -1 (o | G-V i o] P 48

5 PKCS enrollment protOCOL.. ... 49

5.1 ProtoCol FIOW CRartS. iiuniiieii et e e e et e e e e ean e 49

I e (Y LTS T= Vo 1 PP 50

5.2.1 Simple ENrollMent REQUESTcuuiiiiiiie et e s 50

5.2.2 Simple ENrollment RESPONSE.ciuiiiiiiiiii e 51

5.3 PSS HL0. ettt ittt ettt et et et e a e e aa e 51

5.3.1 GENEIAI OVEIVIBW. ... ittt ettt ettt et e e e e et e eanaaeees 51

5.3.2 GENEIAI SYNEAX. . .\uiitiiiiiii et e e e e e e e e e e e e e e 51

5.3.2.1 CertifiCatioNREQUEST.........cinii e 52

5.3.2.2 CertificationReqUESEINTO..........iiiiiiii e 52

B P S 7 e e 53

5.4.1 GENEIAI OVEIVIBW. ... ettt ettt et e e et e e e e ean e eees 53

5.4.2 GENEIAI SYNEAX.....u ittt e e e e e e e e e e e e e e e e e e aas 54

5.4.2.1 Overall Contentlinfo.........c.uiiiuniiiiei e 54

5.4.2.2 Signed-data CONtENtLYPEivniiiiii e 55

5.4.2.3 Nested Contentinfo....... ..o 56

5.5 Message FIOW BERAVIOL...........ciuiiiiciie e e e e 57

5.6 MESSAQE FIOWSoiiiiii e e 57

5.6.1 PKCS #10 FBOUEBST. .. vuiiiiiiee et e e e e e e e e et e e e e e e e e en 57

N I o ORI (=TS o o 1 PRSP 58

5.6.3 CONFIMMALION.uiit e et e 58

I] Fo 1T oY PTRN 59

A = L) =T =T oot T PP 60
List of figures

Figure 1. PKI Entities and Management OPErationsc.c.veiuieiiieiiieiieei e e 8

Figure 2. Basic Authenticated SChemME..........oiiiiii e 12

(o [U oI T = QD o] (] (o oo) 14

Figure 4. Simple PKI Request and ReSpoNSe MESSAQEScceuvviniiieiiieiiieiiieieeie e e eaaeeans 50

1 Overview of PKI management

11

12

121

122

Introduction

This section describes a model for a Public Key Infrastructure (PKI) to which the
Government of Canada Public Key Infrastructure (GOC PKI) conforms, including the
following PKI components:

End-entities (EES);
Certification Authorities (CAS);
Registration Authorities (RAS);
Time Stamp server; and

PKI Repository (Directory).

Management protocols are required to support on-line interactions between these PKI
components. For example, a management protocol might be used between a CA and a
client system with which a key pair is associated, or between two CAs that issue cross-
certificates for each other.

Definitions of PKI entities

The entities involved in PKI management include the EE (i.e., the entity to be named in the
subject field of a certificate) and the CA (i.e., the entity named in the issuer field of a
certificate). An RA may also be involved in PKI management.

Subjects and End Entities

The term "subject” is used to refer to the entity named in the subject field of a certificate.
When distinguishing the tools and/or software used by the subject (e.g., a local certificate
management module), the term "subject equipment” is used.

It is important to note that the end entities here will include not only human users of
applications, but also applications themselves. This factor influences the protocols that
the PKI management operations use (e.g., application software is far more likely to know
exactly which certificate extensions are required than are human users). PKI
management entities are also end entities in the sense that they are sometimes named in
the subject field of a certificate or cross-certificate. Where appropriate, the term "end-
entity” will be used to refer to end entities who are not PKI management entities.

All end entities require secure local access to some information, at a minimum:

their own name and private key;

the name of a CA which is directly trusted by this entity; and

that CA's public key (or a fingerprint of the public key where a self-certified version
is available elsewhere).

Implementations may use secure local storage for more than this minimum (e.g., the end-
entity's own certificate or application-specific information).
Certification Authority

The CA may or may not actually be a real "third party” from the end-entity's point of view.
Often, the CA will actually belong to the same organization as the end entities it supports.

The term CA is used to refer to the entity named in the issuer field of a certificate. When
it is necessary to distinguish the software or hardware tools used by the CA, the term "CA
equipment” is used.

123

124

125

The term "root CA" is used to indicate a CA that is directly trusted by an end-entity. This
term is not meant to imply that a root CA is necessarily at the top of any hierarchy, simply
that the CA in question is trusted directly. A "subordinate CA" is one that is not a root CA
for the end-entity in question.

Registration Authority

In addition to end-entities and CAs, many environments call for the existence of an RA
separate from the CA. The functions which the RA may carry out will vary from case to
case but may include personal authentication, token distribution, revocation reporting,
name assignment, key generation, archival of key pairs, etc.

This document views the RA as an optional component. When the RA is not present, the
CA is assumed to be able to carry out the RA's functions so that the PKI management
protocols are the same from the end-entity's point of view. An RA is itself an end-entity.

In some circumstances end entities will communicate directly with a CA even where an
RA is present (e.g., for initial registration and/or certification the subject may use its RA,
but communicate directly with the CA in order to obtain its certificate).

Time Stamp Authority

Time Stamp Protocols, Section 7, Reference 1, describes the format of the data returned
by a Time Stamp Authority (TSA) and the protocols to be used when communicating with
it. The time stamping service can be used as a Trusted Third Party (TTP) as one
component in building reliable non-repudiation services. The TSA provides a "proof-of-
existence" for a particular datum at an instant in time. That is, the TSA is a TTP that
creates time stamp tokens in order to indicate that a datum existed at a particular point in
time. A TSA may also be used when a trusted time reference is required and when the
local clock available cannot be trusted by all parties.

The TSA's role is to time stamp a datum to establish evidence indicating the time at which
the datum existed. This can then be used, for example, to verify that a digital signature
was applied to a message before the corresponding certificate was revoked thus allowing a
revoked public key certificate to be used for verifying signatures created prior to the time of
revocation. This is an important public key infrastructure operation. The TSA can also be
used to indicate the time of submission when a deadline is critical, or to indicate the time
of transaction for entries in a log.

PKI Repository

The PKI Repository, or Directory, can be any directory service that communicates using
the Lightweight Directory Access Protocol (LDAP). The Directory contains an entry for
each person in the organization. The Directory also serves as a repository for user’s
encryption public key certificates. When end-entity certificates are generated, they are
written into the Directory.

Storing encryption certificates in the Directory allows end entities to access the
trustworthy encryption public keys of other end entities and encrypt information for them.
The Directory keeps lists of revoked certificates in addition to a list of valid encryption
public key certificates that are owned by legitimate end entities. These lists are known as
Certificate Revocation Lists (CRLs). In cross-certified systems, the Directory also stores
cross-certificates and Authority Revocation Lists (ARLs). When a cross-certificate is
revoked, it is noted on an ARL.

13 PKIManagement Requirements

The protocols given here meet the following requirements on PKI management.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

PKI management must conform to the ISO 9594-8 standard, Section 7, Reference
2, and the associated amendments (certificate extensions).

PKI management must conform to the other parts of the PKIX series of
documents.

It must be possible to regularly update any key pair without affecting any other
key pair.

The use of confidentiality in PKI management protocols must be kept to a
minimum in order to ease regulatory problems.

PKI management protocols must allow the use of different industry-standard
cryptographic algorithms, (e.g., RSA, DSA, MD5, SHA-1). This means that any
given CA, RA, or end-entity may, in principle, use whichever algorithms suit it for
its own key pair(s).

PKI management protocols must not preclude the generation of key pairs by the
end-entity concerned, by an RA, or by a CA.

PKI management protocols must support the publication of certificates by the
end-entity concerned, by an RA, or by a CA.

PKI management protocols must support the production of Certificate Revocation
Lists (CRLs) by allowing certified end entities to make requests for the revocation
of certificates. This must be done in such a way that the denial-of-service attacks
which are possible are not made simpler.

PKI management protocols must be usable over a variety of "transport”
mechanisms, (e.g., TCP/IP).

Final authority for certification rests with the CA. No RA or end-entity equipment
can assume that any certificate issued by a CA will contain what was requested.
A CA may alter certificate field values or may add, delete or alter extensions
according to its operating policy. In other words, all PKI entities (end-entities,
RAs, and CAs) must be capable of handling responses to requests for certificates
in which the actual certificate issued is different from that requested (e.g., a CA
may shorten the validity period requested).

A graceful, scheduled changeover from one non-compromised CA key pair to the
next (CA key update) must be supported. If the CA key is compromised, re-
initialization must be performed for all entities in the domain of that CA. An end-
entity who has a copy of the new CA public key (following a CA key update) must
also be able to verify certificates verifiable using the old public key. End entities
who directly trust the old CA key pair must also be able to verify certificates
signed using the new CA private key. This is required for situations where the old
CA public key is "hardwired" into the end-entity's cryptographic equipment.

The Functions of an RA may, in some implementations or environments, be
carried out by the CA itself. The protocols must be designed so that end entities
will use the same protocol regardless of whether the communication is with an RA
or CA.

Where an end-entity requests a certificate containing a given public key value, the
end-entity must be ready to demonstrate possession of the corresponding private

key value. This may be accomplished in various ways, depending on the type of
certification request.

14 PKIManagement Operations

The following diagram shows the relationship between the entities defined above in terms
of the PKI management operations. The letters in the diagram indicate "protocols” in the
sense that a defined set of PKI management messages can be sent along each of the
lettered lines.

Figure 1. PKI Entities and Management Operations

Fom e e aaaa s + j
+---+ | End Entity | <-------
| | R + "out - of - band"
| C | | ~ | oadi ng
| e | | | initial
| r | | | regi stration/
| t | al| | b certification
| | | | key pair recovery
| /7 | | | key pair update
| | | | revocati on request
| C| PKI " USERS" \%
| R| -------mmmmmeme - O O R E I OO
| L | PKI MANAGEMENT | 7 | ~
| | ENTI TI ES al] | b al| | b
	Vo			
R g t------ + d				
e	R	RA	<----- +	
p	cert.		----+]	
o	publish Ho----- +			
s	c			
i Vo Vo				
t	g R + i			
o	e	CA [------- >		
[r	h R + "out - of - band"			
v	cert. publish A publi cation			
	CRL publish			
+---+	cross-certification			
e	f ~cross-certificate			
updat e				
S +				
cA-2				
S +

At a high level, the set of operations for which management messages are defined can be
grouped as follows.

1) CA establishment: When establishing a new CA, certain steps are required (e.g.,
production of initial CRLs, export of CA public key).

2) Certification: Various operations result in the creation of new certificates:

3)

4)

5)

b)

c)

d)

Initialization (End-entity initialization and initial
registration/certification): This includes importing a root CA public key and
requesting information about the options supported by a PKI management
entity. This is the process whereby an end-entity first makes itself known to a
CA or RA, prior to the CA issuing a certificate or certificates for that end-
entity. The end result of this process (when it is successful) is that a CA
issues a certificate for an end-entity's public key, and returns that certificate
to the end-entity and/or posts that certificate in a public repository.

Key pair update: Every key pair needs to be updated regularly (i.e., replaced
with a new key pair), and a new certificate needs to be issued.

CA key pair update: As with end entities, CA key pairs need to be updated
regularly; however, different mechanisms are required.

Cross-certification: One CA requests issuance of a cross-certificate from
another CA. A "cross-certificate" is a certificate in which the subject CA and
the issuer CA are distinct and SubjectPublicKeyInfo contains a verification
key (i.e., the certificate has been issued for the subject CA's signing key
pair). When it is necessary to distinguish more finely, the following terms
may be used: a cross-certificate is called an "inter-domain cross-certificate" if
the subject and issuer CAs belong to different administrative domains; it is
called an "intra-domain cross-certificate" otherwise.

Note: The above definition of "cross-certificate” aligns with the defined term "CA-

certificate" in X.509.

Note: In many environments the term "cross-certificate”, unless further qualified,

will be understood to be synonymous with "inter-domain cross-certificate"
as defined above.

Certificate/CRL discovery operations: some PKI management operations result
in the publication of certificates or CRLs:

a)

b)

Certificate publication: Having gone to the trouble of producing a certificate,
some means for publishing it is needed. The "means" defined in PKIX may
involve methods (LDAP, for example) as described in the "Operational
Protocols" documents of the PKIX series of specifications.

CRL publication: As for certificate publication.

Recovery operations: some PKI management operations are used when an end-
entity has "lost" its credentials (e.g., password, private key).

a)

Key pair recovery: As an option, user client key materials (e.g., a user's
private key used for decryption purposes) may be backed up by a CA, an RA,
or a key backup system associated with a CA or RA. If an entity needs to
recover these backed up key materials (e.g., as a result of a forgotten
password or a lost key chain file), a protocol exchange may be needed to
support such recovery.

Revocation operations: some PKI operations result in the creation of new CRL
entries and/or new CRLs:

a)

Revocation request: An authorized person advises a CA of an abnormal
situation requiring certificate revocation.

10

2 Subscriber and CA Registration Models

This section describes the accepted models for subscriber and CA registration in a PKI
and indicates how the qualifications and identity of subscribers and subject CAs must be
confirmed and how the certificate requester must be correctly authenticated in the
certificate request message.

21 Assumptions and Restrictions

211

212

2121

21.2.2

Initialization (initialization/registration/certification)

The first step for an end-entity in dealing with PKI management entities is to request
information about the PKI functions supported and to securely acquire a copy of the
relevant root CA public key(s).

There are many schemes that can be used to achieve initial registration and certification of
end entities. No one method is suitable for all situations due to the range of policies that a
CA may implement and the variation in the types of end-entity that can occur.

We can however, classify the initial registration/certification schemes that are supported
by this specification. Note that the word "initial", above, is crucial - we are dealing with the
situation where the end-entity in question has had no previous contact with the PKI.
Where the end-entity already possesses certified keys then some
simplifications/alternatives are possible.

Having classified the schemes that are supported by this specification we can then specify
some as mandatory and some as optional. The goal is that the mandatory schemes cover
a sufficient number of the cases that will arise in real use, while the optional schemes are
available for special cases that arise less frequently. In this way we achieve a balance
between flexibility and ease of implementation.

Criteriaused

Initialization (initialization/initial registration/certification)

In terms of the PKI messages that are produced, we can regard the initiation of the initial
registration/certification exchanges as occurring wherever the first PKI message relating to
the end-entity is produced. Note that the real-world initiation of the registration/certification
procedure may occur elsewhere (e.g., a personnel department may telephone an RA
operator).

The possible locations are at the end-entity, a RA, or a CA.

End-entity message origin authentication

The on-line messages produced by the end-entity who requires a certificate may be
authenticated or not. The requirement here is to authenticate the origin of any messages
from the end-entity to the PKI (CA/RA).

In this specification, such authentication is achieved by the PKI (CA/RA) issuing the end-
entity with a secret value (initial authentication key) and reference value (used to identify
the transaction) via some out-of-band means. The initial authentication key can then be
used to protect relevant PKI messages.

We can thus classify the initial registration/certification scheme according to whether or
not the on-line end-entity’s PKI messages are authenticated or not.

11

2.1.2.3

2124

2.1.2.5

Note: The authentication of the PKI is an important issue and can be achieved in various
models. The most secure method is via an on-line delivery of the CA public key
using a secure protocol with a shared secret. A less secure method is simply
once the root-CA public key has been installed at the end-entity's equipment via
the equipment vendor.

Note: An initialization procedure can be secure where the messages from the end-entity
and the PKI are authenticated via some out-of-band means.
Location of key generation

In this specification, "key generation" is regarded as occurring wherever either the public or
private component of a key pair first occurs in a PKIMessage (refer to Section 3.1). Note
that this does not preclude a centralized key generation service - the actual key pair may
have been generated elsewhere and transported to the end-entity, RA, or CA using a
(proprietary or standardized) key generation request/response protocol (outside the scope
of this specification).

There are thus three possibilities for the location of "key generation”: the end-entity, a RA,
or a CA.
Confirmation of successful certification

Following the creation of an initial certificate for an end-entity, additional assurance can be
gained by having the end-entity explicitly confirm successful receipt of the message
containing (or indicating the creation of) the certificate. Naturally, this confirmation
message must be protected (based on the initial authentication key or other means).

This gives two further possibilities: confirmed or not.

Basic authenticated scheme

In terms of the classification above, this scheme is where:

initiation occurs at the end-entity;
message authentication is required;

"key generation" occurs at the end-entity;
a confirmation message is required.

In terms of message flow, the basic authenticated scheme is as depicted in Figure 2:

12

Figure 2. Basic Authenticated Scheme
End-entity RA/ CA

out -of -band distribution of Initial Authentication
Key (I AK) and reference value (RA/CA -> EE)

Key generation
Creation of certification request
Protect request with | AK
-->>--certification request-->>--
verify request
process request
create response
--<<--certification response--<<--
handl e response
create confirmation
-->>--confirmtion nessage-->>--
verify

confirmation

Where verification of the confirmation message fails, the RA/CA must revoke the newly
issued certificate if it has been published or otherwise made available.

22 Proof of Possession (POP) of Private Key

221

222

In order to prevent certain attacks and to allow a CA/RA to properly check the validity of
the binding between an end-entity and a key pair, the PKI management operations
specified here make it possible for an end-entity to prove that it has possession of (i.e., is
able to use) the private key corresponding to the public key for which a certificate is
requested. A given CA/RA is free to choose how to enforce POP (e.g., out-of-band
procedural means versus PKIX-CMP in-band messages) in its certification exchanges (i.e.,
this may be a policy issue).

However, it is required that CAs/RAs must enforce POP by some means because there
are currently many non-PKIX operational protocols in use that do not explicitly check the
binding between the end-entity and the private key.

Signature Keys

The signature keys, the client will sign a value to prove possession of the private key. This
value is contained in the certificate request.

Encryption Keys

For encryption keys, the client can provide the private key to the CA or, be required to
decrypt a value in order to prove possession of the private key. The CA will support the
indirect method which is for the CA to issue a certificate encrypted for the client and have
the client demonstrate it's ability to decrypt this certificate in a confirmation message.

This allows a CA to issue a certificate in a form that can only be used by the intended
end-entity. This specification encourages use of the indirect method because this requires
no extra messages to be sent (i.e., the proof can be demonstrated using the {request,
response, confirmation} triple of messages).

13

31

311

PKIX-CMP management protocol

The IETF PKIX RFC 2510 (Certificate Management Protocols), Section 7, Reference 3,
defines the protocol between a CA and a client. The GOC PKI supports a subset of this
protocol and uses it to provide certificate services to clients. As of the June 2000, all new
clients will be managed using PKIX-CMP.

Overview

This section provides an overview of the PKI management process using the PKIX-CMP
standard.

As described in Section 1.4, the PKIX-CMP standard defines message and message
syntax to perform the various PKI management operations, including the following:

1) Initialization (initReq, initRep)

2) Certificate Request (certReq, certRep)

3) Cross-Certification (crossCertReq, crossCertRep)
4) Key Update (keyUpdReq, keyUpdRep)

5) Revocation (revReq, revRep)

6) Key Recovery (keyRecReq, keyRecRep)

7) PKIX confirmation message (pKIConfirm)

8) PKIX general message (genM, genP)

Messaging format and protocol

All of the messages used in this specification for the purposes of PKI management use
the following structure:

PKIMessage ::= SEQUENCE {
header PKIHeader,
body PKIBody,
protection [0] PKIProtection OPTIONAL,
extraCerts [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL }

The PKIHeader contains information which is common to many PKI messages. It
contains some header information for addressing and transaction identification.

The PKIBody contains message-specific information (e.g., CertReqMessages,
CertRepMessage).

The PKIProtection, when used, contains bits that protect the PKI message. Depending
on the circumstances, the PKIProtection bits may contain a MAC or a digital signature.
The protection applied to particular PKIX messages is described in Section 3.1.5.

The extraCerts field can contain certificates that may be useful to the recipient. For
example, this can be used by a CA or RA to present an end-entity with certificates that it
needs to verify its own new certificate (if, for example, the CA that issued the end-entity's
certificate is not a root CA for the end-entity).

The general PKIX protocol behavior is as illustrated in Figure 3.

14

(1) Format Request

Figure 3: PKIX protocol

Client Certification Authority

2) Request (Req)
(3) Handle Request

(5) Response (Rep (4) Format Response
(6) Handle Response

312

(7) Format Confirm (8) Confirm (pKIConfirm)

All of the supported PKI management functions (transactions) are initiated by the client,
and all consist of a request (client to CA) followed by a response (CA to client) followed by
a confirmation (client to CA). The last request is used as a final acknowledgment to CA
(pKIConfirm).

All PKI Management functions that result in certificate generation by CA require that the
client send a confirmation message upon acceptance of the newly issued certificate. If a
client chooses to reject a certificate response from CA, it may either:

send no confirmation which will result in an immediate revocation of those
certificates issued by CA,; or

return an Error Message containing failure information useful for human
consumption (i.e., for the log files at CA).

All requests for certificates, whether the first time initialization or not, will require that
proof-of-possession be established by CA for both signing keys and encryption keys.

For signature keys, the client will sign a value to prove possession of the private key. This
value is contained in the certificate request.

For encryption keys, the client can provide the private key to CA or, be required to decrypt
a value in order to prove possession of the private key. CA will support the indirect method
which is for the CA to issue a certificate encrypted for the client and have the client
demonstrate its ability to decrypt this certificate in a confirmation message.

PKI Header

All PKI messages require some header information for addressing and transaction
identification. Some of this information will also be present in a transport-specific
envelope. However, if the PKI message is protected then this information is also

protected.

The following data structure is used to contain this information:

15

PKIHeader ::= SEQUENCE {

this

pvno INTEGER { ietf-version2 (1) },
-- currently 1

sender GeneralName,

-- identifies the sender

recipient GeneralName,

-- identifies the intended recipient

messageTime [0] GeneralizedTime OPTIONAL,

-- time of production of this message

protectionAlg [1] AlgorithmIidentifier OPTIONAL,

-- algorithm used for calculation of protection bits

senderKID [2] Keyldentifier OPTIONAL,

-- to identify specific keys used for protection (reference number)
recipKID [3] Keyldentifier OPTIONAL,

-- to identify specific keys used for protection (reference number)
transactionID [4] OCTET STRING OPTIONAL,

-- identifies the transaction (i.e., this will be the same in corresponding request,
-- response and confirmation messages)

senderNonce [5] OCTET STRING OPTIONAL,
-- inserted by the creator of this message to provide replay protection
recipNonce [6] OCTET STRING OPTIONAL,

-- a nonce previously inserted in a related message by the intended recipient of

-- message to provide replay protection

freeText [7] PKIFreeText OPTIONAL,

-- this field is intended for human consumption

generalinfo [8] SEQUENCE SIZE (1..MAX) OF InfoTypeAndValue
OPTIONAL

-- this may be used to convey context-specific information }

PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String

-- text encoded as UTF-8 String

Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

The fields of the PKIHeader data structure are described below:

The pvno field is fixed (at one) for the current version of the PKIX-CMP
specification.

The sender field contains the name of the sender of the PKIMessage. This name
(in conjunction with senderKID, if supplied) should be able to verify the protection
on the message. If nothing about the sender is known to the sending entity (e.g.,
in the initReq message, where the end-entity may not know its own
Distinguished Name (DN), e-mail name, IP address, etc.), then the "sender" field
must contain a null value; that is, the SEQUENCE OF relative distinguished
names is of zero length. In such a case the senderKID field must hold an
identifier (i.e., a reference number) which indicates to the receiver the appropriate
shared secret information to use to verify the message.

The recipient field contains the name of the recipient of the PKIMessage. This
name (in conjunction with recipKID, if supplied) should be usable to verify the
protection on the message.

16

313

314

The protectionAlg field specifies the algorithm used to protect the message. If
no protection bits are supplied (note that PKIProtection is optional) then this field
must be omitted; if protection bits are supplied then this field must be supplied.

senderKID and recipKID are usable to indicate which keys have been used to
protect the message.

The transactionID field within the message header may be used to allow the
recipient of a response message to correlate this with a previously issued request.
For example, in the case of an RA there may be many requests "outstanding” at
a given moment.

The senderNonce and recipNonce fields protect the PKIMessage against
replay attacks.

The messageTime field contains the time at which the sender created the
message. This may be useful to allow end entities to correct their local time to be
consistent with the time on a central system.

The freeText field may be used to send a human-readable message to the
recipient (in any number of languages). The first language used in this sequence
indicates the desired language for replies.

The generallnfo field may be used to send machine-processable additional data
to the recipient.

PKI Body

The PKIBody contains message-specific information, and varies depending on the PKI
management operation in question.

PKIBody ::= CHOICE {
ir

[0] CertReqMessages,

--Initialization Request

ip [1] CertRepMessage, --Initialization Response
cr [2] CertReqMessages, --Certification Request

cp [3] CertRepMessage, --Certification Response
p10cr [4] CertificationRequest, --PKCS #10 Cert. Req.

kur [7] CertRegMessages, --Key Update Request

kup [8] CertRepMessage, --Key Update Response
krr [9] CertReqMessages, --Key Recovery Request
krp [10] KeyRecRepContent, --Key Recovery Response
rr [11] RevRegContent, --Revocation Request

rp [12] RevRepContent, --Revocation Response
ccr [13] CertRegMessages, --Cross-Cert. Request

cecp [14] CertRepMessage, --Cross-Cert. Response
conf [19] PKIConfirmContent, --Confirmation

genm [21] GenMsgContent, --General Message
genp [22] GenRepContent, --General Response
error [23] ErrorMsgContent --Error Message }

PKI Message Protection

Some PKI messages will be protected for integrity. If an asymmetric algorithm is used to
protect a message and the relevant public component has been certified already, then the
origin of message can also be authenticated. On the other hand, if the public component
is uncertified then the message origin cannot be automatically authenticated, but may be
authenticated via out-of-band means.

17

3.14.1

3.1.4.2

315

3.15.1

When protection is applied the following structure is used:
PKIProtection ::= BIT STRING

The input to the calculation of PKIProtection is the DER encoding of the following data
structure:

ProtectedPart ::= SEQUENCE {
header PKIHeader,
body PKIBody }

Depending on the circumstances the PKIProtection bits may contain a Message
Authentication Code (MAC) or signature.
MAC-based protection

In the case where the sender and recipient share secret information (established via out-of-
band means or from a previous PKI management operation), PKIProtection will contain a
MAC value and the protectionAlg (MSG_MAC_ALG) will be the following:
PasswordBasedMac ::= OBJECT IDENTIFIER --{1 2 840 113533 7 66 13}

PBMParameter ::= SEQUENCE {

salt OCTET STRING,

owf AlgorithmIdentifier,

-- Algld for a One-Way Function (SHA-1 recommended)
iterationCount INTEGER,

-- number of times the OWF is applied

mac Algorithmldentifier

-- the MAC Algld (e.g., CAST5-MAC) }
Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

Signature-based protection

Where the sender possesses a signature key pair it may simply sign the PKI message.
PKIProtection will contain the signature value and the protectionAlg (MSG_SIG_ALG)
will be an Algorithmldentifier for a digital signature (e.g., md5WithRSAEncryption or
dsaWithSha-1).

Message Origin Authentication
All messages from clients must contain origin authentication.

The methods of authentication depend on the operation in question. There are two
supported possibilities:

MACs
digital signatures

Password-based MAC

In this case, all messages involved in PKI Management will be authenticated using the
Basic Authenticated Scheme. Message origin authentication is achieved by the CA
issuing the client a reference number (used for identification) and a secret value or
authentication code (used to generate a shared secret key) which will provide the
message origin authentication when used to protect PKI messages involved in the
operation. This information is obtained out-of-band.

18

3.1.5.2

316

317

318

3.1.8.1

The CA protects the messages in the same way as the client, thus authenticating the PKI
to the client. The following operations will use this scheme for message authentication:

General Message
Initialization

Key Recovery
Cross Certification

Digital Signature

In cases where an existing client already has a valid signing key pair (and thus message
origin authentication is implicitly available), messages may be authenticated via digital
signature. This would typically occur with the following messages:

General Message
Certification

Key Update
Revocation

Proof of Possession

All requests for certificates (whether it be first time initialization, update etc.) will require
that proof-of-possession be established by the CA for both signing keys and encryption
keys.

For signature keys, the client will sign a value to prove possession of the private key. This
value is contained in the certificate request. For encryption keys, the client can provide
the private key to the CA or be required to decrypt a value in order to prove possession of
the private key. The CA will support the indirect method which is for the CA to issue a
certificate encrypted for the client and have the client demonstrate it's ability to decrypt
this certificate in a confirmation message.

Protection of Private Keys

In certain circumstances, private key information is passed between the client and the CA.
An example of this is when the CA creates the encryption key pair and sends the private
key back to the client.

Generally speaking, the end point (client or CA) which is to send the private key
information must obtain a protocol encryption key from the other end point. This key will
be used to protect a symmetric key that in turn is used to protect the private key
component in question.

Algorithms

Digital signature algorithms

The PKIX-CMP signature algorithm choices for the client are: RSA-512, RSA-1024
(default), RSA-2048, DSA-1024, and ECDSA-192.

The PKIX-CMP signature algorithm choices for the CA are: RSA-1024 (default), RSA-2048,
and DSA-1024.

For PKIX-CMP interoperability, support for DSA/SHA-1 is mandatory. This applies to the
MSG_SIG_ALG field. RSA/MD5 is an alternative to the mandatory Algorithmlidentifier.

19

3.1.8.2

3.1.8.3

3.1.8.4

Message Authentication Code algorithms

The PKIX-CMP MAC algorithm choices for the client are: triple-DES, CAST5-128 (default),
and HMAC-SHA-1.

The PKIX-CMP MAC algorithm choice for the CA can only be HMAC-SHA-1.

For PKIX-CMP interoperability, support for PasswordBasedMAC is mandatory. This
applies to the MSG_MAC_ALG field. HMAC is an alternative to the mandatory
Algorithmldentifier.

Encryption algorithms

The ephemeral encryption key choices for the client are: RSA 1024 (default) and RSA
2048. This key is encrypted with a symmetric key. The symmetric encryption algorithm
choices for the client are: CAST5-128 (default) and triple-DES.

The ephemeral encryption algorithm choices for the CA are: RSA 1024 (default) and RSA
2048. This key is encrypted with a symmetric key. The symmetric encryption algorithm
choices for the CA are: CAST5-128 (default) and triple-DES.

For PKIX-CMP interoperability, support for triple-DES by the client and the CA is
mandatory. This applies to the PROT_SYM_ALG field. RC5, CAST5-128, and others are
alternatives to the mandatory Algorithmldentifier.

Mandatory algorithm identifiers and specifications

3.1.8.4.1 DSA/SHA-1

Algld: {1 2 840 10040 4 3};
NIST, FIPS PUB 186: Digital Signature Standard, 1994; and
Public Modulus size: 1024 bits.

3.1.8.4.2 PasswordBasedMAC

{12840 113533 7 66 13}, with SHA-1 {1 3 14 3 2 26} as the owf parameter and
HMAC-SHA1 {136 155 8 1 2} as the mac parameter;

NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995; and

H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed-Hashing for Message
Authentication”, Internet Request for Comments 2104, February 1997.

3.1.8.4.3 Triple-DES

{1 2 840 113549 3 7} (used in RSA's BSAFE and in S/IMIME).

32 General Message

A general message exchange may first need to take place prior to any other PKI
management function. In certain cases it may be necessary for the client to obtain
information from the CA before performing PKI management functions. For example, if a
client is requesting an encryption certificate for a client-generated key pair with backup, it
must obtain a protocol encryption certificate from the CA in order to protect the private
portion of that key pair. This is accomplished through a General Message exchange.

Currently, a client may request a policy certificate (Section 3.2.1.1 and Section 3.2.2.1) or
a CA protocol encryption certificate (Section 3.2..1.2 and Section 3.2.2.2) via a PKIX
general message (genM). The client will send a general message to the CA requesting
details that will be required for later PKI management operations (i.e., protocol encryption
certificate or policy certificate). The response from the CA must be the genP message.

A pKIConfirm message is not required from the client.

20

The General Message exchange consists of two messages:

321 General Message Request

3.21.1

genM:: client

{

General Message Request (genM), and
General Message Response (genP).

Policy certificate request

pvno
sender
recipient
messageTime
protectionAlg
senderKID
transactionlD
senderNonce
freeText

body
protection

MSG_MAC_ALG
} signature (signed using client signing key) or MAC (key based on authorization
code is used to create MAC for structure)

GenMsgContent ::= SEQUENCE OF InfoTypeAndValue
InfoTypeAndValue ::= SEQUENCE {

InfoType ::= private-clientInfo

InfoValue ::= Policy Certificate

infoType
infoValue

User name
CA name
Current time
MSG_SIG_ALG or MSG_MAC_ALG
Must be present for verification of message protection
Implementation-specific (meaningful to client)
128-bit pseudo-random number
Any text
GenMsgContent
bits calculated using MSG_SIG_ALG or

OBJECT IDENTIFIER,
ANY DEFINED BY infoType OPTIONAL }

3.2.1.2 CA protocol encryption certificate request

genM:: client

{

pvno
sender
recipient
messageTime
protectionAlg
senderKID
transactionlD
senderNonce
freeText

body
protection

MSG_MAC_ALG
} signature (signed using client signing key) or MAC (key based on authorization
code is used to create MAC for structure)

GenMsgContent ::= SEQUENCE OF InfoTypeAndValue
InfoTypeAndValue ::= SEQUENCE {

User name
CA name
Current time
MSG_SIG_ALG or MSG_MAC_ALG
Must be present for verification of message protection
Implementation-specific (meaningful to client)
128-bit pseudo-random number
Any text
GenMsgContent
bits calculated using MSG_SIG_ALG or

21

322

3.221

3.2.2.2

infoType OBJECT IDENTIFIER,
infoValue ANY DEFINED BY infoType OPTIONAL }
InfoType ::= CAProtEncCert {id-it 1}

InfoValue ::= Certificate
General Message Response

Policy certificate response

genP:: CA ------m-mmmmmee- >> client
{
pvno 1
sender CA name
recipient User name
messageTime Current time
protectionAlg MSG_SIG_ALG or MSG_MAC_ALG
recipKID Must be present for verification of message protection
transactionID Implementation-specific (meaningful to client)
senderNonce Random number from corresponding genM message
recipNonce 128-bit pseudo-random number
body GenRepContent
protection bits calculated using MSG_SIG_ALG or

MSG_MAC_ALG
} signature (signed using CA protocol signing key) or MAC (key based on
authorization code is used to create MAC for structure)

GenRepContent ::= SEQUENCE OF InfoTypeAndValue

InfoTypeAndValue ::= SEQUENCE {
infoType OBJECT IDENTIFIER,
infoValue ANY DEFINED BY infoType OPTIONAL }

InfoType ::= private-clientInfo

InfoValue ::= Policy Certificate

CA protocol encryption certificate response

genP:: CA ------m-mmmmmee- >> client
{
pvno 1
sender CA name
recipient User name
messageTime Current time
protectionAlg MSG_SIG_ALG or MSG_MAC_ALG
recipKID Must be present for verification of message protection
transactionID Implementation-specific (meaningful to client)
senderNonce Random number from corresponding genM message
recipNonce 128-bit pseudo-random number
body GenRepContent
protection bits calculated using MSG_SIG_ALG or

MSG_MAC_ALG

} signature (signed using CA protocol signing key) or MAC (key based on
authorization code is used to create MAC for structure)

GenRepContent ::= SEQUENCE OF InfoTypeAndValue

22

33

331

332

3.3.21

3.3.2.2

InfoTypeAndValue ::= SEQUENCE {
infoType OBJECT IDENTIFIER,
infoValue ANY DEFINED BY infoType OPTIONAL }

InfoType ::= CAProtEncCert {id-it 1}

InfoValue ::= Certificate

Initialization (initialization/registration/certification)

This is the process by which a client first makes itself known to the CA. A successful end
result of this operation is the issuance of at least one certificate and the secure
initialization of the client’s secure storage with its key(s) and certificate(s) along with the
CA’s public key.

The Initialization exchange consists of three messages:

Initialization Request (initReq),
Initialization Response (initRep), and
Initialization Confirmation (pkiConfirm).

Requirements of a first time initialization are that the client receive out-of-band information
from the CA or RA. That information being a reference number and authentication code.
The client may initialize in the following ways:

Request for verification certificate only (client always supplies key pair), or
Client requests both a verification certificate and an encryption certificate. Either
the CA or the client can provide encryption key pair.

Verification Request Only

Client must always provide a public key and prove possession of the private key in the

request message.

Verification and Encryption Request

The way in which this type of request takes place varies depending on where the
encryption keys originate, client or at the CA, and, when at the client, whether or not the
private component is sent for archive and/or proof of possession.

The variants can be broken down into the following cases:

Encryption key pair originates at the CA,

Encryption key pair originates at client but sends private key, and

Encryption key pair originates at client but client does not send private key.
Encryption key pair originates at the CA

the client will include an empty public key field in the CertTemplate of the
encryption portion of the request from the client; and

the client will generate a protocol encryption key pair and send the public
component in the request message.
Encryption key pair originates at the client

A public key value in the CertTemplate of the encryption portion of the request indicates
the client is providing the encryption key pair.

23

3.3.2.2.1 Private key sent

If the client sends the private component of the encryption key pair for either archival or
proof of possession purposes the client must in turn first retrieve the CA'’s protocol
encryption certificate using a General Message (genM) exchange (refer to Section
3.2.1.2). The client will use the public key in the protocol encryption certificate to protect
a symmetric key which in turn is used to protect the private key information sent in the
message.

3.3.2.2.2 Private key not sent

333

334

335

3.35.1

If the client does not send the private component of the encryption key pair the message
flow changes in the following way.

Within the certificate response, the newly generated encryption certificate must be
encrypted by the CA with a fresh symmetric key (CA’'s symmetric key) and this
symmetric key must be encrypted with the public key that appears in the newly created
encryption certificate. This is necessary to establish proof of possession. This is
achieved by the client demonstrating it's ability to decrypt the certificate. The final
confirmation from the client must be protected with a newly generated symmetric key
based on the bits of CA’s symmetric key received in the response.

Message Authentication

Message origin authentication is provided by a password-based MAC by both the client
and the CA.

Message Flow Behavior
The client will always initiate the exchange with a certificate request message.

The CA will provide a response that contains new certificate(s) and the CA certificate upon
success. If the CA rejects the request, an error message must be returned detailing the
reason for failure. Human-readable reason failure text must be returned.

The client may accept this response from the CA and send a confirmation message, or
may reject the certificate(s) with either an error message detailing why the rejection took
place or no confirmation at all. Note that a rejection implies all certificates in the response
have been rejected as the protocol does not provide any mechanism by which selective
rejection may occur.

The CA should revoke the newly created certificate(s) if anything other than a confirmation
is received from the client.

Message Flows

Initialization request

An Initialization request message contains as the PKIBody an CertRegMessages data
structure which specifies the requested certificate(s). Typically, SubjectPublicKeyInfo,
Keyld, and Validity are the template fields which may be supplied for each certificate

requested. This message is intended to be used for entities first initializing into the PKI.

initReq:: client --------m-mmmemen >> CA

{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_MAC_ALG
senderKID Reference number
transactionID Implementation-specific (meaningful to client)
senderNonce 128-bit pseudo-random number
freeText Text
body CertRegMessages
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

The message is verified by the CA. If valid, the CA then creates a new certificate for the
client. The CA responds with an initRep message to the client.

CertRegMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqgMsg

CertRegMsg ::= SEQUENCE {
certReq CertRequest,
pop ProofOfPossession OPTIONAL,
-- content depends upon key type }

The proof of possession field is used to demonstrate that the entity to be associated with
the certificate is actually in possession of the corresponding private key. This field may be
calculated across the contents of the certReq field and varies in structure and content by
public key algorithm type and operational mode.

Information directly related to certificate content should be included in the certReq
content. However, inclusion of additional certReq content by RAs may invalidate the pop
field.

CertRequest ::= SEQUENCE {
certReqld INTEGER,
-- ID for matching request and reply
certTemplate CertTemplate,
-- Selected fields of cert to be issued
controls Controls OPTIONAL
-- Attributes affecting issuance }

CertTemplate ::= SEQUENCE {

version [O] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,
signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylInfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }

The extensions recognized by the CA that can be included in a PKIX-CMP initialization
request are: authorityKeyldentifier, subjectKeyldentifier, keyUsage, extKeyUsage,

privateKeyUsagePeriod, certificatePolicies, privateVersinfo, subjectAltName,
basicConstraints, and cRLDistributionPoints.

Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE ({

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }
Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue
AttributeTypeAndValue ::= SEQUENCE {

type OBJECT IDENTIFIER,
value ANY DEFINED BY type}

id-regCtrl-regToken OBJECT IDENTIFIER ::={id-regCtrl 1}
id-regCtrl-authenticator OBJECT IDENTIFIER ::={id-regCtrl 2 }
id-regCtrl-pkiPublicationinfo OBJECT IDENTIFIER ::={ id-regCtrl 3}
id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::= { id-regCtrl 4 }
id-regCtrl-oldCertID OBJECT IDENTIFIER ::={ id-regCtrl 5}
id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::={ id-regCtrl 6 }

ProofOfPossession ::= POPOSigningKey

If the certification request is for a signing key pair (i.e., a request for a verification
certificate), then the proof of possession of the private signing key is demonstrated through
use of the POPOSigningKey structure. On the other hand, if the certification request is
for an encryption key pair (i.e., a request for an encryption certificate), then the proof of
possession of the private decryption key is demonstrated by the inclusion of the private
key (encrypted) in the CertRequest (in the PKIArchiveOptions control structure).

POPOSigningKey ::= SEQUENCE {

poposkinput [0] POPOSigningKeylnput OPTIONAL,

algorithmldentifier AlgorithmIdentifier,

signature BIT STRING }
Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
POPOSigningKeylnput ::= SEQUENCE {

publicKkeyMAC PKMACValue

publicKey SubjectPublicKeylInfo }
SubjectPublicKeyInfo ::= SEQUENCE {

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }

Algorithmldentifier ::= SEQUENCE {
Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

PKMACValue ::= SEQUENCE {
algld Algorithmldentifier,
-- algorithm value shall be PasswordBasedMac {1 2 840 113533 7 66 13}
-- parameter value is PBMParameter

26

value BIT STRING }
PBMParameter ::= SEQUENCE {

salt OCTET STRING,

owf AlgorithmIdentifier,

-- Algld for a One-Way Function (SHA-1 recommended)
iterationCount INTEGER,

-- number of times the OWF is applied

mac Algorithmldentifier

-- the MAC Algld }
3.3.5.2 Initialization response

An Initialization response message contains as the PKIBody an CertRepMessage data
structure which has for each certificate requested a PKIStatusinfo field, a subject
certificate, and possibly a private key (normally encrypted with a session key, which is
itself encrypted with the protocolEncKey).

initRep:: CA --------mmmmmmmmeee >> client
{
pvno 1
sender CA name
recipient User name
messageTime Time at which CA produced message
protectionAlg MSG_MAC_ALG
recipKID Reference number
transactionID Value from corresponding initReq message
senderNonce Value from corresponding initReq message
recipNonce 128-bit pseudo-random number
freeText Text
body CertRepMessage
certificate Present
privateKey Present
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

The message is verified by the client. It then sends a pKIConfirm message to the CA.

CertRepMessage ::= SEQUENCE {

caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate
OPTIONAL,
response SEQUENCE OF CertResponse }
CertResponse ::= SEQUENCE {
certReqld INTEGER,

-- to match this response with corresponding request (a value of -1 is to be used if
-- certReqld is not specified in the corresponding request)

status PKIStatusinfo,

certifiedKeyPair CertifiedKeyPair OPTIONAL,

rspinfo OCTET STRING OPTIONAL }
PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

faillnfo PKIFailurelnfo OPTIONAL }

CertifiedKeyPair ::= SEQUENCE {

27

3.3.5.3

certOrEncCert CertOrEncCert,

privateKey [0] EncryptedValue OPTIONAL,

publicationinfo [1] PKIPublicationInfo OPTIONAL }
CertOrEncCert ::= CHOICE {

certificate [0] Certificate,

encryptedCert [1] EncryptedValue }

Where encrypted values (restricted, in this specification, to be either private keys or
certificates) are sent in PKI messages the EncryptedValue data structure is used.

Use of this data structure requires that the creator and intended recipient respectively be
able to encrypt and decrypt. Typically, this will mean that the sender and recipient have,
or are able to generate, a shared secret key.

If the recipient of the PKIMessage already possesses a private key usable for decryption,
then the encSymmKey field may contain a session key encrypted using the recipient's
public key.

Initialization confirmation

This data structure is used in three-way protocols as the final PKIMessage. The body
content is the same in all cases - actually there is no content since the PKIHeader
carries all the required information.

pkiConfirm:: client --------=-me-enmmm- >> CA
{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_MAC_ALG
senderKID Reference number
transactionID Value from corresponding initReq message
senderNonce Value from corresponding initReq message
recipNonce Value from corresponding initRep message
freeText Text
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

34 Certificate Request

This is the process by which a client requests additional certificates. For example, if in
the first time initialization only a verification certificate was issued, the client may return to
the CA for an encryption certificate. This operation requires that the client already be
initialized with valid keys capable of signature operations. This is necessary for message
authentication.

This section provides a profile of the PKIX-CMP certificate request message and the
corresponding response and confirmation messages for PKI enroliment of subscribers.
This section indicates which fields must be present in the request message and how their
contents are derived. This section also indicates what responses will be returned under
various circumstances and how the requester shall behave on receipt of those responses.

The Certificate Request exchange consists of three messages:

Certificate Request (certReq),
Certificate Response (certRep), and

28

34.1

34.2

343

3.43.1

Certificate Confirmation (pkiConfirm).

Message Authentication
Message protection is provided by digital signature.

The client must be in possession of at least one valid signing key in order to authenticate
each message sent to the CA and must be in possession of the current CA certificate.

The CA will use a protocol signing key to protect certificate request messages. The
protocol verification certificate must be included in any response from the CA in which the
protocol signing key is used for message authentication.

Message Flow Behavior

Message flow also varies as described when encryption certificate requests are done.
This variance again depends on where the encryption key pair originates, client or CA, and
whether or not the private component is sent to the CA in the former case.

A client may request any additional certificates through this message. Up to two
certificates may be updated in a single request. For each certificate to be updated, the
client must provide the serial number of the said certificate. Failure to do so should result
in an error message from the CA.

Any new certificate request must include key usage settings which differentiate the
certificate from those valid certificates which the client already possesses. Failure to do
so should result in an error message from the CA. That is, if the client already possesses
a certificate with a key usage of digitalSignature, then a request for another certificate
with digitalSignature key usage will result in an error from the CA. On the other hand, if
the certificate request contains a different key usage (e.g., nonRepudiation) the request
should be granted. A key usage combination such as digitalSignature with
nonRepudiation is different from a key usage of just digitalSignature.

The addition of this message opens up the number of keys a client may possess, which is
great for future growth. Currently, up to three key pairs (key usage in brackets) is
supported:

Verification (digitalSignature - this includes dual-purpose digitalSignature and
keyEncipherment)

Non-repudiation (honRepudiation)

Encryption (keyEncipherment)

Message Flows

Certificate request

certReq:: client ---------m--mnemmo- >> CA

{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_SIG_ALG (any authenticated protection algorithm)
senderKID For verification of message protection
transactionID Implementation-specific (meaningful to client)
senderNonce 128-bit pseudo-random number
freeText Text

body CertRegMessages

29

protection bits calculated using MSG_SIG_ALG
} Signature (signed with client signing key)

The CA will use a protocol signing key to protect certificate request messages. The
protocol verification certificate must be included in any response from the CA in which the
protocol signing key is used for message authentication.

A Certification request message contains as the PKIBody a CertReqMessages data
structure that specifies the requested certificates. This message is intended to be used
for existing PKI entities who wish to obtain additional certificates.

Alternatively, the PKIBody may be a CertificationRequest (this structure is fully
specified by the ASN.1 structure CertificationRequest given in Section 7, Reference 4).
This structure may be required for certificate requests for signing key pairs when
interoperation with legacy systems is desired, but its use is strongly discouraged
whenever not absolutely necessary

CertRegMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertRegMsg ::= SEQUENCE {
certReq CertRequest,
pop ProofOfPossession OPTIONAL,
-- content depends upon key type }

The proof of possession field is used to demonstrate that the entity to be associated with
the certificate is actually in possession of the corresponding private key. This field may be
calculated across the contents of the certReq field and varies in structure and content by
public key algorithm type and operational mode.

Information directly related to certificate content should be included in the certReq
content. However, inclusion of additional certReq content by RAs may invalidate the pop
field.

CertRequest ::= SEQUENCE {
certReqld INTEGER,
-- ID for matching request and reply
certTemplate CertTemplate,
-- Selected fields of cert to be issued
controls Controls OPTIONAL
-- Attributes affecting issuance }

CertTemplate ::= SEQUENCE {

version [O] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,
signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylnfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }

The extensions recognized by the CA that can be included in a PKIX-CMP certificate
request are: authorityKeyldentifier, subjectKeyldentifier, keyUsage, extKeyUsage,
privateKeyUsagePeriod, certificatePolicies, privateVersinfo, subjectAltName,
basicConstraints, and cRLDistributionPoints.

30

Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type OBJECT IDENTIFIER,
value ANY DEFINED BY type}

id-regCtrl-regToken OBJECT IDENTIFIER ::={id-regCtrl 1}
id-regCtrl-authenticator OBJECT IDENTIFIER ::={ id-regCtrl 2 }
id-regCtrl-pkiPublicationinfo OBJECT IDENTIFIER ::={ id-regCtrl 3}
id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::={ id-regCtrl 4}
id-regCtrl-oldCertID OBJECT IDENTIFIER ::={ id-regCtrl 5}
id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::={ id-regCtrl 6 }

ProofOfPossession ::= CHOICE {
signature [1] POPOSigningKey,
keyEncipherment [2] POPOPrivKey }

If the certification request is for a signing key pair (i.e., a request for a verification
certificate), then the proof of possession of the private signing key is demonstrated through
use of the POPOSigningKey structure. On the other hand, if the certification request is
for an encryption key pair (i.e., a request for an encryption certificate), then the proof of
possession of the private decryption key is demonstrated by the inclusion of the private
key (encrypted) in the CertRequest (in the PKIArchiveOptions control structure).

POPOSigningKey ::= SEQUENCE {

poposkinput [0] POPOSigningKeylnput OPTIONAL,

algorithmldentifier AlgorithmIdentifier,

signature BIT STRING }
POPOSigningKeylnput ::= SEQUENCE {

authinfo CHOICE {

sender [0] GeneralName,

-- used only if an authenticated identity has been established for the sender (e.g.,
a -- DN from a previously-issued and currently-valid certificate

publicKkeyMAC PKMACValue },
-- used if no authenticated GeneralName currently exists for the sender;
-- publicKkeyMAC contains a password-based MAC on the DER-encoded value of
-- publicKey
publicKey SubjectPublicKeylInfo
-- from CertTemplate }
Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE {

Algorithm Algorithmldentifier,

SubjectPublicKey BIT STRING }

PKMACValue ::= SEQUENCE {
algld Algorithmldentifier,
-- algorithm value shall be PasswordBasedMac {1 2 840 113533 7 66 13}
-- parameter value is PBMParameter
value BIT STRING }

PBMParameter ::= SEQUENCE {
salt OCTET STRING,
owf Algorithmldentifier,

31

-- Algld for a One-Way Function (SHA-1 recommended)
iterationCount INTEGER,

-- number of times the OWF is applied

mac Algorithmldentifier

-- the MAC Algld }

3.4.3.2 Certificate response

A certificate response message contains as the PKIBody a CertRepMessage data
structure that has a status value for each certificate requested, and optionally has a CA
public key, failure information, a subject certificate, and an encrypted private key.

certRep:: CA ------m--mmommmmeee >> client
{
pvno 1
sender CA name
recipient User name
messageTime Current time
protectionAlg MSG_SIG_ALG
recipKID For verification of message protection
transactionID Value from corresponding certReq message
senderNonce Value from corresponding certReq message
recipNonce 128-bit pseudo-random number
freeText Text
body CertRepMessages
certificate Present
privateKey Present
protection bits calculated using MSG_SIG_ALG
extraCerts CA's protocol verification certificate

} Signature (signed with CA protocol signing key)
The message is verified by the client. It then sends a pKIConfirm message to the CA.

CertRepMessage ::= SEQUENCE {

caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate
OPTIONAL,
response SEQUENCE OF CertResponse }
CertResponse ::= SEQUENCE {
certReqld INTEGER,

-- to match this response with corresponding request (a value
-- of -1 is to be used if certReqld is not specified in the
-- corresponding request)

status PKIStatusinfo,

certifiedKeyPair CertifiedKeyPair OPTIONAL,

rspinfo OCTET STRING OPTIONAL }
PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

faillnfo PKIFailurelnfo OPTIONAL }
CertifiedKeyPair ::= SEQUENCE {

certOrEncCert CertOrEncCert,

privateKey [0] EncryptedValue OPTIONAL,

publicationinfo [1] PKIPublicationinfo OPTIONAL }

32

CertOrEncCert ::= CHOICE {
certificate [0] Certificate,
encryptedCert [1] EncryptedValue }

Only one of the faillnfo (in PKIStatusinfo) and certificate (in CertifiedKeyPair) fields can
be present in each CertResponse (depending on the status). For some status values
(e.g., waiting) neither of the optional fields will be present.

Given an EncryptedCert and the relevant decryption key the certificate may be obtained.
The purpose of this is to allow a CA to return the value of a certificate, but with the
constraint that only the intended recipient can obtain the actual certificate. The benefit of
this approach is that a CA may reply with a certificate even in the absence of a proof that
the requester is the end-entity which can use the relevant private key (note that the proof
is not obtained until the PKIConfirm message is received by the CA). Thus the CA will
not have to revoke that certificate in the event that something goes wrong with the proof of
possession.

3.4.3.3 Certificate request confirmation

This data structure is used in three-way protocols as the final PKIMessage. The body
content is the same in all cases - actually there is no content since the PKIHeader
carries all the required information.

pkiConfirm:: client --------=-me-enmmm- >> CA

{
pvno 1
sender User name
recipient CA name
messageTime Current time
transactionID Value from corresponding certReq message
senderNonce Value from corresponding certReq message
recipNonce Value from corresponding certRep message
protectionAlg MSG_SIG_ALG
senderKID For verification of message protection
freeText Text
protection bits calculated using MSG_SIG_ALG

} Signature (signed with client signing key)

35 KeyUpdate

This section provides a profile of the PKIX-CMP renewal/update message and the
corresponding response message for PKI certificate renewal by subscribers and subject
CAs. It indicates which fields must be present in the request message and how their
contents are derived. It also indicates what responses will be returned under various
circumstances and how the requester shall behave on receipt of those responses.

For updating both key pairs, the client must identify within the request the certificates to
be updated by supplying the certificate serial numbers.

The client always supplies the public key and must prove possession of the private
component. The client must also provide the serial number of the verification certificate
which is being updated.

The client performs the following steps in a key update request. First, the client generates
a random number. Then either the security application provides the client engine with the
signing key pair and the certificate templates that it wants to obtain certificate(s) or the
security application requests the client engine to create a signature key pair. The client

33

351

352

3.5.2.1

then sends a keyUpdReq message to the CA. This message is authenticated using the
client’s signing private key.

The Key Update exchange consists of three messages:

Key Udpate Request (keyUpdReq),
Key Udpate Response (keyUpdRep), and
Key Udpate Confirmation (pkiConfirm).

Message Authentication

Message protection differs from the first time initialization exchange for both the client and
the CA.

The client must be in possession of at least one valid signing key in order to authenticate
each message sent to the CA and must be in possession of the current CA certificate.

The CA will use a protocol signing key to protect update request messages. The protocol
verification certificate must be included in any response from the CA in which the protocol
signing key is used for message authentication.

Message Flow Behavior

Message flow varies as described when encryption certificate updates are done. This
variance again depends on where the encryption key pair originates, client or CA, and
whether or not the private component is sent to the CA in the former case.

Any new certificate request must include key usage settings that differentiate the
certificate from those valid certificates which the client already possesses. Failure to do
so should result in an error message from the CA. That is, if the client already possesses
a certificate with a key usage of digitalSignature, then a request for another certificate
with digitalSignature key usage will result in an error from the CA. On the other hand, if
the certificate request contains a differing key usage (such as non-repudiation) the request
should be granted assuming other criteria are met in the request message.

Single Certificate Update

3.56.2.1.1 Verification certificate update

As in the first time initialization, client always supplies the public key and must prove
possession of the private component. The client must also provide the serial number of
the verification certificate that is being updated.

3.5.2.1.2 Encryption certificate update

3.5.2.2

Again, as in the first time initialization a general message exchange may be necessary if
the client is to send the private component of the encryption key pair. Furthermore, the
client must send a protocol encryption key if the CA is providing the encryption key pair.
Proof of possession must be established as always and may result in this being
accomplished in the confirmation message from the client.

Two Certificate Update

In this case the CA is being asked to update two certificates which would typically be a
verification certificate and an encryption certificate. The client must identify within the
request the certificates to be updated by supplying the certificate serial numbers.

353

3.5.3.1

Message Flows

Key update request

For key update requests the CertRegMessages syntax is used. Typically,
SubjectPublicKeylnfo, Keyld, and Validity are the template fields which may be
supplied for each key to be updated. This message is intended to be used to request
updates to existing (non-revoked and non-expired) certificates.

keyUpdReq:: client ------------menmmo- >> CA
{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_SIG_ALG
senderKID For verification of message protection
transactionID Implementation-specific (meaningful to client)
senderNonce 128-bit pseudo-random number
freeText Text
body CertRegMessages
protection bits calculated using MSG_SIG_ALG

} Signature (signed with client signing key)

The CA will use a protocol signing key to protect update request messages. The protocol
verification certificate must be included in any response from the CA in which the protocol
signing key is used for message authentication.

The message is verified by the CA. If valid, the CA will create a verification certificate for
the client and respond with a keyUpdRep message.

CertRegMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqgMsg

CertRegMsg ::= SEQUENCE {
certReq CertRequest,
pop ProofOfPossession OPTIONAL,
-- content depends upon key type }

The proof of possession field is used to demonstrate that the entity to be associated with
the certificate is actually in possession of the corresponding private key. This field may be
calculated across the contents of the certReq field and varies in structure and content by
public key algorithm type and operational mode.

Information directly related to certificate content should be included in the certReq
content. However, inclusion of additional certReq content by RAs may invalidate the pop
field.

CertRequest ::= SEQUENCE {
certReqld INTEGER,
-- ID for matching request and reply
certTemplate CertTemplate,
-- Selected fields of cert to be issued
controls Controls OPTIONAL
-- Attributes affecting issuance }

CertTemplate ::= SEQUENCE {
version [O] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,

35

signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylInfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }

The extensions recognized by the CA that can be included in a PKIX-CMP key update
request are: authorityKeyldentifier, subjectKeyldentifier, keyUsage, extKeyUsage,
privateKeyUsagePeriod, certificatePolicies, privateVersinfo, subjectAltName,
basicConstraints, and cRLDistributionPoints.

Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE ({

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }
Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type OBJECT IDENTIFIER,
value ANY DEFINED BY type}

id-regCtrl-regToken OBJECT IDENTIFIER ::={id-regCtrl 1}
id-regCtrl-authenticator OBJECT IDENTIFIER ::={ id-regCtrl 2 }
id-regCtrl-pkiPublicationinfo OBJECT IDENTIFIER ::={ id-regCtrl 3}
id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::={ id-regCtrl 4}
id-regCtrl-oldCertID OBJECT IDENTIFIER ::={ id-regCtrl 5}
id-regCtrl-protocolEncrKey OBJECT IDENTIFIER ::={ id-regCtrl 6 }

ProofOfPossession ::= POPOSigningKey

If the certification request is for a signing key pair (i.e., a request for a verification
certificate), then the proof of possession of the private signing key is demonstrated through
use of the POPOSigningKey structure. On the other hand, if the certification request is
for an encryption key pair (i.e., a request for an encryption certificate), then the proof of
possession of the private decryption key is demonstrated by the inclusion of the private
key (encrypted) in the CertRequest (in the PKIArchiveOptions control structure).

POPOSigningKey ::= SEQUENCE {
algorithmldentifier AlgorithmIdentifier,
signature BIT STRING }

3.56.3.2 Key update response

For key update responses the CertRepMessage syntax is used. The response is
identical to the initialization response.

A Key Update response message contains as the PKIBody an CertRepMessage data
structure which has for each certificate requested a PKIStatusinfo field, a subject
certificate, and possibly a private key (normally encrypted with a session key, which is
itself encrypted with the protocolEncKey).

36

keyUpdRep:: CA

>> client

{
pvno 1
sender CA name
recipient User name
messageTime Current time
protectionAlg MSG_SIG_ALG
recipKID For verification of message protection
transactionID Value from corresponding keyUpdReq message
senderNonce Value from corresponding keyUpdReq message
recipNonce 128-bit pseudo-random number
freeText Text
body CertRepMessage
certificate Present
privateKey Present
protection bits calculated using MSG_SIG_ALG
extraCerts Present

} Signature (signed with CA protocol signing key)

The message is verified by the client. It then sends a pKIConfirm message to the CA.

CertRepMessage ::= SEQUENCE {

caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate
OPTIONAL,
response SEQUENCE OF CertResponse }

CertResponse ::= SEQUENCE {

certReqld

INTEGER,

-- to match this response with corresponding request (a value
-- of -1 is to be used if certReqld is not specified in the
-- corresponding request)

status

certifiedKeyPair

PKIStatusiInfo,

CertifiedKeyPair OPTIONAL,

rspinfo OCTET STRING OPTIONAL }
PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

faillnfo PKIFailurelnfo OPTIONAL }
CertifiedKeyPair ::= SEQUENCE {

certOrEncCert CertOrEncCert,

privateKey [0] EncryptedValue OPTIONAL,

publicationinfo [1] PKIPublicationInfo OPTIONAL }

CertOrEncCert ::= CHOICE {
certificate
encryptedCert

[0] Certificate,
[1] EncryptedValue }

Where encrypted values (restricted, in this specification, to be either private keys or
certificates) are sent in PKI messages the EncryptedValue data structure is used.

Use of this data structure requires that the creator and intended recipient respectively be
able to encrypt and decrypt. Typically, this will mean that the sender and recipient have,
or are able to generate, a shared secret key.

37

3.5.3.3

If the recipient of the PKIMessage already possesses a private key usable for decryption,
then the encSymmKey field may contain a session key encrypted using the recipient's
public key.

Key update confirmation

This data structure is used in three-way protocols as the final PKIMessage. The body
content is the same in all cases - actually there is no content since the PKIHeader
carries all the required information.

pkiConfirm:: client --------=-me-enmmm- >> CA
{
pvno 1
sender CA name
recipient User name
messageTime Current time
transactionID Value from corresponding keyUpdReq message
senderNonce Value from corresponding keyUpdRep message
recipNonce Value from corresponding keyUpdRep message
protectionAlg MSG_SIG_ALG
senderKID For verification of message protection
freeText Text
protection bits calculated using MSG_SIG_ALG

} Signature (signed with client signing key)

36 Cross-certification

361

3.6.1.1

This section provides a profile of the PKIX-CMP request message and the corresponding
response and confirmation messages for PKI enrollment of subject CAs. Indicates which
fields must be present in the request message and how their contents are derived. Also
indicates what responses will be returned under various circumstances and how the
requester shall behave on receipt of those responses.

The message flow is the same as all requests that result in the generation of a certificate.
Hence, a confirmation message from the client is required.

The Cross-certification exchange consists of three messages:

Cross-certification Request (certReq),
Cross-certification Response (certRep), and
Cross-certification Confirmation (pkiConfirm).

Message Flows

Cross-certification request

Cross certification requests use the same syntax as for normal certification requests with
the restriction that the key pair must have been generated by the requesting CA and the
private key must not be sent to the responding CA.

certReq:: CA1 - >> CA2
{
pvno 1
sender Name of CA1
recipient Name of CA2
messageTime Time of production of message

protectionAlg MSG_MAC_ALG

senderKID Reference number

transactionID Implementation-specific (meaningful to CA)
senderNonce 128-bit pseudo-random number

freeText Text

body CertReqMessage

protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)
CertRegMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertRegMsg ::= SEQUENCE {
certReq CertRequest,
pop ProofOfPossession OPTIONAL
-- content depends upon key type }

The proof of possession field is used to demonstrate that the entity to be associated with
the certificate is actually in possession of the corresponding private key. This field may be
calculated across the contents of the certReq field and varies in structure and content by
public key algorithm type and operational mode.

Information directly related to certificate content should be included in the certReq
content. However, inclusion of additional certReq content by RAs may invalidate the pop
field.

CertRequest ::= SEQUENCE {
certReqld INTEGER,
-- ID for matching request and reply
certTemplate CertTemplate
-- Selected fields of cert to be issued }

CertTemplate ::= SEQUENCE {

version [O] Version OPTIONAL,
--v1 (0) orv3 (2
signingAlg [2] AlgorithmIdentifier OPTIONAL,

-- Requesting CA must know in advance with which algorithm it wishes the
certificate -- to be signed

issuer [3] Name OPTIONAL,

-- may be null only if issuerAltName extension value proposed
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,

-- may be null only if subjectAltName extension value proposed
publicKey [6] SubjectPublicKeylInfo OPTIONAL,

-- the CA key to be certified

extensions [9] Extensions OPTIONAL

-- requesting CA must propose values for all extensions which it requires to be in
the -- cross-certificate }

The extensions recognized by the CA that can be included in a PKIX-CMP cross-
certification request are: authorityKeyldentifier, subjectKeyldentifier, keyUsage,
extKeyUsage, privateKeyUsagePeriod, certificatePolicies, privateVersinfo,
subjectAltName, basicConstraints, and cRLDistributionPoints.

Algorithmldentifier ::= SEQUENCE {
Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

SubjectPublicKeyInfo ::= SEQUENCE {
Algorithm AlgorithmIdentifier,

39

3.6.1.2

SubjectPublicKey BIT STRING }

OptionalValidity ::= SEQUENCE {
notBefore [O] Time OPTIONAL,
notAfter [1] Time OPTIONAL
--at least one must be present }

Time ::= CHOICE {
utcTime UTCTime,
generalTime GeneralizedTime }

ProofOfPossession ::= POPOSigningKey

Since the cross-certification request is a request for a verification certificate, the proof of
possession of the CA signing key is demonstrated through use of the POPOSigningKey
structure.

POPOSigningKey ::= SEQUENCE {
algorithmldentifier Algorithmldentifier,
signature BIT STRING }

The CA2 will use its signing key to protect cross-certificate request messages. The CAl
verification certificate must be included in any response from the CA2 in which the protocol
signing key is used for message authentication.

Cross-certification response

Cross certification responses use the same syntax as for normal certification responses
with the restriction that no encrypted private key can be sent.

certRep:: CA2 -------mm-mmmmmmmmm >> CAl

{
pvno 1
sender Name of CA2
recipient Name of CA1
messageTime Time at which CA produced message
protectionAlg MSG_MAC_ALG
senderKID For verification of message protection
recipKID Reference number
transactionID Value from corresponding certReq message
senderNonce Value from corresponding certReq message
recipNonce 128-bit pseudo-random number
freeText Text
body CertRepMessage
response present
status present - PKI status indicator
faillnfo present depending on status
certifiedKeyPair Certified key pair
certificate Cross-certificate
protection bits calculated using MSG_MAC_ALG
extraCerts CA’s verification certificate

} MAC (key based on authorization code is used to create MAC for structure)

CertRepMessage ::= SEQUENCE {

caPubs [1] SEQUENCE SIZE (1..MAX) OF Certificate
OPTIONAL,
response SEQUENCE OF CertResponse }

CertResponse ::= SEQUENCE {

40

3.6.1.3

certReqld INTEGER,

-- to match this response with corresponding request (a value
-- of -1 is to be used if certReqld is not specified in the

-- corresponding request)

status PKIStatusinfo,

certifiedKeyPair CertifiedKeyPair OPTIONAL,

rspinfo OCTET STRING OPTIONAL }
PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

faillnfo PKIFailurelnfo OPTIONAL }
CertifiedKeyPair ::= SEQUENCE {

certOrEncCert CertOrEncCert,

privateKey [0] EncryptedValue OPTIONAL,

publicationinfo [1] PKIPublicationInfo OPTIONAL }
CertOrEncCert ::= CHOICE {

certificate [0] Certificate,

encryptedCert [1] EncryptedValue }

Where encrypted values (restricted, in this specification, to be either private keys or
certificates) are sent in PKI messages the EncryptedValue data structure is used.

Use of this data structure requires that the creator and intended recipient respectively be
able to encrypt and decrypt. Typically, this will mean that the sender and recipient have,
or are able to generate, a shared secret key.

If the recipient of the PKIMessage already possesses a private key usable for decryption,
then the encSymmKey field may contain a session key encrypted using the recipient's
public key.

The requesting CALl then sends a pKIConfirm message to the recipient CA2.

Cross-certification confirmation

This data structure is used in three-way protocols as the final PKIMessage. The body
content is the same in all cases - actually there is no content since the PKIHeader
carries all the required information.

pkiConfirm:: CAL ---------mm-mmmemee >> CA2
{
pvno 1
sender Name of CA1
recipient Name of CA2
transactionID Value from corresponding certReq message
senderNonce Value from corresponding certRep message
recipNonce Value from corresponding certRep message
protectionAlg MSG_MAC_ALG
senderKID Reference number
freeText Text
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

41

3.7 Key Recovery

371

372

373

3.7.3.1

This section provides a profile of the PKIX-CMP request message and the corresponding
response and confirmation messages for PKI key recovery of subscribers. It indicates
which fields must be present in the request message and how their contents are derived.
It also indicates what responses will be returned under various circumstances and how the
requester shall behave on receipt of those responses.

The client receives the authorization code and a reference number for use in identifying the
client and the CA and for authenticating the exchanged messages. The engine sends a
keyRecReq message to the CA. This message is secured using a MAC derived from the
authorization code.

This exchange is performed when a client no longer has a valid signature key pair or client
key materials have been lost. It is used to obtain the encryption key history from the CA.

The Key Recovery request exchange consists of three messages:
Key Recovery Request (keyRecReq),
Key Recovery Response (keyRecRep), and
Key Recovery Confirmation (pkiConfirm).
Message Authentication
Message will be protected with a password-based MAC. The client must obtain the
reference number and authentication code out-of-band.
Message Flow Behavior

A client requesting key recovery will always request a new verification certificate as well as
the encryption key history.

It is not necessary to include key usage within each of the certificate requests.
Message Flows

Key recovery request

keyRecReq:: client -----------m--unmo- >> CA
{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_MAC_ALG
senderKID Reference number
transactionID Implementation-specific (meaningful to client)
senderNonce 128-bit pseudo-random number
freeText Text
body CertRegMessages
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

For key recovery requests the syntax used is identical to the initialization request
CertRegMessages. Typically, SubjectPublicKeylInfo and Keyld are the template fields
which may be used to supply a signature public key for which a certificate is required.

CertRegMessages ::= SEQUENCE SIZE (1..MAX) OF CertReqMsg

CertRegMsg ::= SEQUENCE {
certReq CertRequest,
pop ProofOfPossession OPTIONAL
-- content depends upon key type }

Information directly related to certificate content should be included in the certReq
content. However, inclusion of additional certReq content by RAs may invalidate the pop
field.

Note that if a key history is required, the requester must supply a Protocol Encryption Key
control in the request message.

The message is verified by the CA. If valid, the CA then creates a verification certificate for
the client and prepares decryption key history and encryption certificates to send to client.
The CA responds with a keyRecRep message to the client.

CertRequest ::= SEQUENCE {
certReqld INTEGER,
-- ID for matching request and reply
certTemplate CertTemplate,
-- Selected fields of cert to be issued
controls Controls OPTIONAL
-- Attributes affecting issuance }

CertTemplate ::= SEQUENCE {

version [O] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,
signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylInfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }

The extensions recognized by the CA that can be included in a PKIX-CMP cross-
certification request are: authorityKeyldentifier, subjectKeyldentifier, keyUsage,
extKeyUsage, privateKeyUsagePeriod, certificatePolicies, privateVersinfo,
subjectAltName, basicConstraints, and cRLDistributionPoints.

Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE {

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }
Controls ::= SEQUENCE SIZE(1..MAX) OF AttributeTypeAndValue

AttributeTypeAndValue ::= SEQUENCE {
type OBJECT IDENTIFIER,
value ANY DEFINED BY type }

id-regCtrl-regToken OBJECT IDENTIFIER ::={id-regCtrl 1}
id-regCtrl-authenticator OBJECT IDENTIFIER ::={ id-regCtrl 2 }
id-regCtrl-pkiPublicationinfo OBJECT IDENTIFIER ::={ id-regCtrl 3}
id-regCtrl-pkiArchiveOptions OBJECT IDENTIFIER ::={ id-regCtrl 4}

43

OBJECT IDENTIFIE
OBJECT IDENTIFIE

id-regCtrl-oldCertID
id-regCtrl-protocolEncrKey

id-regCtrl 5}

R:={
R::={id-regCtrl 6 }

3.7.3.2 Key recovery response
keyRecRep:: CA ---------mmmmmmmem- >> client
{
pvno 1
sender CA name
recipient User name

messageTime

Current time

protectionAlg MSG_MAC_ALG

recipKID Reference number

transactionID Value from corresponding keyRecReq message
senderNonce Value from corresponding keyRecReq message
recipNonce 128-bit pseudo-random number

freeText Text

body KeyRecRepContent

certificate Present

privateKey Present

protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

For key recovery responses the following syntax is used. For some status values (e.g.,
waiting) none of the optional fields will be present.

KeyRecRepContent ::= SEQUENCE {

status PKIStatusinfo,

newSigCert [0] Certificate OPTIONAL,

caCerts [1] SEQUENCE SIZE (1..MAX) OF Certificate OPTIONAL,

keyPairHist [2] SEQUENCE SIZE (1..MAX) OF CertifiedKeyPair OPTIONAL
}
PKIStatusInfo ::= SEQUENCE {

status PKIStatus,

statusString PKIFreeText OPTIONAL,

faillnfo PKIFailurelnfo OPTIONAL }

The message is verified by the client. The verification certificate and encryption key
history are given to the security application. It then sends a pKIConfirm message to the

CA.
3.7.3.3 Key recovery confirmation

pkiConfirm:: client --------=-meeenmmm- >> CA

{
pvno 1
sender User name
recipient CA name
transactionID Value from corresponding keyRecRep message

senderNonce Value from corresponding keyRecRep message
recipNonce Value from corresponding keyRecRep message
protectionAlg MSG_MAC_ALG

senderKID Reference number

freeText Text

protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

38 Revocation

381

382

383

3.8.3.1

This section provides a profile of the PKIX-CMP revocation request message and the
corresponding response message for PKI certificate revocation by subscribers and subject
CAs. It indicates which fields must be present in the request message and how their
contents are derived. It also indicates what responses will be returned under various
circumstances and how the requester shall behave on receipt of those responses.

This exchange is performed when a client needs to revoke his or her own certificates. This
transaction requires that clients be in possession of at least one valid signing key.

A client can request revocation of many certificates in a single message. The CA will
respond with a status for each of the certificates that were requested to be revoked. There
is no confirmation message from the client.

For each certificate to be revoked, the client must provide a means for the CA to determine
the target certificate (e.g., certificate serial number).

The Key Revocation request exchange consists of two messages:
Revocation Request (revReq) and
Revocation Response (revRep).
Message Authentication
Client authenticates message with a valid signing key. CA authenticates message with a
protocol signing key.
Message Flow Behavior

A client can request revocation of many certificates in a single message. The CA will
respond with a status for each of the certificates that were requested to be revoked. There
is no confirmation message from the client as it is not necessary in this case.

For each certificate to be revoked, the client must provide a means for the CA to determine
the target certificate. This will be accomplished by either:

The client provides the actual serial number of the certificate to be revoked, or

The client provides Distinguished Name and the exact key usage of the certificate
to be revoked.

Optionally, the client may specify a revocation reason (ReasonFlags), a
GeneralizedTime representing a not valid since date as well as crlEntryExtensions.

The Reason code certificateHold is not supported. Any requests containing this reason
code will be rejected by the CA.

The CA must ensure that the client requesting the revocation is actually the subject of the
revocation for each request within the message. This restriction is lifted for an RA client.
The CA will respond with a message detailing the status of each of the revocation
requests.

Message Flows

Revocation request

When requesting revocation of a certificate (or several certificates) the following data
structure is used. The name of the requester is present in the PKIHeader structure.

45

3.8.3.2

revReq:: client ----------mm-memen >> CA
{
pvno 1
sender User name
protectionAlg MSG_SIG_ALG
senderKID For verification of message protection
transactionID Implementation-specific (meaningful to client)
senderNonce 128-bit pseudo-random number
freeText Text
body RevReqContent
protection bits calculated using MSG_SIG_ALG

} Signature (signed with client signing key)
RevReqContent ::= SEQUENCE OF RevDetails

RevDetails ::= SEQUENCE {
certDetails CertTemplate,
-- allows requester to specify as much as they can about the cert. for which

-- revocation is requested (e.g., for cases in which serialNumber is not available)

revocationReason ReasonFlags OPTIONAL,

-- the reason that revocation is requested

badSinceDate GeneralizedTime OPTIONAL,

-- indicates best knowledge of sender

crlEntryDetails Extensions OPTIONAL

-- requested crlEntryExtensions }

CertTemplate ::= SEQUENCE {

version [O] Version OPTIONAL,
serialNumber [1] INTEGER OPTIONAL,
signingAlg [2] AlgorithmIdentifier OPTIONAL,
issuer [3] Name OPTIONAL,
validity [4] OptionalValidity OPTIONAL,
subject [5] Name OPTIONAL,
publicKey [6] SubjectPublicKeylInfo OPTIONAL,
issuerUID [7] Uniqueldentifier OPTIONAL,
subjectUID [8] Uniqueldentifier OPTIONAL,
extensions [9] Extensions OPTIONAL }
Algorithmldentifier ::= SEQUENCE {
Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE ({
Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }

The message is verified by the CA. If valid, the CA revokes the certificate in question for
the client and sends a modifyRequest message to the directory to issue a new CRL
including the revoked certificate. The CA responds with a revRep message to the client.

Revocation response

The revocation response is sent to the requester of the revocation.

revRep:: CA --------mmmmmmmmeee >> client

{

pvno 1

46

sender
recipient
messageTime
protectionAlg
recipKID
transactionID
senderNonce
recipNonce
freeText

body
certificate
privateKey
protection
extraCerts

CA name
User name
Current time
MSG_SIG_ALG
Reference number
Value from corresponding revReq message
Value from corresponding revReq message
128-bit pseudo-random number
Text
RevRepContent
Present
Present
bits calculated using MSG_SIG_ALG
CA'’s protocoal verification certificate

} Signature (signed with CA protocol signing key)
RevRepContent ::= SEQUENCE {

status SEQUENCE SIZE (1..MAX) OF PKIStatusinfo,
revCerts [0] SEQUENCE SIZE (1..MAX) OF Certld OPTIONAL,
crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL }
PKIStatusInfo ::= SEQUENCE {
status PKIStatus,
statusString PKIFreeText OPTIONAL,
faillnfo PKIFailurelnfo OPTIONAL }
Certld ::= SEQUENCE {
issuer GeneralName,
serialNumber INTEGER }
CertificateList ::= SEQUENCE {

tbsCertList
signatureAlgorithm
signatureValue

TBSCertList ::= SEQUENCE {

TBSCertList,
AlgorithmIdentifier,
BIT STRING }

Algorithmldentifier

version

-- if present, shall be v2

signature
issuer
thisUpdate
nextUpdate

revokedCertificates
userCertificate
revocationDate
crlEntryExtensions

Version OPTIONAL,

AlgorithmIdentifier,
Name,

Time,

Time OPTIONAL,
SEQUENCE OF SEQUENCE {
CertificateSerialNumber,
Time,

Extensions OPTIONAL

-- if present, shall be v2 } OPTIONAL,

crlExtensions

[0] EXPLICIT Extensions OPTIONAL

-- if present, shall be v2 }

Algorithm
Parameters

;= SEQUENCE {

OBJECT IDENTIFIER,
ANY DEFINED BY algorithm OPTIONAL }

47

4 CAKey Update

41 Introduction

This section describes an overview of the CA key update procedure and indicates how
certificate users obtain the new CA key. This mechanism does not represent a PKIX-CMP
message transaction.

42 Root CAkey update

The basis of the procedure described here is that the CA protects its new public key using
its previous private key and vice versa. Thus when a CA updates its key pair it must
generate two extra cACertificate attribute values if certificates are made available using
an X.500 directory for a total of four:

OldWithOld: a true self-signed certificate. The contained public key must be
usable to verify the signature (integrity only);

OldwWithNew: the previous root CA public key signed with new private key;
NewWithOld: new root CA public key signed with previous private key; and
NewWithNew: new root CA public key signed with new private key.

When a CA changes its key pair, those entities who have acquired the old CA public key
via "out-of-band" means are most affected. It is these end entities who will need access to
the new CA public key protected with the old CA private key. However, they will only
require this for a limited period (until they have acquired the new CA public key via the
"out-of-band" mechanism). This will typically be easily achieved when these end entities'
certificates expire.

The data structure used to protect the new and old CA public keys is a standard certificate
(which may also contain extensions). There are no new data structures required.

This scheme does not make use of any of the X.509 v3 extensions as it must be able to
work even for version 1 certificates. The presence of the Keyldentifier extension would
make for efficiency improvements.

While the scheme could be generalized to cover cases where the CA updates its key pair
more than once during the validity period of one of its end entities' certificates, this
generalization seems of dubious value. Not having this generalization simply means that
the validity period of a CA key pair must be greater than the validity period of any
certificate issued by that CA using that key pair.

This scheme forces end entities to acquire the new CA public key on the expiry of the last
certificate they owned that was signed with the old CA private key (via the "out-of-band"
means). Certificate and key update operations occurring at other times do not necessarily
require this (depending on the end-entity's equipment).

After a CA key update has occurred, it is important that users update their CA trust
anchor to be the new CA verification public key sometime before their old CA trust anchor
expires. This is accomplished when the user contacts the CA to perform a key recovery
or key update operation. During this operation, the Client is passed its new CA trust
anchor, which it securely stores in its profile. After receiving a new CA trust anchor, all
client certificate validations must lead from the new CA trust anchor to the certificate being
validated.

48

43 CA Operator actions
To change the key of the CA, the CA operator does the following:
1) Generates a new key pair;
2) Creates a certificate containing the old CA public key signed with the new private
key (the "old with new" certificate);

3) Creates a certificate containing the new CA public key signed with the old private
key (the "new with old" certificate);

4) Creates a certificate containing the new CA public key signed with the new private
key (the "new with new" certificate);

5) Publishes these new certificates via the directory; and

6) Exports the new CA public key so that end entities may acquire it using the "out-
of-band" mechanism (if required).

The old CA private key is then no longer required. The old CA public key will however
remain in use for some time. The time when the old CA public key is no longer required
(other than for non-repudiation) will be when all end entities of this CA have securely
acquired the new CA public key.

The "old with new" certificate must have a validity period starting at the generation time of
the old key pair and ending at the expiry date of the old public key.

The "new with old" certificate must have a validity period starting at the generation time of
the new key pair and ending at the time by which all end entities of this CA will securely
possess the new CA public key (at the latest, the expiry date of the old public key).

The "new with new" certificate must have a validity period starting at the generation time of
the new key pair and ending at the time by which the CA will next update its key pair.

49

5 PKCS enrollment protocol

This section provides an overview of the PKI enrollment process using the PKCS
standards. It provides a profile of the raw PKCS #10, Section 7, Reference 4, request
message (Section 5.3.2) and the PKCS #7, Section 7, Reference 5, response message
(Section 5.4.2) as well as their PKIX-CMP formats (Section 5.6.1 and Section 5.6.2,
respectively) for PKI enrollment of subscribers and subject CAs.

51 Protocol Flow Charts

Figure 4 shows the Simple Enroliment Request and Response messages. The contents
of these messages are detailed in Sections 5.2.1 and Section 5.2.2 below.

50

Figure 4. Simple PKI Request and Response Messages

Si mpl e PKI Request

| Certificate Request

| Subject Name
| Subject Public Key Info
| (K_PUB)

| Attributes

| signed with

| matching

52 PKlIMessages

This section discusses the details of putting together the different enroliment request and

521

response messages.

Simple Enroliment Request

Si npl e PKI Response

| CMS "certs-only" |
| (PKCS #7) message |

| CMS Signed Data,

| no signerlnfo

| signedData contains one
| or more certificates in
| the "certificates"

| portion of the

| signedDat a.

| encapsul at edContent | nfo

| is enpty.

| unsigned

The simplest form of an enrollment request is a plain PKCS #10 message. If this form of
enrollment request is used for a private key that is capable of generating a signature, the

PKCS #10 must be signed with that private key.

51

522

Servers must support the Simple Enrolliment Request message. If the Simple Enrollment
Request message is used, servers must return the Simple Enrollment Response message
(see Section 5.2.2) if the enrollment request is granted. If the enrollment request fails, the
Full Enrollment Response may be returned or no response may be returned.

Simple Enrollment Response

CAs should use the simple enrollment response message whenever possible. Clients
must be able to process the simple enrollment response message. The simple enrollment
response message consists of a signedData object with no signerinfo objects on it. The
certificates requested are returned in the certificate bag of the signedData object.

Clients must not assume the certificates are in any order. Servers should include all
intermediate certificates needed to form complete chains to one or more self-signed
certificates, not just the newly issued certificate(s). Clients must not implicitly trust
included self-signed certificate(s) merely due to its presence in the certificate bag. In the
event clients receive a new self-signed certificate from the server, clients should provide a
mechanism to enable the user to explicitly trust the certificate.

53 PKCS#10

531

532

Certification Requests are based on either PKCS #10 or CRMF, Section 7 Reference 6,
(PKIX-CMP) messages. Section 5.6.1 specifies the PKCS #10 certification request
message syntax. Section 3.4 describes the PKIX-CMP certification message flows.

General overview

The PKCS #10 standard describes a syntax for certification requests. A certification
request consists of a distinguished name, a public key, and optionally a set of attributes,
collectively signed by the entity requesting certification. Certification requests are sent to
a CA, who transforms the request to an X.509 public-key certificate. A PKCS #7 message
is a typical form for the CA to return the newly signed certificate. The preliminary intended
application of the PKCS #10 standard is to support PKCS #7 cryptographic messages.

General syntax

When producing a PKCS #10 request body, clients must produce a PKCS #10 message
body containing a subject name and public key. An entity would typically send a PKCS
#10 certification request (which is then wrapped in a PKIX message) to the CA, for first
time initialization, after generating a public-key/private-key pair, but may also do so after a
change in the entity's DN. A reference number and authorization code must still be
retrieved out-of-band by the client. As a result, the subject within the PKCS #10 message
must be either the actual DN of the user associated with the given reference number or a
DN of the form cn=<reference #>.

Some certification products are operated using a central repository of information to assign
subject names upon receipt of a public key for certification. To accommodate this mode
of operation, the subject name in a CertificationRequest may be null, but must be
present. CAs that receive a CertificationRequest with a null subject name may reject
such requests. If rejected and a response is returned, the CA must respond with the
faillnfo attribute of badRequest.

A PKCS #10 certification request consists of three parts:

certification request information,
a signature algorithm identifier, and
a digital signature on the certification request information.

52

53.2.1

5.3.2.2

The certificate request structure (CertificationRequest) is defined in Section 5.3.2.1. The
certificate request information structure (CertificationRequestInfo) is defined in Section
5.3.2.2.

CertificationRequest

A certification request shall have ASN.1 type CertificationRequest:

CertificationRequest ::= SEQUENCE {

version 0
-- PKCS #10 version is currently O
subject User name,

subjectPublicKeyInfo SubjectPublicKeylInfo,

-- Key information for the public verification key
attributes [O] IMPLICIT Attributes

-- Must include keyUsage and extKeyUsage extension
signatureAlgorithm SignatureAlgorithmldentifier
-- e.g., md5WithRSAEncryption

signhature Signature }

The CertificationRequest structure described above is constructed from the base
CertificationRequest and CertificationRequestinfo structures, described below.

Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE ({

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }
CertificationRequest ::= SEQUENCE {

certificationRequestinfo CertificationRequestinfo,
signatureAlgorithm SignatureAlgorithmldentifier,
signature Signature }

SignatureAlgorithmldentifier ::= Algorithmldentifier
Signature ::= BIT STRING
The fields of type CertificationRequest have the following meanings:

certificationRequestinfo is the "certification request information.” It is the value
being signed;

signatureAlgorithm identifies the signature algorithm (and any associated
parameters) under which the certification-request information is signed (e.qg.,
PKCS #1's md2WithRSAEncryption and md5WithRSAEncryption); and

signature is the result of signing the certification request information with the
certification request subject's private key.
CertificationRequestinfo
Certification request information shall have ASN.1 type CertificationRequestinfo:

CertificationRequestinfo ::= SEQUENCE {
version 0
subject User name,
subjectPublicKeyInfo SubjectPublicKeylinfo,

53

attributes [O] IMPLICIT Attributes }
Version ::= INTEGER
Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,

Parameters ANY DEFINED BY algorithm OPTIONAL }
SubjectPublicKeyInfo ::= SEQUENCE ({

Algorithm AlgorithmIdentifier,

SubjectPublicKey BIT STRING }
Attributes ::= SET OF Attribute

Attribute ::= SEQUENCE {
type AttributeType,
values SET OF AttributeValue
-- Must include keyUsage and extKeyUsage extension }

AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY
The fields of type CertificationRequestinfo have the following meanings:

version is the version number, for compatibility with future revisions of the PKCS
#10 standard. It shall be O for this version of the PKCS #10 standard;

subject is the distinguished name of the certificate subject (the entity whose
public key is to be certified);

subjectPublicKeyInfo contains information about the public key being certified.
The information identifies the entity's public-key algorithm (and any associated
parameters). The information also includes a bit-string representation of the
entity's public key; and

attributes is a set of attributes providing additional information about the subject
of the certificate. The Key Usage extension is required as an attribute.

54 PKCS#7

541

The PKCS #7 standard describes a general syntax for data that may have cryptography
applied to it, such as digital signatures and digital envelopes. A degenerate case of the
syntax provides a means for disseminating certificates and CRLs. This is the case for the
PKCS #7 response to the PKCS #10 request.

General overview

The PKCS #7 syntax admits recursion, so that, for example, one envelope can be nested
inside another, or one party can sign some previously enveloped digital data. It also
allows arbitrary attributes, such as signing time, to be authenticated along with the
content of a message, and provides for other attributes such as countersignatures to be
associated with a signature. A degenerate case of the syntax provides a means for
disseminating certificates and CRLSs.

The PKCS #7 syntax is general enough to support many different content types. The
PKCS #7 standard defines six types:

data,
signed data,
enveloped data,

signed-and-enveloped data,
digested data, and
encrypted data.

For the PKCS #7 response to the PKCS #10 request, the signed-data and data content
types are used.

542 General syntax

5.4.2.1 Overall Contentinfo

The general syntax for content exchanged between entities according to the PKCS #7
standard associates a content type with content. The syntax has ASN.1 type
Contentlinfo:

Contentinfo ::= SEQUENCE {
contentType signedData (1.2.840.113549.1.7.2)
version 1
-- This is 1 for this version of the PKCS #7 standard
digestAlgorithms DigestAlgorithmldentifiers

-- This is NULL

contentType data (1.2.840.113549.1.7.1)

certificate
version [O] Version,
serialNumber CertificateSerialNumber,
signhature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeylinfo,
issuerUniqueldentifier [1] IMPLICIT Uniqueldentifier OPTIONAL,
-- This is NULL
subjectUniqueldentifier [2] IMPLICIT Uniqueldentifier
OPTIONAL
-- This is NULL
extensions [3] Extensions OPTIONAL
-- If present, version must be v3 }
crls [1] IMPLICIT CertificateRevocationLists OPTIONAL
-- This is NULL
signerinfos Signerinfos
-- This is NULL }

Algorithmldentifier ::= SEQUENCE {
Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

SubjectPublicKeyInfo ::= SEQUENCE {
Algorithm AlgorithmIdentifier,
SubjectPublicKey BIT STRING }

The fields of type Contentinfo have the following meanings:

contentType indicates the type of content. Itis an OID, which means itis a
unigue string of integers assigned by the authority that defines the content type.
For the PKCS #7 response to the PKCS #10 request, the content type is
SignedData. Within the nested Contentinfo structure, this is Data.

55

content is the content. The field is optional, and if the field is not present, its
intended value must be supplied by other means. Its type is defined along with
the object identifier for contentType.

5.4.2.2 Signed-data content type

The signed-data content type consists of content of any type and encrypted message
digests of the content for zero or more signers. The encrypted digest for a signer is a
"digital signature" on the content for that signer. Any type of content can be signed by
any number of signers in parallel. It is expected that the typical application of the signed-
data content type will be to represent one signer's digital signature on content of the data
content type.

Note: The syntax has a degenerate case in which there are no signers on the content.
The degenerate case provides a means for disseminating certificates and CRLs.
This is the case for a response to the PKCS #10 request.

Note: Inresponse to a PKCS #10 request, a typical application will be to disseminate
certificates and CRLs.

The signed-data content type shall have ASN.1 type SignedData:
SignedData ::= SEQUENCE {

version 1

digestAlgorithms DigestAlgorithmlidentifiers,

contentinfo Contentlinfo,

certificates [0] IMPLICIT ExtendedCertificatesAndCertificates
OPTION,

crls [1] IMPLICIT CertificateRevocationLists OPTIONAL,

signerinfos Signerinfos }

The fields of type SignhedData have the following meanings.

version is the syntax version number. Itis 1 for this version of the PKCS #7
standard.

digestAlgorithms is a collection of message-digest algorithm identifiers. There
may be any number of elements in the collection, including zero (NULL), which
would be the case for the PKCS #7 response to the PKCS #10 request.

Each element identifies the message-digest algorithm (and any associated
parameters) under which the content is digested for a signer. The collection is
intended to list the message-digest algorithms employed by all of the signers, in
any order, to facilitate one-pass signature verification.

contentinfo is the content that is signed. It can have any of the defined content
types. For the PKCS #7 response to the PKCS #10 request, the content type is
data.

certificates is a set of X.509 certificates. It is intended that the set be sufficient
to contain chains from a recognized "root" or "top-level CA" to all of the signers in
the signerinfos field. There may be more certificates than necessary, and there
may be certificates sufficient to contain chains from two or more independent top-
level CAs. There may also be fewer certificates than necessary, if it is expected
that those verifying the signatures have an alternate means of obtaining necessary
certificates (e.g., from a previous set of certificates).

crlsis a set of CRLs. For the PKCS #7 response to the PKCS #10 request, the
crls field is NULL.

56

5.4.2.3

It is intended that the set contain information sufficient to determine whether or not
the certificates in the certificates field are "hot listed," but such correspondence is
not necessary.

signerinfos. There may be any number of elements in the collection, including
zero, which would be the case for the PKCS #7 response to the PKCS #10
request.

This is a collection of per-signer information.

ExtendedCertificatesAndCertificates ::= SET OF ExtendedCertificateOrCertificate
ExtendedCertificateOrCertificate ::= CHOICE {

certificate Certificate,
extendedCertificate [0] IMPLICIT ExtendedCertificate }

Certificate ::= SEQUENCE {

version [O] Version,
serialNumber CertificateSerialNumber,
signhature AlgorithmIdentifier,
issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeylInfo,
issuerUniqueldentifier [1] IMPLICIT Uniqueldentifier OPTIONAL,
-- This is NULL

subjectUniqueldentifier [2] IMPLICIT Uniqueldentifier OPTIONAL
-- This is NULL
extensions [3] Extensions OPTIONAL

-- If present, version must be v3 }

Version ::= INTEGER { v1(0), v2(1), v3(2) }
Algorithmldentifier ::= SEQUENCE {

Algorithm OBJECT IDENTIFIER,
Parameters ANY DEFINED BY algorithm OPTIONAL }

SubjectPublicKeyInfo ::= SEQUENCE ({

Algorithm Algorithmldentifier,
SubjectPublicKey BIT STRING }

Nested Contentinfo

In the degenerate case where there are no signers on the content, the Contentinfo value
being "signed" is irrelevant. It is recommended in that case that the content type of the
ContentInfo value being "signed" be Data, and the content field of the Contentinfo value
be omitted (NULL).

Contentinfo ::= SEQUENCE {

contentType ContentType,
content [O] EXPLICIT ANY DEFINED BY contentType

OPTIONAL }

The fields of type Contentinfo have the following meanings:

contentType indicates the type of content. Itis an OID, which means itis a
unigue string of integers assigned by the authority that defines the content type.
For the PKCS #7 response to the PKCS #10 request, the content type is Data,;
and

57

content is the content. The field is optional, and if the field is not present, its
intended value must be supplied by other means. Its type is defined along with
the object identifier for contentType. For the PKCS #7 response to the PKCS
#10 request, the content is NULL.

55 Message Flow Behavior

The signature on the certification request prevents an entity from requesting a certificate
with another party's public key. Such an attack would give the entity the minor ability to
pretend to be the originator of any message signed by the other party. This attack is
significant only if the entity does not know the message being signed, and the signed part
of the message does not identify the signer. The entity would still not be able to decrypt
messages intended for the other party, of course.

A CA fulfills the request by verifying the entity's digital signature, and, if it is valid,
constructing a X.509 certificate from the distinguished name and public key, as well as an
issuer name, serial number, validity period, and signature algorithm of the CA'’s choice.

CAs are:
required to be able to process all extensions defined in Section 7, Reference 7.

not required to be able to process other X.509 v3 extensions transmitted using
this protocol, nor are they required to be able to process other, private extensions;

not required to put all client-requested extensions into a certificate; and

permitted to modify client-requested extensions but not to alter an extension so
as to invalidate the original intent of a client-requested extension (e.g., changing
keyUsage from key exchange to signing). If a certification request is denied due
to the inability to handle a requested extension and a response is returned, the
CA must respond with the faillnfo attribute of unsupportedExt.

56 Message Flows

56.1

CAs must be able to understand and process PKCS #10 request bodies. Clients must
produce a PKCS #10 request body when using the Simple Enroliment Request message.

The message flow is the same as all requests which result in the generation of a
certificate. Hence, a confirmation message from the client is required.

The PKCS #10 request exchange consists of three messages:

PKCS #10 request (pkcs10Req),
PKCS #7 response (pkcs7Rep), and
Confirmation (pkiConfirm).

PKCS #10 request
pkcs1l0Req:: client -----------mm-memm- >> CA
{
pvno 1
sender User name
recipient CA name
messageTime Current time
protectionAlg MSG_MAC_ALG
senderKID Reference number
transactionID Implementation-specific (meaningful to client)

senderNonce 128-bit pseudo-random number

58

freeText Text
body CertificationRequest
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

The message is verified by the CA. If valid, the CA generates a new certificate for the
client and sends a modifyRequest message to the directory to issue a new certificate.
The CA responds with a pkcs7Rep message to the client.

The PKCS # 10 CertificationRequest structure is defined in Section 5.3.2.1.

56.2 PKCS #7 response

pkcs7Rep:: CA --------mmmmmmomee- >> client
{
pvno 1
sender CA name
recipient User name
messageTime Time at which CA produced message
protectionAlg MSG_MAC_ALG
recipKID Reference number
transactionID Value from corresponding pkcs10Req message
senderNonce Value from corresponding pkcs10Req message
recipNonce 128-bit pseudo-random number
freeText Text
body CertificationResponse
certificate Present
privateKey Present
protection bits calculated using MSG_MAC_ALG
extraCerts CA's protocol verification certificate

} MAC (key based on authorization code is used to create MAC for structure)

The message is verified by the client. It then sends a pKIConfirm message to CA. The
PKCS # 7 CertificationResponse structure is defined in Section 5.4.2.1.

5.6.3 Confirmation

This data structure is used in three-way protocols as the final PKIMessage. The body
content is the same in all cases - actually there is no content since the PKIHeader
carries all the required information.

pkiConfirm:: client --------=-me-emmm- >> CA
{
pvno 1
sender User name
recipient CA name
transactionID Value from corresponding pkcs10Req message
senderNonce Value from corresponding pkcs10Req message
recipNonce Value from corresponding pkcs7Rep message
protectionAlg MSG_MAC_ALG
senderKID For verification of message protection
freeText Text
protection bits calculated using MSG_MAC_ALG

} MAC (key based on authorization code is used to create MAC for structure)

59

6 Glossary

ARL
ASN.1
CA
CRL
DER
DN
DSA
DSS
EE
GUI
IETF
IPSec
ITU-T
LDAP
MD2, MD5
OID
PEM
PKI
PKIX
PSE

RSA
SHA-1
TSA
TTP

Authority Revocation List

Abstract Syntax Notation 1
Certification Authority

Certificate Revocation List
Distinguished Encoding Rules
Distinguished Name

Digital Signature Algorithm

Digital Signature Standard

End Entity

Graphical User Interface

Internet Engineering Task Force
Internet Protocol Security
International Telecommunications Union Telecommunications Sector
Lightweight Directory Access Protocol
Message Digest 2, 5

Object Identifier

Privacy Enhanced Mail

Public Key Infrastructure

Public Key Infrastructure X.509 based
Personal Security Environment
Registration Authority

Rivest, Shamir, Adelman (RSA algorithm)
Secure Hash Algorithm 1

Time Stamp Authority

Trusted Third Party

60

7 References

[Reference 1]

[Reference 2]
Interconnection
[Reference 3]
[Reference 4]
[Reference 5]

[Reference 6]

[Reference 7]

Internet Draft. Internet X.509 Public Key Infrastructure. Time Stamp
Protocol <draft-ietf-pkix-time-stamp-04.txt>. C. Adams, P. Cain, D.
Pinkas, R. Zuccherato. October 1999.

ISO 9594-8:1995. Information Technology - Open Systems
- The Directory: Authentication Framework. 1995.

RFC 2510. Internet X.509 Public Key Infrastructure Certificate
Management Protocols (CMP). March 1999.

PKCS #10: Certification Request Syntax Standard. RSA Laboratories.
Version 1.0. November 1, 1993.

PKCS #7: Cryptographic Message Syntax Standard. RSA Laboratories.
Version 1.5. Revised November 1, 1993.

RFC 2511. Internet X.509 Public Key Infrastructure Certificate Request
Message Format (CRMF). March 1999.

RFC 2459. Internet X.509 Public Key Infrastructure Certificate and CRL
Profile. R. Housley, W. Ford, W. Polk, and D. Solo. January 1999.

