

TECHNOLOGICAL INNOVATION IN WATER AND WASTEWATER INFRASTRUCTURE

Mary Trudeau MSc. P.Eng.

300-222 Somerset Street West Ottawa, Ontario K2P 2G3 Tel.: 613.523.0784 Fax: 613.523.0717

Overview

Objective: To identify important technological innovations

Presentation: In context of 5 challenges

- Challenge 1 and Technologies
- Our Current System
- Challenges 2 to 5 and Technologies

- 1. Ensuring efficient, effective, affordable service
- 2. Managing water demand and developing sustainable levels of service
- 3. Meeting the challenges of potential human health impacts
- 4. Meeting the challenges of environmental impacts
- 5. Holistic, watershed approaches

Efficient, effective, affordable services:

Aging infrastructure and investment needs

- Resources available regulatory requirements, additional responsibilities, expertise and attrition
- Revenue capture and user-pay

Technologies in areas of:

Design, maintenance and operations, replacement and rehabilitation, recover cost of service

Challenge 1: Design

Design to suit community size, capacity and needs

- Membrane bioreactors
- Small diameter sewer systems with private property clarifiers and central treatment facility
- Low pressure water mains with private property storage and pumping

Small Diameter Sewer System

SMALL BORE SEWER™ SYSTEM

Source: Clearford Industries Inc.

Challenge 1: Efficient O&M

Operations and maintenance to minimize costs, risks, catastrophic failures

- Automated Asset Management systems
- Preventive Maintenance
- Predictive Maintenance
- Optimization of Operations

Predictive Maintenance

Source: National Drinking Water Clearinghouse

Source: ElectriSCAN

Challenge 1: Rehab & Replace

Cost-effective rehabilitation and replacement – Trenchless Technologies

Source: Virginia Tech

Source: Insituform

Challenge 1: Recover Costs

Technologies to assist in fair, equitable user pay:

- Water meters (both water and wastewater)
- Sampling equipment for high strength waste
- GIS for stormwater impervious area of properties

Our Current System

Our Current System

Introduce Water Cycle in Design

- Quality of water is rationalized for use and reuse: beyond efficiency to carrying capacity of watershed
- Waste discharge to watercourses not an automatic design feature
- Water cycle integrity as a goal of infrastructure design e.g. post development flows = pre-development flows

Meeting demand and sustainable levels of service:

- Growing urban populations and high consumption rates
- Consumer expectations
- Effects of climate change on availability

Technologies:

- -Community design
- -Water Efficiency
- -Beyond Efficiency Matching Quality to Use

Matching Quality to Use

Sink (grey water) cascading to toilet

Source: Renewable Energy Works

Rainbarrels or cisterns for outdoor water use

Matching Quality to Use

Toronto Healthy House

All grey water and black water is treated and recycled for toilet flushing

Source: CMHC

Meet Challenges of Human Health Impacts: Conventional contaminants

- New contaminants (disinfection by-products)
- Emerging Contaminants endocrine disrupting substances and pharmaceutical and personal care products

Technologies: water purification; wastewater treatment, alternative system configuration

Alternate System Configuration

Waterless Toilet

Source: Envirolet

CK Choi Building (UBC): disconnected from the sanitary system. Source: GVRD

Meet Challenges of Environmental Impacts:

- Human health and environmental health share many issues (e.g. endocrine disruptors)
- Mitigate stormwater impacts by keeping water where it falls: Infiltration, ditches, green roofs, cisterns
- Mitigate climate change by using resources provided: biogas, heat recovery
- Climate change will have implications for design and management

Stormwater Infiltration

Swale with Ditch Inlets

Climate Change Mitigation

Heat Exchanger

Co-generation Facility

Source: City of San Diego

Holistic Watershed Management Approach:

- Social and governance process
- Not technology driven
- Municipal use only one part of the picture
- Technologies can assist:
 - Geographic Information Systems
 - Public engagement (e.g. MetroQuest modelling software)
 - Field investigation technologies for watershed characterization/capacity
 - Environmental effects monitoring for informed decision-making

Conclusion

- Significant challenges for both business-asusual and for new approaches
- Technologies can assist in meeting the challenges
- Innovation is a relative term for the sector
- To implement the technologies: resources, capacity, standards, stakeholder buy-in

