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1.0  INTRODUCTION

As part of an ongoing literature review and assessment process within the Science
Assessment and Integration Branch of the Meteorological Service of Canada (MSC), this
issue of CO2/Climate Report provides a synthesis of more than 1000 scientific papers and
reports relevant to climate change that have appeared within the international peer-reviewed
literature in 1998. As for past reviews, this synthesis is not intended to be a full assessment
of the state of scientific knowledge on climate change, but rather a brief summary of recent,
incremental research results. For a more comprehensive assessment of the science of climate
change, readers are referred to the 1995 Second Assessment Report (SAR) prepared by 
the Intergovernmental Panel on Climate Change (IPCC) and to subsequent special 
IPCC reports (1-5). Earlier issues of the CO2/Climate Report can also be consulted for 
summaries of research papers published subsequent to the SAR but prior to 1998. 
Recent issues can be accessed on the MSC science assessment web site at
www.tor.ec.gc.ca/apac/climate/ccsci_e.cfm.

In the interests of brevity and utility, the 1998 literature review is very concise, but fully 
referenced. Readers should consult the relevant papers identified for further details on the
various topics and results discussed. Undoubtedly some important papers will have been
missed in this review, either through oversight or lack of ready access to the relevant journals
in which they appeared. Any related annoyance to the authors of such papers, and inconve-
nience to the reader is unintended and regretted.

2.0  CHANGES IN ATMOSPHERIC COMPOSITION

2.1 Carbon Dioxide

Atmospheric Concentrations: Data from some 40 monitoring stations around the world
indicate that, by 1997, average atmospheric concentrations of carbon dioxide had reached
364 part per million by volume (ppmv), about 1.3 and 3.1 ppmv higher than in 1996 and
1995, respectively.  This rate of increase is similar to the average annual increase since 1980
of 1.5 ppmv.  Measurements from ice cores show supporting evidence for continued increas-
es.  However, while there is good agreement amongst various analyses of ice cores records
undertaken (regardless of extraction processes used), there continues to be concern about the
accuracy of CO2 concentration reconstructions in older sections of some of these cores, 
particularly for those from Greenland6-8.

Inside....

Introduction ..................................1

Changes in Atmospheric
Composition..................................1

Radiative Forcing ........................6

Climate Trends............................12

Impacts & Adaptation ................17

Policy ..........................................21

Bibliography ..............................23

Spring 2000 Issue



Understanding the Global Carbon Budget: Analyses of the
large regional and temporal variations in atmospheric CO2 con-
centrations can help identify and quantify specific sources and
sinks of carbon dioxide, and can be used to test atmospheric
transport models. However, such analyses must consider the
influence of horizontal advection processes, boundary layer
depths, local thermal factors and the position of monitoring 
stations relative to both human and natural sources and sinks.
Related studies indicate that seasonal, interannual and 
interdecadal climate variability can also have a significant
influence on changes in ocean upwelling behaviour and on
terrestrial vegetation growth, and hence on the variability of
CO2 concentrations9-19. 

Recent analyses suggest that the global carbon flux
between the atmosphere and terrestrial biosphere is now in
near equilibrium, with net ecosystem uptake now approxi-
mately offsetting deforestation sources. Most of the biospheric
uptake appears to be occurring in North America, particularly
in the southern temperate regions, although other areas of
apparent uptake include Eurasia, northern Africa and mature
tropical forest regions of South America. Land erosion and 
biological processes within lake and river systems may also be
transporting as much as 0.7 GtC from terrestrial systems into
the oceans each year. Satellite mapping techniques and a 
proposed network of tall monitoring towers may help to 
significantly improve estimates of these regional fluxes of CO2

in the future20-26.
Advanced measurements and modelling techniques have

also helped to significantly reduce the uncertainty in 
estimating the magnitude of net ocean carbon uptake. Related
studies suggest that about 35% of industrial emissions from the
1980s have been taken up by the oceans, and that, if the glob-
al carbon budget were to come to a new equilibrium over the
next several  thousand years, 85% of current emissions would
end up in the ocean, while most of the other 15% would remain
in the atmosphere. Much of the excess deep ocean carbon
would be neutralized over time by sediments, while the anthro-
pogenic carbon remaining in the atmosphere would slowly be
neutralized over eons by silicate rocks. However, such 
estimates are sensitive to how ocean processes, such as the
thermohaline circulation system, will change in a warmer
world27-31.

Analyses of changes in isotopes of atmospheric carbon
and oxygen can also be useful in studying past and current
behaviour of the global carbon cycle.  For example, isotopic
trends within atmospheric carbon dioxide, collected both from
ice cores and observing network samples, indicate that the 
terrestrial biosphere was a net source of carbon dioxide until
the mid 20th century, then became a sink estimated at 0.9
GtC/year by 1970-90 period. Related estimates for current
ocean sinks are about 1.1 GtC/year (which is lower than 
estimates obtained by other techniques). However, isotopic
analysis techniques continue to be complex and subject to 
considerable uncertainty32-36.

Terrestrial carbon flux processes: Changes in carbon reser-
voirs within global terrestrial ecosystems appear to have
played an important role in long-term changes in atmospheric
CO2 concentrations. On very long time scales, these variations
may have been constrained by interactions between 
atmospheric CO2 and continental weathering rates, which 
provide a significant negative feedback.  Paleo data over the
past glacial cycle, however, indicate  that current global carbon
content in these reservoirs may be between 900 and 1900 GtC
higher than that of the last glacial maximum.  Similar studies
using biospheric models suggest somewhat more modest
changes. Increased CO2 fertilization effects appear to 
contribute substantially to this carbon build-up during
deglaciation, but also tend to reduce the fraction of C4 plants
within ecosystems. In regions such as the sub-Sahara,
enhanced biomass burning may also have been a factor in
maintaining low carbon concentrations during glacial periods.
The warm climates of the interglacials contributed to particu-
larly high carbon accumulation rates in high latitude regions
such as the peatlands and plains of Russia37-45.

Currently, forest clear cutting processes have once again
reverted many terrestrial regions to smaller carbon reservoirs,
both by removal of above ground biomass and the 
continued CO2 emissions from the denuded soils in subsequent
decades. In tropical Africa, for example, such activities have
reduced regional total terrestrial carbon pools by an estimated
10% or more during the 1980s alone46-47.

Satellite data and on site measurements have been very
useful in developing and calibrating the carbon flux models
needed to properly assess the relationships between vegetation
characteristics and regional carbon fluxes, although scaling up
from local measurements (which can vary considerably in
space and time) to the landscape and ecosystem levels used in
these models continues to be a challenge. Carbon flux models
are important in improving the understanding of the processes
that control changes in carbon reservoirs with time. Inclusion
of factors such as phenological processes, land use change and
fire have helped to significantly enhance performance of such
models, but significant inaccuracies are still evident48-53.

Both observations and studies with these models 
suggest a number of factors that influence ecosystem-carbon
flux relationships from region to region. For example, the 
fraction of below ground carbon within an ecosystem can vary
from less that 50% of total ecosystem carbon in tropical forests
such as those in Brazil to as high as 86% in Russian boreal
forests. Likewise, the fraction of regional soils that exist as
peatlands also vary dramatically. Climate variables such as
temperature, soil moisture and water table levels can also be
key factors in controlling the balance between regional ecosys-
tem biological uptake and ecosystem respiration, thus causing
large seasonal and interannual variability in carbon fluxes. In
some regions, nutrient supply and other biological constraints
can be more important than climate variables. The result is a
large regional variability in current terrestrial carbon fluxes
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and in how these fluxes respond to environmental change. For
example, boreal forest stands in regions such as central
Canada, Scandinavia and eastern Siberia are usually modest
carbon sinks during summer, but become sources in winter and
particularly during spring thaw due to continued soil 
respiration. However, during some years these forests can
become a significant net annual source. Grasslands, on the
other hand, function primarily as net sinks, although the 
magnitude is subject to management strategies54-62.

Understanding and modelling the soil processes that affect
carbon fluxes can be particularly problematic because of the
multiple variables and feedbacks involved. In general, the car-
bon to nitrogen (C:N) ratios in soils across most ecosystems
appear to decrease with warmer temperatures, contrary to 
theories that a temperature rise will provide a negative feedback
by mineralizing more nitrogen as nutrients for plant growth.
Increased nitrogen deposition by atmospheric 
transport can help relieve nitrogen stress providing the supply
of other nutrients are non-limiting. Furthermore, some plants
such as certain boreal species, may also be able to utilize 
organic as well as mineralized nitrogen, further complicating
the understanding of ecosystem response to change. Rapid tem-
perature rises may also enhance soil respiration more rapidly
that plant growth. Microbial processes appear to be very impor-
tant in soil response to both elevated CO2 and changing 
climates. Under certain circumstances, litter accumulation rates
in forests may serve as a proxy for the root biomass activity
component of these soil processes.  At the soil surface, 
litter decomposition, which can be a significant source of
atmospheric carbon, appears to be most sensitive to both 
carbon structure within the litter and to moisture content63-70.

In the soils of northern and upland peatlands and tundra,
carbon fluxes vary substantially with season, snow cover, 
location and vegetation characteristics. Some thin vegetation
types, for example, allow increased soil exposure to sunlight
and hence enhanced oxidation, while others like lichens, moss-
es and shrubs often have lower soil respiration and hence can
have twice the net carbon uptake. Water table height, thaw
depth, and nutrient supply are other important controlling fac-
tors. These are all expected to change under future climate 
scenarios, although the net effect on carbon fluxes is as yet
hard to project. For example, a number of studies indicate that
enhanced respiration could cause some of these ecosystems to
become significant sources under future climate regimes.
Others imply that enhanced release of nitrogen, from soils due
to enhanced decomposition, together with the added influence
of higher CO2 concentrations could both accelerate ecosystem
carbon turnover and significantly increase ecosystem net 
primary productivity and regional carbon sink capacity71-80.

Ocean Fluxes: During the last ice age, regional factors such
as ice cover and iron fertilization due to dust transport from
land may have provided significant regional variability in the
role of oceans as sources and sinks of atmospheric carbon. For

example, while low atmospheric concentrations imply signifi-
cant average ocean sinks, evidence from Indian Ocean 
sediments suggest that region may have been a significant
source. However, the rise in atmospheric concentrations of
CO2 during the deglaciation that followed was likely caused by
a global scale reduction in ocean carbon uptake, rather than
regional phenomena81-82.

Air-sea flux measurements data since 1982 indicate that,
although current regional fluxes also can vary considerably
from day to day and year to year, globally averaged 
air-sea fluxes vary annually by only about 0.4 GtC/year. Hence
(despite possibly significant measurement errors), large inter-
annual variability in increases in atmospheric concentrations
appears to be driven primarily by changes in terrestrial rather
than ocean processes.  Only about 20% of the world’s ocean
surfaces currently act as significant net natural carbon sinks.
One of these sink regions appears to be the Southern Ocean,
where primary productivity may be much larger than 
previously estimated (although limited below its full potential
by as yet poorly understood factors).  While the remainder of
the oceans are either near equilibrium or a weak source region,
some coastal estuaries can have high respiration rates and
hence be large sources regions. On average, the intensity of the
carbon uptake in the sink regions appears to be large enough to
dominate the weaker source regions and result in net global
ocean uptake of carbon from the atmosphere.  Consistent with
this conclusion is the evidence that average concentrations of
carbon in ocean surface waters are rising. However, the high-
est concentration of surface water carbon from anthropogenic
sources is actually found in the tropical Atlantic, which is 
otherwise a net natural source region for atmospheric CO2. In
contrast, the Arctic Ocean appears to be only a small sink
(about 1%) for anthropogenic CO2. Much of the tropical
Atlantic anthropogenic carbon is advected to the North Atlantic
by surface ocean currents, where it then sinks into the deep
ocean.  Measurements suggest that this carbon has already pen-
etrated to the ocean bottom in regions north of 50ºN. While
there may also be transport southward into the South Atlantic,
there is no evidence that the anthropogenic carbon has reached
the deep ocean there. Models developed to simulate these
transport mechanisms still have some difficulties in 
reproducing these results83-100.

Less than two percent (about 685 GtC) of carbon in the
global oceans is in the form of dissolved organic carbon
(DOC). However, this carbon is an important indicator of
spatial and seasonal variations in biological carbon production
in ocean surface waters. For deep ocean DOC, concentration
gradients can provide information on changing processes in
DOC production over past millennia. During peak surface
production periods (which can be influenced by such diverse
factors as seasons, episodic advection of iron rich dust into a 
region and transport of nutrients by ocean eddies and other
mechanisms), as much as 70% of the biological carbon 

CO2/Climate Report
3



CO2/Climate Report
4

produced can be in the form of DOC. Hence the concentrations
of DOC can vary considerably in space and time. However, the
role of this carbon in the total global carbon budget is not well
understood101-105.

Another form of organic carbon is black carbon, which is
found in significant quantities in sedimentary organic carbon
on the ocean floor (generally of much older age than other sed-
iment carbon).  This abundance suggests that it is either a 
significant component of DOC or that river export of carbon to
oceans are currently underestimated106.

Future Changes in the Global Carbon Cycle: The confi-
dence in the use of coupled biogeochemical-climate models
and other modelling tools to investigate changes in net 
primary productivity within both ocean and terrestrial systems
with time continues to be limited by inadequate understanding
of nutrient supply limitations, plant physiology, soil response
and ecosystem dynamics. However, while results must be used
with caution, study results imply that physical and biological
responses of oceans to changing environments may reduce net
uptake of carbon dioxide from the atmosphere in regions such
as the Southern Ocean in future decades.  Related simulations
of terrestrial ecosystem response to recent and future changes
in CO2 and climate suggest ecosystems have and will continue
to become increasingly productive with time, but that CO2

fertilization effects will eventually begin to saturate during the

coming century and be diminished by climate factors. The
response is also sensitive to the rate of change and regional fac-
tors.  Statistical techniques based on past relationships between
carbon fluxes and environmental factors, for example, suggest
that European biomes may soon switch from a long term sink
to a net source as climate changes. Likewise, experiments
imply spruce-fir forests in northeastern US could become
source regions under warmer climates. Changes in snow cover
in alpine regions may also cause large shifts in carbon and
nitrogen dynamics, and related fluxes, in these regions107-118.

2.2  Methane

Atmospheric concentration: High resolution ice core data
indicate that methane concentrations varied within 40 ppbv of
a mean value of 695 ppbv between 1000 and 1800 AD, then
increased rapidly during the subsequent industrialized period.
Growth rates peaked at about 17 ppbv/year in 1981, then
declined. Global methane concentrations were about 1730
ppbv by 1997, and rising at approximately one-third the rate
observed during the 1980s. Average methane atmospheric
life-time appears to have increased over time, and is now 
estimated at 7.9 years.  The global methane budget may be
approaching a new equilibrium, with eventual stabilization of
atmospheric concentrations at approximately 1800 ppbv. A five
percent reduction in human emissions would be enough to
achieve such a stabilization119-122.

Sources and sinks of methane, and hence its regional
atmospheric concentration, can vary substantially by latitude,
season and altitude. Horizontal and vertical atmospheric 
transport mechanisms can also contribute to concentration
variability123-127.

Sources:  Combinations of measurement techniques, including
eddy correlation methods, tethered balloon data, aircraft data
collection and potentially satellite systems, provide useful
means of analyzing regional sources of methane.  These show
that, in contrast to the modest but variable sink for methane
provided by drier soils, wetlands are a primary source of
methane emissions. Recent estimates for current methane
emissions from global wetlands suggest 92 Mt/yr from natural
wetlands, compared to 53 Mt/yr from rice paddies.  However,
because of their inhomogeneity, emissions from unmanaged
natural wetlands vary significantly between and within
regions, and with time. On long time scales, they also respond
to the effect of climate change on wetland conditions. During
the last interglacial and the peak Holocene, for example, drier
conditions resulted in significantly lower emissions in northern
Eurasia compared to today, while future climate warming 
and precipitation changes could enhance emissions.
Understanding the processes that control these emissions, both
in the short and long term, is difficult because of the complex-
ity of the microbial communities involved in methane genera-
tion and oxidation, the possible entrapment of methane within
a bog matrix, and other environmental factors. Models 

Figure 1. Simulations of terrestrial ecosystem response to the
combined effects of increased atmospheric concentrations of
carbon dioxide and projected changes in climate (using the
Hadley Centre coupled model outputs) suggest that some land
areas (particularly in mid latitudes of the Northern
Hemisphere) will experience significant increases in net
ecosystem productivity by the second half of the next century
relative to that of recent decades. Other areas will see a
decrease in NEP. Globally, NEP begins to stabilize at about 3
GtC/year after 2050. Reference: Cao et al. 1998 (#107).



developed to simulate these processes still oversimplify these
complexities and their outputs must therefore be used with cau-
tion.  They suggest, however, that most of the wetland methane
emissions occur through the plants (which facilitate gas trans-
port between soil and air), and that warmer climates may 
initially increase emissions. Deposition of nitrates or sulphates
could help reduce emissions. Likewise, lower water levels tend
to reduce emissions in the long term, although an initial
increase may occur from release of trapped methane bubbles.
Conversely, flooding of carbon rich peatlands for shallow
hydro-electricity reservoirs or other purposes would provide a
long term increase in methane emissions128-151. 

Measurements and model studies, which continue to 
provide improvements in estimates and understanding of the
processes involved in methane emissions, also show high 
variability in such emissions from managed rice paddies, but
continue to provide improvements in estimates and under-
standing of the processes involved. Emission rates are found to
be sensitive to latitude, crop timing, soil temperature, wind
speed and plant density, but less so to the amount of organic
fertilizer applied and to yield. In China, total emissions from
rice cultivation are now estimated at almost 10 MtCH4/year,
with about 80% released in mid and late growing seasons.
Options for reducing emissions include use of biogas generator
residue as an alternative to organic fertilizer, selection of
appropriate rice cultivars, and water management152-162.

In addition to cultivation of rice paddies, anthropogenic
sources of methane include landfill sites and animal waste
management systems in developed countries and cooking fires
and biomass burning in tropical regions. Some of these are as
yet poorly estimated. In Canada, recent estimates for manure
slurries suggest annual national emissions of almost 1 Mt of
CH4, significantly higher than previously estimated.  Other 
natural sources of methane include tundra lakes (which can
release a high pulse of methane during spring break-up),
decaying permafrost, some supersaturated ocean regions and
boreal forest fires163-170.

2.3 Nitrous Oxide

Atmospheric concentrations of nitrous oxide in 1997
reached 313 ppbv, and are increasing at a sustained average
rate of approximately 0.7 ppbv/year171.

Global emissions from all N2O sources are estimated to be
about 15 MtN/year, with about 30% related to food production
activities. Emissions from agricultural activities are sensitive
to soil conditions, temperature, field management techniques,
timing of fertilizer applications, fertilizer type, and thaw-freeze
cycles. For rice paddies, flooding methods are also a factor.
The increase in agricultural emissions may have more than
doubled the natural continental flux of reactive nitrogen with-
in the terrestrial ecosystems. Further increases appear unavoid-
able, although higher ambient CO2 concentrations may be a

mitigating factor. The related effects on humans and 
ecosystems of the nitrogen flux are believed to be cumulative
and important, but remain poorly understood.157,172-183.

Measurements suggest that forest landscapes, which are a
natural source of nitrous oxide, generate a large pulse of emis-
sions when forests are cleared by burning, and continue to emit
at sustained high levels for extended periods after the burn.
Such forest landscape emissions can now be simulated quite
well using various landscape and process models, provided
detailed information on soil water and temperature 
is available135,147,149,151,184. 

Oceans are also a large natural source of N2O that
responds quite rapidly to climate influences. Isotopic studies
suggest several processes, some previously unknown, may be
involved185-186.

2.4 Halons

Atmospheric measurements indicate that the tropospheric
concentration of CFC-12 continues to increase, but at a 
significantly reduced growth rate of 3.6 pptv/year. That for
CFC-11 is now declining at -1.3 ppt/year. Meanwhile, concen-
trations of CFC replacements, although still at about 100 pptv
or lower, are increasing rapidly.  There is also evidence that
fluorinated ethers appear to be potent greenhouse gases.
Meanwhile, investigations indicate that fluorites found within
terrestrial landscapes are a natural source of CF4 and SF6, but
that this source is insignificant compared to anthropogenic
emissions171,187-189.

2.5 Ozone

Data on atmospheric ozone concentrations are available
from both ozonesondes and satellite systems and have been
used to estimate trends and vertical profiles of concentrations
and to assess related chemistry and transport mechanisms.
However, statistical analyses of these data suggest that at least
some of the regional trends reported in the past may be biased
by poor data or analysis techniques and by other factors such
as climate variability. Such biases can be reduced by using both
data types, but results must still be used with caution. These
results suggest a substantial increase in lower tropospheric
ozone in the Northern Hemisphere during the past century, and 
continued increases in regions such as northeast and
southern Asia190-194. 

Sources of the precursors that have caused these changes
in lower tropospheric ozone concentrations are varied, and
may occur at locations far removed from where the ozone
chemistry takes place. For example, emission plumes of ozone
precursors from biomass burning in Africa have been observed
to transport across the Atlantic to affect ozone chemistry over
the south Atlantic in the following season. Similar transport
mechanisms have been observed in the western United States.
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Such regional transport and peak events can now be success-
fully modelled with 3D chemical transport models, although
they tend as yet to overestimate rates of global increases. They
also disagree on the net effect of ozone increases on the
abundance of OH (which appears to have increased during the
past two decades), and hence methane lifetimes195-202.

In the upper troposphere, aircraft emissions of the ozone
precursor NOx (which are expected to increase in future
decades), the upward transport of polluted air by thunder-
storms and frontal systems, and winter intrusions of 
stratospheric air masses may all be important contributors to
rising ozone concentrations.  Conversely, tropospheric weather 
systems may also contribute to small areas of low ozone 
concentrations, or ozone mini-holes over mid-latitude zones of
the Northern Hemisphere, particularly during late winter203-212.

In the lower stratosphere, ozone concentrations at mid to
low latitudes are expected to slowly recover as chlorine 
concentrations in the stratosphere decline. However, increased
stratospheric cooling is expected to keep stratospheric ozone
concentrations during polar spring seasons at low levels over
the next few decades213.

2.6 Aerosols

Stratosphere. Following the 1991 Pinatubo eruption, concen-
trations of sulphate aerosols in the stratosphere peaked over
high Northern Hemisphere latitudes in spring 1992, with sub-
sequent decay rate half-life of 9.4 months. These aerosols had
an important influence on the regional formation of polar
stratospheric clouds. Tephra layers within polar ice cores 
suggest other large volcanoes, including Krakatau in 1883 and
a large Peruvian eruption ~1600 AD, have had similar or
greater effects on climate in the past.  Analysis of the slow long
term trend towards higher stratospheric aerosol loading also
implicate human sources, such as carbon sulfide transmitted

from the troposphere and direct aircraft emissions214-217.

Troposphere.  In the mid troposphere, sulphate aerosol con-
centrations over North America appear to be closely linked to
transport from surface sources, rather than in situ production,
and can be twice as high over polluted continental areas as over
areas upstream of major source regions.  In some regions,
nitrate aerosols can also be important.  Regional differences
appear to be less apparent in the upper troposphere. Here, how-
ever, aerosols from aircraft emissions may be becoming more
important. Model simulations of these tropospheric aerosol
production and transport mechanisms appear to capture the sul-
phate concentrations and distribution reasonably well but
underestimate the effective cloud nuclei radii response over
North America by about 10-20%. Concentrations of black car-
bon are also highest over and downwind of industrial regions,
and appear to be linked to both sulphate and cloud condensa-
tion nuclei concentrations. The black carbon:sulphate ratio
varies from 0.01 to 0.06218-223.

An important natural source of sulphate aerosols in marine
environments is the production of ocean dimethylsulphide
(DMS) and its precursors. Production is sensitive to the bio-
logical activity present, is generally lower in regions with high
nitrates and in polar areas, and is higher in convergence zones.
Models developed to simulate the relationships between
atmospheric and ocean DMS concentrations can now success-
fully reproduce the temporal and spatial variability involved,
but significantly overestimate atmospheric concentrations in
some regions. DMS concentrations are lowest in polar regions
and highest in the subtropical convergence zone, with the 
efficiency of conversion to sulphates (on average about 
30-50%) increasing with temperature224-227.

Other sources of tropospheric aerosols include organic
aerosols from forest landscapes, aerosols from tropical 
biomass burning, and the long distance transport of mineral
aerosols, all of which can have both direct and indirect effects
on climate228-230. 

3.0  Radiative Forcing

3.1  Anthropogenic Forcings

Greenhouse Gases: While Svente Arrhenius already 
discussed the role of carbon dioxide in the climate system more
than a century ago, much of the understanding of the absorp-
tive properties of well mixed greenhouse gases is more recent.
New methods of calculating spectral line mixing within 
the absorption bands of the key gases (carbon dioxide, methane
and nitrous oxide) as well as improvements in radiative 
transfer models have helped to provide a more accurate 
estimate of the net direct effect of changes in their concentra-
tions since pre-industrial times on atmospheric radiative 
forcing. Revised estimates of this increased forcing of 
2.25 W/m2 represent an approximate 2% increase in the 
natural greenhouse, or a direct warming commitment of 1 to
1.5˚C, with the greatest forcing in the tropics. Although
methane is a potent greenhouse gas (with GWP values over a
100 year integration still estimated at 21) and contributes about
22% to this enhanced forcing, its role is expected to decline
with time. This enhanced direct forcing by well mixed green-
house gases is further modified by a variety of regional and
transient processes and feedbacks involving aerosols, water
vapour and clouds, but which are as yet inadequately under-
stood120,231-235.

New calculations with an atmospheric chemistry model
that includes processes involving non-methane gases suggest
that reductions in atmospheric OH levels due to increasing
methane concentrations may be more than double that 
previously estimated. This in turn affects atmospheric 
chemistry involving other greenhouse gases236.
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Meanwhile, new estimates of radiative forcing induced by
increased concentrations of tropospheric ozone suggest an
additional effect of 0.29 to 0.35 W/m2, with the greatest
increase (up to 0.6 W/m2 in summer) occurring in the Northern
Hemisphere. This added influence may be large enough to 
offset the direct masking effects of increased Northern
Hemisphere sulphate concentrations, and could increase fur-
ther to 0.48 W/m2. The effect of increased methane concentra-
tions on atmospheric concentrations of OH could be a key,
underestimated factor in this increase197,237-239.

Model simulations indicate that seasonal changes in
Antarctic ozone in the stratosphere can also influence global
circulation patterns and regional climates, and may have done
so in recent decades240.

Aerosols:  Various studies over different continents show
reduced solar irradiance due to an increase in columnar aerosol
optical depth. In some regions, such as South America and
Western Canada, much of this is related to atmospheric smoke
from fires, causing net regional cooling in the range of -25 
to -34 W/m2. In more industrial regions, nitrates, sulphates and
other particles of organic origin are important factors. Over the
south-eastern US, such changes may have contributed to a
regional summer cooling effect of up to -4 W/m2, although
incremental effects of added concentrations in regions already
heavily polluted may be much smaller.  Over the oceans, emis-
sion plumes also increase local cloud albedo by generating
smaller cloud droplets. However, in the Arctic, increased
aerosols appear to have helped heat the lower troposphere, thus
deepening the Arctic inversion layer241-249.

Much improved data banks describing the optical proper-
ties for various aerosols (as well as clouds) are now available
to modellers, and have helped to improve the agreement
between models on estimated climate impacts of sulphate
aerosol forcing. However, significant differences over high
albedo surfaces and at low sun angles still arise. Simulations
are also sensitive to seasonal variations, equilibrium states of
aerosols, aerosol shapes and hygroscopic properties, and the
presence of clouds. While coarse resolution GCMs fail to 
capture the small scale processes that can be important in
including aerosol effects in climate simulations, more detailed
regional climate models now can simulate some of these. For
example, one such study using detailed aerosol-cloud schemes
suggests a reduced solar forcing due to aerosols over convec-
tive cloud regions in the tropics of -0.3 to -1.1 W/m2 250-257.

Estimates for the radiative forcing effects of aerosol
effects on a global scale remain highly uncertain, with recent
estimates for direct forcing due to sulphate aerosols alone of
between  -0.32 and -0.81 W/m2, and  that for black carbon of
between +0.16 and +0.4 W/m2. This implies that black carbon
may be more important than previously estimated. Greatest
aerosol forcing occurs over polluted regions of North America,
Europe and eastern China, and during Northern Hemisphere
winter. The presence of clouds within aerosol layers can sig-

nificantly enhance the forcing. For indirect aerosol effects, the
range of uncertainty due to different model structures 
combined with options for input parameters is even larger,
extending from -0.1 to -5.1 W/m2. Hence there is still 
considerable uncertainty as to the extent that these effects may
have masked the positive forcing of increased greenhouse gas
concentrations258-266.

Figure 2. Low and high estimates for global mean radiative
forcing induced by current anthropogenic emissions of
aerosols. Estimates were developed using an atmospheric
GCM coupled to an atmospheric chemistry model. Reference:
Penner et al. 1998 (#264).

3.2 Natural Forcings

Volcanic Aerosols: Climate responses to major volcanic erup-
tions appear to typically commence several months after 
eruption, last for about two years, and significantly cool
regional climates. During the first year following the Mt
Pinatubo eruption, direct surface irradiance decreased by 
30-40% and net radiative forcing by more than -6 W/m2 in
some regions. Comparison of GCM simulations against the
observed response to the Pinatubo eruptions shows best 
performance when relatively weak atmosphere-ocean coupling
response was used267-270.

Tropospheric Aerosols: Dust clouds over the tropical Atlantic
Ocean may warm the regional lower troposphere by about
0.2˚C/day. However, observations suggest that, during large
dust events, average net surface solar flux usually decreases
more than offsetting increases in infrared flux, hence causing
cooling at the surface and in underlying waters. These effects
are sensitive to underlying surface albedo, aerosol size distrib-
ution and a variety of other factors. Net effects at the top of the
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atmosphere may be small. Inclusion of this forcing 
factor would improve regional performance of models271-275.

Recent studies into the increased production of DMS over
warmer oceans suggest this feedback could increase local con-
centrations of cloud condensation nuclei by 2-4% and cause a
minor local negative forcing of less than -0.3 W/m2. An 
additional tropospheric feedback involving enhanced 
convective activities associated with warmer oceans could 
theoretically add to this feedback. However, this possible feed-
back has not as yet been tested against observations276-279.

Solar Forcing: A recent review by experts into the effects of
solar variability on climate suggests that about 50% of changes
in global temperatures during the past century, and one-third of
that during the past 30 years, may be solar induced. Tree rings
from around the world point to climatic effects of a 200 year
variation in the length of the sun spot cycle, with the current
solar warming influence diminishing over the next few decades
and eventually leading to a cooling forcing, possibly by 2030.
However, other factors such as solar particle eruptions,
geomagnetic storms and stochastic resonance of solar forcings
within a non-linear climate system may also be involved in the
climate system response. Improved understanding of the com-
plex solar properties and forcing mechanisms, as well as 
possible related feedbacks are required to properly include
solar forcing effects in climate models280-288.

4.0  CLIMATE MODELLING

4.1 Climate Model Processes

Atmospheric Processes: While, in general, model calcula-
tions of the clear sky greenhouse (GH) effect show good agree-
ment with observations, significant differences still occur at
high latitudes because of model error in surface temperature
projections, and over some ocean areas and dry regions
because of satellite data analysis problems. Sensitivity of the
GH effect to changes in humidity is an order of magnitude
greater in the upper than lower troposphere. Likewise, changes
in high clouds have a greater effect than those for low clouds.
The positive greenhouse effect/humidity feedback in the upper
troposphere is evident in both the tropics and extratropics, and
is particularly strong in moist upper troposphere regions over
the North Pacific and North Atlantic storm tracks. However,
humidity at this level is also highly dependent on concurrent
dynamic and thermodynamic response, including enhanced
upward motion by convective clouds. Inadequate observation-
al data  make it difficult to estimate the intensity of this 
feedback (although there is no evidence to suggest it could 
be negative)289-297.

Horizontal moisture advection between hemispheres
(which appears to be decoupled from vertical latent heat 
fluxes and out of phase with changes in surface SSTs in the 

tropics) can also be an important factor in modifying regional
long wave radiation budgets. Over the west Pacific tropical
warm pool, variations in SST and outgoing long-wave 
radiation reinforce each other through positive feedbacks that
enhance convection. The latent heating induced by deep 
convection also affects gravity wave drag. This drag is, in turn,
important in simulating the large scale structure of the middle
atmosphere, and can be approximated by using cloud top
height as a proxy.  However, once SSTs rise above 30˚C, 
outgoing radiation also increases and suppresses deep 
convection through externally forced subsidence (a negative
feed back )298-301.

Model calculations for the role of water vapour in clear
sky absorption of solar radiation, although perhaps underesti-
mated, compare reasonably well with measurements and,
hence, are not the main reason for discrepancies between
observed and modelled estimates of atmospheric absorption of
solar radiation. Although observational errors can also be a fac-
tor in these discrepancies, other factors affecting atmospheric
transparency, such as inadequate inclusion of the role of
aerosols, multiple scattering, cloud inhomogeneities, surface
wind influences on albedo, and effects of incidence angles, are
implicated. Improvements in these calculations are particularly
important for properly simulating the hydrological cycle and
hence atmospheric circulation. Relationships between 
variations in sea levels and fluctuations in the hydrological
cycle can, in turn, be used to test such simulations293,302-314.

Although many climate models also underestimate both
the reflection and absorption of solar radiation by clouds, some
recent models now show increased absorption. Cloud inhomo-
geneities do not appear to have a significant influence on the
net absorption. These model underestimates are particularly
significant in the presence of cyclonic and low clouds at mid-
latitudes. In contrast, over the highly variable Pacific Ocean
warm pool, the observed cloud absorption (only about 9% of
incoming solar radiation) is similar to that simulated in many
models. When simulating reflection of incoming shortwave
radiation in this region, both the effects of lower level strati-
form clouds and local spots of highly reflective cirrus tops of
convective clouds (which are sensitive to the concentration,
shape and size of the ice crystals within them) need to be 
considered. The net effect of cloud radiative forcing can be
simulated reasonably well with simple models if the relative
roles of clouds, surface albedo and atmospheric transmission
are properly separated and other factors such as particle growth
rates, terminal velocities and scattering and diffraction 
properties are included293,315-326.

The presence of nearly invisible cirrus clouds at or just
below the tropopause may also have important implications for
radiation processes. Factors include the effects of increases in
local temperatures caused by these clouds and an increase in
lower stratosphere water vapour concentrations.  For example,
such clouds (often found in the wake of high flying aircraft,
which can cover up to 5% of the sky in heavily traveled 



corridors) can absorb as much as 50% of local upwelling IR
radiation. Aircraft contrails (which contain sulphates and nitro-
gen oxides that can contribute to the production of cloud ice
crystals) can also have a significant albedo effect. However, at
least some of this effect may be offset by related reductions in
the amount of naturally occurring cirrus clouds327-332.

Over cold and mountainous regions, the enhancement of
downward IR fluxes from cloud decks depends on cloud type,
the presence and size of ice crystals and the background emis-
sivity of the cloud free atmosphere, and is least when the
atmosphere is very humid. In Antarctica, model simulations of
these fluxes are also affected by uncertainties about regional
summer temperature and humidity profiles. In the Arctic, the
net annually averaged small positive radiative forcing of
regional clouds has a pronounced seasonal cycle (strongly 
positive in winter and spring, strongly negative in summer)
that is not as yet well captured by reanalysis models321,333-336.

Studies into possible cloud-climate feedbacks during the
last glacial maximum (LGM) suggest that circulation as well as
radiative processes are important factors, particularly at low
latitudes. They imply that future cloud response to the radiative
effects of enhanced CO2 concentrations will be complex, non-
linear, and model dependent. Circulation processes are, in turn,
influenced by top heights, multi-layering and distance between
layers of clouds. While some modellers may apply ad hoc
adjustments to correct for related model biases, such adjust-
ments can have important impacts on modelled stratospheric
circulation337-339.

ENSO, as well as solar variability, may have an influence
on global mean cloud optical thickness, although such changes
in thickness appear to vary out of phase with changes in total
global cloudiness. Hence net effect of such variations on 
global cloud reflectivity may be small.  Recent strong ENSO
events, in turn, appear to be coherent with and linked to NAO
variations. For storm tracks, the growth and decay behaviour of
upstream blocking anticyclone pressure systems appear to be
important in changing cloud properties340-342.

Observations of local cloud types over oceans can be use-
ful in estimating the regional characteristics of local marine
boundary layer processes, which are important in simulating
fluxes between the atmosphere and oceans. Likewise, observed
changes in surface climate conditions can help identify 
destabilized steady states and dramatic change in climate
behaviour induced by small changes in snow cover and other
albedo feedbacks343-344.

Land processes. Non-linear feedbacks between the 
atmosphere and terrestrial surfaces affect the redistribution of
energy at the atmosphere-land interface and, on long time
scales, can have major global implications. Hence failure to
include these feedbacks in a properly coupled manner could
cause serious errors in climate model simulations of climate
and in related climate change studies. Most of the variables
involved can be described in surface-vegetation-atmosphere
schemes based on grid-by-grid remote sensing data inputs.

Likewise, snow models using such data inputs can provide
improved approximations of the seasonal and interannual 
variability of the effects of snow cover on albedo (including
vegetation cover effects), water storage and transmission rates
and heat fluxes. However, these models do less well for snow
cover density and characteristics. Measurements of air-land
fluxes needed to better understand these feedbacks are still
imprecise, both because of surface variability and 
irregularities in turbulent transport in the atmospheric 
boundary layer345-358.

A number of advanced and new land surface schemes that
have now included more realistic treatment of atmosphere-
surface processes and feedbacks generally show improved 
performance in simulating surface heat and moisture fluxes.
Their ability to simulate current vegetation distribution 
patterns when forced by observed climate conditions is also
greatly improved, particularly when using high spatial 
resolutions. Although coupling such schemes to GCMs can
significantly improve the GCM land-air interface representa-
tions, the coupling process becomes progressively challenging
as the complexities of the land surface schemes increase.
Furthermore, important discrepancies between coupled 
ecosystem-climate model simulations and observed conditions
still persist. Hence, further related research is emerging as an
important new research discipline and a priority in properly
addressing climate-ecosystem feedbacks. Areas of focus for
such research include the development of algorithms to help
scale up from plant and canopy level processes to the 
landscape levels, inclusion of the soil thermal conductivity,
ecosystem root distributions and soil biophysics governing soil 
respiration in the land schemes, and better representation of
terrain based hydrology and snow cover effects, particularly in
the Arctic359-385.

Various intercomparisons of advanced land surface 
parameterization schemes suggest most have improved ability
in simulating net radiation, surface temperatures, east-west
precipitation gradients, average latent heat fluxes, the season-
ality of evapotranspiration and other variables when compared
with simpler schemes. These schemes also generally perform
better if first calibrated for effective scaling up of data from
small catchment basins to larger ones, and to model grid
boxes, and show an asymmetry in response of latent heat 
fluxes to temperature change (with greater sensitivity to 
cooling than warming). However, major differences between
schemes with respect to sensible heat and ground heat fluxes,
spatial characteristics of latent heat fluxes, soil moisture water
storage change, summer precipitation and other features still
remain. These differences could be important in coupled
ecosystem-climate simulations, possibly adding to 
uncertainties of model results386-391.

Land use change, such as cultivation, irrigation and defor-
estation, can also impact on the processes included in the land
surface schemes, since such changes can significantly alter 
surface albedo, affect evapotranspiration and latent heat fluxes,
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and increase regional water loss to the atmosphere. These
changes can, in turn, affect diurnal temperature cycles, wind
speeds, cloudiness and convective precipitation392-395.

Ocean Processes. Systematic observations in the tropical
Pacific indicate that regional heat storage and budgets over
decadal time scales are influenced by a variety of interactive
and variable factors, including surface heat flux, vertical heat
transport, horizontal mixing and meridional advection. Studies
with a primitive equation isopycnal ocean model suggest that
variations in such heat storage is dominated by mass balance
controlled adiabatic processes in the eastern tropical Pacific,
and by temperature controlled diabatic processes in the west.
Changes in the eastern Pacific, in turn, have a large influence
on low-latitude tropospheric temperatures. Large variations in
regional ocean heat storage, like that of the 1982/83 ENSO
event, can create major oceanic Rossby waves that take more
than a decade to reach mid-latitudes of both hemisphere and
the Asian coast, where they cause a delayed influence on
regional ocean currents and climates. Negative feedbacks with-
in the ocean-atmosphere system in tropical-subtropical zones
ensure that such anomalies switch from warm to cold phases
and back again in an oscillatory fashion. Simulations with cou-
pled climate models suggest that these decadal scale fluctua-
tions not only encompass the entire Pacific, but are linked to
variability on a global scale396-406.

Models suggest that climate variability may be linked to a
variety of ocean processes, including deep convection, ocean
gyres, ocean bottom transport mechanisms, and tropical and
extra tropical processes. Surface wind stress, temperature and
salinity are important factors in these oscillations, which occur
on time scales anywhere from a few years to more than a cen-
tury. The importance of such feedbacks can vary by region, and
influence a variety of ocean surface fluxes. Over the North
Atlantic, for example, when some of the atmosphere-ocean
interactions were included in model simulations, the 
inter-annual variability of winter climates was enhanced, with
temperature anomalies becoming more persistent and often
reappearing a year later due to ocean-atmosphere feedbacks. In
the Labrador Sea region of the North Atlantic, various dynam-
ical and thermodynamical processes (now being studied with
the help of new regional data sets) appear to be important in the
spread of cold, less saline waters across the Atlantic, where
they interact and influence other currents and large scale ocean
circulation systems as much as a decade later.  There is now
also observational evidence that interactions between wind,
evaporation, horizontal advection and SSTs in the
tropical/extra tropical North Atlantic contribute to decadal
scale oscillations in circulation and upper ocean ventilation in
the region, including a hypothesized Pan-Atlantic Decadal
Oscillation (PADO). These oscillations are similar to model
simulations of multi-decadal scale thermohaline-atmosphere
feedbacks in the North Atlantic. Both the observational data
and model results indicate that these changes may be linked to

NAO fluctuations. Studies into past ocean climates indicate
that, on even longer time scales of centuries and millennia,
global scale processes such as interactions of changes in solar
radiative forcing with ENSO behaviour and other non-linear
internal processes may link up with regional processes to gen-
erate abrupt changes in ocean climates. Better understanding of
these processes is a pre-requisite to improved assessments of
such variability, and the ability to predict how such variability
may change or surprise us in the future407-422.

Sea ice behaviour and transport is influenced as much or
more by atmospheric circulation and winds as other factors
such as ocean currents, surface albedo and temperatures.  In the
Arctic, the sea ice behaviour appears to be affected by a
decadal scale internal sea ice-ocean-atmosphere feedback loop,
possibly linked to the NAO. Much of the Arctic sea ice is 
eventually transported into the North Atlantic, where it causes
a large but variable flux of fresh water and negative latent heat
flux into this region. This in turn affects regional temperatures,
vertical mixing, the thermohaline circulation system, and even
regional sea levels. Similarly, in the marginally stable Southern
Ocean, changes in surface temperature and salinity induced 
by the formation, transport and melting of sea ice can affect 
convection processes and deep water formation rates.  Hence
atmosphere-ocean-ice feedbacks constitute an important aspect
of the climate system, and need to be included in coupled 
climate models. Despite poor observational data and lack 
of inclusion of some processes that may be important, recent
advancements in ice-ocean models have significantly enhanced
the ability to realistically simulate these feedbacks and 
hence understand polar and sub-polar ocean and ice 
behaviour423-438.

In the Southern Ocean, total in situ deep water formation
(some of which is vented in the Indian Ocean decades later)
may be comparable to the influx from the North Atlantic Deep
Water into the region. This would be more than three times
larger than the Weddell Sea deep water flux, often assumed to
be the primary source of deep water formation in the Southern
Ocean.  Most ocean models also tend to underestimate deep
ocean temperature and salinity in the Southern Ocean,
although inclusion of  brine release during sea ice formation
and improved shelf topography can reduce these biases439-441.

Uncertainty about the rate of heat penetration into the deep
ocean is a key source of model simulation uncertainty.  Coarse
resolution ocean model experiments indicate that vertical
ocean diffusivity plays a dominant role, particularly through
deep ocean carbon and heat uptake.  However, many ocean
processes take place at scales significantly smaller than such
models can properly simulate. High resolution mesoscale
ocean models which reproduce such ocean processes very 
well are now available to investigate their role in much greater
detail.  These models can generate spontaneous, decadal scale
internal ocean variability and baroclinic instabilities that result
in a more chaotic ocean behaviour that coarse resolution 
models fail to simulate.  They can also partition heat loss from
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the ocean mixed layer between surface fluxes and transport
mechanisms more accurately, and provide new insights into
ocean current structure.  However, resolving currents in narrow
straits remains a challenge.  Furthermore, such higher resolu-
tion may not result in better model performance if the model
fails to include the diversity of air-sea interaction regimes that
exist across the global ocean or deal with the thermal radiation
and upwelling processes involved in the decay of transient 
ocean anomalies442-451.

4.2 Model Evaluation

A key test for the ability of a model to properly 
simulate the climate systems is its performance in simulating
current climate regimes. Efforts to evaluate a large number of
atmospheric GCMs under the WCRP AMIP program indicate
that current atmospheric GCMs perform significantly better
than earlier versions, and can be useful in data recovery for
data sparse areas as well as for simulations of climate respons-
es to changes in radiative forcings. However, they continue to
show significant deficiencies in the details of the simulations.
Most, for example, have a cold bias linked to snow-ice albedo
problems, fail to simulate the coldest and warmest conditions,
are deficient in coupling between stratospheric and tropospher-
ic processes, and under-predict interannual variability of 
various atmospheric parameters. There are also problems in
some regions in accurately simulating the seasonality of 
precipitation, particularly snowfall, and in simulating atmos-
pheric features related to extreme weather events, such as
storm tracks and blocking frequencies . There are concerns that
some of the discrepancies between model output and observed
data may be due to poor data quality452-462.

Evaluation of coupled ocean-atmosphere GCMs must not
only address model performance in simulating current 
climate conditions but also the extent of drift in the simulated
climate with time. For the latter, effective parameterization of
the complex feedbacks between atmospheric convection, cloud
and boundary layer processes, SSTs and large scale 
ocean-atmosphere dynamics appear to be particularly 
important. While some models correct such drift through flux
adjustments, others are now able to control drift quite well
without such adjustments. Most coupled models now show
broad agreement between simulated climate and observations.
Some also show much better simulation of storms and season-
ality of precipitation. However, factors such as inadequate 
representation of sea ice-atmosphere radiative fluxes and reso-
lution continue to cause problems. For example, most models
continue to have difficulties in accurately simulating polar 
climates, while some also show significant biases in tropical 
climate regimes. Computing time also continues to be a major
constraint in transient simulations, although intermittent 
coupling has been used with some success to address 
this constraint463-486.

Alternative methods for testing complex model perfor-
mance include the use of simple climate models, evaluation
against paleo climates and, for transient experiments, compar-
ison of simulations using climate forcings of the past century
with observed changes.  Simple climate models, for example,
have been used to evaluate GCM deficiencies associated with
failure to include the effect of middle atmospheric chemistry
on atmospheric dynamics and occurrence of stratospheric
clouds487-488. For paleo studies, recent model simulations per-
form well for simulations of the Last Glacial Maximum,
although less well for the glacial-interglacial transition period
and for interstadials such as the Younger Dryas event. They
also suggest the need for multiple forcing (solar, greenhouse
gases and albedo feedbacks) to achieve agreement with paleo
climate reconstructions of glacial-interglacial changes, and
indicate that ocean processes and air stability may be key fac-
tors in these changes. Some recent simulations indicate that
tropical ocean temperatures may have been about 2˚C colder
during the Last Glacial Maximum than estimated from
CLIMAP program reconstructions489-498. Finally, comparisons
of simulations with several coupled models forced with radia-
tive changes of the past century with observations indicate
good agreement on long term global and zonal trends.
However, there are significant discrepancies at the regional
scale. In some regions, this may also be due to inadequate
observations499-501.

4.3 Model Results

Global temperature and precipitation. Equilibrium model
projections and other related studies continue to show a wide
range of potential warming for doubled CO2 climate scenarios,
extending from as low as 0.4˚C to above 5˚C. Inclusion of
aerosol effects reduces the net effect due to greenhouse gases
by about 20%. Several recent coupled model experiments sug-
gest a transient response at the time of CO2 doubling of
between 1.5 to 3.5˚C. However, researchers caution that the
climate system responds in a non-linear fashion and that cli-
mate models as yet do not properly include some of the 
biogeochemical, biogeographical, ocean and other long term
feedbacks that may be important. This need for 
caution is further emphasized by the lack of evidence from
model projections for abrupt shifts in climate as it responds to
changes in radiative forcings, even though paleo studies 
suggest these have frequently occurred in the past. Hence
model results should still be used as indications of climate
sensitivity to radiative forcing, rather than as predictions502-508.

Ocean Ice Cover and Circulation. Model results 
generally agree that, as the global climate warms, sea ice extent
will decrease substantially in both polar regions and the 
thermohaline circulation (THC) will weaken in the North
Atlantic due to increased fresh water influx and enhanced
warming equatorward. However, the projected changes in the
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THC system may take decades to exceed its natural variability
and may make the system more stable. However, these changes
are not likely to affect ENSO behaviour.  The consequences for
changes in the response of the Southern Ocean are less certain.
In this region, a reduction in regional deep convection due to
increased fresh water influx could result in a delayed intensifi-
cation of ocean turnover, with important implications for
Northern Hemisphere ocean temperatures as well435,501,509-512.

Regional Characteristics, Variability and Extremes. The
response of the tropical oceans to a positive radiative forcing
involves both a fast surface response within years and a slow-
er decadal-scale response of the ocean thermocline. While east-
west tropical temperature gradients initially increase, the final
response is more complex and depends on the effects of the
forcing on latitudinal differential heating.  Under various cli-
mate scenarios for high atmospheric CO2 concentrations, lati-
tudinal temperature gradients in low latitude regions appear
likely to intensify, increasing mid-latitude precipitation, while
gradients at high latitudes are likely to weaken. Hence, tem-
perature and precipitation changes at the regional scale can
vary considerably, and are difficult to predict with confidence
or to detect against background climate noise and natural 
variability (particularly in polar regions). While temperature
gradient changes may not have a large influence on the average
intensity of the Asian monsoons, they are expected to affect its
seasonality and regional characteristics. Several recent coupled
model experiments also suggest a tendency towards an
increase in temperature extremes (which are very sensitive to
local soil moisture and albedo response), enhanced atmospher-
ic moisture content (and hence latent heat transport at most lat-
itudes), an increase in precipitation extremes, and displaced
storm tracks in some regions. Extreme winds are likely to
decline in mid-latitudes, except in areas of ice retreat. There is
further evidence that, in mid latitudes, both PNA oscillations
and storm intensity may be enhanced, while the total number
of storms could decrease. While most GCMs are as yet unable
to properly project the effects of climate change on tropical
storm intensity and frequency, there is both theoretical and
some model evidence that these could both increase. However,
their range is unlikely to expand483,513-525.

Regional Climate Models (RCMs). RCMs can provide much
greater spatial detail important to regional climate response to
radiative forcing than can GCMs, and results from various
RCM experiments over Europe and the USA have provided
more realistic projections at the regional level. However,
RCMs continue to be constrained by the quality of boundary
inputs provided by global models to which they are linked.
They are also sensitive to the domain size used in their experi-
ments, and are often subject to problems with hydrological and
radiative budgets.  Hence their results, like those from GCMs,
should still be used with caution526-537.

5.0  Climate Trends

5.1 Paleo Climates

Glacial/Interglacial Climates. Models, ice core data, sedi-
ment records and other paleo data sources are useful resources
for studying climate regimes and processes of past glacial and
interglacial climates, although they must be used with caution.
Analyses suggest that, in addition to the possible triggering of
100 kiloyear (ky) glacial-interglacial cycles by a similar cycle
in the earth’s orbital eccentricity, other factors such as 
frequency variations in the 41 ky cycle in orbital 
obliquity, greenhouse gas feedbacks (e.g., sudden methane
release from seabed hydrates) and changes in planetary shape
during deglaciation may also be important causal or feedback
factors46, 538-550.

There is new evidence that the interglacial of some
400,000 years ago was longer and perhaps warmer than 
subsequent interglacials, and was accompanied by sea levels
some 20 m higher than today. This is equivalent to a complete
melt of both of the Greenland and West Antarctic ice sheets,
and implies that such a response could happen again in a
warmer world. The last interglacial some 135 ky ago appears
to have had average global annual temperatures similar to
today, although with warmer summer climates. During that
event, strong local sea ice feedbacks to regional changes in
solar insolation also seem to have resulted in a change in the
Antarctic climate well before that of the Northern
Hemisphere551-554.

Recent climate model simulations for the LGM some 25
ky ago appear to be sensitive to initial conditions used in the
simulations, but provide evidence for cooler tropical oceans
than implied by past paleoclimate studies. Weaker pole to
equator temperature gradients and the presence of large ice
sheets also caused significant changes in global atmospheric
circulation, with the jetstream over North America much fur-
ther south and altered storm tracks over Antarctica.  The
Southern Ocean was ice covered during winter up to latitude
60˚S, and sea levels were some 120 to 140 m lower than today.
Greenland cooled more than Antarctica, and more in winter
than in summer, while most continents were also at least 5˚C
colder and drier. C4 plants appear to have been a more domi-
nant species in many regional ecosystems. Global dust 
transport was more intense at the time, with as much as 50
times the iron deposition over East Antarctica and presumably
over regions of the Southern Ocean. Response of ocean circu-
lation and biological productivity appears to have varied 
considerably from region to region551,555-571.

During the subsequent deglaciation, beginning about 15
ky ago, monsoons strengthened and caused subtropical deserts
to shrink, but total vegetated area remained somewhat constant
as effects of ice sheet retreat were offset by those due to rising
sea levels. The deglaciation process was accompanied by a
warming in Antarctica of about 15˚C, a Greenland 
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warming of as much as 25˚C, an abrupt climate transition in
New Zealand, and rapid ice retreat and warm summer seas in
the North Sea. It may have also caused increased climate 
variability, including the Younger Dryas event. Although
European land climates followed similar patterns, vegetation
response was delayed by several centuries and interrupted by
the Older and Younger Dryas events44,572-581.

Paleo records also show that the longer term fluctuations
between glacial and interglacial conditions were also regularly
interrupted by millennial scale interstadial cooling events.
These typically show amplitudes of 3˚C or more during peri-
ods of glaciation and a more modest 1˚C during interglacials.
During the last glaciation period, for example, abrupt climate
anomalies such as the Dansgaard-Oeschger cycles and
Heinrich events appear to have caused interconnected changes
of regional climates from pole to pole, with climates in
Greenland cooling by 5-8˚C over a few decades to centuries.
These events were usually accompanied by fluctuations in CO2

concentrations of up to 20 ppmv, and appeared in Antarctica
about one to two millennia earlier than in Greenland. This 
suggests that the events are influenced by an inter-hemispheric
see-saw process or a primary tropical forcing mechanism. The
Heinrich events, which occurred about every 5-10 ky, appear to
have been triggered by sudden discharges of icebergs, primar-
ily the Laurentian ice sheet, with possible contributions from
the European ice sheets as well565,582-596.

Abrupt cooling events during the last deglaciation process,
such as the Older and Younger Dryas events, have been 
studied in much greater detail than earlier events. The onset of
the Younger Dryas, which appears to have been at least hemi-
spheric and perhaps global in scale, resulted in cooling in polar
regions and eastern North America by about 12-15˚C over 200
years, and a rapid warming of 5-10˚C within a few decades
near the end of the event597-600.

The Last 10,000 Years (Holocene). During the early
Holocene (until about 6 ky ago), diverse regions such as
Mexico, British Columbia and Sweden were drier than today,
while other regions (e.g. central Colorado and central Africa)
experienced wetter summer conditions and more abundant
ecosystems. By the mid-Holocene (between 6 and 4 kybp), this
pattern of response had altered. Related changes in vegetation
appear to have been an important feedback process, amplifying
the changes in solar insolation through surface albedo change
and indirectly influencing ocean climates (particularly in 
boreal zones). Colorado, for example, became drier again,
while the tropical dry region from the Sahara to the Gobi
deserts became wetter and more vegetated.  Peatlands and 
wetlands also expanded throughout Canada in response to
changing Arctic frontal positions and the emergence of land
out of the sea. While global average temperatures were likely
within 1˚C of today’s during the peak Holocene, some land
regions were significantly warmer. Increased ocean 
evaporation under the warmer climates also enhanced the
poleward transport of moisture572,601-616.

Temperatures in the Northern Hemisphere has declined
slowly since the mid-Holocene, although some regions of the
Southern Hemisphere show little evidence of a similar decline.
The lack of a more dramatic change in either temperature or
sea levels in response to declining NH summer solar insolation
is consistent with a non-linear climate system that changes in
an abrupt manner. A variety of indicators from various regions
also suggests that the late Holocene climate fluctuated on time
scales varying from centuries to millennia. Changes in 
regional moisture associated with these fluctuations caused
pronounced changes in regional vegetation patterns617-627.

Last Millennium. High resolution ice cores, glacier mass bal-
ance data, tree rings, and measurement of sediment grain size
in stream beds are among the tools that have become useful in
reconstructing climates of the past millennium. New research
results from these sources suggest that climates 1000 years ago
were about 1˚C milder over Greenland than today, while north-
east China was wetter, and hence more benign. Both regions
also show significant variability in precipitation in subsequent
centuries, with the Greenland snow accumulation rates provid-
ing evidence of a century scale variability, perhaps linked to
solar or NAO variability. During the Little Ice Age, Greenland
was about 0.5˚C colder than today, and upwind forest fire
activity was at a minimum. However, the circulation patterns
over the region changed to current patterns about 200 years
ago. In northern Siberia, tree rings indicate that the 20th centu-
ry is now the warmest of at least the past 500 years. In North
America, central regions experienced periodic droughts during
the past millennium that were far more severe than any
encountered during the past century. Likewise, the most severe
floods in the North American south-west appear to have
occurred some 400 years ago, although other regions of the
country have experienced unusually wet conditions in recent
years as well. These past extremes could happen again due
entirely to natural variability572,628-640.

5.2 Climate Trends Of The Past Century

Data Collection and Analysis Techniques: Statistical studies
indicate that direct analyses of global sea surface temperature
data sets appear to be reliable for the abundant data period
since 1951, but less so for earlier data sparse periods.  Analysis
of land station data also needs to carefully address a number of
factors that can bias trends, including the presence of zero 
values, urbanization effects, change in regional albedo, and
non-normal distribution of the data.  Alternative methods for
addressing these concerns include development of corrected
reference stations and comparison with data generated by 
coupled climate models.  Urbanization effects, which can be
quite large but variable from day to day, are subject to a 
combination of factors that can differ from one region to 
another, and hence require multiple comparisons with rural
sites to accurately estimate and remove.  Satellite platforms
also appear to provide useful information about surface climate
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variability, although these data sources have systematic biases
and noise that can be quite large641-651.

Various proxy indicators of past surface temperatures have
proven to be useful in providing complementary information to
direct surface temperature measurements. One source of 
information is anecdotal records. Borehole data have also
proven to be a useful means of reconstructing long-term 
surface temperature trends over land areas, although site selec-
tions need to be chosen carefully to avoid the effects of human
perturbations of local land surfaces. Vegetation growth indica-
tors, such as alpine tree limits and tree ring data, have become
important tools as proxies for past summer temperatures and
for precipitation, although there are indications that tree ring
density has become less sensitive to temperature fluctuations
during the last half century (perhaps leading to overestimates
of recent global warming if not accounted for). Trends in 
properties of polar lakes can also help understand local climate
change. Within oceans, acoustic sound waves have been 
successfully used to precisely measure seasonal changes in
average temperatures of sea water along the sound wave path.
Coral records can also provide good local temperature histories
provided sites are redundantly sampled to reduce 
observational error652-664.

The accuracy of temperature estimates within the tropos-
phere and stratosphere based on the satellite-based MSU 
system continues to be actively debated. Experts directly
involved with the analyses argue that the microwave data can
be merged quite accurately by using the more stable units on
NOAA 6, 10 and 12 satellites and correcting for discontinuities
and drift, although they acknowledge that accuracy over the
oceans remains a concern. Others suggest that the record is too
short for credible trend analysis, that corrections for 
stratospheric signals when estimating lower tropospheric 
temperatures enhance the noise from surface temperatures and
soil moisture, that methods for data analysis need to be
improved, and that there remain spurious jumps in the data.
Likewise, while radiosonde data can provide useful 
complementary information on atmospheric temperatures,
more work needs to be done to take careful account of system-
atic changes in reporting practices, instrumentation and 
number of stations665-670.

Satellite systems can also be used to estimate and possibly
monitor trends in other climate variables, including cloud opti-
cal depths, top-of-the -atmosphere radiances or wind field data.
However, there are still problems in reconciling such data with
surface based measurements671-673. 

Methods for measuring surface trends of other climate
variables, such as moisture budgets, snow accumulations and
cloud cover, also need to consider local influences (including
urbanization effects)  to ensure accurate estimates of regional
trends. Where good correlations exist, such methods can be
used as proxies for long term changes in indicies such as the
NAO674-678.

Temperature Trends: Analysis of global land and ocean
surface data show that, despite the cooling influences of ozone
depletion, nine of the ten warmest years of the instrumental
record occurred between 1987 and 1997, with the last year
about 0.1˚C warmer than any previous year. The winter and
spring of 1997 were particularly warm. However, some regions
have been consistently cooler than normal, and satellite MSU
data suggest the lower troposphere is still near the 30 year
norm. Recent corrections of the MSU data for the effects of
satellite drift now suggest a slight warming of the lower 
troposphere since measurements began in 1979, although the
magnitude of the trend remains controversial. Trends in
radiosonde temperature as well as tropospheric thickness data
also suggest minimal tropospheric warming for the same time
period. These results contradict earlier reports that the tropos-
phere has been cooling, but also suggest either an increasing
bias in surface or satellite data with time or a decoupling of 
surface and tropospheric atmosphere for a period of at least
two decades. Radiosonde data records do show a significant
warming between 1960 and 1979, prior to the start of the 
satellite record665,679-691.

Figure 3. Comparison of trend in global average surface tem-
perature with that for the lower troposphere as reconstructed
from NCEP reanalysis data for 1973-1996.  The NCEP data
shows very little warming since 1979 (the period covered by
the satellite MSU data) but a significant warming trend when
the preceding 6 years are added. Reference: Pielke et al. 1998
(#685).

In the upper atmosphere, temperature data collected at the
mesopause (87 km altitude) show a mid-winter cooling of 9˚C
between 1990 and 1996.  Within the stratosphere, 
temperatures have also cooled over the past three decades, 
primarily through two abrupt steps ~1981 and 1991688,692-694.
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Studies continue to report that most regions, including
Europe, the Mediterranean, the Bahamas, Antarctica, the
Southern Ocean and Northern China, have experienced signif-
icant warming over the past century. The extent of warming
varies by season, with most experiencing greatest increases in
minimum temperatures and in winter and/or spring. Many
regions also show decreasing daily temperature range, fre-
quently associated with an increase in low level cloudiness and
hence a decline in sunshine duration. In contrast, some regions
such as south-east China and Newfoundland, have experienced
colder climates in recent years, perhaps due to factors such as
reduced solar insolation due to pollution and long term ocean
oscillations such as the NAO695-705.

Proxy data sources support the results from instrumental
records. Various recent borehole studies show a broad scale
20th century warming in North America, Europe, South Africa
and Australia of about 0.5˚C, and current temperatures as much
as a degree warmer than 500 years ago. Tree rings and other
proxies also suggest current regional temperatures in New
Zealand are the warmest in at least the past 5 centuries, and that
the climate in the central Canadian Rockies are the warmest  in
at least the past 1000 years. Likewise, coral records in the
southwest Pacific indicate a regional warming of ocean waters
by 0.3˚C over the last 300 years. A compilation of 17 indepen-
dent proxy records from dispersed locations in both 
hemispheres now show that, globally, the 20th century is the
warmest of the past millennium. These records show good 
evidence of a global scale Little Ice Age, but not a global
Medieval Warm Period654,655,706-712.

Attribution of Temperature Trends: Coupled model simula-
tions of long term natural variability suggest that the recent
trends in rising SST values in the tropical/subtropical oceans
have less than a 1% probability of occurring due to internal cli-
mate variability alone. However, when forced with a combina-
tion of estimated greenhouse gas, aerosol, volcanic and solar
influences of the past century, simulated temperatures are very
similar to that observed and three standard deviations above
the modelled noise level. Strongest signals are associated with
greenhouse gas and volcanic forcings. Similar model-based
analyses using fingerprint and pattern correlation 
techniques also suggest the combined anthropogenic forcings
of greenhouse gas plus aerosol effects may already be
detectable at multi-decadal and large spatial scales, but that
detection at decadal and smaller spatial scales may not be pos-
sible within the near future. Finally, plausible explanations for
the lag between hemispheres in changing temperatures appear
to be associated with combined solar and anthropogenic forc-
ing, with an associated climate sensitivity of between 1.5 and
4.5˚C for a CO2 doubling. However, large scale and long-term
oscillations in the natural ocean climate are also important in
temperature fluctuations on times scales of decades and longer,
and may have contributed to recent interdecadal behaviour.

These natural fluctuations need to be better understood to 
properly predict and detect future climate change626, 713-733.

While some past studies have suggested that temperature
trends over the past few centuries can also be well correlated
with solar variability, new results indicate that attribution of
recent trends to solar forcing alone would require climate sen-
sitivities that may exceed physical plausibility. In fact, analy-
ses of long term records using both observed and proxy data,
some extending back 600 years, suggest solar forcing was a
dominant factor until the 17th century, that volcanic events
played a key role in the 18th and 19th centuries, and that green-
house gas forcing appear to be important in the 20th.  Similar
results are achieved using Bayesian statistical analysis, which
indicate that the solar signal in the past 100 years of climate
data is barely detectable, while there is a robust relationship
between temperature trends and greenhouse gas 
concentrations. Coral records in the southwest Pacific also
show a trend towards lower δ13C values (indicative of human
perturbation of the carbon cycle) coincident with 
rising temperatures711,732,735-745.

As indicated, attribution of changes in regional scale 
climates to global forcings is not as yet realistic. However,
some local climates in industrialized areas show recent cooling
that appears to be clearly linked to very large regional 
increases in concentrations of aerosols. Likewise, some
regional changes, like those in Antarctica and the Norwegian
Arctic, can be at least partially explained by changes in 
atmospheric circulation746-748.

In the stratosphere, cooling and changes in circulation
within the stratosphere during the last few decades appears to
be caused primarily by ozone depletion, although linkages to
variations in the NAO could also be a factor. There is evidence
that the thermosphere is shrinking, consistent with expected
cooling from enhanced greenhouse gas concentrations.
However, there is no clear indication of similar trends in the
ionosphere694,749-751.

Precipitation/Hydrology: The percent of global land area
experiencing very dry or very wet conditions, although highly
variable, appears to have increased since the late 1970s.
Although this change is coincident with recent changes in
behaviour of ENSO, it is also qualitatively consistent with
model projections for response to enhanced greenhouse gas
and aerosol forcing. At the regional scale, numerous studies
show changes in rainfall and drought patterns, indicative of
larger scale changes in atmospheric circulation. Some of these
trends appear to be long term and generally consistent with
expected responses due to warmer climates.  In other regions,
such as in the Saharan arid regions, continental USA and
Australia, they can be linked to complex relationships with
larger scale interdecadal oscillations. In South America, many
of the abrupt changes in precipitation and in related river flows
can be linked to SST changes.  In some areas (e.g., the central
Sahel), these changes are associated primarily with variations
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in number of rain days, rather than rain intensity, while in 
others (e.g., USA and Nigeria), the trends are caused by
changes in rainfall intensity699,752-771.

In the UK, average river flows during the past decade have
been low and unusual, but not unprecedented.  In the US
Sacramento Basin, there has been a decrease in spring runoff
with time, consistent with more precipitation falling as rain.
However, in SE South America, flows appear to be 
increasing772-774.

Humidity and mid-day dewpoints have increased over
most of the USA since 1961, particularly in spring and sum-
mer. Some of these trends can be explained by more frequent
occurrences of warm, moist air masses. On a global scale,
stratospheric humidity also appears to have increased signifi-
cantly between 1992 and 1996, with important implications for
ozone chemistry. In contrast, satellite data indicate that average
precipitable water within the tropical troposphere has
decreased by an average 3% since 1979, with greatest decreas-
es over oceanic subtropical high pressure and desert land areas.
However, the level at which these changes have occurred, and
hence the effect on radiative forcing, cannot be determined
from these data. In some  regions of the tropical oceans,
changes in both stratocumulus and deep convective clouds, and
hence in associated radiation budgets, appear to be closely
linked to variations in SSTs. However, analysts caution that
cloud data in many ocean regions are strongly biased 
by changes in observing practices and other measurement
problems775-781.

Large Scale circulation: Since 1963, a change in the Arctic
Oscillation has caused the Arctic polar vortex to decrease in
size and shift eastward. This is consistent with regional
changes in surface temperature and pressure patterns, includ-
ing surface warming over Eurasia and a cooler lower stratos-
pheric polar vortex. Over the USA, summer and winter air
mass exchange frequency has decreased since 1948, as has the
winter frequency of moist tropical air masses in the North
American southeast. There is also evidence of increased air
mass exchange between the troposphere and stratosphere, 
perhaps due to an increase in tropospheric vertical diffusion
caused by higher greenhouse gas concentrations782-785.

In the Pacific Ocean, abrupt increases in 14C in corals
growing along the Galapagos Islands provide further indica-
tions of a sudden, systematic change in tropical Pacific Ocean
circulation around 1976. Tree ring chronologies also suggest a
trend in ENSO behaviour over centuries towards greater vari-
ability in winter and more frequent cold events. In the north-
east Pacific, SSTs have increased and salinity decreased over
the past 60 years, resulting in increased column stability,
reduced mixing and regional nutrient supply to surface waters,
and hence an altered fish environment. North Pacific subarctic
and subtropical gyres also appear to have strengthened during
the 1970s, cooling the thermocline and reducing Bering Strait
ice concentrations. These changes in turn may be linked to a

regional ocean climate oscillation on both decadal and much
longer time scales. Enhanced east-west summer temperature
gradients in the western Pacific have contributed to altered
monsoon behaviour and increased extreme summer tempera-
tures in eastern Asia over the past 40 years733,786-794.

Analysis of tropical Atlantic SSTs suggest that 
north-south SST gradients induced by changes within the south
Atlantic may be linked to a decadal scale oscillation that 
influences North Atlantic variability. Oscillations in the North
Atlantic may in turn be a factor in triggering decadal scale
oscillations in Arctic sea ice cover and sea level pressures.
Over the western Mediterranean, temperature and salinity have
increased, consistent with reduced freshwater input due to long
term regional changes in atmospheric circulation430,795-799.

Extreme Weather: Regional temperature extremes, which can
be assessed using both minimum/maximum temperature
records and degree day thresholds, often occur in clusters and
appear to be linked to changes in large scale circulation fea-
tures. For example, recent  record breaking temperature
extremes in the British Isles, together with similar unusual
extremes in precipitation, were accompanied by a shift in 
seasonal rainfall patterns. In China, northern regions 
have experienced fewer temperature extremes in 
recent decades517,767,800-802.

There does not appear to be a significant long term trend
during the past century in tropical cyclone activity in either
the North Atlantic or North Pacific, or in the frequency of 
hurricanes reaching the US Gulf coast.  However, there is evi-
dence of significant multi-decadal and inter-annual variability,
with lowest North Atlantic hurricane activity in mid-century,
and during El Niño years.  Similarly, hurricanes off Australia
appear to be less frequent during El Niño events. However,
other regions can have opposite responses, suggesting possi-
ble global mechanisms that link cyclone behaviour in different
regions. Both changes in vertical wind shear in the tropos-
phere and in sea surface temperatures appear to be possible
factors518,803-808.

Extreme waves and winds in the Northeast Atlantic and in
the seas off northwestern Europe experienced a decline in
intensity from 1900 to 1970, but have returned to earlier inten-
sities in recent decades.  There may be linkages to NAO. These
changes affect extreme tides in the region809-815.

Assessment of American weather-related disasters suggest
that increased losses for modest events appear to be primarily
attributable to demographic factors, but those due to the big
events (>$100 million) appear to be partly attributable to shifts
in weather. Trends towards increasing ratios of heavy to light
precipitation may be one factor, although events are often asso-
ciated with a combination of weather factors. Likewise, a
decline in deaths due to lightning strikes may be due both to
declining rural populations and long term variability in thun-
derstorm frequency816-822.
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Snow and Sea Ice: Southern Ocean sea ice cover varies con-
siderably with time, largely in response to ENSO type oscilla-
tions.  While there is no clear evidence of net change in
Southern Ocean sea ice characteristics from satellite data of the
past few decades, proxy records and model studies suggest a
net decrease in extent, concentration and thickness over the
century. In the Arctic, sea ice has thinned dramatically in recent
decades, largely due to warmer upper ocean water tempera-
tures and an increase in inflow of saltier Atlantic waters. This
has, in turn, led to a significant decrease in upper ocean salini-
ty. Meanwhile, across much of northern Canada and Russia,
winter snow accumulation has increased since the mid 1930s.
However, the later decades of the 20th Century have been char-
acterized by extensive decreases in winter and spring snow
depth and snow cover over large regions of southern and 
western Canada501,702,823-829.

Land Ice/Sea Level Rise: Satellite instruments, including
altimeters and gravity measuring systems, can provide very
accurate measurements of seasonal and interannual changes in
sea levels. These indicate that only about 50% of short term
fluctuations in sea levels can be attributed to changes in ocean
heat fluxes and hence thermal expansion. Hence other factors
must also be important829-830.

In general, small temperate and polar glaciers around the
world, including climatically sensitive glaciers in Alaska, the
European Alps, Antarctica and central Asia, show varied
response to changes in climate over the past several centuries,
often associated with inter-decadal and longer term changes in
atmospheric circulation. Most have experienced pronounced
and accelerated retreats during the 20th century, primarily
induced by enhanced summer season ablation, and many of
these are expected to disappear within the next century.
Because of their small size, these collectively have contributed
less than 0.1 mm/year to global sea level rise during the past 30
years. Larger glaciers appear to be less responsive at 
this time618,624,831-838.

There is evidence of increased net accumulation of snow
at higher elevations of the interior East Antarctic ice sheet over
the past decade, equivalent to a reduction in sea levels of about
0.4 mm/year. However, at lower altitudes, elevations of ice
mass appear to be decreasing. Smaller shelves along the
Antarctic Peninsula and elsewhere also appear to be retreating.
The northern Larsen ice shelf, which presently appears to be in
a stable pattern, could also change to rapid retreat if ice front
configurations were to undergo substantial change. In contrast,
the Ross Ice Shelf appears to be thickening and advancing,
suggesting a stable ice front at that location.  In general, the net
mass balance change of the ice sheet over the past century has
been small . In West Antarctica, several years of radar altime-
try data show a retreat of the grounding line of one key glacier
which, together with recent paleo evidence of a complete 
collapse of the West Antarctic Ice Sheet in the distant past 
(perhaps during the prolonged interglacial some 400 ky ago),

suggest that the stability of this ice sheet may be less than oft
assumed and in need of further careful study. Meanwhile, in
western Greenland, satellite data indicate that ice sheet margins
have retreated in recent years in some regions and increased in
others. Summer melt, ice cover in adjacent waters, and iceberg
calving rates appear to be important factors839-853.

Other Trends: A variety of ecological variables can provide
useful proxy indicators of regional changes in climate,
although their interpretation can be complex. Satellite moni-
toring of ecological productivity through the NDVI index, for
example, can provide indications of trends in degree days,
annual precipitation and/or moisture characteristics for many
regions. Shifts in tree lines, populations of fish, birds, insects
and animals are also often associated with changes in regional
climates, including snow cover and sea ice. In alpine regions,
changes in high altitude plants and insects may provide early
indicators of a climate shift, while diverse cold water larvae
species may provide a good climate proxy in Antarctic waters.
A Canadian coordinated network of ecological stations, known
as EMAN, will be important in following these trends within
Canada854-859.

Some ecological trends noted recently include a recent
decline in black guillemot poulations in Alaska (due to a
decrease in local cod food supply) and a dramatic drop in gem-
fish populations off New Zealand (due to more frequent south-
west winds and related changes in ocean temperatures). In the
Pacific, there has been a dramatic but complex change in biot-
ic distribution over the past several decades, including major
declines in some species. The treeline in Canada currently
shows infilling and a shift north, while in eastern Spain, forest
loss due to wildfire has increased dramatically. Surface albedo
has declined in Israel (due to irigation) and the former Soviet
Union (due to reduced snow cover)857,860-865.

6.0  Impacts and Adaptation

6.1 CO2 and Nitrogen Fertilization

In general, ecological response to the direct effect of
enhanced CO2 concentrations results in positve gains in plant
yields, but the response depends on complex, non-linear inter-
actions between elevated CO2 and the processes that affect the
acquisition and retention of nitrogen and other nutrients within
ecosystems. These can result in long term responses that are
quite different from those in the near term. Systems with high
nutrient fluxes are in general more responsive than those with
low fluxes. For some species (such as soybean seedlings), the
photosynthesis:respiration ratio increases under elevated CO2

even if temperatures rise. On the other hand, for rice crops
higher temperatures can largely offset yield gains from direct
CO2 effects. Higher CO2 can also mitigate, although not com-
pletely avoid, the adverse effects of crop exposure to surface
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ozone. Various grassland communities grown under enhanced
CO2 concentrations, for example, generally show significant
enhancement in biological productivity during initial exposure,
but varied response in subsequent months and years. A net
change in species composition usually results. Some grass
species also show significant improvement in performance of
subsequent generations grown from their seed. Responses can
also be affected by soil acidity, resulting in poorer response of
certain grasses on acidic soils, and may have important indirect
effects on ecosystem organisms and on decomposition. Scots
pine seedlings and young birch trees grown under elevated
CO2 also show complex responses that include both enhanced
biomass/root productivity and greater respiration and soil CO2

efflux rates. In rice paddies, the stimulation of root growth
under higher CO2 conditions also enhanced methane emis-
sions. Better understanding of these complex processes and
consequences will require comprehensive studies with a 
hierarchy  of models and observations at scales from molecu-
lar to ecosystems866-883.

Assessments of response of multiple plant species within
a high CO2 environment created by naturally vented CO2

suggest little change in leaf structure due to such long term
exposure, but a significantly lower stomatal conductance 
relative to adjacent control sites. On a larger scale, despite the
significant increase in atmospheric CO2 concentrations over
the past century, there is little evidence of a major increase in
carbon uptake in the tropics. Likewise, vegetation model 
projections for ecosystem response to combined effects of 
elevated CO2, higher temperatures and increased precipitation
over northeastern China suggest an increase in NPP for some
of the regional ecosystems but an overall slight net decline due
to significant declines in NPP for other regional ecosystems.
Hence, while some species may individually respond strongly
to CO2 fertilization, there may be limits on total ecosystem
response, perhaps due to accelerated carbon turnover884-886.

Recent studies continue to show that reduction of nitrogen
in tissues of plants grown under elevated CO2 results in higher
C:N ratios and appears to provide poorer food quality relative
to controls. Related impacts on foraging insects and 
animals appear to vary with species, and may be compounded
by the effects of concurrent climate change. Furthermore, plant
species less desirable for consumption may have a competitive
advantage, thus affecting species composition and biodiversity.
Within ground litter, however, the C:N ratio appears to change
very little because of a C:N balance readjustment that appears
to occur during leaf senescence. Within soils, there is evidence
that microbial response to enhanced CO2 within natural, 
undisturbed ecosystems are constrained by soil nutrient 
limitations887-894.

6.2 Methods for Improved Impact Analysis

Models used to assess the impacts of climate change on
agricultural ecosystems, hydrological processes and lake ice

phenology, for example, generally show improved perfor-
mances with data inputs at resolutions higher than those avail-
able from current GCM outputs. While a number of techniques
are available to downscale GCM model outputs to 
higher resolutions, each has its limitations. Statistical methods
such as weather generators or correlations of local climate 
conditions with synoptic weather behaviour, for example, can
simulate regional conditions quite well and are computationally
efficient, but may have problems with estimating extremes and
long-term variability. By comparison, regional climate models
such as the Canadian RCM can produce simulations of climate
components (e.g., the regional hydrological cycle) with 
comparable skill, but continues to be constrained by errors in
the boundary conditions provided by the GCM within which it
is nested895-910.

Effectively addressing the challenges of climate change
requires the collaboration of scientists, policy makers and the
public. Integrated regional impact assessments, properly under-
taken, can help achieve such collaboration.  However, the ana-
lytical tools used to help in such assessments must be 
chosen carefully, since studies suggest that projected impacts of
climate change are sensitive to the analysis technique used911-

912.

6.3  Forest Ecosystems

Because of the relatively narrow climate niches of their
diverse biota, tropical forest ecosystems (including flora flour-
ishing within their canopies) are particularly vulnerable to
changes in climate and may thus be valuable early indicators of
climate change. Adaptation strategies for reducing the impacts
on these forests include reduction of additional stresses of
direct human influence and reduced forest fragmentation913-922.

For North American mid-latitude forests, about 40% of
tree species will likely experience a significant expansion of
their range or density, while another 40% will be in decline in
response to a major shift northward of their climate optima
under 2x CO2 climate conditions. However, local climate con-
ditions and management practices will be important in modify-
ing such response. Concurrent impacts of pest outbreaks such
as the spruce budworm may be significant in some regions, but
are also modified by complex interactions with host conditions
and predator response.  Warmer climates may also have major
implications for forest soil water balance within the boreal for-
est during the growing season (although less so in other sea-
sons), and lead to more extreme and longer fire 
seasons. In central Ontario, this could cause shrinkage of the
boreal forest, an increased dominance of Great Lakes forest
types, and related impacts on wildlife, such as a decline in
moose and caribou and an increase in white-tailed deer. Such
changes would be in addition to any generated by natural
processes. However, studies using transient scenarios suggest
that transitional changes may be significantly different from
those projected from equilibrium climate change scenarios,
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since changes in temperature and precipitation may not 
occur concurrently911,923-930.

Such changes in natural ecosystems have important impli-
cations for the interaction of soil biota and properties, as well
as for biodiversity and the development of related biodiversity
conservation strategies. For example, warmer soils appear to
decrease concentrations of leachate and total 
inorganic nitrogen in soils, although increased nitrogen uptake
by vegetation masks these changes. These relationships are,
however, not well understood and need to be studied in order
to better assess long term vegetation response to 
climate change931-938.

6.4 Polar/Alpine  Ecosystems

Species populations of temperature sensitive insects and
host plants within Arctic and alpine ecosystems can respond 
rapidly to climate change, and may be important indicators of
such change.  Predicted responses include a northward 
movement of the treeline. However, other indirect 
factors, such as changes in soil moisture, decreased water
tables and increased nutrient supply may have a greater effect
on arctic species composition or biomass than changes in 
temperature alone. For example, immediate phenological shifts
are expected as a result of earlier snowmelt. Hence climate
change can be expected to significantly change the diversity of
subarctic-alpine ecosystems14, 939-945.

6.5 Aquatic Ecosystems

Changes in the delicate balance between precipitation and
evaporation will have major implications for water table levels
and hence, the conditions of wetlands. This in turn affects the
role of wetlands in sequestering carbon, controlling floods and
as wildlife habitat. Shoreline wetland areas appear to require
careful attention given their susceptibility to changing water
levels and their significance for recreation. In the Great Lakes,
for example, climatic changes will likely push fluctuating
water levels beyond that with which some wetlands can cope.
Studies in sedge fen ecosystems under warmer climates with-
out significant changes in precipitation suggest increased sum-
mer water deficits and increased carbon loss, but decreased
methane emissions. Reduced water export through wetlands
may also result in short term increases in local lake acidity, in
larger fluctuations of instream DOC and in reduced dissolved
organic matter loads to lakes. The impact of climate change on
aquatic biota may depend on their species diversity, genetic
diversity and other factors, and more exotic species invasions
are expected. However, many questions still remain about the
nature of such responses946-955.

6.6 Water Resources

Changes in regional hydrology will not only be affected by
changes in temperature and precipitation, but also by local land

surface regimes and human factors such as soil degradation
and land surface change. Impacts on hydrology will not be 
distributed evenly. Projected regional changes include such
diverse consequences as decreased runoff, groundwater
recharge and water quality in southern Britain, increased 
river flows in northern Britain, increased flood 
frequency during winter for surface flow dominated streams in
Belgium, and higher water temperatures in streams and lakes
throughout North America. A study using transposition of 
climates from other regions similar to that which might occur
in the Great Lakes Basin under warmer climates also suggest-
ed much larger interannual variability in precipitation than
observed in existing basin climate, but only a small net change
in basin water supplies956-961.

Ice formation on American lakes under 2xCO2 climates
may be delayed by up to 40 days and ice melt could be up to
67 days earlier. Maximum ice thickness could decrease by as
much as 0.44 metres.  These changes would reduce fish winter
kill in most shallow lakes, but may endanger snowmobiles and
ice fishermen961, 962.

6.7 Agriculture

Crop yield models such as CERES and YIELD still exhib-
it many weaknesses in projecting impacts of future 
climate change on agricultural yield, perhaps due to indirect
climate impacts and other factors that are not included in the
models (e.g., climate-insect interactions). Variables such as
night-time temperatures appear to be particularly important.
Hence, results of studies using different methodologies still
show significant differences and need to be used with caution
and not in isolation of each other. A general review of such
studies suggests that, in developed countries, the overall
impact will be small and likely positive.  However, there could
be large percentage changes in production at the regional and
local level, particularly in poor, low-latitude countries.  In
addition, warming beyond that projected for 2XCO2 could
have more dramatic negative effects at the global scale. Use of
appropriate adaptation strategies can help to reduce these
effects963-973.

Some regional impacts of climate change on agriculture
include:

• significant changes in local growing seasons and overall
productivity in Africa due to the combined effects of soil
degradation and climate change957;

• enhanced summer soil moisture deficits and increased
daily maximum temperatures in diverse regions such as
Turkey, India and the Canadian Prairies, thus affecting
crop yields. Increased evaporation would exceed any
changes in precipitation967,974-975;

• Projected increase for some crop yields, such as corn and
sorghum, in Quebec, but decreases in others such as
wheat and soybean976.
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6.8  Flora and Fauna

Studies into ecosystem response to climate change must 
consider not only the direct response of individual species, but
also the changes in interaction between them. Traditional
knowledge of aboriginal peoples may assist in advancing such
knowledge. There is good evidence, both from observations of
year-to-year response of breeding habits to changes in climate
and from trends towards earlier breeding during the recent
warm decades in Europe that amphibian and bird populations
are very sensitive to changes in climate. Likewise, recent 
evidence for stressed polar bear populations in the Canadian
sub-Arctic indicate that these and other Arctic species are par-
ticularly sensitive to changes in ice cover. Migrant pests are
also expected to respond quickly to increased CO2 concentra-
tions and altered climates, and may be able to colonize newly
available crops and habitats. Changes in extreme weather
events such as hurricanes can also have an impact on ecosys-
tem populations. However, the nature of the response is com-
plicated by abiotic and biotic barriers and therefore difficult to
predict.977-983.

6.9 Extreme Weather/Circulation 

The response of atmospheric circulation and extreme
weather events to climate change is as yet poorly understood
and needs much more research. Paleo records and comprehen-
sive model studies may be particularly useful in such research.
Based on Rossby wave concepts of climate variability, future
climate change may well manifest itself predominantly as a
change in the natural modes of climate system variability.
Warmer climates will also, on average, increase evaporation
and atmospheric moisture content, which may in turn both
exacerbate drought events and favour more intense rain/snow
events (and hence local flooding). In the North Atlantic, a
study using the ECHAM model output suggest extra-tropical
storm tracks over the region will likely be displaced northward,
but shows no evidence of a significant increase in average
intensity (in contrast with some other studies). Storm surges
along regions of west Europe are also projected to increase in
height by 10-40 cm, although this appears to be within the 
normal range of expected variability in most regions 
of the North Sea984-990.

Several recent studies using climate model data outputs
together with hurricane models suggest a small to modest
increase in tropical cyclone intensity and frequency, but pro-
vide no evidence of expansion of cyclone zones. Some regions
could experience dramatic changes in cyclone frequency, and
in the Atlantic increases will be greater during La Nina events.
This is supported by evidence that high intensity tropical
cyclones appear to occur over the warmest waters and last 
several days longer than lower intensity events elsewhere.
However, in the Pacific ocean, storm intensities are generally
well below their potential based solely on SST calculations,

suggesting that other environmental influences could be even
more important than SSTs in determining maximum storm
intensity. Since many of these factors are not as yet included 
in related hurricane models, projections need to be used 
with caution518,991-997.

Warmer climates will cool the stratosphere, reduced the
frequency of sudden stratospheric warming, and thus intensify
and increase the stability of the polar vortexes. These effects
are expected to cause the Antarctic ozone hole to become 
larger and last longer in the near future, increase the likelihood
of Arctic ozone holes, and slow down the recovery of the ozone
layer on a global scale. The net effect on ozone column 
concentrations at mid-latitudes is still uncertain, with some
models suggesting an increase  in concentrations and others 
a decrease998-1003.

6.10 Land Ice/Sea Level Rise

The response of ice sheet dynamics to climate change is
dependent on underlying geology and other local factors as
well as changes in temperature and precipitation. Possible
future response for the West Antarctic Ice Sheet (WAIS) could
range from minimal dynamical response and slow growth to a
complete collapse within the next few centuries, although both
extremes seem very unlikely. More accurate predictions will
require better understanding of the dynamics involved. For the
larger eastern Antarctic ice sheet, changes in regional ocean
temperatures and circulation patterns could increase basal
melting rates of its coastal ice shelves and thus at least 
partially offset predictions of increased accumulations in cen-
tral regions. Some studies suggest that the melting process
could dominate in the long term, resulting in the contribution
to sea level rise of approximately two meters over the next
1000-2000 years. However, the processes involved are also
poorly understood. Meanwhile, predictions of Greenland ice
sheet melt based on coupled climate model predictions of
regional temperature and precipitation changes suggest a net 
contribution of 7.6 cm to sea level rise from this source 
by 2100839,840,1004-1011.

Most temperate and alpine glaciers are expected to recede,
and many to disappear by 2100 in response to continued warm-
ing, although the response will vary considerably between
glaciers and with the local nature of the change in 
climate. One estimate, based on a coupled climate model 
simulation of climate change, suggests a 13 cm contribution to
sea level rise from this source by 2100618,834,1008,1012-1014.
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Figure 4. Projected contribution of temperate glaciers and the
Greenland ice sheet to global sea level rise, based on climate
change scenarios with both greenhouse gas and aerosol forc-
ing. Reference: Gregory and Oerlemans 1998 (#1008).

The impacts of the above changes, together with that due
to thermal expansion of sea water, on coastal tide levels, will
be further modified by other factors, including changes in sea
level pressure and tectonic action of land masses. About 3% of
Canada’s coastline is highly vulnerable to such changes, while
30% has moderate sensitivity and the remainder is relatively
insensitive. With projected changes for future sea level rise,
many regions now emerging out of the ocean through 
tectonic lift (e.g., Hudson Bay region) may once again become
submerged. Other countries will be much more vulnerable. In
many areas, retreat and accommodation to such change may be
preferable to developing defensive barriers. Both economic
and ecological consequences of possible sea level rise remain
highly uncertain1015-1017.

6.11 Economic and Health Impacts

The human cost of climate change is very difficult to esti-
mate, both because of uncertainties in climate change 
projections and poor understanding of human response
processes. For example, the US economic costs due to project-
ed sea level rise alone vary from  $0.2 billion to more than $4.6
billion, and net costs for all impacts could vary from 0.35 to
2.16% of GDP. Hence, estimates for costs are as yet very unre-
liable, and must often be provided in qualitative terms. Some
regions, such as Russia, may in general benefit from warmer
climates in terms of public well being because of the current
difficulty in dealing with cold climates in the region today.
Wealthier regions like that of western Europe, where cold

extremes are of less concern, may benefit much less. In Egypt,
impacts on the agricultural economy, when integrated across
the sector, may be minor, and of greater benefit to consumers
than producers. For Canada, largest negative impacts, even
after appropriate adaptation measures are implemented, will be
associated with natural ecosystems, water resources and
weather extremes, and the economic sectors most affected or
dependent on these. Hence most critical social and economic
impacts will vary significantly by region. Studies suggest that
response should focus on risk assessment and risk 
reduction, including the development of appropriate adaptation
and opportunity programs955,1018-1024.

Health effects may also be more serious in some regions
that others, since climate is only one of a number of factors that
affect health. Projected spread of tick borne diseases into
Europe, for example, can be mitigated by increased innocula-
tions because of the presence of excellent health care. In devel-
oping regions of the world, other concurrent stresses on health
and a much less adequate health care system causes a much
greater vulnerability to factors related to climate change, par-
ticularly subsistance populations1025-1028.

7.0  Policy
Skeptics of global warming concerns continue to argue

that scientists involved with the IPCC are biased and have
inadequately considered arguments for the role of solar forcing
in recent global trends. There are also those who suggest that a
doubling of carbon dioxide in the atmosphere is neither likely
nor harmful, that the earth has natural feedbacks that maintain
a remarkably stable planetary temperature, or that the best
option, in the face of high uncertainty, is to wait and see.
However, others maintain that the IPCC process has evolved in
a manner that seeks to tread the tightrope of being both 
scientifically sound and politically acceptable, and that its 
conclusions are sufficiently robust to already justify actions to
reduce the risks of climate change284,1029-1043.

The general public awareness of the risks of climate
change in most countries is flawed at best, and not conducive
to voluntary acceptance of life style changes that may be 
needed to reduce these risks. While effective interaction
between scientists and media can help improve awareness,
such interaction requires skill and caution, and can often cause
further distortion of information1044-1045.

While the Kyoto agreement provides an important first
step towards reducing the risks of climate change, emissions
from non-Annex I countries will continue to grow and CO2

concentrations will likely exceed 380 ppmv by 2010 and 500
ppmv by 2050. Furthermore, each decade in delayed mitigative
action will increase required subsequent rates of emission
reduction by 1.5% per decade. Some argue that, given the 
inertia of the climate system, this argues for early action and a
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concerted international effort involving all countries to reduce
global greenhouse gas emissions. While reducing carbon inten-
sities of energy use may provide best options for such 
reductions in developed countries, population growth and
improved energy efficiency are particularly important factors
in developing regions. Hence optimal mitigation policies will
vary by country and region, and could use joint efforts in order
to engage developing countries. Mitigation policies must also
address possible conflicts with competing policies dealing with
other environmental or social concerns, such as ozone 
depletion. They also need to be based on sound, state-of-the-art
science, and can draw on past lessons associated with other
environmental policy developments1046-1054.

One option for future reduction in industrial CO2

emissions is capture from smoke stacks or as a by-product of
hydrogen extraction processes, and disposal in either terrestri-
al reservoirs or the deep ocean. However, related costs are as
yet prohibitive, and consequences of disposal are poorly under-
stood.  Biotechnical solutions have also been proposed as
means for reducing greenhouse gas emissions or removing 
carbon dioxide from the atmosphere. Improved farm manage-
ment, for example, may be an important means of reducing
sectoral emissions of greenhouse gases while improving pro-
ductivity. Soil conservation programs and stimulation of 
sedimentation rates in rice paddies could also sequester enough
carbon to significantly offset the agriculture sector’s green-
house gas emissions.  Likewise, forest management strategies
could substantially reduce that sector’s emissions of carbon
dioxide or enhance carbon sinks. Conversely, failure to deal
with warmer and possibly drier climates could result in a sig-
nificant increase in wildfire and related emissions of carbon
dioxide into the atmosphere. However, the complex relation-
ships between carbon, nitrogen and other nutrient cycles 
within forests and agricultural systems must be better 

understood to properly assess the consequences of 
such strategies1055-1069.

Adaptation to climate change needs to be an integral com-
ponent of national and international strategies to reduce the
risks of climate change, and is a powerful complement to 
mitigation options. It must be multi-focused and multi-stake-
holder, relying on close collaboration between physical and
social scientists to properly assess the environmental and social
consequences of climate change. It will depend on technologi-
cal advances, appropriate institutional arrangements, availabil-
ity of financing and good information exchange, and must 
consider a broad range of influencing factors. The development
of appropriate inverse modelling techniques to assess vulnera-
bilities and tolerance thresholds, and conceptual models that
inter-link ecological and social processes can both help in the
design of such strategies. Meanwhile, bi-lateral organizations
such as the US-Canada International Joint Commission for the
Great Lakes can help foster the needed cooperation. Measures
to better cope with current climate and weather behaviour
(including extremes) would also provide a good initial 
precautionary approach for reducing the uncertain risks associ-
ated with future change1070-1083.
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