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Abstract

This is the first of three papers describing NAOMI1, a new quarterly forecasting model developed
in the Economic Analysis and Forecasting Division at the Department of Finance. NAOMI’s
intended purpose is twofold. First, it is capable of producing reliable, judgement-free
macroeconomic forecasts on a timely basis. Second, it can accurately quantify the level of
uncertainty associated with each forecast while ensuring this uncertainty is minimised. Jointly
achieving these two objectives represents a formidable task and necessitates a somewhat unique
approach to the model building exercise. This paper outlines the model building strategy used to
create NAOMI. The proposed approach differs from existing methods in that its sole objective is
to minimise forecast uncertainty. We demonstrate that the high level of forecast imprecision
typically associated with multi-equation forecasting models such as vector autoregressions stems
from the large number of free parameters embodied in such systems. Furthermore, it is shown
that lag length selection procedures based on in-sample fit often produce sub-optimal forecasting
models in small samples. This paper proposes a technique whereby the sample is divided into two
distinct sub-samples, called the estimation and evaluation sets. We then suggest choosing the lag
order that minimises the mean squared error over the evaluation sample conditional on the OLS
parameter estimates over the estimation sample. Monte Carlo results indicate that when the
number of free parameters is large relative to the sample size there are appreciable gains to
employing the proposed strategy. While the focus of this paper is on VAR models, this technique
is well suited to a wide range of single-equation models used by applied macroeconomists.

                                                

1 NAOMI stands for North American Open-Economy Macroeconometric Intergrated Model.



Résumé

Voici le premier de trois documents qui décrivent MIOAN2, un nouveau modèle de prévisions
trimestrielles mis au point dans la Division de l’analyse et des prévisions économiques au
Ministère des finances. MIOAN a un double but : d’abord, produire rapidement des prévisions
macro-économiques sans jugements mais fiables et ensuite, quantifier avec précision l’incertitude
que comporte chaque prévision tout en veillant à réduire le plus possible cette incertitude.
L’atteinte simultanée de ces deux objectifs représente un défi de taille et nécessite une démarche
particulière au chapitre de la conception de modèles. Le présent document énonce la stratégie de
conception de modèles utilisée pour créer MIOAN. Elle diffère des méthodes actuelles, son seul
objectif consistant à réduire l’incertitude des prévisions. Nous démontrons que le niveau élevé
d’imprécision qui caractérise habituellement les modèles de prévisions à plusieurs équations,
comme les autorégressions vectorielles, découle du grand nombre de paramètres libres que
comportent ces systèmes. En outre, il est prouvé que les méthodes de sélection de la durée du
retard intégrées à un échantillon débouchent sur des modèles de prévisions de second rang
lorsqu’elles sont utilisées avec de petits échantillons. Dans le présent document, nous proposons
une technique qui permet de scinder l’échantillon en deux sous-échantillons distincts appelés
ensembles d’estimation et d’évaluation. Nous entendons ensuite choisir l’ordre de retard qui
réduit le plus l’erreur quadratique moyenne à l’égard de l’échantillon d’évaluation, à partir des
estimations des paramètres par MCO (moindres carrés ordinaires) dans l’échantillon d’estimation.
Les simulations de Monte Carlo révèlent que lorsque le nombre de paramètres libres est important
par rapport à la taille de l’échantillon, il est très avantageux d’appliquer la stratégie proposée.
Bien que le présent document porte plus particulièrement sur les modèles d’autorégressions
vectorielles, cette technique convient bien à une vaste gamme de modèles à équation unique
utilisés en macro-économie appliquée.

                                                

2 MIOAN désigne le modèle Macro-économique Intégré de l’économie Ouverte de l’Amérique du Nord.



1.0 Introduction

A key commitment of the Canadian Forecasting Group at the Department of Finance is to

constantly assess the nature and degree of economic risks that the federal government needs to

factor into its fiscal plans. Knowledge of both the most probable economic outcome and the

likelihood of a specific range of outcomes is critical to the process fiscal policy design. One

approach to evaluating the magnitude and sources of risk is through the use of an econometric

forecasting model. A highly desirable property of such a model is forecast accuracy since this will

reduce the uncertainty surrounding its predictions.3 A second feature is ease of use, the size and

degree of complexity of the model must be such that forecasts and their corresponding confidence

bands can be computed quickly.

Experience has shown that given the relatively small samples typically available to economists,

forecast accuracy is often closely related to the size of the model. As the number of estimated

parameters grow, the degree of precision with which one is able to estimate each parameter is

eroded. This problem manifests itself in poor out-of-sample forecasts and wide confidence bands.

Consequently our objective of forecast precision requires the selection of a relatively

parsimonious representation of only a few key macro variables. Such a model will also serve well

the second stated objective, ease of use. However, the search for a highly parsimonious structure

must be tempered by the knowledge that too small a model may omit important economic

variables. In addition, such a model will tend limit the number of interesting questions that we

can ask of it. In practice, striking an optimal balance between economic richness and parsimony

is difficult.

This paper presents a procedure that is reasonably easy to implement and is well suited to the task

of model selection when one is primarily interested in making accurate predictions. By explicitly

incorporating out-of-sample forecast information into the lag length/variable selection process

this procedure is demonstrated to perform well relative to other criteria. This performance

advantage is most significant with realistic sized models and sample sizes. While this paper

                                                

3 The size of the estimated confidence bands is directly related to the average size of historical forecast
errors.



focuses on vector autoregressions (VAR) as the forecasting device, this procedure can easily be

generalised to a much wider class of dynamic economic models.4

The second paper in this series applies this technique to the construction of the Canadian side of

NAOMI, a new quarterly forecasting model developed in the Economic Forecasting and Division

at Finance.5 NAOMI is a small, fully-estimated model of the Canadian and US economies. In

addition to producing a model-consistent forecast of key Canadian and US variables each quarter,

NAOMI also provides a solid foundation for assessing both the magnitude and sources of

uncertainty over the forecast horizon. For instance, the model is capable of providing objective

answers to questions such as; what is the probability that nominal income will grow by at least

2.5% over the next year? or how confident can we be that long term interest rates will not rise

over the course of the next 6 quarters? Furthermore, statements such as ‘the main source of output

growth uncertainty 1-2 years from now is interest rate uncertainty over the next 2 quarters’ are

now possible. This capacity can easily be extended to the assessment of budget balance risk.

Specifically, NAOMI can generate fiscal prudence factors that take into consideration both shock

and parameter uncertainty.

NAOMI can be loosely thought of as a restricted VAR model.6 Specifically, we permit different

lag lengths for each variable in each equation so as to reduce the number of free parameters. We

also permit the exclusion of variables in certain equations. The lag length selection technique

proposed in this paper is generalised to that of a model selection procedure for the purpose of

building NAOMI. Variable inclusion is determined by a combination of economic theory and this

procedure whereas lag length is determined entirely by the procedure.7

The paper is divided as follows; section 2.0 provides a brief summary of two key problems

associated with using VARs as forecasting devices. Section 3.0 addresses the second problem in

more detail and provides an example using Canadian data. Section 4.0 describes and compares

                                                

4We focus on VAR models mainly because of their symmetry. Since there is only one lag parameter, k, to
choose it is easy to run and summarise the monte carlo experiments.

5 NAOMI stands for North American Open-economy Macroeconometric Integrated model. The second and
third papers describe the structure of the Canadian and US sides of the model, respectively.

6 With the notable exception that the instrument of monetary policy in the model is explicitly forward
looking.

7 Economic theory rarely provides much guidance in selecting lag length



three popular lag length selection criteria currently employed in empirical research. Section 5.0

provides a formal introduction to the proposed methodology and outlines the Monte Carlo

framework used to compare the criteria. Section 6.0 provides results for two artificial data

generating processes (d.g.p.), a small and large VAR. Section 7.0 provides a brief summary of

extensions and future applications of the technique while Section 8.0 concludes.

2.0 Unrestricted VARs and forecasting

One of the most popular approaches to the task of applied forecasting in recent years has been the

vector autoregression model  (VAR). In its unrestricted form a VAR may be thought of as a

system of equations whereby each equation contains a pre-specified number of lags of each

variable in the system. This approach has a number of desirable features including;

(a) The economist is not required to classify variables as endogenous or exogenous.

Every variable in the VAR is taken as endogenous.

(b) There is no simultaneity to model. Contemporary relationships are ‘hidden’ within

the residual covariance matrix. As such no ‘incredible’ identifying restrictions are

necessary (Sims 1980).

(c) Because no simultaneity is modelled and because each equation contains exactly the

same set of regressors, the system may estimated efficiently and quickly by OLS.

(d) Because each variable helps forecast the others, the system is self-contained. Unlike

single equation methods, the model does not require a set of forecasts for all the right

hand side variables from another source.

The VAR model is a very convenient tool for forecasting, the researcher is required only to

choose the appropriate variables and lags to include. Unfortunately, practical experience with

unrestricted VARs has been rather poor. The inability of such models to produce accurate

forecasts with reasonable sized confidences bands stems from two fundamental problems. The

first problem arises as a consequence of the reduced form nature of a VAR. Because proper

account is not taken of such factors as agents’ expectations or shifts in monetary/fiscal policy

regime, VARs tend to suffer from temporal parameter instability. The second shortcoming stems

from the large number of free parameters in the model relative to the typical sample size, i.e. the



overparameterization problem. The first issue can be addressed within a time varying parameter

framework using the Kalman filter. This paper deals explicitly with the second problem.

3.0 Consistency, bias, efficiency and the process of model selection

When building any dynamic model, one is faced with the problem of selecting the relevant

variables and the correct number of lags, k, to include. Since the number of lags embodied in the

d.g.p is usually unknown, k is typically treated as a random variable and some form of (quasi)

statistical criterion is employed in its selection. It is interesting to note that due to the consistency

of OLS, the issue of lag length is relevant only in finite samples. With enough data one could

always choose an arbitrarily high lag length and allow the data to set the irrelevant lags to zero.

Unfortunately, the applied forecaster rarely possesses enough data to render such an approach

feasible.

At this point it is useful to explore the consequences of choosing too many/few lags when the

sample size is small. While the focus here is on VAR models, the results can easily be extended

to a much larger class of multivariate structures. In order to develop these concepts it is first

necessary to introduce the definition of mean squared error (mse). Consider the p-dimensional

VAR(k) process given by;
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The mse matrix for the optimal v-period ahead forecast is given as;
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where 
tvt+Y represents the optimal v-period ahead forecast conditional on information at time t.

Now consider the analogous mse matrix evaluated at the OLS estimated parameter estimates;
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Equation 3.06 differs from 3.0.4 by the second two terms of 3.0.6. The first of the latter two terms

(term 2) captures the (square of the) difference between the OLS estimate of v , denoted v~
,

and its expectation. Stated otherwise, it captures the variance of v~
about its expectation or

simply the variance of v~
. The third term captures the (square of the) difference between v and

the expectation of v~
, i.e. the bias component. We now turn to the issue of lag length selection

and how it relates to these two terms.



3.1 Inefficiency; The consequence of setting k too large

With too many lags, there is a loss in efficiency as degrees of freedom (d.f.) are quickly eroded.

As a result term 2 in equation 3.0.6 will be unnecessarily large. Recall that with p variables, the

inclusion of one extra lag consumes kp d.f. The practical consequence of this will be large out-of-

sample forecast errors and wide confidence bands around impulse responses despite an

improvement in the in-sample fit. This begs an interesting question; why does the in-sample

performance improve at the expense of the model’s forecasting ability? The in-sample fit

improves as we begin fitting parameters to the stochastic component of the dependent variable,

i.e. the error term.8 In fact if we estimate an equation that contains an arbitrary set of regressors

equal to the number of observations we can achieve an R-square of one. This will be true despite

the fact that the dependent variable contains a component that is random. In this instance the

estimated relationship is unique to that particular sample, that is, to those particular realisations of

the disturbance term. Consequently, it will be of little help when it comes to forecasting.

Since efficiency is a finite-sample property, the preceding argument is only relevant in finite and

particularly small samples. As the sample size, T, approaches infinity ( )( ) 0→vv ~
E-

~
E so the

first term in 3.0.6 disappears.

In order to illustrate how important the effects of over fitting a model can be consider the

following experiment. We begin by estimating a 8 lag VAR using Canadian output, inflation,

interest rates and the exchange rate as well as U.S. output and interest rates from 1972 to 1993

(about 85 observations). We then simulate the model dynamically starting in 1974 (1972q1 plus 8

lags) in order to assess what the conditional expectation for inflation would look like at this

particular point in time. Recall that the information set is 2 years of data and every variable in the

system is endogenous. Therefore, one should expect to see some near term variation in inflation

owing to the lagged effects of, for instance, the output gap and exchange rate. As the effects of

these shocks dissipate inflation should converge to its unconditional mean.

Error! Not a valid link.

                                                

8 Here it is useful to think of the regressors as being non-stochastic and hence the only random component
of the dependent variable is an additive disturbance term. This is not, however, a necessary requirement.



Turning to Figure 1.0 we see that the VAR is able to forecast the decline in inflation in 1974-75,

the slight increase in 1976 and the continued decline into 1978 (the end of the first oil-price

shock). Moreover, the model does an excellent job of forecasting the inflationary consequences of

the second oil price shock that occurred some six years after the beginning of the simulation. This

despite the fact that oil prices are not included in the model. Clearly the parameter values of this

model are unique to this particular sample and would be of no practical use for forecasting.

3.2 Inconsistency: The consequence of setting k too small

With too few lags, the model is an inconsistent estimator of the true d.g.p.9 A consistent

estimator, 
~

, of has the property that T
~

T
plim =

∞→
. Consistency is an asymptotic property of

an estimator. One can reasonably think of an inconsistent estimator as being biased even in large

samples. If k is too small, term 3 in equation 3.0.6 will be positive thereby increasing the mse.

This problem, unlike the loss in efficiency associated with too many lags, will not go away as

more observations are added to the sample. At best we can hope to have a reasonable

approximation of the actual process, however, we will never uncover the truth.

3.3 Bias; The consequence of using OLS with VARs

When the four Gauss-Markov (GM) conditions are satisfied, OLS is said to be BLUE or Best (i.e.

minimum variance) Linear Unbiased Estimator. The (strong) GM condition of non-stochastic

regressors ensures that OLS is unbiased. An estimator 
~

 for  said to be unbiased if ( )~
E = .

Clearly when one or more of the regressors are lags of the dependent variable, this condition is

not met.

Since it is possible to efficiently estimate a VAR by performing OLS on each equation

individually, it is sufficient here to show that OLS is biased for a dynamic single-equation model.

Consider the AR(k) specification;
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While the regressors are assumed independent of the contemporaneous residual, the same cannot

be said for lags of the residual. Consequently, OLS is consistent but biased. Unfortunately, the

bias is a function of the unknown model parameters and therefore no simple correction exists.

However, it can be shown that;

(3.3.3)
( )

0
E >
∂
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Coefficient bias stemming from OLS estimation of a VAR will also increase the mse matrix

through term 3. Moreover, this bias is increasing in the persistence of the process.10 Since

macroeconomic time series are often characterised as having roots close to or equal to one, this

bias can be substantial. Moreover, it exists even when k is chosen correctly.    

3.4 ‘Optimal’ versus ‘True’ models

Based on the preceding analysis, one is tempted to conclude that it is always preferable to select

the same number of lags as in the true model. However, this need not be the case if the

researcher’s sole objective is to minimise forecast errors. For instance, if the loss in efficiency

stemming from estimating an additional q lags reduces forecast accuracy by more than the bias

introduced by incorrectly setting those parameters to zero, then clearly one is better off working

with the smaller, albeit misspecified model. In other words, if the increase in term 2 exceeds the

decline in term 3, then one is better working with the smaller model.

To help solidify the proposition that optimality (defined to mean mse minimising) need not imply

truth, consider the following model selection problem; suppose the true model is given by

ttt uxy +=   ),0(~u 2

ut σ   0≠

                                                                                                                                                

9 This will manifest itself in serially correlated errors.

10 It is often noted in the time series literature that impulse response functions generated from estimated
VAR models appear convergent even when the underlying series have unit roots. This stems from fact that
OLS tends to impose stationarity on the series.



and r and T  realisations of y and x, respectively, are observed by the researcher,  T>r.

Furthermore, suppose the researcher knows the functional form of the true model but does not

know β. The problem is to forecast ty  from r+1 to T so as to minimise the mean squared forecast

error.11 The most obvious method is to condition one’s choice of y on x since x is given.

However, following this route requires an estimate of β. The second option is to impose β=0 and

form the unconditional expectation of y, which eliminates the need to estimate β.12  The question

is, which approach will yield better forecasts?

 It is reasonably straightforward to show that the condition which equilibrates the mse arising

from the two approaches is ).(e.s
~

= 13, where )s.e.(
~

 denotes the standard error of any unbiased

estimator of β. If )s.e.(
~

<  then option one is preferable whereas if )s.e.(
~

>  the second

choice is optimal. The intuition is as follows; choosing to estimate β introduces parameter

uncertainty that raises the forecasting errors. Setting 0
~ = , on the other hand, throws out useful

information regarding the relationship between y and x.  That is, if 0
~ =  then

~

is biased and the

bias is equal to β ∀  t ∈  [r+1,T]. Now, )s.e.(
~

 may be thought of as representing the average

deviation of 
~

 from β. Now the previously stated equality condition should be clear. If the

average deviation of 
~

 from β is greater (less) than β, forming the unconditional (conditional)

expectation is preferable.

The point of preceding exercise was to show analytically that the optimal model, from a

forecaster’s perspective, will not necessarily correspond with the true model in small samples.

This comes as a direct consequence of the overparameterization problem highlighted in section

1.0. To convince ourselves that such a situation can indeed arise, we employ monte carlo

techniques to generate artificial forecasts from models with varying lag lengths. Specifically, we

                                                

11 The point of making T>r is to abstract from the uncertainty introduced by not knowing the future values
of x. Here we just want to focus on parameter and innovation uncertainty so we pretend that the future path
of x is known.

12 This is equivalent to dropping a lag in an autoregression model.

13 This is equivalent to a t-value of one.



begin by writing down the true model which in this case is a VAR(4) of dimension 5 (5 variables,

4 lags) and generate a multitude of sequences for each variable  using normal innovations from an

identity covariance matrix. We can then calculate analytically the mse arising from this model.14

Once the mse is calculated for the true model15 we can explore the marginal effects of lag length

and parameter uncertainty by varying both the sample size, T, and the number of lags in the VAR,

k. Figure 2.0 graphs the ratio

(3.4.1) ( ) ( )
( )4,MSE

k,TMSE
k,T

∞
≡Π

which is referred to as the inflation factor, Π(T,k). (1-Π(T,k))*100 measures the percentage

increase in the mse arising from parameter uncertainty when k=4 and parameter

uncertainty/incorrect lag length when k≠4.  This particular example illustrates a number of

interesting points including;

(a) For fixed k, Π(T,k) is strictly decreasing in T which reflects the fact that the degree

of uncertainty surrounding parameter estimates is a function of T, the information set.

(b)  When the sample size is very small, lower values of k tend to produce smaller

forecast errors.  Indeed, Π(50,2)< Π(50,3)< Π(50,4)< Π(50,5) even though k=4 is the

true model. So the bias introduced by incorrectly setting those parameters to zero

must be small relative to the sampling variability associated with their least squares

estimates. However, as T grows the ranking quickly changes. For T=100, the true

model now dominates all but the VAR(3) (not shown) and for T>200, the correct

model dominates.

                                                

14 Why does the true model make forecast errors? Recall that these forecasts represent conditional
expectations at some fixed point in time, which implies that future innovations are unknown and their
rational expectation is zero. Consequently, forecast errors arise purely from what is referred to as
innovation uncertainty.

15 The mse for the model is the simple average of the mse for the individual series contained in the VAR.
Naturally, the mse is calculated in the same manner for each of the estimated models.



(c) For k>4, plim Π(T,k)=Π(4,T)=1. But for k<4, this condition does not hold. This

illustrates the consistency of any VAR({l∈ R+;l≥k}) for VAR(k) and the

inconsistency of any VAR({l∈  R+; l<k }). Graphically, we note that Π(5,T) gradually

converges toward Π(4,T) which itself is converging on one as T becomes large. It

turns out that this result will hold regardless of how many lags we included in the

model, provided it is greater than the true number. Also noteworthy is the fact that for

the VAR(2), Π does not converge to one, regardless of how many observations one

includes.

Error! Not a valid link.

4.0 How do lag length selection procedures differ?

In single equation models the most common way of testing single (multiple) variable exclusions

is with a t (F) test, the outcome of which is determined by the change in the residual variance

across the null and alternative hypotheses. However, in a multiple equation framework these tests

are inadequate because one must consider the impact of a given variable or lag on the statistical

behaviour of the whole system rather than any one particular equation. Thus we consider the

multi-dimensional analogue of the residual variance, the residual covariance matrix and perform a

likelihood ratio (LR) test. For instance, one could test the null that the data were generated by a

VAR(k) against the alternative that they were generated by a VAR(k+n) for n>0. One strategy is

to set k to an arbitrarily high number, set n=1 and then sequentially test down until the null is

rejected. The likelihood ratio statistic has an asymptotic chi-square distribution under the null

with degrees of freedom equal to the total number of restrictions. Since the maximum value of the

likelihood function is always lower for the restricted model, this statistic is always positive.

However, we are concerned with how likely it is that one should obtain a particular positive value

for the statistic if the set restrictions are indeed true. If the probability is quite low, one is inclined

to reject the restrictions. Unfortunately, the specified size of any single hypothesis test is

conditional on the all of the previous nulls being true. Furthermore, these probabilities are

typically only valid as T goes to infinity. In small samples, this statistic may provide little

guidance in selecting the correct lag length even if all previous nulls are true (Lütkepohl (1985)).



Sims(1980) offers a correction that is designed to improve the finite sample properties of the test.

This correction effectively reduces the incidence of type 1 error in small samples16.

This correction has not, however, limited the proliferation of competing criteria into mainstream

econometrics (for a review of these criteria see Lütkepohl (1985)). Here we consider two of the

more popular approaches, the Akaike Information Criterion (AIC) (Akaike 1973, 1974) and the

Schwarz Bayesian Criterion (SBC) (Schwarz (1978)). Essentially these tests incorporate an

explicit penalty function for additional parameters which is designed to reduce the probability of

selecting an over-fit model. For any reasonable sample size the penalty function is greater for

SBC than AIC. Since these tests have been offered as alternatives to the LR statistic, it would

useful to know by how much they actually differ in practice. To get a flavour of this consider the

following example that compares LR with SBC. Suppose we have 50 observations for 5 variables

and wish to test the hypothesis that a VAR(5) and a VAR(4) are not statistically different. Thus

the unrestricted model (VAR(5)) has N=5×5×5=125 parameters whereas the restricted model

(VAR(4)) has Nr = 5×5×4=100. Employing the LR test we would use the following formula;

(4.0.1)  [ ]Σ−Σ−=λ loglog)cT( r

where c=25 is the number of parameters in each of the unrestricted equations and Σ , rΣ  are

respectively the determinants of the unrestricted and restricted covariance matricies of residuals.

We will reject the restriction (accept the VAR(5)) if critλλ > at some significance level.

The SBC test statistic is given as;

(4.0.2)  SBC = logT Σ  + Nlog(T)

for the unrestricted model and;

(4.0.3) SBC r = logT rΣ  + Nr log(T)

for the restricted model . In the case of the SBC criterion, we reject the restricted model (VAR(4))

if SBC<SBCr.

                                                

16 The effect of the correction quickly diminishes as T becomes large.



Equivalently, we reject the restriction if;

logT rΣ  + Nr log(T)- ( logT Σ  + Nlog(T)) > 0

(log rΣ - log Σ ) + 1T− log(T)( Nr – N) > 0

In this example Nr – N=-25 and T=50 so we obtain the result that;

(4.0.4)  log rΣ  - log Σ  > log(T) 1T − ( N - Nr ) = 1.96

If we assume that the asymptotic distribution of λ is a good approximation for T=50, then we can

use it to calculate the implied size of the SBC test for this particular experiment. That is, if

log rΣ  - log Σ  = 1.96, then using the definition of λ we have;

(4.0.5) [ ]Σ−Σ−=λ loglog)cT()25( r  = (50 – 25)*1.96 = 49

using the cumulative 2χ distribution we get Pr(λ(25) ≥ 49) ~ 0.005. Consequently, the implied

size of this test is about 0.5% which is considerably smaller than the 5% or 1% levels typically

used in applied work.17 This means that the researcher is far less likely to select the larger model

using SBC than using LR when the sample size is small.18 Hence SBC will tend to select more

parsimonious models when the data set is small.

The preceding example was intended to show differences in the behaviour of selection criteria

when the sample is small. We can now generalise this intuition to make the following

proposition. Given T, c, N, rΣ  and Σ  one can calculate the area of the region (or cumulative

probability) of rejecting (the null with size α) with the LR test and not rejecting using SBC or

AIC for that matter. This probability is given as;

                                                

17 This should not be taken to mean that if the chosen size is 5% the researcher is necessarily better off
using the LR test. Recall that these sizes are based on the asymptotic distribution of λ. There may be large
size distortions introduced by using the chi-square distribution in small samples. Furthermore, given that
the LR test is employed in a sequential testing framework, the conditional and unconditional sizes will
often be quite different (see, for instance, Lütkepohl (1991). So it may be case that the SBC comes closer to
a 5% prob. of type 1 error than does the LR test.

18 Provided a reasonable significance level is used.
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where ( )aF  is the cumulative 2χ function evaluated at a. However, given the consistency of

SBC and LR, these small sample differences will tend to zero as T becomes large;

(4.0.7)  
∞→T

lim   ( )[ ] 0aF =α−

It is worth noting that consistency does not hold for AIC as it asymptotically over estimates the

true lag order with positive probability (see Quinn(1980) for a proof).

5.0 An alternative model selection procedure

All of the lag length procedures discussed in the previous section are based on the in-sample fit of

the model relative to the number of freely estimated parameters. Minimising the log the

determinant of the residual covariance matrix is equivalent to minimising 




 ′∑
−

=

i
1v

0i

i ~log for v=1

which is (asymptotically) equivalent to the first term in equation 3.0.6. These criteria explicitly

consider the in-sample analogue of one of the three terms in this mse matrix expression. In an

attempt to account for the second term, they apply a penalty function that is increasing in the

number of estimated parameters. This correction attempts to reduce the likelihood of over-fitting

the model. Unfortunately, they are only asymptotically valid19 and therefore serve as

approximations only in small samples. Furthermore, all 3 corrected statistics ignore the third

term.

Rather than attaching an asymptotically-valid penalty function that ignores the problem of bias,

why not attempt to generate a statistic that is valid in small samples. Specifically, why not divide

the sample into two parts; an estimation and evaluation sub-sample? Then choose the lag

structure that yields the lowest dynamic forecast errors over the evaluation sub-sample

conditional on the OLS parameters estimated over the estimation sub-sample. Hereafter this

estimator is referred to as the out-of-sample forecast or OSF estimator.

Error! Not a valid link.



To make this proposition concrete consider the following example; suppose one has T

observations on p variables and wishes to form a v period ahead conditional expectation for each

variable. As illustrated in Figure 3.0, the OSF procedure suggests first dividing the T observations

into sub-samples [1,s] and [s+1,T]. Second, estimate a VAR(1), VAR(2),…,VAR(j) over the

sample [1,s] and generate the mse matrix for each model over the sample [s+1,T]. Finally, select

the number of lags, k, that minimises (a transformation of) the mse matrix and then re-estimate

this model over [1,T]. Formally, the OSF problem is given as;
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is a user specified diagonal weighting matrix that describes the relative importance of each

variable’s forecast errors at horizon v in the loss function, normalised such that ( ) 1Tr = . For a

fixed point horizon v, will have non-zero entries along the first p diagonal entries only. That is,

if ( )i is the thi diagonal entry of then;

( ) p,,2,1i0i �=>  and ( ) )1k(p,,2p,1pi0i +++== � .

While a well-specified model contains many variables, the user may only care about accurately

forecasting one or two of them. The fiscal agent, for example, may wish to place relatively more

weight on interest rates and output growth.

The intuition behind the proposed model selection strategy is quite straightforward, we wish to

select the lag structure that will yield the lowest out-of-sample population mse, given T

observations. However, since we do not observe the population mse, we must be content with an

estimator of this statistic. Obviously, the smaller is s the more precise our estimate of the

population mse will be, ceteris paribus. However, we must remain mindful of the fact that as s

becomes small parameter uncertainty increases. This underscores the key drawback of dividing

the sample, i.e. there is loss in efficiency associated with excluding information from the

estimation sample. However, the gains from evaluating the model out-of-sample may prove to

exceed this cost. Based on the results of this paper s = .7T seems to work quite well.

                                                                                                                                                

19 With the potential exception of AIC.



Since we are ultimately interested in this procedure’s ability to select the model with lowest

population mse, it is worth investigating the small sample properties of the suggested estimator.

Here it will useful to revisit the inflation factor, Π(T,k), which is modified slightly to Π(T,k,p)

where p is again the number of variables in the model.20 Addressing the issue of the small sample

properties of the proposed estimator is closely linked to the functional form of Π(T,k,p). This

stems from the fact that while we want to estimate the mse for a particular lag structure based on

T observations, our estimator uses only s observations. Since T is an argument in Π and

(5.0.2)   
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we get the result ( ) ( )[ ] 0p,k,sp,k,TE <Π−Π  since T must be greater than s. Since the expected

mse is strictly decreasing in the number of observations included in the estimation period,

reducing this number will induce an upward bias in Π(T,k,p). However, if the bias is equal across

all values of k, that is;
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then the ranking of lag structures in terms of Π(T,k,p) will remain unaffected. Lütkepohl(1991)

derives the approximate mse matrix for a forecast horizon of one period and shows that Π(T,k,p)

may be written as
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Consequently, the cross partial is given as
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20 Previously the number of variables was taken as fixed so we were in fact evaluating Π(T,k)|p



This function indicates that the higher is k, the greater is the increase in bias as T decreases. The

non-constancy of the bias may introduce a change in the rankings of the estimates of Π.

Specifically, this problem will tend to introduce a downward bias in the optimal value of k. As a

remedy to this problem, we propose the following bias corrected minimisation problem

(5.0.6)  
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with ϕ = T-s+v. Since this correction is based on asymptotic theory, however, its benefit in small

samples unclear. In the next section we investigate the properties of both the corrected and

uncorrected estimators.

At this point it is worth investigating what this methodology implies about users’ preferences

regarding forecast outcomes. For instance, minimising mse suggests the following;

(a) Losses arising from forecast errors are symmetric and quadratic

(b) The user cares only about the fixed point forecast horizon v

5.1 Symmetric and Quadratic Loss  - While these two characteristics are common to most loss

functions in (partially because the make possible closed-form solutions) one may wish to treat

positive errors differently than negative ones or alternatively attach a linear (rather than

quadratic) loss to errors. For example, the Fiscal authority may wish to attach a relatively high

(low) loss to errors arising from over (under) predicting output growth. Each of these possibilities

is feasible within the OSF framework.

5.2 Interval Forecast Horizons - Rather than specifying a fixed-point horizon, one may prefer

instead to define an interval such as [v-q,v+q] for some value of q or [1,v]. For instance, the user

may wish to place the greatest weight on the one-period ahead forecast error and then specify

geometrically declining weights for horizons 2,3, …,v. In this instance, the weighting matrix is

modified such that ( ) vp,,2,1i0i ×=> � . Of course optimising at some horizon(s) other than

one period is only useful if it actually results in better forecasts at those horizons. In other words,

does optimising at horizon v≠1 lead to a different lag structure and hence better forecasts than



using v=1? It can be demonstrated that if the estimated model is a linear approximation to a non-

linear system or if the true model is non-nested then there can be gains in forecast accuracy at a

horizon v≠1 (and perhaps at all horizons) from optimising at that horizon.

6.0 Monte Carlo Design

We have argued that explicitly considering out-of-sample forecasting properties may facilitate the

selection of more accurate forecasting models than those based on in-sample fit. In order to test

this hypothesis we set up the following experiment;

Step 1: Write down the “true” model and corresponding covariance matrix. Here we
assume the system is driven by a multivariate normal shock process.

Step 2: Using this covariance matrix, , generate n (at least 1000) stochastic time series
of length T+q where q is a large number and then estimate the model using the first T
observations. Calculate the mse over the remaining q observations. Calculate MSE(T,k,p)
by averaging across the 1000 mse statistics. Since there are no structural breaks or non-
linearities in the underlying d.g.p., we choose a forecast horizon of v=1.

Step 3: Repeat Step 2 by varying T=50,75,…,150 and k=1,2,…,7.21 Form the 7×5 matrix
R from these results. So for instance, 23R is the mse with 75 observations used for
estimation and 3 lags used in the estimated VAR. Form the diagonal matrix such that

iiξ  is the minimum value contained in the thi row of R . Hence, each element on the

principal diagonal of this array gives the lowest possible mse given a particular number
of observations.

Step 4: Again generate n time series, this time of length T=50 and using one of the
criteria, select the best model. For instance, calculate the AIC statistic for k=1,2, …,7 and
choose the model that makes the AIC statistic the smallest and keep track of the chosen
lag length. After doing this n times repeat the procedure for T=75,100,…,150. Form the

frequency matrix AICV  such that the thij entry corresponds to the number of time i lags

were chosen using 50+25j observations, so AIC
1

AIC n VV −=  will yield the corresponding
probability matrix. Repeat this procedure for LR, SBC and the proposed test procedure,
OSF.

Step 5: Using the AIC example, calculate

1
AICAIC

ˆ −= VR

                                                

21 The choice of 7 (6 for the small VAR) as the upper limit was somewhat arbitrary. Basically, you want to
choose a number high enough such that the probability of any criteria selecting a number higher than this is
small. Of course, choosing too high a number will needlessly increase computation time.



The principal diagonal of this matrix contains the percent increase in mse relative to the
optimal model for different values of T. For example, thjj entry will yield the percent
increase in mse using the AIC criteria with 50+25j observations. For instance, if this
value is zero, the AIC criterion chooses the optimal forecasting model with probability
one. On the other hand, a value of 10 indicates that using AIC will yield forecasts errors
10% higher, on average, than if the best forecasting model was used. Obviously, the
lower the value the better the procedure.

7.0 Results

In this section we analyse the results using both a small and a large VAR model. The small VAR

has 3 lags of 3 variables and is typical of these types of experiments (see, for instance, Lütkepohl

(1985)). The large model is intended as a more realistic representation of the Canadian economy.

In constructing this d.g.p. we had in mind a structural model containing some measure of

inflation, monetary policy stance, the output gap, a long-term nominal interest rate and the

exchange rate as endogenous variables. In addition, a well specified model would likely include

the U.S. output gap (or output) and commodity prices as strongly exogenous variables.

Consequently, the large model has 5 endogenous and 2 exogenous variables with 4 lags. Both

models contain roots near, but inside, the unit circle. This feature is intended to capture the level

of persistence usually observed in macro time series.

Table 1.0 gives the small VAR probability distributions, V , for each estimator and for each value

of T, the sample size. For instance, with 50 observations, the probability that AIC will select 3

lags (the truth) is 0.26. In each column the bold entry represents the optimal (mse minimising) lag

length. For this particular dgp, the optimal lag length with T=50 is 2. For all other sample sizes

the optimal lag equals 3, the true lag.



   Table 1.0      Small VAR Probability Densities

     Pr(y=k | T) T=50 T=75 T=100 T=125 T=150
AIC k=1 0.09 0.01 0.00 0.00 0.00

k=2 0.44 0.48 0.42 0.31 0.22
k=3 0.26 0.40 0.50 0.63 0.72
k=4 0.08 0.06 0.05 0.04 0.05
k=5 0.05 0.03 0.02 0.01 0.01
k=6 0.08 0.02 0.01 0.01 0.00

LR 0.00 0.00 0.00 0.00 0.00
0.50 0.50 0.40 0.29 0.21
0.29 0.36 0.46 0.57 0.65
0.06 0.04 0.04 0.04 0.04
0.07 0.05 0.06 0.06 0.05
0.08 0.05 0.05 0.04 0.05

OSF 0.43 0.23 0.13 0.09 0.05
0.36 0.42 0.41 0.39 0.34
0.14 0.23 0.31 0.38 0.42
0.04 0.06 0.10 0.09 0.09
0.02 0.03 0.04 0.03 0.06
0.00 0.03 0.02 0.03 0.03

SBC 0.73 0.49 0.27 0.12 0.04
0.26 0.50 0.71 0.87 0.93
0.01 0.01 0.02 0.02 0.03
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

Turning to the results we observe that overall AIC tends to pick the optimal model with the

highest probability and this probability is generally increasing in T.  Conversely, owing to its high

penalty function, SBC tends to select under parameterised models and this tendency dissipates

only as T becomes very large. Overall the LR test using a 5% critical prob. value performs quite

well, particularly when one considers that critical values are only valid asymptotically. However,

LR and OSF both tend to choose too small a model on average. Although this merely reflects an

asymmetry in mse arising from choosing k<3 versus k>3.

Table 2.0 lists the expected mse (see Step 5 of Section 6.0 for the various criteria divided by the

optimal mse (the mse which corresponds to picking the optimal model with probability one). For

instance, with 100 observations using the LR statistic will result in forecast errors that are about

1% higher than if the optimal lag length was a known quantity. From a criteria evaluation

perspective, these are the most informative statistics. For T=50, OSF clearly dominates with an



inflation factor half as big as LR or AIC. However, for T>50 AIC dominates and its inflation

factor is quite small reflecting the high probability with which it chooses the correct model.

Table 2.0  Small VAR Expected Loss 

 T=50 T=75 T=100 T=125 T=150
AIC 3.4% 0.7% 0.6% 0.4% 0.3%
LR 3.3% 1.1% 1.0% 0.6% 0.5%
OSF 1.5% 1.9% 1.7% 1.2% 1.0%
SBC 1.9% 3.4% 2.4% 1.6% 1.1%

To summarise, if the model is small and the there exists a reasonable amount of data, one is likely

best off using AIC as it does a very good job and is almost costless to use in terms of computer

time. However, if the data set is quite small there appear to be significant benefits to using the

more computer intensive OSF criterion.

We now investigate the relative performances of the selection procedures with the more realistic

sized VAR. Table 3.0 provides the probability densities, V , for the large model. Here we have

increased the minimum sample to 75 observations and increased the maximum lag to 7. Again,

the bold entries represent the optimal lag length for a given T. The true lag length is 4. Hence for

T=75 the optimal lag (2) is less than the true lag, but for T>75 the optimal and true lags are the

same.



Table 3.0   Large VAR Probability Densities

     Pr(y=k | T) T=75 T=100 T=125 T=150
AIC k=1 0.00 0.00 0.00 0.00

k=2 0.00 0.00 0.00 0.00
k=3 0.00 0.00 0.00 0.00
k=4 0.01 0.65 0.93 0.98
k=5 0.00 0.06 0.05 0.02
k=6 0.01 0.04 0.01 0.00
k=7 0.99 0.25 0.02 0.00

LR 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.47 0.70 0.77 0.82
0.10 0.09 0.07 0.06
0.17 0.08 0.07 0.05
0.26 0.13 0.09 0.07

OSF 0.33 0.12 0.03 0.01
0.36 0.22 0.12 0.05
0.18 0.16 0.14 0.10
0.13 0.45 0.62 0.68
0.00 0.04 0.07 0.13
0.00 0.01 0.01 0.03
0.00 0.00 0.00 0.01

SBC 0.98 0.92 0.73 0.41
0.02 0.08 0.24 0.36
0.00 0.00 0.00 0.02
0.00 0.00 0.03 0.21
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

For T=75, OSF selects the optimal model with by far the highest probability (0.36) whereas the

LR test is choosing the true model most consistently (0.47). With its high penalty function, SBC

chooses the smallest model possible with probability close to one whereas AIC selects the

opposite corner solution (k=7 with prob. 0.99). Clearly these information criteria exhibit strange

properties when the model is large relative to the data set. For SBC, this tendency to select too

small a model diminishes quite slowly as T increases. Conversely, AIC’s bias toward selecting

too many parameters diminishes rapidly as the sample size increases. For example, with T=125 it

selects the optimal model with probability 0.93.



Table 4.0 provides the ratios of expected and optimal mean squared errors for each selection

procedures. From a forecasters perspective it is this expected value that should be of most

concern. Here we see that for T<125 OSF dominates by a wide margin. Indeed, with 100

observations (about the most any applied forecaster will have at a quarterly frequency) OSF’s

mse increase is 42% lower than the next best procedure (LR test). With 75 observations, OSF

beats SBC by 26%. In fact this number would likely be substantially higher except for the fact

that by coincidence the optimal lag (2) is close to the lag length of 1 that SBC always selects. As

T grows, SBC’s relative and absolute performance is extremely poor. In this sense, SBC cannot

be taken that seriously as a contender. If we ignore SBC then OSF beats LR by a factor of 16!

As the sample sizes becomes large we once again observe AIC dominating. Indeed, owing to the

fact that with T=150 it chooses the optimal model with probability 0.98, its expected loss is

almost zero.

Table 4.0  Large VAR Expected Loss

 T=75 T=100 T=125 T=150
AIC 64.4% 7.4% 0.5% 0.1%
LR 27.0% 5.3% 2.1% 1.4%
OSF 1.7% 3.1% 2.3% 1.9%
SBC 2.3% 10.2% 12.1% 10.6%

With respect to the aforementioned bias correction (see Section 5.0), we have again employed

monte carlo techniques to measure the exact finite sample bias and then compared it to the bias

correction. It appears that the asymptotic correction represents a reasonable approximation in

moderate sized samples. Consequently, the expected loss from using the bias corrected OSF

estimator outperforms the uncorrected in most situations. However, when the model is small

relative to the sample size it makes little difference.

8.0 Extensions

8.1 Tests of equal forecast accuracy

So far it has been argued that specifically considering out-of-sample information may lead to

more accurate forecasting models. Specifically, we have suggested that one should select the lag

length that minimises the mse in the evaluation sample. However, one must remain aware that

these statistics are only estimates of the population mse and as such are subject to sampling

variability, i.e. they are themselves random variables. Consequently, it would be useful to know



whether, for instance, the reduction in mse arising from estimating a VAR(k) as opposed to a

VAR(k+1) is statistically significant at some level. The simplest way to test such a hypothesis is

to assume that the forecast error process, tε , is independent normal with constant variance, that

is )IN( �~ 2
t  so that )IN(0,~ 2

t − . Under these strict assumptions we get the usual chi-

square distribution for the sum of squared forecast errors, i.e. ( ) ( )T~ 2

2T

1t
t∑

=

− . Thus with two

forecast error processes ti, and tj, we can use a simple F test;
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Unfortunately, the assumption of independence is highly unrealistic in this context and

consequently the F test is of little use in practice (see for instance Howrey, Klein and McCarthy

(1974)). Many alternative (and more complicated) tests have been suggested (see Diebold and

Mariano (1995) for a brief review). Unfortunately, many of these tests are invalidated, even

asymptotically, by nested models and are therefore useless in this particular application.

Recently, Clark and McCracken (1999) and McCracken (1999) proposed an F-style test of equal

forecast accuracy that is well suited to nested hypotheses.

The addition of a reasonably efficient test of equal forecast accuracy will no doubt lead to

further improvements to the already promising results presented in this paper. We hope to have

one of these tests coded into the optimisation algorithm in the near future.

8.2 Encompassing and Granger causality

Recently it has been argued (see Diebold and Mariano(1995) and Ashley, Granger, and

Schmalensee (1980)) that out-of-sample forecast comparisons represent a more stringent test of

Granger causality than does the standard in-sample F-test. Recall that the simplest test of

Granger causality is 0BBB:H n210 ==== �  in the regression

(8.2.1)   t1t1tt ux)L(By)L(Ay ++= −−



The out-of-sample alternative is to calculate the mean squared forecast errors under the null

(restricted) and alternative (unrestricted) and then test the null that they are not statistically

different. Rejection of the null would indicate a Granger relationship going from x to y.

The concept of forecast encompassing refers to the ability of a given model’s forecasts help to

predict the forecast errors of a competing model, but not visa versa (see Mizon and Richard

(1986) and Marquez and Ericson (1990)). Given two models, A and B, the standard test22 of

encompassing is given as;

(8.2.2)   tt
BA

t �u ++=  and tt
AB

t �u ++=

where  tf and tu are respectively the forecasts and forecast errors from the two models. If

0≠ but 0=  (using OLS) then model B is said to encompass model A. With a nested model,

this can be thought of as alternative to the out-of-sample Granger causality test described above.

9.0 Conclusion

This paper has two main goals. First, we have attempted to provide an intuitive explanation for

why unrestricted econometric models often perform poorly as forecasting devices. This stems

from the number of free parameters relative to the sample size embodied in such models. As a

consequence of this the confidence bands around forecasts are implausibly large. This in turn

makes definitive statements regarding ranges of outcomes very difficult.

Second, we demonstrate that it is possible to improve the forecasting ability of a model by

explicitly considering its out-of-sample mse characteristics when choosing lags.  This theme is

formalised and an out-of-sample forecast (OSF) model selection strategy is developed. Using

monte carlo methods, we show that OSF produces lower expected loss, compared to three popular

criteria, when the model is of a reasonable dimension and the sample size is less than 125

quarterly observations.

                                                

22 There are now a number of related tests. However, this is the most prevalent and easy to implement test
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