
Monetary Discretion, Pricing Complementarity
and Dynamic Multiple Equilibria∗

Robert G. King and Alexander L. Wolman

June 11, 2003

Abstract

We study a basic New Keynesian model, featuring monopolistic com-
petition and two period staggered price setting, under a regime of discre-
tionary monetary policy. We assume that the monetary authority max-
imizes the welfare of the representative agent, but cannot commit to its
future actions. Since firms must set a price for two periods, they must
nevertheless form expectations about the future actions of the monetary
authority.

There is an inflation bias in this model: the monetary authority will
raise aggregate demand and lower the markup through inflation if agents
believe that future monetary policy will deliver price stability. There
is also time consistent equilibrium with excessive inflation, in which the
monetary authority imposes deadweight losses on the economy, in the
form of relative price distortions, because of the absence of commitment.
Thus, our simple model is capable of replicating the central results from
the literature on discretionary monetary policy.

However, in our model, discretion also leads to multiple equilibria, be-
cause price-setters may hold more than one consistent belief about the
actions of other price-setters and the future monetary authority. We cal-
culate the discretionary equilibrium that will prevail if an iid sunspot
determines which of two private-sector equilibria price setters coordinate
on each period. This stochastic equilibrium involves greater inflation bias
on average than the if price-setters were always optimistic. But there are
also real effects of shifting expectations: periods of higher than average
inflation are accompanied by low output.
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1 Introduction
In the debate over rules versus discretion for monetary policy, the primary
argument against discretion has been that it leads to a higher average inflation
than is optimal with commitment. In the consensus basic model which has
developed following Kydland and Prescott [1977] and Barro and Gordon [1983],
the discretionary monetary authority seeks to produce unexpected inflation to
stimulate real output, which is inefficiently low because of distortions in the
economy. But since it cannot fool agents in rational expectations equilibrium,
the discretionary monetary authority produces expected inflation that has a
negligible real effect on output.
By contrast, this paper provides an example of a different, potentially ad-

verse, consequence of discretionary monetary policy: it can lead to multiple
equilibria and, thus, to the possibility of endogenous fluctuations in inflation
and real activity that are not related to the economy’s fundamentals. We illus-
trate this possibility within an extremely simple dynamic macroeconomic model
that has important New Keynesian features: (i) it has monopolistic competition,
making output inefficiently low; and (ii) it has a staggered pricing structure in
which firms set nominal prices that must be held fixed for two periods, giving
the monetary authority some leverage over real activity. In this simple setting,
the multiplicity of equilibria derives from interaction between two features of
the economy.
First, firms adopt forward-looking pricing rules because their nominal prices

are held fixed for two periods. In choosing a price, firms in the current period
need to form expectations about the behavior of the monetary authority — and
firms — in the next period. A higher future money supply leads to a higher
future nominal marginal cost, which raises the optimal price for a firm in the
current period.
Second, under discretion, the monetary authority takes as given prices set

in previous periods in determining its choice of the money stock in each period.
Since its concern is to maximize the welfare of the representative agent, which
depends on real variables, it chooses a money stock that is proportional to the
price set by firms in the previous period, which we call a homogenous money
stock rule.
The combination of forward-looking pricing with discretionary policy leads

to complementarity between the price-setting actions of firms: if all other firms
set a higher price in the current period, the monetary authority will set a higher
money supply in the subsequent period, raising the desired price for a single
firm in the current period.
We show that this policy-induced complementarity implies that there are

typically two private-sector equilibria which can prevail at any point in time
and two steady-state equilibria. In general, there is one equilibrium in which
firms expect small adjustments and the newly set price is relatively close to the
price that firms set last period. But there is another in which the adjusting
firms make a much larger adjustment.
Because this multiplicity of equilibria arises for arbitrary homogenous mon-
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etary policies, it also arises with an optimizing monetary authority who cannot
commit to future actions. We begin by considering settings of perfect foresight,
in which the monetary authority and private agents each assume that only one
of the two types of private sector equilibria will occur. We show that there are
two steady-state discretionary equilibria, one with low inflation bias and one
with high inflation bias. It is notable that the complementarity which generates
multiple equilibria here is entirely due to the nature of monetary policy under
discretion. Our specification of preferences and the labor market is such that
there is no complementarity in the price-setting behavior of firms if the central
bank maintains a fixed nominal money stock. Our specification thus highlights
the role of discretionary monetary policy in generating complementarity.
There are three components of the existing literature to which our paper

relates. First, there is the voluminous literature on monetary policy under dis-
cretion, which begins with Kydland and Prescott [1977] and Barro and Gordon
[1983]. In that literature, output is inefficiently low, but can be raised by poli-
cies that also produce unexpected inflation. There are costs of actual inflation,
so that a consistent equilibrium exhibits an inflation bias. The model that cap-
tures these ideas involves a quadratic monetary authority objective and a linear
economic model. There is a unique discretionary equilibrium in the standard
model (absent reputational effects or trigger strategies).
Second, there is an important recent literature that works out how the stan-

dard KPBGmodel can be derived from a fully articulated New Keynesian model,
with output being inefficiently low due to monopoly distortions, the monetary
authority having temporary leverage over the real economy because of staggered
price setting, and the costs of actual inflation being derived from the welfare
losses associated with relative price distortions in the underlying economy. In
these settings, the standard result is again that there is an inflation bias un-
der discretion.1 However, this analysis has been conducted within linearized
versions of modern sticky price models.
Our analysis takes the most basic fully articulated New Keynesian model,

without linearizing, and shows that there are multiple equilibria. Our model
features costs of stimulative policies — which bring about actual inflation — that
stem from relative price distortions across goods. It also features benefits from
unexpected stimulative policies, which lower monopoly markups and raise out-
put toward the first best level. Our model is an explicitly dynamic one, with
firms forecasting future inflation when setting nominal prices for two periods.
As we have stressed above, multiple equilibria can occur in our model due to
complementarity mechanisms similar to those stressed in the literature on coor-
dination failures. The possibility of such responses is excluded by a model that
is linear.
Third, our paper is closely related to recent work by Albanesi, Chari and

Christiano [2002]. They find multiple equilibria in an essentially static model
where a portion of monopolistically competitive firms must set prices before the

1For a textbook treatment, see the derivation in Woodford [2002, chapter 3]. The in-
flation bias result under discretion within such optimizing New Keynesian models has been
popularized by Clarida, Gali and Gertler [1999].
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monetary authority’s action in each period. At the same time, the structure of
the two models that they study is quite different from ours. The stimulative
policies that produce inflation in their models also raise nominal interest rates
and lead to money demand distortions, either by driving a relative price wedge
between the cost of buying goods on cash and credit or by increasing transactions
time. A monetary authority thus faces a trade-off between the benefits of driving
down the markup and these costs. In our model, instead of the costs of realized
inflation being related to money demand, they involve price distortions across
goods whose prices were set in different periods.
If there are sunspots which switch the economy between equilibria, there are

also important differences in the consequences that are suggested by our model
from those suggested by the ACC models. Here, if a high inflation equilibrium
occurs when agents attach low probability to such an event, then there will be
a decline in output because aggregate demand will fall and the average markup
will increase. By contrast, in the ACC models, a switch from low inflation to
high inflation will have little effect on the average markup or output, with the
main difference being the extent of money demand distortions. Since the ACC
models are essentially static ones, there is also another difference: there is no
feedback between the likelihood that economic agents attach to future equilibria
and the levels of inflation and output at a point in time. Accordingly beliefs
about the future are of no bearing for current events. In our model, beliefs
about future outcomes affect the nature of the current policy problem because
firms setting their price in the current period care about both current and future
monetary policy.

2 Model
The model economy that we study is a particular fully articulated “New Keyne-
sian” framework, featuring monopolistic competition and nominal prices which
are fixed for two periods. There is staggered pricing, with one-half of a contin-
uum of firms adjusting price in each period. Since all of the firms have the same
technology and face the same demand conditions, it is natural to think of all
adjusting firms as choosing the same price. We impose this symmetry condition
in our analysis.
There are many different types of New Keynesian models, which differ in

terms of their implications for the extent of complementarity in price-setting.
Our particular model assumes that (i) there is a constant elasticity demand
structure originating from a Dixit-Stiglitz aggregator of differentiated products;
(ii) there is a centralized labor market so that the common marginal cost for all
firms is powerfully affected by aggregate demand; and (iii) preferences for goods
and leisure display exactly offsetting income and substitution effects of wage
changes, as is common in the literature on real business cycles. Kimball [1995]
and Woodford [2002] have stressed that these assumptions make it difficult
to generate complementarity between price-setters when there is an exogenous
money stock. As we will, see our model has exactly zero complementarity
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in this situation. From our perspective, this is a virtue because it highlights
the importance of the policy-based complementarity that arises from monetary
policy under discretion.2

2.1 Households

There is a representative household, which values consumption (ct) and leisure
(lt) according to a standard time separable expected utility objective,

Et{
∞X
j=0

βju(ct+j , lt+j)} (1)

with β being the discount factor which is taken to be close to one. We assume
that the momentary utility function takes the form

u(ct, lt) = log(ct) + χlt (2)

which implies that there are exactly off-setting income and substitution of wage
changes. It also has some other convenient implications that we describe later.
As in standard in the analyses of imperfect competition macro models that

follow Blanchard and Kiyotaki [1987] and Rotemberg [1987], we assume that
consumption is an aggregate of many individual goods, ct = [

R 1
0
ct(z)

(ε−1)/εdz]ε/(ε−1).
Households distribute their expenditure efficiently across these goods, resulting
in demands that have a constant elasticity form

cj,t =

µ
Pj,t
Pt

¶−ε
ct (3)

for individual products from each of the two types of firms which they will
encounter in the equilibrium below. We let the subscript j denote the age of
the nominal price, so that P0,t is the price set by firms in period t and P1,t is
the price set by firms one period previously ( P1,t = P0,t−1). Liekwise, cj,t is
the period-t demand for goods produced by a firm that set is price in period
t− j. The price level which enters in these demands takes the form

Pt = [
1

2
P 1−ε0,t +

1

2
P 1−ε1,t ]

1
1−ε . (4)

We assume that households also hold money to finance expenditure according
to

Mt = Ptct (5)

so that our model imposes a constant, unit velocity as in common with many
macroeconomic analyses.3 We adopt this specification because it allows us to

2Glomm and Ravikumar [1995] show how endogenous government policy of a different
sort — public education — can generate multiple equilbria.

3We think of this quantity equation as the limiting version of a standard money demand
function which occurs as the own return on money is raised toward the nominal interest rate
(see King and Wolman [1999] for some additional discussion).
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abstract from all the wealth and substitution effects that normally arise in op-
timizing models of money demand, so as to focus on the consequences of price-
stickiness.
Since this is a representative agent model and since no real accumulation is

possible given the technologies described below, we are not too explicit about
the consumption-saving aspect of the household’s problem; it will be largely
irrelevant in general equilibrium. We simply assume that there is a Lagrange
multiplier that takes the form

λt =
∂u(ct, lt)

∂ct
=
1

ct
, (6)

and that households equate the marginal rate of substitution between leisure
and consumption to a real wage rate that prevails in the competitive labor
market, so that

wt =
∂u(ct, lt)/∂lt
∂u(ct, lt)/∂ct

= χct. (7)

In each case, the second equality indicates the implications of the specific utility
function introduced above.

2.2 Firms

Firms produce output according to a linear technology, where for convenience
we set the marginal product of labor to one. So, for each type of firm, the
production function is

cj,t = nj,t. (8)

This implies that real marginal cost is unrelated to the scale of the firm or its
type and is simply

ψt = wt

and that nominal marginal cost is Ψt = Ptψt = Ptwt
Much of our analysis will focus on the implications of efficient price-setting

by the monopolistically competitive firm. The adjusting firms in period t are
assumed to set prices so as to maximize the expected present discounted value of
their revenues, using the household’s marginal utility as a (possibly stochastic)
discount factor. That is, they choose P0,t to maximize their market value,

[λt(P0,t −Ψt)c0,t + βEtλt+1
Pt
Pt+1

(P0,t −Ψt+1)c1,t+1].

As monopolistic competitors, firms understand that c0,t = (
P0,t
Pt
)−εct and that

c1,t+1 = (
P0,t
Pt+1

)−εct+1, but take ct, Pt, ct+1 and Pt+1 as not affected by their
pricing decisions. The efficient price must accordingly satisfy

P0,t =
ε

ε− 1Et[(1− θt,t+1)Ψt + θt,t+1Ψt+1]. (9)

6



The optimal price is a constant markup (ε/ (ε− 1)) over a weighted average of
nominal marginal cost over the two periods. The weight on the future is

θt,t+1 =
βλt+1ct+1P

ε−1
t+1

λtctP
ε−1
t + βλt+1ct+1P

ε−1
t+1

=
βP ε−1

t+1

P ε−1
t + βP ε−1

t+1

(10)

where we again give the result under the specific momentary utility function. In
fact, this reveals one motivation for the form of the particular utility function
chosen. In general, both aggregate demand (ct) and the discount factor (λt)
affect the weights, but our choice of a utility function that is logarithmic in
consumption means that these two effects exactly cancel out.

2.3 Defining Complementarity in Price Setting

The standard definition of complementarity — contained, for example, in Cooper
and John [1988]— is that there is a positive effect of other similar decisionmakers’
actions on that of a particular decision-maker under study. In our context, we
are interested in complementarity in price-setting in equation (9). The left-
hand side of this expression is the action of the particular decision-maker under
study: the optimal price of an individual monopolistically competitive firm that
is currently making a price adjustment. Other monopolistically competitive
firms are also simultaneously adjusting prices: these firms take an action P0t that
influences the right-hand of (9). The price chosen by the representative adjusting
firm influences the price level directly because Pt = [12P

1−ε
0,t + 1

2P
1−ε
1,t ]

1
1−ε and

may also affect current nominal marginal cost. Given that prices are sticky,
there can be real effects of variations in the price level, so that these could
influence nominal marginal cost. Finally, the weights on the present and the
future in (9) also depend on the price level. To determine whether there is
complementarity, we must work through these mechanisms and determine the
sign of the relevant partial derivative. This will depend on the behavior of the
monetary authority.

2.4 Timing

The sequence of actions within a period is as follows. In the first stage, the
monetary authority chooses the money stock,Mt, taking as given P1,t, the price
set by firms in the previous period. In the second stage, adjusting firms set
prices (P0,t). Simultaneously, wages are determined and exchange occurs in
labor and goods markets.
There are two important consequences of these timing assumptions. First,

since price-setters move after the monetary authority, they cannot be surprised
by the monetary authority during the initial period that their price is in effect.
Accordingly, the monetary authority faces an economy in which it can surprise
some agents (those with pre-set prices) but not others (those adjusting prices)
within a period. This gives rise to a relative price distortion across firms in
the discretionary equilibrium that we construct, which in turn means that there
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is an interior solution for the monetary authority’s choice problem. If instead,
we reversed the timing order so that the monetary authority moved last, we
conjecture that there would not be a discretionary equilibrium unless some other
aspect of the economy were modified, such as allowing firms to reset their prices
after paying an adjustment cost.4 Second, the fact that the price-setters move
after the monetary authority means that there is the potential for more than
one equilibrium price to correspond to a given monetary policy action.

2.5 Complementarity with an exogenous money stock

We now consider a situation in which Mt = Mt+1 = M . Under the assump-
tions of our model, it turns out to be easy to investigate the influence of other
adjusting firm’s actions, i.e., to compute the effect of P0t on the right-hand
side of (9). With the constant velocity assumption (Ptct = Mt) and with the
particular utility function, Ψt = Ptwt = Pt(χct), so that equilibrium nominal
marginal cost is exactly proportional to the money stock, Ψt = χMt. Since the
nominal money stock is assumed constant over time, nominal marginal cost is
also constant over time and (9) becomes

P0,t =
ε

ε− 1χMt.

This equilibrium relationship means that there is an exactly zero effect of P0t on
the right-hand side: there is no complementarity in price-setting in this model
when the nominal money supply is constant.

2.6 Summarizing the economy by p0 and m

Under discretionary policy, the monetary authority will not choose to keep the
nominal money supply constant. Therefore, the optimal pricing condition (9)
will not simplify to a static equation. In general, however, equilibrium will be
a function of just two variables: a measure of the price set by adjusting firms
and a measure of monetary policy. We construct these variables by normalizing
nominal prices and money by the single nominal state variable in this econ-
omy, the price set by firms in the previous period (P1,t = P0,t−1). Define the
normalized money supply as

mt =Mt/P1,t, (11)

and the normalized price set by adjusting firms in the current period as

p0,t = P0,t/P1,t. (12)

We can then express all variables of interest as functions of these two normalized
variables. From (4), the normalized price level is a function of only p0,t :

Pt
P1t

= g(p0,t),

4The nonexistence of a discretionary equilibrium is a feature of Ireland’s [1997] analysis of
a model in which all prices are set simultaneously, before the monetary authority determines
the current money supply.
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where
g(p0,t) ≡ [ 1

2
p1−ε0,t +

1

2
]

1
1−ε .

Aggregate demand is a function of both p0,t and mt :

ct = c(p0,t,mt) ≡ mt

g(p0,t)
.

This follows from the money demand equation:

ct =
Mt

Pt
=
Mt

P1,t

P1,t
Pt

=
mt

g(p0,t)
.

And, since nt = [12n0,t +
1
2n1,t] = [12c0,t +

1
2c1,t], we can use the individual

demands together to show that total labor input is also pinned down by p0,t
and mt :

nt = n(p0,t,mt) ≡ 1
2
· c(p0,t,mt) · [g (p0,t)]ε ·

¡
p−ε0,t + 1

¢
.

Leisure is the difference between the time endowment and labor input. Marginal
cost is

ψt = wt =
∂u(ct, lt)/∂lt
∂u(ct, lt)/∂ct

= χct = ψ(mt, p0,t).

Another variable of interest is the gross inflation rate, Pt+1/Pt. It is determined
by current and future p0:

Pt+1
Pt

= π(p0,t, p0,t+1) ≡ g(p0,t+1)
g(p0,t)

p0,t. (13)

This follows directly from writing the inflation rate as a a ratio of normalized
variables:

Pt+1
Pt

=
Pt+1/P0,t
Pt/P1,t

P0,t
P1,t

=
g(p0,t+1)

g(p0,t)
p0,t.

In a steady state, there is thus a simple relationship between inflation and the
relative price, π = p0.

2.7 Two distortions and monetary policy

The monetary authority in this model faces two distortions that are present
in the private economy and can be influenced by its actions. First, there is a
markup distortion that represents the wedge between price and marginal cost:
it plays a role similar to a tax on labor income. The extent of this average
markup is just the reciprocal of real marginal cost,

µt =
1

ψt
=
1

wt
=

∂u(ct, lt)/∂ct
∂u(ct, lt)/∂lt

=
1

χct
.
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From the derivations above, the markup depends on p0,t andmt: µt = g(p0t)/(χmt).
Second, there is a relative price distortion that represents a wedge between in-
puts and outputs:

nt/ct = δ(p0,t) ≡ 1
2
· [g (p0,t)]ε ·

¡
p−ε0,t + 1

¢
.

The relative price distortion depends solely on p0,t. It takes on a value of unity
at p0,t = 1 (this would be the case in a zero inflation steady state) and is higher
for other values of p0,t. The trade-off that the monetary authority typically faces
between these two distortions is that choosing a higher money supply decreases
the markup (good) and raises the relative price distortion (bad).
Just as we showed above that all real variables could be described in terms

of p0 and m, the distortions can be described similarly. The summary role of p0
and m, together with the fact that at any point in time the monetary authority
can choosem (i.e. choosingm in the current period is no different than choosing
M) has a strong implication for the analysis of discretionary monetary policy.5

It implies that the level of the predetermined nominal price P1,t does not restrict
the outcomes a discretionary policymaker can achieve, as long as the monetary
authority in future periods behaves in the same manner.6

3 Equilibrium with homogeneous policy
As a preliminary to analyzing a discretionary equilibrium, in which the mone-
tary authority optimizes, we first study the nature of equilibrium price-setting
(p0,t) given an arbitrary action by the monetary authority. We assume that the
monetary authority adopts a policy rule of the form

Mt = mtP0,t−1, (14)

where mt is viewed as the policy variable. That is, the money supply is pro-
portional to the prices that adjusting firms set one period ago with a constant
of proportionality mt. We call this a homogenous monetary policy rule. This
form of monetary accommodation of past nominal variables is characteristic of
optimal monetary policy under discretion, for the following reason. The mone-
tary authority is concerned about the real variables that enter in private agents’
utility. It takes past prices as given, and there is no mechanism by which the
level of nominal predetermined prices necessarily constrains the behavior of a
discretionary policymaker.7 Thus, if we viewed M instead of m as the policy

5 It is important no to misinterpret the parenthetical statement: any choice of Mt can be
replicated by choosing mt = Mt/P1,t. However, a policy of keeping Mt constant is not the
same as a policy of keeping mt constant.

6 If the future monetary authority paid attention to nominal levels, it might be optimal
for the current monetary authority to do the same. We do not consider equilibria with this
property.

7The word “necessarily” appears because one could construct non-Markov equilibria in
which all agents agreed that P1,t did constrain the monetary authority. See previous footnote.
We do not study such equilibria.
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instrument, we would find that the optimizing monetary authority adjusted Mt

proportionally to P1,t, just as is specified in (14). It will economize slightly on
notation and computation to view mt as the policy instrument, and there is no
loss in generality. In a discretionary equilibrium, mt will be chosen to maximize
welfare; in this section mt is arbitrary.8

A homogenous money supply rule means that future monetary policy de-
pends on the price set by adjusting firms today,

Mt+1 = mt+1P0,t.

Consequently, under homogeneous policy and using the preferences introduced
above, it follows from the efficient price-setting condition (9) that the nominal
price set by adjusting firms (P0,t) satisfies

P0,t =
εχ

ε− 1Et ((1− θt,t+1)mtP1,t + θt,t+1mt+1P0,t) (15)

in equilibrium. The derivation of (15) from (9) involves (i) using the fact that
nominal marginal cost is Ψt = Ptχct given the specific utility assumption; (ii)
imposing monetary equilibrium (Mt = Ptct); and (iii) imposing the homogenous
form of the monetary policy rule (Mt = mtP1,t). From (15), the normalized
price set by adjusting firms (p0,t) satisfies

p0,t =

µ
εχ

ε− 1
¶
Et ((1− θt,t+1)mt + θt,t+1mt+1p0,t) (16)

≡ Etr(p0,t,mt, p0,t+1,mt+1)

The weight on future nominal marginal cost, which was defined in (10), can be
written in terms of current and future normalized prices as

θ(p0,t, p0,t+1) =
βπ(p0,t, p0,t+1)

ε−1

1 + βπ(p0,t, p0,t+1)ε−1
. (17)

where we are now explicit about how θt,t+1 depends on the present and the
future, writing it as θ(p0,t, p0,t+1). Thus, (16) is a nonlinear difference equation
in p0 and m that must be satisfied in equilibrium.
We view p0,t on the left-hand side as describing what an individual firm finds

optimal given the actions of other price-setters and the monetary authority.
On the right hand side, p0,t then represents all other adjusting firms’ pricing
behavior, and the function on the right hand side represents the implications
of those firms’ behavior for the marginal revenues and costs of an individual
firm. We use the notation p0t = Etr(p0,t,mt, p0,t+1,mt+1) because it is a best-
response function for the individual firm. We restrict attention to symmetric
equilibria, so that prices chosen by all adjusting firms are identical. In terms of
this response function, we define complementarity in terms of a positive partial

8By contrast, under commitment, the monetary authority commits to not responding to
P1,t, and the choice is over sequences of Mt. King and Wolman (1999) study optimal policy
with commitment in the model used here.
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derivative of the function with respect to its first argument. That is: there is
complementarity if ∂Etr(p0,t,mt, p0,t+1,mt+1)/∂p0t > 0.
In sections 3.3 and 3.2 below, we will make intensive use of the best-response

function (16). First, we will use it to describe point-in-time equilibria; this in-
volves characterizing the fixed points for p0,t, taking as given mt,mt+1, and
p0,t+1. Second, we will use it to determine the model’s steady-state equilib-
ria under constant arbitrary policy. That is, we will impose p0,t = p0,t+1 and
mt = mt+1 = m and determine the equilibrium value(s) (fixed points) for p0.
Both of these exercises will then serve as inputs to our analysis of discretionary
equilibria. There, (16) will summarize the constraints that private sector opti-
mization impose on the monetary authority.9

3.1 Complementarity under homogeneous monetary pol-
icy

There are two mechanisms for complementarity in (15) and (16) that will be
operative in our analysis of both point-in-time and steady-state equilibria. First,
holding fixed the weights, P0t has a positive effect on the right-hand side in (15):

it enters linearly with a coefficient of
³

εχ
ε−1

´
Etθt,t+1mt+1, which is positive

because firms are forward-looking and the monetary authority raises nominal
Mt+1 proportionately with P0,t. Hence the specification of monetary policy has
introduced some complementarity into an economy in which it was previously
absent.
Second, the weights in these expressions vary with the current price P0t (or

its normalized counter part p0t). This additional channel plays an important
role in our analysis. A reference value for the weight θt,t+1 is one-half, since (10)
implies that the weight is β/(1+β) with β close to one if if Pt = Pt+1. An upper
bound on this weight is one: this is a situation where firms place full weight on
the future. Increases in the weight raise the extent of the effect discussed above,

i.e., they raise the coefficient
³

εχ
ε−1

´
Etθt,t+1mt+1 that measures the extent of

complementarity. The second mechanism is then that an increase in P0t (or its
normalized counterpart p0t) raises the weight on the future. This occurs because
a firm’s profits are not symmetric around its optimal price. As the firm’s relative
price rises, its profits decline gradually, asymptotically reaching zero as the price
goes to infinity. By contrast, as the price falls, the firms profits decline sharply
toward zero and may even become highly negative if the firm is not allowed
to shut down its operations.10 Thus, when P0,t increases for all other firms,
future monetary accommodation — and the associated higher nominal price set
by firms in the future — automatically lower’s the firm’s future relative price.

9 If we impose mt = mt+1 but allow p0t to differ from p0,t+1, then (16) describes the
dynamics of p0,t for constant homogeneous policy. Such analysis might reveal interesting
dynamics. However, it is not an input into our analysis of discretionary equilibrium.

10At this point in the analysis, we do not explicitly take into account the shut-down pos-
sibility. But, when we calculate discretionary equilibria, we do verify that the equilibria are
robust to allowing firms to shut down.
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The costliness of a low relative price leads the firm to put increased weight on
future marginal cost. This effect is present in both point-in-time and steady-
state equilibria, as illustrated in Figure 1. This figure also reveals that a very
high value of p0t pushes the weight toward its upper bound value of one in both
settings.

3.2 Equilibrium analysis of steady states

To characterize steady-state equilibria for arbitrary constant, homogeneous mon-
etary policies, we impose constant m and p0 on the right hand side of (16).
Steady-state equilibria are fixed points of the resulting steady-state best-response
function for p0:

p0 =
εχ

ε− 1m[1− θ(p0, p0) + θ(p0, p0)p0], (18)

with a weight on the future of

θ(p0, p0) =
βpε−10

1 + βpε−10

. (19)

Fixed points of the steady-state best-response function are constructed by si-
multaneously varying current and future p0 on the right hand side. This is in
contrast to fixed points of the basic point-in-time best-response function, which
are constructed holding fixed p0,t+1.

3.2.1 Uniqueness occurs at zero inflation

A zero inflation steady state would involve p0 = 1. Such a steady state exists:
the normalized quantity of money must be m∗ ≡ ( ε

ε−1χ)
−1, and in this case the

weight on the future is θ = β/(1 + β), which is roughly one-half. The steady
state with zero inflation is asymptotically optimal under full commitment in this
model (see King and Wolman [1999]) and provides an important benchmark.
Furthermore, ifm = m∗, zero inflation is the unique steady state; that is, p0 = 1
is the unique solution to (18) when m = m∗.

3.2.2 Multiplicity or nonexistence must occur with positive inflation

We refer to any m > m∗ as an inflationary monetary policy, because if inflation
is positive in a steady state, then m > m∗, as we now show. From (18), given
that π = p0 in steady state, we have

m =
1

( ε
ε−1χ)

π

[1− θ + θπ]
=

1

[θ + (1− θ) ( 1π )]
m∗.

Thus, π > 1 if and only if m > m∗.
Proposition 1 states that under an arbitrary inflationary monetary policy,

for low values of m there are two steady-state equilibrium values of p0. For high
values of m, no steady-state equilibrium exists. In a knife edge case there is a
unique steady-state equilibrium.
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Proposition 1 There exists an em > m∗ such that for m ∈ (m∗, em) there are
two steady-state equilibria, and for m > em there are no steady-state equilibria.

Proof. see Appendix.

From (18), steady-state equilibria for a given m are fixed points of r (p0;m) ,
where we write the best-response function as

r (p0,m) =
m

m∗
· [(1− θ (p0)) + θ (p0) · p0]

for the discussion of proposition 1.
Figure 2 provides the basis for a heuristic discussion of Proposition 1, based

on the best-response function r (). The dashed line in Figure 2 is the 45o line;
when r crosses this line the action of a representative adjusting firm (the hori-
zontal axis) coincides with the optimal action of an individual firm as described
by r. The dotted line shows that there is one steady state when m = m∗ and
this occurs at p0 = 1. At higher values of p0, the function r(p0,m∗) increases
toward the 45o line, but never reaches it because there is always some small
weight placed on the present (i.e., 1 − θ < 1) which makes r(p0,m∗) < p0 for
p0 > 1.
An increase in m shifts r () upwards. It is thus clear p0 = 1 is not an

equilibrium point with m > m∗, but that there is a prospect for an intersection
point somewhere to the right as in the case illustrated in Figure 2. At any such
“low” stationary equilibrium, it must be the case that the slope is less than one
(if r(p0, .) crosses the 45o line) or the slope is exactly equal to one (if it is a
tangency). Let us call this first equilibrium p0.
Suppose the slope at a “low” stationary equilibrium is less than one, so

that it is not a tangency and corresponds to the case illustrated in Figure 2.
As p0 becomes arbitrarily large, θ → 1. For large p0, then, it follows that
r(p0, .) approaches the line (m/m∗)p0 from below. For high enough p0 then,
r(p0, .) > p0 since we are considering an inflationary monetary policy (m > m∗).
Since we have assumed there was a fixed point at which ∂r/∂p0 < 1, and we
have shown that r winds up above the 450, there must be some other “high” p0
for which there is an equilibrium r(p0) = p0. If m is high enough, the first fixed
point does not exist, and r () lies everywhere above the 45o line.
We label the two equilibria with an asterisk (*) and carry them over to our

discussion below. The figure is constructed using the same assumptions that
we will use throughout the paper: a demand elasticity of ε = 10 and a discount
factor of β = .99. In addition, we assume that the ratio m/m∗ = 1.02: such
a monetary policy leads to two inflation rates that are quite large (5.5% per
quarter and 30.5% per quarter). But the reader should understand that the
choice in these initial sections of values of m is based on making the graphs
readable rather than on descriptive realism.
There are two mechanisms at work to produce multiple steady-state rates

of inflation for arbitrary constant, homogeneous monetary policy. The first is
that monetary policy is accommodative: if higher prices are set by other firms

14



today, the future nominal money stock will be higher in proportion. The second
is that if all other firms raise prices today and in the future, then the future
inflation rate will rise and a single firm today places higher weight on future
nominal marginal costs, so that future monetary endogeneity becomes more
influential on current price-setting. Looking ahead, the discretionary equilibria
we will construct below will involve constant, homogeneous monetary policy.
Necessarily, then, there will be multiple steady-state equilibria under discretion.
However, in order to construct those equilibria we cannot rely on the steady-
state best-response function.

3.3 Point-in-time equilibria

Solving the monetary authority’s problem under discretion means computing the
point-in-time equilibria that correspond to all possible current policy actions,
and then picking the best action. Here we characterize point-in-time equilibrium
for an arbitrary policy action in the current period. Point-in-time equilibrium
refers to the values of p0,t that solve (16) for given current and future monetary
actions, and a given future price p0,t+1. The mechanisms described earlier lead
to the potential for multiple point-in-time equilibria. We assume that the future
money supply is given by mt+1 ∈ (m∗, em) , (i.e. steady-state equilibria do exist
for the assumed value of mt+1 and are inflationary) and that the future relative
price is consistent with one of the two steady-state equilibria that may prevail
if that level of mt+1 is maintained forever. Under these assumptions, there are
either two equilibria in the current period or equilibrium does not exist. Again,
in a knife edge case equilibrium is unique.

Proposition 2 If mt+1 ∈ (m∗, em) is fixed, then there exists m̆ such that for
mt < m̆ there are two equilibria in period t, and for mt > m̆ equilibrium does
not exist in period t.

Proof. see appendix for a sketch.
Point-in-time equilibria are fixed points of the best-response function for

current period price-setters, which we write without time subscripts, using su-
perscript prime to denote next period:

p0 = r (p0, p
0
0,m,m

0) =
1

m∗
[(1− θ (p0, p

0
0))m+ θ (p0, p

0
0)m

0p0] (20)

No expectation operator appears because we are assuming, for the purposes of
this section, that there is no uncertainty about futurem and — more importantly
— future p0. Multiplicity of point-in-time equilibrium occurs for much the same
reason as multiplicity of steady states. Because the future nominal money
supply is endogenous, the current price of other firms has an effect of more than
one-for-one on a single firm’s desired price if agents weight the future heavily, as
they do ifm0 > m∗ and p0 is high enough. Note that as long as the future money
supply is inflationary, there will be multiple equilibria even for noninflationary
current values of the money supply.
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Panel A of Figure 3 illustrates the point-in-time equilibria for two different
values of current m, if agents believe that p0 will prevail in the future, with
m0 = 1.02m∗. As above, the dashed line is the 450 line that identifies fixed
points: the two points marked with asterisks (‘*’) on the 45o line are the steady
states from Figure 2. The solid line is the best-response function when m = m0.
The low steady state continues to be an equilibrium, but the high steady state
no longer is, because in that steady state agents expect p0 rather than p0 in the
future. In fact, the second point-in-time equilibrium (marked by a diamond)
must be at a higher p0, because expectations make the future less important
than in the steady-state analysis of Figure 2: a larger increase in the weight
on the future is required for the second fixed point to occur. The dotted line
shows the best-response function when the current monetary policy action is
m∗. The equilibria in this case are identified by circles: lower current m makes
the lower price equilibrium take on an even lower value, but it makes the higher
price equilibrium take on an even higher value. Lower current m shifts the best-
response function down, with lower current marginal cost reducing the desirable
price so that it is natural that p0 is reduced. On the other hand, if all other firms
are making large adjustments, then the weight on the future can still increase
sufficiently to lead to a second equilibrium, but the extent of this adjustment
must be larger because of the reduction in current marginal cost brought about
by m. Current monetary policy actions thus affect the two equilibria in very
different ways.
Panel B of Figure 3 illustrates the multiple equilibria that occur when the

future involves a steady state with p0 instead of p0. The solid line now rotates
through the higher of the two steady-state equilibria. With pessimism in place,
the low inflation equilibrium (marked by the diamond) is now higher than the
steady state. As in panel A, a reduction in current m lowers the low equilibrium
value of p0 and raises the high equilibrium value of p0.
The two panels of figure 3 together illustrate that beliefs about both current

and future equilibrium selection can affect the opportunities available to a dis-
cretionary monetary authority. Raising the current money supply shifts out the
best-response function for firms, resulting in a lower high-p0 equilibrium and
higher low-p0 equilibrium. The likelihood of each equilibrium in the present will
thus alter the trade-off facing the monetary authority. Second, beliefs about
future equilibrium selection shift the current period best-response function for a
given current money supply, and thus also alter the trade-off facing the current
monetary authority.

4 Discretion under perfect foresight
In a perfect foresight discretionary equilibrium, the current monetary authority
sets the money stock to maximize the representative private agent’s welfare,
subject to

1. The behavior of the future monetary authority (m0).
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2. The behavior of firms in the future (p00).

3. Optimal pricing by firms in the current period (p0). The monetary au-
thority must have beliefs about the selection rule used to determine p0
when a contemplated value of m leads to multiple equilibrium values of
p0.

Two conditions define a stationary perfect foresight equilibrium with dis-
cretion: (i) the current and future monetary authority each choose the same
action; and (ii) the selection rule specifies that only one equilibrium will prevail
in every period. It is common knowledge which equilibrium will prevail.
As we noted above, it is the essence of discretion in monetary policy that

certain predetermined nominal variables are taken as given by the monetary
authority. Here, the current money supply is set proportionally to the previously
set price, P1,t = P0,t−1. This leads us to view m as the monetary authority’s
choice variable. Our analysis of equilibrium under arbitrary choice ofm revealed
that in general there were either two point-in-time equilibria or no point-in-
time equilibria, as long as future policy was expected to be inflationary. This
leads us to expect multiple discretionary equilibria. In this section we analyze
discretionary equilibria where there is a constant probability of 1.0 on one of
the two private sector equilibria.11

4.1 Constructing Discretionary Equilibria

We look for a stationary, discretionary equilibrium, which is a value of m that
maximizes u(c, l) subject to the constraints above when m0 = m. We have used
two computational approaches to find this fixed point. A comparison of the two
approaches is revealing about the nature of the multiple equilibria we encounter.
The first computational method involves iterating on steady states. We

assume that all future monetary authorities follow some fixed rule m0. Next,
we determine the steady state that prevails including the value of p00. Then, we
confront the current monetary policy authority with these beliefs and ask her to
optimize, given the constraints including the selection rule. If she chooses an m
such that |m−m0| is sufficiently small, then we have an approximate fixed point.
If not, then we adjust the future monetary policy rule in the direction of her
choice and go through the process again until we have achieved an approximate
fixed point. This approach conceptually matches our discussion throughout the
text, but leaves open an important economic question: are the equilibria that
we construct critically dependent on the infinite horizon nature of the problem?

11Wolman [2001] determines the (unique) optimal allocation that can be achieved by a
monetary authority that is constrained by discretion, using a primal approach that is silent
on how the monetary authority brings about this allocation using monetary instruments.
This allocation is the one associated with the low-p0 equilibrium described here. Using linear-
quadratic methods, Dotsey and Hornstein [2003] also study the optimal allocation under
discretion. Our work thus shows that a monetary authority which seeks to implement the
optimal real allocation using a money stock rule leaves itself vulnerable to multiple equilibria.
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The second computational method involves backward induction on finite
horizon economies. We begin with a last period, in which firms are not forward-
looking in their price setting and deduce that there is a single equilibrium,
including an optimal action for the monetary authority mT > m

∗ and a unique
equilibrium relative price p0,T . Then, we step back one period, taking as given
the future monetary action and the future relative price. We find that there
are two private sector equilibria. In fact, this is inevitable, because the first
step backwards creates a version of our point-in-time analysis above. Con-
sequently, this approach establishes that the phenomena are associated with
forward-looking pricing and homogenous monetary policy, rather than with an
infinite horizon. To construct stationary nonstochastic equilibria using this ap-
proach, we can iterate backwards from the last period, computing the optimal
policy, {mT ,mT−1, ....} and stop the process when |mt+1 −mt| is small, taking
mt = m as an approximate fixed point.
The numerical examples that we study next have the following common

elements. The demand elasticity (ε) is 10, implying a gross markup of 1.11
in a zero inflation steady state. The preference parameter (χ) is 0.9, and for
convenience we set the time endowment to 5. Taken together with the markup,
this implies that agents will work one fifth of their time (n = 1) in a zero inflation
steady state. With zero inflation, c = n = 1 since there are no relative price
distortions, and thus m∗ = 1. Further, leisure (l) is then 5− c. Accordingly, in
a zero inflation stationary state, utility is just ln(1) + 0.9 · (5− 1). A first-best
outcome would dictate that u(c, l) be maximized subject to c = (1− l). For the
specified preferences, this leads to a first order condition 1

n = χ or an efficient
level of work (n) of 1.11. So, the increase in work from cutting the gross markup
to one is 11.1%.

4.2 Optimistic Equilibrium

If the discretionary monetary authority knows that the low equilibrium will
prevail, then its problem is to maximize

u(c, l) + v(p0
0;m0)

where v(p00;m0) denotes the future utility that corresponds to a steady state
with m0 and selection of the low-p0 equilibrium with probability 1.0. The max-
imization is subject to

c = c(m, p0)

l = l(m, p0)

p0 = r(p0, p0
0,m,m0),

where r () denotes the response function on the right hand side of (20), and the
presence of p0 instead of p0 is meant to imply that we place probability one
on the low p0 fixed point of the response function. The monetary authority
understands that future utility and current price determination is influenced
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by the actions of the future monetary authority, but has no way of influencing
its behavior or the future price that will prevail. So, the monetary authority
maximizes current period utility.

4.2.1 Exploiting initial conditions

Figure 4 provides some insight into the nature of the monetary authority’s choice
when it knows that the p0 equilibrium will prevail for all time. For this figure,
we assume that future monetary policy is noninflationary (m0 = m∗, p00 =
1). The current monetary authority optimally adopts an inflationary monetary
policy (choosing m > m∗ = 1) because it can reduce the markup and stimulate
consumption toward the first-best level. It does not completely drive the gross
markup to one because an increase in m produces relative price distortions.
While the relative price distortions are negligible near the noninflationary steady
state, they increase convexly as monetary policy stimulates the economy. Figure
4 illustrates the sense in which New Keynesian models capture the incentive for
stimulating the economy at zero inflation, as described in Kydland and Prescott
[1977] and Barro and Gordon [1983].

4.2.2 An inflation bias equilibrium

Figure 5 displays the consistent steady-state equilibrium, in which agents cor-
rectly forecast the incentives of the monetary authority. Panel A shows the
policymaker’s objective function, which can be thought of as an indirect utility
function: the relevant portion for the current discussion is the solid line, which
reaches a maximum at the value of m/m∗ =1.01. This implies a stationary
relative price (p0) of 1.022, which is determined along the lines of Figure 3 with
agents expecting p00 = p0 and m0 = m. Given that there is a steady state,
π = p0 and this relative price thus implies an inflation rate of 2.2 % per quar-
ter. At this inflation rate, the monetary authority faces sufficiently increasing
marginal relative price distortions that it chooses not to further increase m in
an effort to further reduce the markup. Notably, the stationary markup de-
parts little from its value at zero inflation. Stationary consumption is 99.96%
of its zero inflation value, so that the markup has changed negligibly (recall
that the markup and consumption are directly related by µt = (ctχ)

−1 with the
preference specification used here).

4.3 Pessimistic Equilibrium

We next suppose that the monetary authority instead knows that the high p0
equilibrium will always prevail. Its incentives are sharply different. Looking at
Figure 5, we can see these incentives in the dashed lines, which describe a non-
equilibrium situation in which the private sector and the monetary authority
assume that the future is described by m,p0 while the present is described by
p̄0. The monetary authority has a clear incentive to raise m > m since this
lowers the markup and relative price distortions, with utility being maximized
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when m is sufficiently high that there is exactly a tangency equilibrium in the
temporary equilibrium analysis of Figure 3. Here the monetary authority “takes
policy to the limit” of the set of equilibria that are imposed as its constraints.
Because Figure 5 assumes optimism (that is, the low- p0 outcome occurs with
probability one) , there are some inconsistencies in using Figure 5 to discuss an
equilibrium with pessimistic expectations. Notably, the monetary authority can
lower the markup to less than one, in which case some of the firms in the economy
are making losses. But the picture tells the right story: nearer the consistent
discretionary equilibrium that is described by a level m, the monetary authority
still has the same incentives to raise m, but it does so without producing the
curious behavior of the markup shown here.
In fact, it is not necessary to make a complicated set of fixed point computa-

tions in this case. A tangency equilibrium is one in which ∂r(p0,t,p0,t+1,mt+1,mt)
∂p0,t

=

1. Therefore, we can simply solve the stationary version of the equation,

p0,t
∂r(p0,t, p0,t+1,mt+1,mt)

∂p0,t
= r(p0,t, p0,t+1,mt+1,mt),

to calculate the equilibrium value of p0 (this is one equation in one unknown p0
because the m = m0 drops out). We can then determine the relevant m from
the equation p0 = r(p0, p0,m,m).
In our numerical example, there is a consistent equilibrium with p0 = 1.17,

so that there is a 17% quarterly inflation rate in the pessimistic equilibrium
with optimal discretionary policy. While this is quite a large rate of inflation
by U.S. standards, it is small relative to the values obtained with arbitrary
homogeneous monetary policies in Figures 2 and 3. The associated value of
m/m∗ is 1.0295. This value is larger than the one used to construct Figure 3, as
it should be: a higher level of m is necessary to produce a tangency equilibrium
in the pessimistic case.
There are thus two steady-state equilibria with discretionary optimal mone-

tary policy in our quantitative example, one with low inflation and one with high
inflation. The levels of the inflation rates are quite different: about 2 percent
(per quarter) in one case and about 17 percent in the other.

5 Stochastic equilibria
The generic existence of two point-in-time equilibria and two steady-state equi-
libria for arbitrary homogeneous policy suggests that it may be possible to
construct discretionary equilibria that involve stochastic fluctuations. We now
provide an example of such an equilibrium. We assume that there is an iid
sunspot realized each period which selects between the two private sector equi-
libria: in each period, the low-p0 outcome occurs with probability 0.6, the high-
p0 outcome occurs with probability of 0.4, and this is common knowledge.12

12Our model does not pin down the distribution of the sunspot variable. However, some
restrictions on that distribution are imposed by the requirement that every firm’s profits be
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In order for its maximization problem to be well-defined, the monetary au-
thority must have beliefs about the current and future distribution over private-
sector equilibria. Above, these beliefs were degenerate. Now that they are
nondegenerate, the problem is slightly more complicated. Letting α be the
probability of the low-p0 outcome, the monetary authority maximizes

{αu(c(m, p0), l(m, p0)) + (1− α)u(c(m, p0), l(m, p0))}+ βv0

where v0 denotes the future expected utility, which again cannot be influenced
by the current monetary authority. It is important to stress that the low and
high p0 values are influenced by the sunspot probabilities, since they satisfy the
equations

p0 = (
ε

ε− 1χ)Et[(1− θ (p0, p
0
0)) (m) + θ (p0, p

0
0) (m

0 · p0)]; (21)

but, as above, given α, the monetary authority knows how current real quantities
depend on mt and p0,t.

5.1 Constructing Discretionary Equilibria

We can again apply the two computational approaches described in the previous
section to construct Nash equilibria. In implementing these, we assume that the
monetary authority and the private sector share the same probability beliefs.

5.2 Optimal discretionary policy

The relevant trade-offs for the discretionary monetary authority are illustrated
in Figure 6. In panel A, there is a light solid line between the objective function
for the low-p0 private-sector equilibrium (the dark solid line) and the objective
function for the high-p0 private sector equilibrium (the dashed line): this is the
monetary authority’s expected utility objective, which is a weighted average of
the two other objectives. The monetary authority chooses an optimal action
that is about 1.0202, which is more stimulative than the earlier equilibrium
action (1.01, shown in Figure 5) that was appropriate under extreme optimism
(α = 1). But it is smaller than the equilibrium action appropriate under extreme
pessimism (α = 0).
Figure 6 also highlights that the specific values taken on by p0 in the opti-

mistic and pessimistic equilibrium are endogenously determined in our setup,
by current monetary policy and the sunspot probabilities. This contrasts to the
results in the essentially static models of Albanesi, Chari and Christiano [2002],
where the values of endogenous variables are not affected by the probability
structure of extrinsic uncertainty.

nonnegative in each period. For example, if α is 0.75 rather than 0.6, this condition is violated
in the p0 state, and no discretionary equilibrium exists. As in Ennis and Keister (2001), it
would be interesting to study whether adaptive learning schemes would further restrict the
distribution of the sunspot variable.
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5.3 Effects of sunspots

Consider now the effects of a sunspot on equilibrium quantities. We take as
the reference point the levels in the low-p0 private-sector equilibrium, which
involve a markup of about 1.11 (close to the zero inflation markup) and a
normalized price that is close to one. If the economy suddenly shifts to the
high-p0 private sector equilibrium as a result of the sunspot, then firms become
much more aggressive in their adjustments. With the nominal money stock
fixed (Mt = mP1,t−1), there is a decline in real aggregate demand since the
price level rises. Consumption and work effort accordingly fall. Alternatively,
the average markup rises dramatically, increasing distortions in the economy,
to bring about this set of results. Quantitatively, in Figure 6, the rise in the
markup is from about 1.1 to about 1.16, so that there is roughly a 5% increase
in the markup. Given that markups and consumption are (inversely) related
proportionately, there is a 5% decline in consumption and work effort.
This set of outcomes is interpretable as an incident of “unexpected stagfla-

tion” arising because of shifting beliefs. It does not correspond to the type of
more sustained shift in beliefs that Goodfriend [1993] describes as “inflation
scares”, which are associated with increases in long-term expectations of infla-
tion as reflected in market interest rates. To consider such effects, which may be
a crucial element in understanding the interaction of the U.S. central bank with
the real economy during the post-war period, one could introduce persistence
in the probabilities of future equilibrium selection.

6 Summary and conclusions
We have described equilibria under discretionary monetary policy in a basic
New-Keynesian model with two-period staggered price setting. The trade-off
that the monetary authority faces in this model is a familiar one. Output is
inefficiently low because firms have monopoly power, which creates an incentive
for the monetary authority to provide unexpected stimulus, exploiting the pre-
set prices and raising output. However, when it exploits pre-set prices, the
monetary authority also raises the dispersion of prices, leading to an inefficient
allocation of resources. In equilibrium, the monetary authority is balancing the
marginal contribution of these two effects.
While the monetary policy trade-off is familiar, the nature of equilibrium is

not. Discretionary monetary policy leads to multiple equilibria. The multiplicity
occurs because of complementarity in pricing behavior that is induced by the
monetary authority’s natural tendency to treat the level of pre-set nominal
prices as a bygone. Under discretion, in each period the monetary authority
moves the nominal money supply proportionately with the nominal level of
pre-set prices. This feature of monetary policy means that higher prices set
by firms in the current period will lead to a higher money supply (and even
higher prices) in the subsequent period. Understanding this mechanism, an
individual firm adjusting its price in the current period finds it optimal to raise
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its price in response to higher prices set by other firms. This is what we mean
by complementarity in pricing.
Discretionary equilibria are driven by a sunspot variable; the equilibria in-

volve random fluctuations between different real outcomes.13 Economic volatil-
ity then, as well as high inflation, is a cost of discretion in monetary policy.

13The distribution of the sunspot variable shifts the equilibrium, and while we do not pin
down that distribution, it is an integral part of the definition of equilibrium. Thus far, we have
only considered i.i.d. sunspot variations, so as to produce the simplest possible explanation of
the source and nature of multiple equilibria. In future work, we plan to extend the analysis to
the implications of persistent sunspots. This extension would allow us to take the model more
seriously as a potential explanation for some of the volatility observed in actual macroeconomic
time series.
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A Appendix

A.1 Proofs

Proof of Proposition 1. (i) The conditions which characterize a steady-
state equilibrium are (18) and (19). Multiplying (18) by the denominator of
(19) reveals that these conditions are equivalent to

p0 = h (p0) , (22)

where
h (p0) =

m

m∗
+ β

³ m
m∗
− 1
´
pε0 (23)

Steady-state equilibria are thus fixed points of h () , .and fixed points of h () are
steady-state equilibria.
(ii) For p0 > 0 the function h () is strictly positive, strictly increasing, and

strictly convex.
(iii) Define ep0 implicitly as follows:

ep0 : h0 (ep0) = 1.
At ep0, h () is tangent to the 45o line. By differentiating h () , we find that

ep0 = ³βε³ m
m∗
− 1
´´1/(1−ε)

> 0, (24)

and ep0 is decreasing in m.
Convexity of h () implies that if h (ep0) > ep0 then h () does not have a fixed

point, and if h (ep0) < p0 then h () has two fixed points. We now need to show
that for low m, h (ep0) < ep0, and for high m, h (ep0) > ep0. From (24) and (23),
h (ep0) ≶ ep0 is equivalent to

m

m∗
≶ (βε)1/(1−ε) ((ε− 1) /ε)

³ m
m∗
− 1
´1/(1−ε)

. (25)

It is straightforward to show from (25) that there is a unique value of m, call item such that h (ep0) ≶ ep0for m ≶ em.
Proof of Proposition 2. (Sketch) From (16) and (17), point-in-time

equilibrium values of p0 are solutions toµ
m∗ − m

p0

¶
= β

µ
g (p00)
g (p0)

p0

¶ε−1
(m0 −m∗) , (26)

for fixed m0 > m∗ and p00.
(i) The left side is strictly concave and increasing; the right hand side is

strictly increasing (since ε > 1), and either strictly concave (if ε < 2) or strictly
convex (if ε > 2).
(ii) LHS → −∞ as p0 ↓ 0, and lim

p0→∞
LHS = m∗.

(iii) RHS (0) = 0. RHS →∞ as p0 →∞.
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(iv) Thus, this equation has either two solutions or no solutions.
(v) Can show there is a unique m, call it m̆ such that LHS and Rhs are

tangent.
(iv) As m increases above m̆, solution disappears; as m decreases below m̆

two solutions emerge
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Figure 1: Inflation and Weight  (theta) on Future
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Figure 2: The Steady State Best-Response Function
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Figure 3A: Point-in-time best response function
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Figure 3B: Point-in-time best response function
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                     Equilibrium m=1.020156




