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Abstract 
 
 In this paper, we analyze the problem of parameter uncertainty in micro-founded models 

in which the central bank’s ultimate goal is to maximize household welfare and hence has a loss 

function with weights that are directly related to the deep structural parameters of the model.   

In such a setting, the central bank faces uncertainty not only about the dynamic behavior of the 

economy, but also about how much relative weight to assign to each of the variables that enter  

its loss function.  In effect, the microeconomic foundations of the model imply cross-equation 

restrictions between the behavioral equations and the central bank’s objective function.  Using 

both Bayesian and robust control methods, we show that these cross-equation restrictions can be 

crucial in determining the policy implications of parameter uncertainty.  In the Bayesian context, 

we find that the presence of uncertainty about the loss function weights can overturn the classic 

attenuation result of the earlier literature; that is, the optimal policy may exhibit certainty-

equivalence or even anti-attenuation.  Similarly, the degree of aggressiveness of the robust 

control policy may be quantitatively or even qualitatively different from that obtained when the 

loss function is treated as fixed and known. 
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1.  Introduction 
 Beginning with the seminal work of Brainard (1967), a large body of literature has 

considered the monetary policy implications of uncertainty regarding the structure of the 

economy.  Many researchers have followed a Bayesian approach (as in Brainard), minimizing 

the expected value of the central bank’s loss function for a given prior distribution of the 

structural parameters.1  This approach typically implies that the optimal policy response to 

shocks exhibits attenuation compared with the case of no parameter uncertainty—a result  

which has significantly influenced the perspective of some central bankers (cf. Blinder 1998).   

More recent work on robust control methods has been aimed at protecting against worst-case 

scenarios by minimizing the maximum loss over a specific set of possible model perturbations, 

and can imply that optimal policy is more aggressive than in the certainty-equivalent case (an 

outcome referred to as “anti-attenuation”).2  Nevertheless, a common characteristic of  all of the 

existing studies has been to assume that the central bank has a fixed loss function with known 

weights on the variances of a specific set of variables such as the output gap and inflation rate.   

 In this paper, we analyze the problem of parameter uncertainty in micro-founded models 

in which the central bank’s ultimate goal is to maximize household welfare and hence has a loss 

function with weights that are directly related to the deep structural parameters of the model.   

In such a setting, the central bank faces uncertainty not only about the dynamic behavior of  

the economy, but also about how much weight to assign to each of the variables that enter its  

loss function.  In effect, the microeconomic foundations of the model imply cross-equation 

restrictions between the behavioral equations and the central bank’s objective function.   

 Using both Bayesian and robust control methods, we show that these cross-equation 

restrictions can be crucial in determining the policy implications of parameter uncertainty.   

In the Bayesian context, we find that the presence of uncertainty about the loss function weights 

can overturn the classic attenuation result of the earlier literature; that is, the optimal policy may 

exhibit certainty-equivalence or even anti-attenuation.  Similarly, the degree of aggressiveness  

of the robust control policy may be quantitatively or even qualitatively different from that 

obtained when the loss function is treated as fixed and known. 

                                                 
1 Recent examples include Wieland (2000), Sack (2000), Rudebusch (2001, 2002), Söderström (2002), and Aoki and 
Nikolov (2003). 
2 See Sargent (1999), Tetlow and von zur Muehlen (2000), Giannoni (2002), Onatski and Stock (2002), Hansen and 
Sargent (2003), and Onatski and Williams (2003).  
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 Our analysis begins by revisiting Brainard’s highly-stylized static framework, in which  

the central bank seeks to minimize the variance of a single target variable and faces uncertainty 

regarding the sensitivity of the target variable with respect to the policy instrument.  Given that 

the loss function involves the square of the target variable, the classic result of policy attenuation 

reflects the extent to which the central bank seeks to avoid outcomes in which a high setting of 

the instrument coincides with strong policy effectiveness.  Of course, a fixed leading coefficient 

can be incorporated into the loss function in order to quantify the loss associated with a unit 

variance of the target variable, but such a monotonic transformation has no influence on the 

optimal policy.  But now suppose that the magnitude of the leading coefficient is inversely 

related to the effectiveness of the policy instrument.  In that case, parameter realizations with 

strong policy effectiveness also imply relatively low costs of target variability, hence dampening 

or even reversing the optimal degree of attenuation. 

 Next, we consider these issues in the benchmark New Keynesian model with staggered 

price contracts, flexible wages, and exogenous cost-push shocks.3  The log-linearized form of 

this model consists of two behavioral equations:  a forward-looking IS curve, and a forward-

looking Phillips curve.  The unconditional expectation of household welfare can be expressed  

(to a second-order approximation) in terms of the variances of the output gap and the inflation 

rate, with weights involving the same parameters that enter the behavioral equations.4   

Our analysis focuses on the implications of uncertainty regarding three key structural parameters, 

namely, the intertemporal substitution elasticity of consumption, the mean duration of price 

contracts, and the intratemporal elasticity of substitution between differentiated goods.   

We obtain analytic results for the case of idiosyncratic shocks and simple Taylor-style rules 

(involving the contemporaneous output gap and inflation rate), and then use numerical methods 

to document the extent to which similar results are obtained in more general cases. 

 For the benchmark New Keynesian model, the presence of structural parameters in the 

central bank’s loss function dramatically influences the characteristics of optimal policy.  Just  

as in our analysis using the stylized Brainard framework, raising the intertemporal elasticity 

parameter increases the responsiveness of the output gap to the policy instrument (that is, the 

short-term interest rate) while reducing the welfare cost of output gap variability; hence, this 

                                                 
3 See Clarida et al. (1999) and Benigno and Woodford (2003). 
4 See Rotemberg and Woodford (1997). 
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cross-equation restriction implies de-attenuation relative to the case of a fixed and known loss 

function.  Similarly, raising the contract duration parameter not only reduces the slope of the 

Phillips curve but also increases the extent to which movements in aggregate inflation generate 

welfare costs (due to greater dispersion in relative prices across firms), and hence implies that 

aggregate inflation variability should receive greater weight in the central bank’s loss function.  

In fact, in this case the two effects exactly cancel each other, so that the optimal Bayesian  

policy exhibits certainty-equivalence with respect to the contract duration parameter.  Finally, 

uncertainty regarding the intratemporal elasticity parameter can induce anti-attenuation of the 

optimal Bayesian policy while inducing somewhat greater attenuation of the robust control rule. 

 We then go beyond the benchmark New Keynesian model to consider the effects of 

uncertainty regarding the structure of overlapping price contracts.  The benchmark model 

assumes that all contracts have random duration á la Calvo (1983); this specification implies  

that some contracts last much longer than the mean duration and hence that dispersion in relative 

prices is highly persistent.  As a result, the welfare cost of aggregate inflation variability is  

very high, with a weight about 100 times larger than that on output gap variability.  In contrast,  

when all price contracts have fixed duration á la Taylor (1980), relative price dispersion exhibits  

much less persistence, and the weight on aggregate inflation variability in the welfare function  

is markedly smaller, with a magnitude roughly similar to that on output gap variability.5  Thus, 

uncertainty about the fraction of price contracts with fixed vs. random duration has crucial 

implications for the relative weights in the central bank’s loss function, and hence for the 

characteristics of optimal Bayesian and robust policy rules. 

 Finally, we briefly highlight these issues in models with more sophisticated dynamics.  

When household preferences incorporate habit persistence in consumption, then output tends  

to exhibit hump-shaped dynamics, while the welfare function involves the variance of the  

first-difference of the output gap.6  When some prices are either indexed to the lagged aggregate 

inflation rate or determined by a simple rule-of-thumb, the log-linearized “hybrid” Phillips curve 

involves both lagged and expected inflation and thereby generates intrinsic inflation persistence, 

while the welfare function places weight on the variance of the first-difference of inflation.7   

Thus, the degree of habit persistence and the degree of intrinsic inflation persistence have 

                                                 
5 See Erceg and Levin (2002). 
6 See Amato and Laubach (2001). 
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significant implications for the specification of the loss function and hence for the determination 

of monetary policy when the central bank faces uncertainty about these characteristics of the 

economy.   

 The remainder of this paper is organized as follows.  Section 2 introduces the key issues 

using the highly-stylized framework of Brainard (1967).  Section 3 briefly reviews the 

microeconomic foundations for the behavioral equations and welfare function of the benchmark 

New Keynesian model.  Section 4 analyzes optimal Bayesian policies for this model, while 

Section 5 obtains corresponding results for robust control rules.  Section 6 investigates  

the implications of uncertainty about the proportion of fixed vs. random duration contracts.   

Section 7 considers these issues in models with habit formation and intrinsic inflation 

persistence.  Section 8 summarizes our conclusions and highlights areas for further research. 

 

 

                                                                                                                                                             
7 See Steinsson (2000) and Benigno and Lopez-Salido (2002), respectively. 



 

 

 
 

5

2.  Revisiting the Brainard Framework  
 
    2.1 The Classic Attenuation Result 
 
�  Static framework with linear relationship between target variable Y  and policy instrument X 
 
   XbY �  (1) 
 
�  Policymaker faces uncertainty regarding the sensitivity parameter b, and has a Gaussian  
prior with mean b  and variance 2

b� . 
 
�  Loss function involves squared deviations of the target variable: 

  �  � �2aY �� �  (2) 
 
�  In Brainard (1967), the objective function weight is known and fixed (at � = 1), and hence has  
no effect on the determination of optimal policy. 
 
�  Minimizing expected loss yields the classic attenuation result:   

  E(�)  � � 2222 2 XbXbaa b�����  (3) 
 

    22
b

*

b
baX
��

�  (4) 

 
    2.2 Uncertainty Regarding the Objective Function Weight 
 
�  Now suppose that the cost of target variability  is related to the sensitivity parameter: 
 
   � �bbb ��� ���  (5) 
 
�  Thus, the central bank faces uncertainty about the objective function weight � .  
 
�  The expected loss can be expressed as follows:   
 

  E(�)  � �Xbaa bb
22 2 ���� ���   

  � � 2222 2 Xbb bbb ����� ���  (6) 
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�  Optimal policy reflects uncertainty regarding the objective function weight: 

    
� � 22 21 b

b

*
t

bab

baX
�

�

�

��

�
��

�
			

�  (7) 

     �b  =  0 :  Classic Brainard Attenuation 

     �b  >  0 :  Stronger Attenuation 

     �b  <  0 :  De-attenuation or Anti-Attenuation 

 

3.  The Benchmark New Keynesian Model  

3.1  Microeconomic Foundations 

“New Keynesian” dynamic general equilibrium model; cf. Kerr and King (1996), Bernanke and 
Woodford (1997), Clarida, Gali, and Gertler (1999), Woodford (1999).   
 
�  Monopolistically-competitive firms produce differentiated goods using identical production 
technology with capital share �. 
 
  � � � � �� �

�

1fLfKA)f(Y tttt  (8) 
 
�  Each firm faces downward-sloping demand curve with elasticity � 
 

  � �
t

t

t
t Y

P
fP)f(Y

��




�

�



�

�
�  (9) 

 
�  Competitive labor and capital rental markets.  Physical capital is fixed at the aggregate level,  
and mobile across firms, so that all firms face identical marginal cost  MCt  = Wt  / MPLt . 
 
�  Calvo-style staggered price contracts with average duration 1/(1 - � ).  Maximization of 
expected present discounted profits yields the following first-order condition: 
 

  � � � � � �� � 0
1

1
0

��� ��
�

�

�

�

�
)f(jtYjtMCftPt

j
j

t
E jt,t

�

�
���  (10) 

 
�  Time-varying production subsidy �t  induces transitory fluctuations in desired markups. 
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�  Households maximize expected utility over consumption and leisure, yielding standard  
FOCs in terms of the intertemporal substitution elasticities of consumption (�) and leisure (�): 
 
  ��

�
/

tt
t

/
t CREC 1

1
1 �

�

�
�  (11) 

 
  � � �� /

tttt CLP/W 11 �

��  (12) 
 
 
3.2  Log-Linearized Behavioral Equations�
 
�  We assume that the production subsidy offsets the steady-state monopolistic distortion, and 
that the central bank targets zero steady-state inflation.  Thus, the steady state is Pareto-optimal.   
 
�  Log-linearizing the behavioral equations around the steady state yields the following 
expressions involving the inflation rate �t  , the output gap yt , the nominal interest rate it , the 
equilibrium real interest rate rt* and the exogenous aggregate supply disturbance 	t : 
 

  ��
�

�
��
�

�
����

��

*
tt

t
tt

t
t rEiyEy 11 ��  (13) 

 
  � � ttt

t
t yvE ������ ����

�

�

1
1  (14) 

 
 where   

  � �� �
�

���
�

��

�

11  (15) 

 

  
�

��

�

�
�

�

1

1
Lsv  (16) 

 
 
3.3  The Social Welfare Function 
 
�  We assume that the monetary policymaker’s objective is to maximize the unconditional 
expectation of household welfare. 
 
�   The welfare function is obtained by taking a second-order approximation of household  
welfare in the actual economy and in the Pareto-optimal economy, and measuring the difference  
in terms of certainty-equivalent consumption. 
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�   Thus, the policymaker’s loss function can be expressed in terms of the unconditional 
variances of inflation and the output gap, with weights that depend on the structural parameters: 
 

  �  � � � � � ��
�

�
�
�

�
��� � yVarvVar 1

2
1

��
�

�  (17) 

 
�   For fixed values of the structural parameters, the loss function can be equivalently expressed  
 
  �  =  
 [ Var(�)  +  � Var(y) ] (18) 
 
     where 
 = � / �  and  �  =  (v + � -1) � / � . 
 
 
3.4  Monetary Policy Rules 
 
�   In the following analysis, we will generally focus on simple Taylor-style rules: 
 
  tytt ycci �� �

�
 (19) 

 
�   We impose the constraint that c�  > 1, which is sufficient to ensure a unique stationary 
rational expectations equilibrium. 
 
�   For ease of exposition, we assume that the aggregate supply disturbance 	t  is i.i.d. (0, 2

�
�  ). 

 
�   Given the absence of any intrinsic inertia in the behavioral equations, the reduced-form 
solution of the rational expectations equilibrium will only involve the current disturbance 	t  , 
with 011 ��

�� t
t

t
t

yEE� . 

   
�   Following the approach of Woodford (1999) and Giannoni (2002), we first determine the 
optimal coefficient � in the reduced-form equation it = � 	t and then determine the corresponding 
c� and cy . 
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3.5  Rational Expectations Equilibrium 
 
�   Thus, the reduced form solution of the rational expectations equilibrium can be expressed as: 
 
  it = � 	t (20) 
 
  tty �����  (21) 
 
  � �� � tt v ����� ��� 11  (22) 
 
 
�  The unconditional variances of the output gap and inflation rate can then be expressed as: 
 
  222

�
����)y(Var t  (23) 

 
  � � � �� � 2211

�
����� vVar t ���  (24) 

 
3.6  The Reduced-Form Loss Function 
 
�   Therefore, the policymaker’s loss function can be expressed in terms of the structural 
parameters {�, �, �, v}, the reduced-form policy coefficient �, and the innovation variance 2

�
�  : 

 

  �  � � ���
�

��
� v[ ��� 12
2

2
  

 
  � � ])v()v( 22 11 ������ ����  (25) 
 
�   For fixed weights 
 and �, the loss function can be expressed as: 
 

  �F  � � � � �� 2222
2

1121
2

���������
�
�

������ )v(v  (26) 
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4.  Optimal Bayesian Policy in the Benchmark Model 
 
�  We now proceed to determine the optimal policy coefficient �* when the policymaker faces 
uncertainty about �, �, and/or �  and has well-defined prior beliefs about the distribution  
of these parameter(s).   
 
�   We first consider the case in which the loss function weights 
 and � are treated as known, 
and fixed at values based on the prior mean of each parameter.   
 
�  We then determine the optimal policy that accounts for the link between the structural 
parameters and the objective function weights. 
 
4.1  Uncertainty about � 
 Prior distribution for � :  mean �~  , variance 2

��   All other parameters treated as  
known and fixed. 
 
     4.1.1  Fixed Loss Function Weights 
 

                            E� �F  � �� ����
�
� ~v��� 121
2

2
 

         � � �222222 21 ������� � )~)(v()~v( �����  (20) 
 
 
Minimizing this function with respect to �  yields:  
  

  � �

)~)(v()~v(

~v*
F 22222 21

1

�������

��
�

����

�

�  (21) 

 
Using the relation ���� /)~v( 1�

��  , we obtain: 
 

  � �
212221

1

����������

��
�

)~vv(~v~)~v(

~v*
F

�

������

�

�  (22) 

 
 
     4.1.2  Structural Loss Function Weights 
 

               E� �  � ���

�
��� ���

�

��
� ~v12
2

2
  (23) 

 
  � � �222221 ��������� � )~()vv(~)~v( ������   



 

 

 
 

11

 
Minimizing this function with respect to �  yields:  
 

  � �
22221

1

���������

��
�

)vv(~v~)~v(

~v*
�����

�

�  (24) 

 
 
4.2  Uncertainty about �  
 Prior distribution for � :  mean �~  , variance 2

��   All other parameters treated as  
known and fixed. 
 
 
     4.2.1  Fixed Loss Function Weights 
 

 E� �F  � �� ����
�
� ~v��� 121
2

2
  (25) 

 
  � � �22222 1 ������

�
���� )v)(~(   

 
 
Minimizing this function with respect to �  yields:  
  

  � �

)~()v(

~v*
F 2222 1

1

�
�����

��
�

���

�
�  (26) 

 
Using the relation ���� /~)v( 1�

��  , we obtain: 
 

  2111
�

��������

�
�

�

����

� ~)v(~)v(
*
F  (27) 

 
 
     4.2.2  Structural Loss Function Weights 
 

 E� �  � �� � � �221
2

1112
2

�����������
�

�

� )v()v(~v)(E �������
�  (28) 

 
Minimizing this function with respect to �  yields:  
 

  
����

�
� ~)v(

*
��

�

1
 (29) 



 

 

 
 

12

4.3  Uncertainty about �   
 Prior distribution for � :  mean �~  , variance 2

��   All other parameters treated as known  
and fixed. 
 
     4.3.1  Fixed Loss Function Weights 
 

  �F  � � � � �� 2222
2

1121
2

���������
�
�

������ )v(v  (30) 

 
Minimizing this function with respect to �  yields:  
  

  � �
222 1

1
����

��
�

)v(
v*

F
��

�
�  (31) 

 
Using the relation ����

~/)v( 1�
��  , we obtain: 

 

  
����

�
�

)v(
*
F

��

�

1
 (32) 

 
     4.3.2  Structural Loss Function Weights 
 

  E� �  � � � � �22
2

1112
2

���������
�

��
� )v()v(~v~~

�����
�

�
���  (33) 

 
Minimizing this function with respect to �  yields:  
 

  
)v(~

~
*

����

�
�

��

�

1
 (34) 
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4.4  Uncertainty about �  and �   
 Priors:  �  and �  are jointly distributed with means �~  and �~  and variances 2

�
�   

and 2
�� , respectively, and with covariance ��� ,  .  All other parameters are treated as known  

and fixed. 
 
     4.4.1  Fixed Loss Function Weights 

  Same as previous case for uncertain �.  Using the relation ����
~/~)v( 1�

��  ,  

we obtain: 

  2111
�

��������

�
� ~~)v(~~)v(

~
*
F

�

����

�  (35) 

 

     4.4.2  Structural Loss Function Weights 
 

 E�,� �  � ���

�
��� ���

�

��
��

� ~v)(E , 12
2

2
  

  � � �22 11 ������� �� )v()v)(~~( , �����  (36) 
 

  
��������

�
�

,)v(~~)v(

~
*

����

�

11
 (37) 
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5.  Robust Minimax Policy in the Benchmark Model 
 
�  We now proceed to determine the optimal policy coefficient �* when the policymaker faces 
Knightian uncertainty about �, �, and/or � ; that is, the policymaker does not have well-defined 
prior beliefs about these parameter(s).   
 
�   As above, we first consider the case in which the loss function weights 
 and � are treated  
as known and fixed.   
 
�  We then determine the optimal policy that accounts for the link between the structural 
parameters and the objective function weights. 
 
�  In each case, we follow the methodology of Giannoni (2002) to determine �*. 
 
5.1  Knightian Uncertainty about � 
 
 
     5.1.1  Fixed Loss Function Weights 

 
 

  02

2
�

��

�
�

�

������

����

�

�

� vvv
v*L

*

F  (38) 

 
so the worst-case occurs under maximum �. 
 
 
     5.1.2  Structural Loss Function Weights 

 
 

  0
1

2
�

�
�

�

�

)v(
*L

* ���

���

�

�

�

 (39) 

 
so the worst-case also occurs under maximum �. 
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5.2  Knightian Uncertainty about � 
 
     5.2.1  Fixed Loss Function Weights 

 

  0
1

12
�

��

��
�

�

�

����

�����

�

�

� )v(
)v(*L

*

F  (40) 

 
so the worst-case occurs under minimum � . 
 
     5.2.2  Structural Loss Function Weights 

 

  0
12

12
22

22
�

��

���
�

�

�

])v([
)]v([L

* �����

�������

�

�

�

 (41) 

 
so the worst-case occurs under minimum � . 

 
5.3  Knightian Uncertainty about � 
 
     5.3.1  Fixed Loss Function Weights 

The robust policy is given by: 
 

  
22

���

�
�

�

�
*
FR  (42) 

 
But the relative weight � is taken as fixed, so this policy does not protect the economy against 
the worst-case scenario. 
 
     5.3.2  Structural Loss Function Weights 

  

  � � 01
2

2
2

���
�

� *L

*
��

�

�

�

�

�

 (43) 

 
so the worst-case occurs under maximum � .  Thus, the robust policy is given by: 
 

  2����

�
�

v
*
R

��

�  (44) 
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