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Can Bonds Hedge Volatility Risk in the

U.S. Treasury Market? A Specification Test for

Affine Term Structure Models

Abstract

We investigate whether bonds can hedge volatility risk in the U.S. Treasury market, as predicted

by most ‘affine’ term structure models. To this end, we construct powerful and model-free empirical

measures of the quadratic yield variation for a cross-section of fixed-maturity zero-coupon bonds

(‘realized yield volatility’) through the use of high-frequency data. We find that the yield curve

fails to span yield volatility, as the systematic volatility factors appear largely unrelated to the

cross-section of yields. We conclude that a broad class of affine diffusive, quadratic diffusive and

affine jump-diffusive models is incapable of accommodating the observed yield volatility dynamics.

Hence, yield volatility risk per se cannot be hedged by taking positions in the Treasury bond

market. We also advocate using these empirical yield volatility measures more broadly as a basis

for specification testing and (parametric) model selection within the term structure literature.
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1 Introduction

The secondary U.S. Treasury market is among the largest, most liquid, and important financial markets

worldwide. In the third quarter of 2005, daily trading volume has averaged approximately $539 billion,

about tenfold the daily volume at, e.g, the NYSE. The market is open round-the-clock, with trading

taking place in New York as well as overseas (Fleming (1997)). Competition among dealers and

brokers typically results in low bid-ask spreads, low brokerage fees, and fast order execution times.

The Federal Reserve System uses this market to implement its monetary policy through open market

interventions. Due to their low risk, U.S. Treasuries are widely purchased by money managers as well

as U.S. and foreign investors. Related, these securities serve as an input and a benchmark for the

pricing of other financial instruments. As such, the pricing and hedging of U.S. Treasuries (and their

derivatives) has been the focus of much attention.

Several years of academic research have fostered considerable progress in our understanding of the

properties of the term structure of interest rates. Litterman and Scheinkman (1991) demonstrate that

virtually all variation in U.S. Treasury rates is captured by three factors, interpreted as changes in

‘level,’ ‘steepness,’ and ‘curvature.’ This evidence has motivated much work on reduced-form term

structure models, in which bond yields are expressed as an affine (or quadratic) function of a state

vector (see, e.g., Duffie and Kan (1996), Duffie et al. (2000), and Piazzesi (2003)). These models have

proven quite successful at capturing the cross-sectional properties of bond yields (see, e.g., Ahn et al.

(2002, 2003), Brandt and Chapman (2002), and Dai and Singleton (2000)). However, some of their

implications are still controversial.

A major concern among market participants is how to hedge their positions in Treasury securities

and the associated derivatives. In particular, Litterman, Scheinkman, and Weiss (1991) note that

investors have long realized that the relative attractiveness of bonds with different maturities and

coupons depends not only on expected movement in future interest rates, but also on the uncertainty

surrounding these moves. A key implication of most affine term structure models is that the quadratic

variation of yields on bonds with any maturity is a linear combination of the term structure of bond

yields. As such, these models predict that interest rates volatility risk can be hedged by trading in a

portfolio of bonds. In this paper, we empirically examine this prediction.

Previous studies have investigated this issue by using data on the London Interbank Offered Rate

(LIBOR), swap rates, and the associated derivatives, finding conflicting evidence. Collin-Dufresne and

Goldstein (2002) conclude that swap rates have limited explanatory power for returns on at-the-money

‘straddles,’ i.e., portfolios mainly exposed to volatility risk. Motivated by this evidence, they propose

an affine term structure model in which bond prices are unaffected by changes in volatility. They

refer to this feature as the ‘unspanned stochastic volatility’ (USV) restriction. Similarly, Li and Zhao

(2005) find that some of the most sophisticated multi-factor dynamic term structure models have

serious difficulties in hedging caps and cap straddles, even though they capture bond yields well. In
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stark contrast, Fan et al. (2003) find that swaptions and even swaption straddles can be well hedged

with LIBOR bonds alone, which supports the notion that bond markets are complete.1

More recently, other studies have investigated the properties of term structure models that embed

the USV restriction. Also in this case, the evidence is mixed. For instance, Collin-Dufresne, Goldstein,

and Jones (2004, CDGJ) show that the LIBOR volatility implied by an affine multi-factor specification

from the swap rates curve can be negatively correlated with the time-series of volatility estimated with

a standard GARCH approach. In response, they argue that a four-factor USV model delivers both

realistic volatility estimates and a good cross-sectional fit. Thompson (2004) proposes a new class of

specification tests that he applies to affine models of the LIBOR swap curve. Consistent with CDGJ,

he detects problems with the unrestricted affine model at the short end of the yield curve. In contrast

to CDGJ, however, he finds that the USV restriction is strongly rejected (a result that he attributes

to the pricing errors produced by the USV model).

Jagannathan et al. (2003) find that an affine three-factor model can fit the LIBOR swap curve

rather well. However, they identify significant shortcomings in the model when they confront it with

data on caps and swaptions. They conclude that derivatives should be used for evaluating term

structure models. Building on this insight, Bikbov and Chernov (2004) investigate different versions

of an affine three-factor model using data on Eurodollar futures and options. Consistent with CDGJ,

they find that the volatility state variable implied by a USV model is more highly correlated with other

volatility measures (e.g., options implied volatilities) than the volatility factor implied by unrestricted

affine models. Like Thompson (2004) and in stark contrast to CDGJ, however, they reject the USV

restriction. Remarkably, this happens not only when the model is confronted jointly with futures

and options data, but also in the special case in which only futures data are used for estimation. A

potential and intriguing conjecture, inspired by such findings, is that affine models may be able to

accommodate the dynamic structure of yield volatility after all, but that data on derivatives prices

are required to obtain efficient inference along this dimension since measurement errors may render

the theoretical link between yield levels and volatility elusive from observed bond data alone.

We argue that the preceding literature has not focused on the fundamental yield volatility impli-

cations that characterize the affine model class. The basic prediction is that the instantaneous yield

volatility is spanned by the contemporaneous cross-section of yields. Within the diffusive model class,

a natural test of this property is to directly relate measures of realized quadratic variation to corre-

sponding movements in the term structure of yields over short, say, daily, weekly or monthly, horizons.

From this perspective, the difficulty in gauging model adequacy stems more from the unobserved or

latent nature of yield volatility than from the measurement errors associated with the extraction of

yields from observed bond prices. However, recent contributions in the volatility modeling literature
1The results in Fan et al. (2003) are consistent with the early study by Litterman, Scheinkman, and Weiss (1991),

who argue that the yield spreads of certain ‘butterfly’ combinations (which are highly sensitive to volatility) correlate

highly with the curvature factor.
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have documented, both theoretically and empirically, that realized volatility may be measured with

good precision at the daily level from intraday price data (see, e.g., Andersen et al. (2001, 2003b)

and Barndorff-Nielsen and Shephard (2002b, 2004)).2 These measures provide direct data-driven esti-

mates of the underlying realized quadratic variation and therefore endow the notion of realized daily

variation with concrete measurable content, independent of any modeling assumptions. Hence, we use

a sample of high-frequency data on U.S. Treasuries covering more than a decade to construct volatility

estimates of the yields of these securities. More specifically, we form series of intra-daily yields on

Treasuries with three- and six-month, as well as one-, two-, five-, and ten-year maturity, and then

estimate the yields’ quadratic variation by summing the squared intra-daily changes in these yields.

We may consequently test directly whether bonds can hedge volatility risk by relating our model-free

realized volatility measures to the cross-section of daily bond yields.

The advantages of our approach are manifold. First, we test the generic affine yield volatility

spanning condition directly. Hence, the analysis is independent of any particular specification of

the underlying model. In contrast, Bikbov and Chernov (2004), CDGJ, and Thompson (2004) rely

on specific affine term structure representations. As such, their analysis is a joint test of the USV

restriction and a certain interest rate model. If the latter model is misspecified, the findings from such

tests must be interpreted with caution. In addition, we emphasize that the affine model restrictions we

test are based exclusively on the affine structure under the so-called ‘equivalent martingale’ or ‘pricing’

measure, so it is independent of whether the representation under the ‘actual’ measure is non-affine as

proposed by, e.g., Duarte (2004). Second, we have access to a sequence of market prices for any given

day which allows us to control for, and minimize, the impact of measurement errors in the construction

of the zero-coupon bond yields. Third, we avoid using data for any market other than the specific

fixed-income market we analyze. This approach sidesteps potentially serious concerns regarding the

reliability of derivatives prices obtained from secondary over-the-counter markets due to liquidity and

market microstructure issues. Fourth, we also avoid having to specify an ad hoc time series model for

the conditional yield variance (expected quadratic variation) process. This is one approach previously

adopted to gauge the coherence between the volatility dynamics implied by the model and the data

(see, e.g., CDGJ and Dai and Singleton (2003)). On the other hand, the availability of the high-

frequency based realized volatility series also allows us, if necessary or convenient, to construct simple,

yet efficient, forecasts of future quadratic yield variation. In fact, such forecasts typically outperform

those obtained from standard time series volatility models based on daily or lower frequency data (see,

e.g. Andersen et al. (2003)). This facilitates direct comparison of our approach to prior contributions

along this dimension. Fifth, we obtain realized yield variation measures for multiple maturities so
2Direct measures of the low-frequency return variance have been obtainted from cumulative higher-frequency squared

returns previously, although the theoretical basis for such procedures were not articulated. Early studies include French,

Schwert, and Stambaugh (1987), Hsieh (1991), Poterba and Summers (1986), Schwert (1989, 1990), Taylor and Xu

(1997).
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that we can study the volatility dynamics across the term structure. This enhances the power of

the empirical analysis as the spanning condition should hold for each individual maturity. Sixth, the

latter point enables us to consider the more specialized predictions that stem from particular popular

models. For instance, it is common to describe the term structure of interest rates by using a multi-

factor affine model in which a single factor determines the conditional variance of the state variables.

Dai and Singleton (2000) refer to the ‘maximal’ version of this model as the A1(N) specification,

where N is a positive integer equal to the number of latent factors. Bikbov and Chernov (2004),

CDGJ, and Thompson (2004) use this model with N = 4 and/or N = 3 in their studies. A key

implication of the A1(N) model is that the innovations to the quadratic variations of any pair of

bond yields are perfectly correlated. By using our measures of realized volatility, we can examine in a

fully non-parametric setting whether this condition is consistent with the evidence. Seventh, we have

full flexibility in testing the affine spanning restriction at an arbitrary horizon, say, daily, weekly or

monthly, or, theoretically, even at an intraday level.

We also expand our specification analysis beyond the affine diffusive model class. It turns out that

the ‘quadratic term structure model’ studied by Ahn et al. (2002) have volatility spanning restrictions

effectively identical to those of the affine diffusive class, so they are covered by our analysis. In

contrast, the presence of jumps changes the spanning restriction qualitatively. For the affine jump-

diffusion class, we document that the direct spanning condition fails while the conditionally expected

future quadratic variation, as before, will be spanned by the yield cross-section. We therefore conduct

a second set of specification tests exploiting efficient quadratic yield variation forecasts generated

directly from the realized yield volatility series. These volatility forecasts can still be constructed

for an arbitrary horizon so we retain many of the advantages discussed above. However, they are

no longer entirely model-free, so we also compare these predictions to a more familiar parametric

volatility estimate, or proxy, obtained from daily data.

Our analysis hinges critically on the quality of our nonparametric realized yield volatility measures.

Consequently, we perform a variety of robustness checks to assess the reliability of these empirical

quadratic variation proxies. Most significantly, we estimate an EGARCH-type semi-nonparametric

(SNP) model (see, e.g., Gallant and Nychka (1987)) for the daily three-month maturity yield. This

model is used to compute one-day-ahead volatility forecasts, which we contrast to the corresponding

realized volatility series as well as the associated quadratic variation forecasts generated from the

realized yield volatilities. We confirm that the properties of these series are qualitatively consistent

with the anticipated relationships between volatility forecasts and the subsequent volatility realiza-

tions. Moreover, the quantitative properties of the realized yield volatility series, both in terms of their

general dynamic properties and their ‘unconditional’ term structure features, are shown to be similar

to comparable evidence from the literature. We conclude that our realized yield variation measures

are not subject to any idiosyncratic variation or systematic measurement errors which may render the
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interpretation of our results problematic.

We use our realized volatility measures to test the affine yield spanning conditions. To this end,

we estimate linear regressions in which the dependent variable is the yields’ realized volatility. At

each date, we compute average daily bond yields and we extract orthogonal principal components

from these series. We use the yields’ principal components as explanatory variables in our regressions.

In stark contrast with the notion that the yields’ quadratic variation is a linear combination of the

bond yields, the explanatory power of these regressions is, in most cases, nearly zero. For instance,

the R2 coefficient is less than 0.6% when the dependent variable is the realized volatility of yields

with maturity of two or more years. When the dependent variable is the realized volatility of yields

with maturity of one year or less, the R2 coefficient shows little improvement, ranging from 1%

to approximately 4%. Interestingly, we find that the first three principal components (i.e., level,

slope, and curvature) have insignificant coefficients in the majority of these regressions. Higher-order

principal components often enter significantly, although with limited explanatory power. This finding

is at odds with the notion that curvature is related to interest rate volatility. We have also confirmed

that these results carry over when the spanning condition is tested by using weekly and monthly

realized volatility measures. Moreover, an analysis of sub-samples shows that the volatility spanning

condition is violated consistently across different sample periods. It is consequently not surprising

that we also reject the auxiliary implications of the affine multi-factor term structure models in which

a single factor determines the conditional variance of the state variables. Finally, we provide evidence

against a conditional version of the volatility spanning condition that holds in the more general affine

jump-diffusion setting.

In conclusion, we find compelling evidence indicating that interest rate volatility cannot be ex-

tracted from the cross section of bond yields in the U.S. Treasury market. This finding underscores the

importance of adapting some variant of the USV restriction—within or outside the affine setting—to

term structure modeling, and in particular to applications that require a good fit to the yield volatility

dynamics like, e.g., the hedging of interest rate volatility risk. It remains a topic for future research

to determine which type of extension to such models can offer a framework that is both tractable and

empirically successful.

The remainder of the paper is organized as follows. In Section 2, we discuss the link between

Treasury yields and their quadratic variation in the context of affine-diffusion term structure models.

We clarify how this link is affected by the presence of jumps and we introduce our realized volatility

measures of the yields’ quadratic variation. In Section 3, we describe the U.S. Treasury market data

while in Section 4 we document the salient features of our volatility estimates relative to prior findings

in the literature. Section 5 contains our main empirical findings. In Section 5.1, we focus on affine-

diffusion models, while in Section 5.2 we extend our analysis for the presence of jumps. Concluding

remarks are in Section 6.
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2 Affine Term Structure Models

This section discusses the empirical implications of the general continuous-time affine model class for

the yield volatility of zero-coupon bonds. These models provide testable restrictions that apply not

only to standard affine multi-factor diffusions but also to the recently popular quadratic-Gaussian

models. Moreover, the testable restrictions arise directly from the affine specification of the diffusion

coefficient which is invariant across the equivalent martingale (risk-neutral) and the physical (actual)

probability measures. Hence, the restrictions remain valid for the generalization to the ‘completely

affine’ class proposed by Duffee (2002) and they also cover models which allow for a more general non-

affine drift under the physical measure, as proposed by Duarte (2004) and further analyzed in Cheridito

et al. (2005). There are also interesting predictions for the affine jump-diffusion representations of the

term structure that we delineate from the pure diffusion case. The explicit linkages between yield levels

and yield variation that we develop in detail below form the basis for our specification analysis of the

entire model class through spanning conditions involving nonparametric realized volatility measures.

2.1 Bond Yields and Yield Volatility in Affine Diffusion Models

This section reviews known aspects of affine diffusion term structure models with an emphasis on those

features that we examine in our subsequent empirical inquiry. Following Duffie and Kan (1996) and

Dai and Singleton (2000), the short term interest rate, y0(t), is an affine (i.e., linear-plus-constant)

function of a vector of state variables, X(t) = {xi(t), i = 1, . . . , N }:

y0(t) = δ0 +
N∑

i=1

δi xi(t) = δ0 + δ′XX(t) , (1)

where the state-vector X has risk-neutral dynamics

dX(t) = K(Θ − X(t))dt + Σ
√

S(t)dW Q(t) . (2)

In equation (2), W Q is an N -dimensional Brownian motion under the so-called Q-measure, K and Θ

are N × N matrices, and S(t) is a diagonal matrix with the ith diagonal element given by [S(t)]ii =

αi + β′
i X(t).

Within this setting, one can find (effectively) closed-form expressions for the time-t price of a

zero-coupon bond with time-to-maturity τ :

P (t, τ ) = eA(τ )−B(τ )′X(t) , (3)

where the functions A(τ) and B(τ) solve a system of ordinary differential equations.

This result provides a direct link between the state-vector X(t) and the term-structure of bond

yields. Specifically, the time-t yield yτ (t) on a zero-coupon bond with time-to-maturity τ is given by

P (t, τ) = e−τ yτ (t) . (4)
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Thus, we have

yτ (t) = −A(τ)
τ

+
B(τ)′

τ
X(t) . (5)

An application of Itô’s Lemma to equation (5) shows that the yield yτ follows a diffusion process:

dyτ (t) = μyτ
(X(t), t) dt +

B(τ)′

τ
Σ

√
S(t)dW Q(t) . (6)

Consequently, the (instantaneous) quadratic variation of the yield given as the squared yield volatility

coefficient for yτ is

Vyτ (t) =
B(τ)′

τ
Σ S(t)Σ′ B(τ)

τ
. (7)

Now, the elements of the S(t) matrix are affine in the state vector X(t), i.e., [S(t)]ii = αi+β′
i X(t).

Further, equation (5) implies that each state variable in the vector X(t) is an affine function of the

bond yields Y (t) = {yτj (t), j = 1, . . . , J }, where we assume that we observe a larger set of yields than

there are state variables, i.e., J ≥ N . Thus, for any τ we can find a set of constants aτ , j , j = 0, . . . , J,

so that

Vyτ (t) = aτ ,0 +
J∑

j=1

aτ , j yτj (t) . (8)

This derivation underscores the fact that the quadratic variation of (constant maturity) yields is

tied to the contemporaneous level of the yields and thus to the cross-section of bond prices through the

affine mapping in equation (8). Since the quadratic variation, almost by definition, is also related to

the time series properties of the yields, it plays a dual role in standard affine diffusive term structure

models. CDGJ highlight the implied link between the cross section of bond yields and the short rate

variation. Of course, the same relationship remains valid for any fixed maturity yield, as indicated

above, implying a range of simultaneous constraints across the yield volatility spectrum.3 One crucial

implication is that an investor can use a portfolio of zero-coupon bonds to hedge volatility risk in the

Treasury market.

There are some subtleties involved in constructing the appropriate empirical yield variation mea-

sures to represent the yield quadratic variation which appears prominently in the affine model re-

strictions above. Hence, we spell out the role of the quadratic yield variation and its relationship to

the cross-section of yields in the affine model setting in detail. First, we recall the definition of the

quadratic variation process for the constant maturity yield yτ initiated at time t0 = 0,

QVyτ (t) ≡
∫ t

0
Vyτ (s) ds . (9)

3A notable exceptions is the USV class of models of Casassus et al. (2004), Collin-Dufresne and Goldstein (2002),

CDGJ, and the related model class explored in Kimmel (2004).
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Clearly, the quadratic variation process is positive and strictly increasing in t (t > 0) as long as the

volatility coefficient remains bounded away from zero. The affine model restrictions relate naturally to

the increments in the yield quadratic variation process over daily or intraday periods [ t−h, t ], h > 0

which we denote by

QVyτ (t, h) ≡ QVyτ (t) − QVyτ (t − h) =
∫ t

t−h
Vyτ (s) ds . (10)

Next, observe that equation (8) implies,
∫ t

t−h
Vyτ (s) ds = aτ ,0 +

J∑
j=1

aτ , j

∫ t

t−h
yτj(s) ds . (11)

We may rewrite equation (11) in a more readily interpretable manner by defining yτj
(t, h) as the

average yield of yτj over [ t−h, t ]. This term corresponds directly to the integral on the extreme right

of equation (11). Then, also exploiting equation (10), we obtain the following restriction,

QVyτ (t, h) = aτ ,0 +
J∑

j=1

aτ , j yτj
(t, h) . (12)

We term this expression the fundamental affine yield variation spanning condition. The yield levels

on the right hand side are readily approximated through empirical observations on the intraday yields–

or more crudely the yields at the open and/or close of trading—across the maturity spectrum. The

quadratic variation increment on the left-hand-side is slightly more delicate, as it cannot be measured

with precision from daily data. Perhaps as a consequence of this fact, the quadratic variation of the

yields has not been the focus of direct measurement or testing within the term structure literature.

Instead, most studies exploring the affine model restrictions rely on parametric conditional yield

variance estimates or implied volatility measures backed out from derivatives prices. Although this

approach quite generally can be rigorously justified as arising from the relevant theory, the replacement

of the quadratic variation with an alternative volatility proxy is not innocuous. It inevitably entails

a loss of power in terms of testing the affine spanning condition. We discuss these issues at length

below.

2.2 Spanning Restrictions for the Conditional Yield Variance

The pure diffusive no-arbitrage setting and the associated semi-martingale representation of bond

prices imply that the predictable yield variation over short daily or intraday periods are negligible (of

order dt2) relative to the variation of the yield innovations (of order dW Q(t)2 = dt). In practical

terms this means that we safely may ignore the conditional mean of yield changes in computing the

conditional yield variance over short horizons. It follows that the conditional yield variance over

[ t − h, t ] is simply,

V ar P
t−h [ yτ (t) ] = E P

t−h

[
(yτ (t) − yτ (t − h))2

]
. (13)
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where the subscript t−h indicates that the variance and expectation are evaluated conditional on the

time t−h information set, and the superscript P indicates the so-called actual or ‘physical’ probability

measure as opposed to the equivalent martingale pricing measure, Q. Using this observation and letting

the integer n ≥ 1 denote the number of equidistant intraday yield changes sampled over the (short)

interval [ t − h, t ], we have

E P
t−h

[
(yτ (t) − yτ (t − h))2

]
= E P

t−h

⎡
⎣ ∑

i=1,... ,n

(
yτ

(
t − h +

i h

n

)
− yτ

(
t − h +

(i − 1)h
n

))2
⎤
⎦ . (14)

Equation (14) holds for an arbitrary n, so by letting n increase towards infinity we have, by basic

properties of the quadratic variation process, that

V ar P
t−h [ yτ (t) ] = E P

t−h [QVyτ (t, h) ] . (15)

This relation highlights important differences between these two concepts of yield volatility. The

conditional variance is a forward looking expectation of the future sample path variation, and it

is thus fundamentally an ex-ante concept. In contrast, the quadratic variation denotes the actual

realized variation in the sample path, so it is an ex-post (realization) measure. If the volatility is

(conditionally) deterministic as when volatility is constant, then the two notions of yield variation

coincides. In general, however, the yield variation has a sizeable, genuinely unpredictable innovation

component which renders volatility stochastic. As such, the sample variability of the quadratic yield

variation process will inevitably be substantially larger than for the conditional yield variance process

because sample realizations, by construction, fluctuate more than their a priori expectations. The

spanning condition in equation (12) ties the contemporaneous yield level and yield variation together

directly in terms of realizations. Since the (realized) quadratic variation is inherently more variable

then the ex-ante expectation, there is much more sample variation for the cross-section of yields to

rationalize than there is for the corresponding prediction based on the variation in the conditional

yield forecasts. In order to formally derive the latter implication of the affine term structure models,

we first substitute equation (12) into equation (15), to obtain,

V ar P
t−h [ yτ (t) ] = aτ ,0 +

J∑
j=1

aτ , j E P
t−h

[
yτj

(t, h)
]

. (16)

This prediction is valid only under the P measure, as it is related directly to the observed time

series variation of the yields. The conditional moments over discrete (non-infinitesimal) horizons will

differ across the measures due to the differential drift specification, even if the instantaneous volatility

(and quadratic variation) is identical under P and Q. Now, assuming that the diffusion model is

also affine under the physical measure, which still allows for the ‘essentially’ affine model of Duffee

(2002) but excludes the extension by Duarte (2004), the future expected yields will be given as a linear
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combination of the current cross-section of yields, so that

V ar P
t−h [ yτ (t) ] = bτ ,0 +

J∑
j=1

bτ , j yτj(t − h) . (17)

This affine spanning condition for the (true) conditional variance process has been tested in a

number of prior empirical studies. As already alluded to above, it is inherently less powerful in terms

of testing the underlying affine model than equation (12) and it requires the model to be affine under

both the P and Q measures. A final caveat is that the condition is only valid if it is the true conditional

variance process that appears on the left hand side of (17). In other words, in an affine model the

true conditional variance is given by some linear combination of the current yields. Hence, if the

conditional variance is specified as an ad hoc time series model such as, e.g., a GARCH style model,

which inevitably is subject to some degree of misspecification, then the class of forecasts spanned by

the yield cross-section on the right hand side of (17) should forecast future realizations of the quadratic

yield variation better, or at least no worse, than the GARCH model. Of course, such comparisons of

relative predictive ability require a fairly long sample in order to achieve sufficient statistical power.

In contrast, the fundamental affine spanning condition (12) should in principle apply to day-by-day

realizations which can be tested straightforwardly from small samples.

A similar logic applies if we use an implied volatility forecast extracted from derivatives prices in

lieu of the time series model based forecast, except that the forecasts now are formed under the pricing

measure, Q. Of course, this approach assumes that the derivatives pricing model is correctly specified

and quality data on derivatives prices are available. If this is the case, the implied conditional variance

forecasts (under Q) should also be spanned by the cross-section of yields. As for the fundamental

spanning condition (12) this formulation relies only on the model being affine under Q, so it applies

also for the Duarte style extensions of the basic affine model. On the other hand, the forecast horizon

must necessarily equal the maturity of the derivatives contracts, which typically will entail monthly

volatility predictions rather than daily or weekly forecasts, thus reducing the forecast comparison

sample and lowering test power correspondingly.

We may also explicitly relate daily changes in the conditional yield variance to the evolution of the

yield cross-section. Letting Δyτ (t) = yτ (t) − yτ (t − h) and ΔV ar P
t [ yτ (t + h) ] = V ar P

t [ yτ (t + h) ] −
V ar P

t−h [ yτ (t) ] denote period-by-period yield changes and conditional variance changes respectively,

it follows from equation (17) that

ΔV ar P
t [ yτ (t + h) ] =

J∑
j=1

bτ , j Δyτj(t) . (18)

Of course, we can derive an equivalent expression for changes in the implied volatility forecasts

under the Q measure. Several studies employ these specifications of the affine spanning conditions as

the basis for their tests. This approach is obviously closely related to the specification in equation
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(17) so we only report results for the latter in the empirical sections below. We have, however,

confirmed that the findings are qualitatively similar, albeit even less flattering for the basic affine

model restrictions, when tested using the representation in (18).

2.3 Correlation in Yield Volatility Innovations

The volatility spanning condition in equation (12) applies to any affine model of the form (1)-(2).

Naturally, additional restrictions may apply in more specific model representations. The literature

has documented a trade-off in the ability of affine models to capture the yield cross-section and the

yield volatility simultaneously. The more factors are allowed to drive the volatility dynamics the

less flexibility is allowed in specification of the risk premia and the yield correlation structure, which

hampers the cross-sectional fit. Recent empirical studies favor models with a single factor determining

the conditional variance of the state variables. Dai and Singleton (2000) refer to the ‘maximal’ version

of this model as the A1(N) specification, where N is a positive integer equal to the number of latent

factors. For example, Bikbov and Chernov (2004), CDGJ, and Thompson (2004) use this model with

N = 4 and/or N = 3 in their studies.

Because of the prominence of the affine A1(N) specification, we further develop the implied volatil-

ity restrictions within this model class. Itô’s Lemma applied to the general affine condition stated in

equation (7) shows that the yield’s quadratic variation is a diffusion process:

dVyτ (t) = μV
yτ

(X(t), t ) dt + σV
yτ

(X(t), t ) dW Q(t) . (19)

In the special case of the A1(N) model, simple algebra yields that the stochastic component of the

dVyτ diffusion in equation (19) simplifies to

dV stochastic
yτ

(t) = στ (t)
√

x1(t) dW Q
1 (t) , (20)

where x1(t) denotes the state variable that drives the volatility dynamics and στ (t) is a deterministic

term.

Consequently, for all A1(N) model the volatility innovations for any pair of yields yτ1 and yτ2 are

perfectly correlated:

corr(dVystochastic
τ1

, dV stochastic
yτ2

) = 1 . (21)

This is, of course, also not a novel insight. However, as for the volatility spanning condition, this

relation has not previously been subjected to direct empirical scrutiny based on nonparametric or

model-free measures of quadratic yield variation. Below, we use our realized volatility measures to

examine whether this model specific prediction is consistent with empirical evidence.
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2.4 Extensions to Quadratic and Affine Jump-Diffusion Models

The yield-volatility spanning condition is readily extended to cover the so-called Quadratic Term

Structure Model (QTSM) introduced by Ahn et al. (2002). In fact, as noted by, e.g., Ahn et al.

(2003), the QTSM is isomorphic to the ATSM in its mechanism for generating volatility as volatility

remains proportional to the level of the state variables. Ahn et al. (2002) and Cheng and Scaillet

(2005) formally show how the quadratic models may be embedded in an affine model with an extended

state vector. Hence, as long as we allow for a sufficiently large dimensional state vector our analysis

automatically covers the quadratic models as well.

A modification of the yield spanning condition is required, however, to accommodate the possibility

of jumps in the state variables and yields. This is a relevant extension since the empirical evidence

strongly suggests that macroeconomic announcements may induce instantaneous jumps in the yields

upon release.4 Following Duffie et al. (2000), the state vector X in an affine jump-diffusion model has

Q-dynamics

dX(t) = K(Θ − X(t))dt + Σ
√

S(t)dW Q(t) + Z dqQ(t) , (22)

where qQ is a Poisson jump-arrival process with intensity λ(X) = λ0 + λ′
XX, Z is an N × 1 vector

process with a fixed probability distribution νQ, and J(t) ≡ ΔX(t) = Z(t)dqQ(t) is the corresponding

vector jump process which is non-zero only if a jump actually occurs. Both qQ and νQ are independent

of W Q. Under these assumptions, instead of equation (6) we have

dyτ (t) = μyτ
(X(t), t) dt +

B(τ)′

τ

[
Σ

√
S(t) dW Q(t) + Z dqQ(t)

]
(23)

and we further obtain,

QVyτ (t, h) =
∫ t+h

t

B(T − s)′

T − s
Σ S(s)Σ′ B(T − s)

T − s
ds +

∑
t−h≤s≤t

[
B(T − s)′

T − s
J(s)J(s)′

B(T − s)
T − s

]
.

(24)

Notice that jump realizations induce a quadratic form dependency into the relation between the

quadratic yield variation process and the state variables so the basic affine spanning restriction no

longer applies. However, as the label ‘affine’ jump-diffusion indicates, it is still the case that the state

variables span the first two yield moments. Indeed, upon taking conditional expectations we find,

EQ
t−h

⎡
⎣ ∑

t−h≤s≤t

J(s)J(s)′

⎤
⎦ = EQ

t−h

[
Z Z ′

∫ t

t−h
(λ0 + λ′

XX(s)) ds

]
. (25)

Hence, the expected jump contribution to the quadratic variation process is an affine function of

the state variables, and since the state variables still may be written as a linear combination of the
4This extensive literature includes, e.g., Andersen et al. (2005), Balduzzi et al. (2001), Bollerslev et al. (2000), Fleming

and Remolona (1999), Johannes (2004), and Piazzesi (2005).
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yields under the Q measure, this property carries over to the full expected quadratic yield variation

process. Then, following the line of reasoning in Section 2.2, we obtain the following variant of the

spanning condition for the pure diffusive case (12) over the (short) future time interval [t, t + h],

EQ
t [QVyτ (t + h, h) ] = bτ ,0 +

J∑
j=1

bτ , j yτj (t) . (26)

This spanning condition is entirely equivalent to equation (17) and it is straightforward to derive

also the corresponding version of equation (18). Consequently, the extension to include jumps has no

impact on the conditional yield variance forecast spanning conditions under the Q measure it should

continue to hold in this more general setting. Thus, the current yields (yield changes) should span

a correctly specified and measured implied volatility forecast (changes in implied volatility forecasts)

derived from derivatives contracts. The identical spanning restriction for conditional yield variance

forecasts under the actual probability measure, P , will apply in the affine jump-diffusion setting as

well, if the expected jump distribution and jump intensity continue to be affine functions of the state

variables under P—which is in line with existing formulations of empirical models in the literature—

and the diffusive dynamics remain affine, excluding only, as in Section 2.2, models such the one in

Duarte (2004).

The conclusion is that the general formulation in Section 2.2, providing spanning conditions for

the conditional yield variance, remains largely unaltered in the affine jump-diffusion case, while the

much stricter realization-by-realization spanning constraint in equation (12) no longer applies. On the

other hand, all formulations of the yield spanning conditions are invariant to the quadratic Gaussian

model assumption as these literally can be encompassed within the affine diffusive setting.

2.5 Realized Yield Volatility Measurement

The concept of realized volatility has been advocated in the recent volatility measurement and forecast-

ing literature as a mean of approximating the actual daily realizations from the asset return quadratic

variation process. Some early applications of this idea may be found in Andersen and Bollerslev (1997,

1998). More formal theoretical justification and assessments of the associated (continuous record) as-

ymptotic theory is provided in Barndorff-Nielsen (2002a, 2002b, 2004) and Andersen et al. (2003a,

2004). The approach is fully nonparametric, and hence model-free, and utilizes the cumulative squared

high-frequency intraday returns to obtain feasible return variation measures. It is straightforward to

apply the concept for direct measurement of the quadratic variation of the yield on a bond with ma-

turity τ . Specifically, we compute the realized volatility of the yield yτ over the interval [ t − h, t ]

by

vyτ (t, h;n)2 =
∑

i=1,... ,n

(
yτ

(
t − h +

i h

n

)
− yτ

(
t − h +

(i − 1)h
n

))2

. (27)
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In line with the logic outlined above equation (15), the realized yield volatility converges, for ever

more frequent sampling, towards the underlying realization of the quadratic yield variation process.

Equation (12) links the quadratic variation of a zero-coupon yield with maturity τ to the cross-section

of bond prices. In our application, we rely on the realized yield volatility measure in equation (27) to

approximate the contemporaneous quadratic yield variation process QVyτ (t, h) on the left-hand-side

of (12).

Our analysis focuses on the volatility of bond yields. There are only few realized volatility studies

of U.S. Treasury securities such as, e.g., Andersen et al. (2005), and these invariably rely on the

realized volatility of bond returns. As such, it is useful to clarify the link between equation (27) and

the realized volatility of the bond return. To this end, we denote the continuously compounded return

over the time interval [ t − h, t ] on a zero-coupon bond with time-to-maturity τ = T − t by

r(t, h, τ ) = p(t, τ) − p(t − h, τ), 0 ≤ h ≤ t ≤ T , (28)

where p(t, τ) ≡ log(P (t, τ )) is the time-t Treasury Bill log-price. Equation (4) yields an expression for

the intra-day return during a given date t:

rτ

(
t − h +

i h

n
,
h

n

)
= −τ

(
yτ

(
t − h +

i h

n

)
− yτ

(
t − h +

(i − 1)h
n

))
. (29)

Within a day t, τ is, by industry convention, constant. Thus, the sum of the squared intra-day changes

in yields is proportional to the sum of the intra-day squared returns. The constant of proportionality

is τ2, i.e., the square of the time-to-maturity. Hence, the realized volatility of the return on a bond

with maturity τ during [ t − h, t ] is

vrτ (t, h;n)2 =
∑

i=1,... ,n

τ2

(
yτ

(
t − h +

i h

n

)
− yτ

(
t − h +

(i − 1)h
n

))2

. (30)

It is evident that the qualitative features of the realized yield volatility and realized return volatility

series are identical for a given maturity zero-coupon bond and that one may be derived from the other.

Nonetheless, in order to match the yield volatility implications from the affine model class to the cross-

section of bond yields, it is necessary to express the estimated quadratic variation in units of yield

volatility. Equation (29) then renders comparisons to corresponding findings in the literature for a

given maturity bond expressed in terms of realized return volatility straightforward.

3 U.S. Treasury Data

3.1 Intra-Day Yield Data

We rely on the GovPX database to construct intra-day series of bond yields. GovPX consolidates and

posts real-time quote and trade data from most of the major interdealer Treasury securities brokers
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(a notable exception is Cantor Fitzgerald Inc.). Taken together, these brokers account for about

two-thirds of the interdealer broker market, a fraction that declined to 42% in the first quarter of

2000. In turn, the interdealer market is approximately one half of the total market (see Fleming

(1997, 2003)). We note, however, that while the estimated bills coverage exceeds 90% in every year

of the GovPX sample, the availability of thirty-year bond data is limited because of the prominence

of Cantor Fitzgerald in the long-maturity-bonds market. Therefore, we use only data on the three-

month, six-month, and one-year bills, as well as the two-, five-, and ten-year notes in our analysis.

We rely exclusively on quotes for the on-the-run contracts, which are significantly more liquid than

off-the-run Treasuries.5

Our sample period starts at the inception date of GovPX, June 17, 1991, and ends on June, 15,

2001. More recent data are also available, but we purposely avoid using them for several reasons. First,

the 1-year Treasury Bill was no longer auctioned beginning March 2001. Second, after the end of our

sample period the GovPX coverage of the U.S. Treasury market started to decline (see, e.g., Fleming

(2003)). Third, the period following September 11, 2001, terrorist attacks has been tumultuous for

bond markets (see, e.g., Fleming and Garbade (2002)).

The U.S. Treasury market is most active during business days from early morning through the late

afternoon. Thus, we start the intra-day transaction record at 7:30AM ET and we close it at 5:00PM

ET. This window includes the time of regular macroeconomic and monetary policy announcements,6

which are among the most important determinants of yield changes (see, e.g., Andersen et al. (2003b),

Balduzzi et al. (2001), Fleming and Remolona (1997, 1999), Green (2004), and Li and Engle (1998)).

Moreover, since the vast majority of the trading in U.S. Treasuries occurs during these hours, we

also capture the activity associated with the price discovery process driven by the aggregation of

heterogeneous private information and heterogeneous interpretation of public information through

trading in the market, see, e.g., Brandt and Kavajecz (2004) and Pasquariello and Vega (2005).

The GovPX quote frequency for the specific maturities turn out not to be as high as for, e.g.,

the quotes on the individual stocks in the Dow Jones 30 index. As such, the recent literature on

selecting an optimal intra-day sampling frequency for computing the quadratic variance process in

the presence of market microstructure noise, e.g., Aı̈t-Sahalia et al. (2005a,b), Barndorff-Nielsen et

al. (2004), Hansen and Lunde (2005), and Bandi and Russell (2005a,b) is not directly applicable. We

instead follow the practice of the earlier realized volatility literature of using a fairly sparse and fixed

sampling frequency. A sensible compromise between obtaining improved information regarding the
5Fleming (2003) points out that the GovPX raw data files need to be cleaned due to some interdealer brokers’ posting

errors that are not filtered out by GovPX. Hence, prior to our analysis we implement the error correction procedures

recommended by Fleming in the appendix of his paper.
6Most regularly scheduled macroeconomic announcements take place at 8:30AM or 10AM. The statements from the

regular Federal Open Market Committee meetings are typically released around 2:15PM. Further, this window includes

the Federal Reserves’s customary intervention times (11:30AM before 1997, 10:30AM from 1997 to 1999, and 9:30AM

from 1999) and the Treasury auctions announcement times (1:30-2PM)
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strength of the underlying yield movements and adding high-frequency microstructure noise seems

to be achieved around the 10-minute sampling interval where the induced serial correlation in the

yield change series are relatively minor. Hence, at the end of each 10-minute interval, we use the

immediately preceding on-the-run quote to construct the relevant bid and ask prices. We define the

log-price, log(P (t) ), as the mid-point of the logarithmic bid and ask. We convert bond prices into

zero-coupon yields by using the so-called ‘bootstrapping’ method (see, e.g., Tuckman (2002)). Finally,

we compute the series of intra-day yield changes for each Treasury in our sample.

In the sample period, we find a small number of days during which the trading activity is very

subdued. Hence, we discard those days for which we could not find any trading activity for a period

longer than three hours from the sample.7 This approach delivers a series of 56 intra-day 10-minute

yield changes over 2,322 business days, for a total of 130,032 observations for each of the six Treasuries

in our sample. Further, we compute an average of the daily trading period yield from the 57 intra-

day yield observations, so that any i.i.d.-type measurement error becomes immaterial. This approach

should remove much concern about the measurement errors for the yield level in our tests of the

spanning condition.

Features such as price discreteness and bid-ask spread positioning due to dealer inventory con-

trol are among the market microstructure frictions that may induce negative autocorrelation in the

recorded series. In order to mitigate the impact of such institutionally driven short-term bouncing in

the prices we finally apply an MA(1) filter to the yield change series.8

3.2 Daily Constant-Maturity Yield Data

As previously mentioned, the GovPX coverage of the thirty-year bond is limited, partly because the

database does not include quotes from Cantor Fitzgerald Inc.. Thus, we exclude this security from

our sample of intra-day Treasury quotes. Data on the thirty-year bond at the daily frequency is,

however, available from other sources.9 Although such information is not useful for the construction

of intraday-based realized volatility series, it may nonetheless serve as a proxy for a zero-coupon yield

that may be used as a regressor in the volatility spanning condition (12). Consequently, such auxiliary

daily yields may be used to provide an additional robustness check for our results based on the intraday
7Although there are no fixed trading hours for Treasuries, the Bond Market Association (BMA) makes recommen-

dations regarding holiday closes and early closes. Specifically, the BMA often recommends that the market close early

(usually at 2 PM) before a holiday, which typically results in low trading activity in those days. As a robustness check,

we also considered eliminating days during which we could not find any trading activity for a period longer than either

two or four hours. Either approach did not change the conclusions discussed below.
8The MA coefficient estimates are as follows. For the three-month series: -0.068; six-month series: -0.066; one-year

series: -0.050; two-year series: -0.007; five-year series: -0.002; ten-year series: -0.043. As a robustness check, we also

applied the realized volatility estimator proposed in Hansen and Lunde (2005), which is designed to accommodate the

effects of market-microstructure noise. This alternative approach produces results similar to those reported below.
9The Treasury last auctioned a nominal thirty-year bond in August 2001, i.e., after the end of our sample period.
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GovPX quotes.

We therefore consider a panel of daily yields from a constant-maturity series released by the Federal

Reserve Board of Governors. In this case, we focus on maturities of three and six months, one, two,

three, five, seven, ten, and thirty years.10 These constant maturity series contain theoretical coupon-

bond yields for bonds sold at par. Hence, prior to analysis we convert these series into zero-coupon

yields via the so-called bootstrapping method.

4 Volatility Measures and Forecasts

The quality of the empirical analysis of the affine yield spanning conditions is critically dependent upon

the reliability of both the realized volatility measures and the ex-ante (model dependent) volatility

forecasts. Since the true (realized) volatility is a latent variable, it is not a trivial matter to confirm the

quality of the volatility measures. Hence, before embarking on an extensive analysis of the fundamental

spanning restrictions, we document the salient features of our volatility estimates in some detail. One

objective is to clarify the difference between our ex-post realized volatility measures and the more

common (ex-ante) volatility forecasts, where the latter, in spirit, are similar to the volatility measures

considered in previous studies examining the spanning condition. A second objective is to assess the

general properties of the series relative to prior findings in the literature. This should alleviate any

concern that our results are driven by some idiosyncratic features of our volatility series. We pay

particular attention to the degree of predictability in the yield volatility series as this is of paramount

importance for the subsequent empirical evaluation of the affine model class.

4.1 Realized Yield Volatility

We construct the realized yield volatility series in equation (27) from intra-day quote data on the

three-month, six-month, and one-year bill, as well as the two-, five-, and ten-year note. These realized

volatility estimates constitute measures of the zero-coupon yield quadratic variation during business

hours (7:30AM to 5PM E.S.T.) alone. In order to relate them to comparable studies based on daily

or lower frequency data we express them in units reflecting a yearly percentage. However, we must

also convert them from trading-day (business hours) volatility measures to actual calendar-time yield

volatility measures.

The main issue is how to account for the yield volatility outside of business hours. For each

maturity series, we compute the inter-daily yield change from the close at 5PM on each trading day to

the open at 7:30AM on the next trading day in the sample.11 Next, we construct an extended measure
10Specifically, we use the tcm3m, tcm6m, tcm1y, tcm2y, tcm3y, tcm5y, tcm7y, tcm10y, and tcm30y series from the

web site http://federalreserve.gov/releases/h15/data.htm.
11On the days in which a new on-the-run bond is introduced in the market, we use the 7:30AM on-the-run quotes

to fit a cubic spline on the term structure of three- and six-month, one-, two-, five- and ten-year yields. We use such
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of daily realized volatility by adding the squared inter-daily yield change to the sum of squared intra-

day yield changes. This extended measure is then used to estimate the longer term (average) realized

yield volatility by simply adding the daily total realized volatility across the full sample. This forms

the basis for a direct measure of the average annual realized yield variation. Finally, we rescale

each intraday-based realized volatility measure proportionally so that, across the entire sample, the

average daily annualized (standard deviation) volatility measure matches that estimated from the total

realized volatility series. We emphasize that any arbitrariness in the choice of this scaling constant is

inconsequential for our empirical analysis of the fundamental spanning restriction.

Figure 1 depicts the square root of the rescaled realized volatility series, vyτ , for all of the zero-

coupon yields that we analyze. Casual inspection reveals a great deal of covariation in the yield

volatilities across the maturity spectrum. However, there are also some striking differences. Partic-

ularly eye-catching are the extreme outliers. Although these typically are manifest in all the yields,

it is noteworthy that they appear distinctly different across the maturities. For example, there is a

pronounced spike in the realized volatility of short-maturity yields on October 8, 1998, which is much

attenuated in the longer-maturity series. On that date, investors appear to have reacted negatively

to the concerns of a slowdown in the world economy, a weakening dollar (which had lost 12% against

the Japanese Yen in less than two days), and political turmoil associated with the House of Repre-

sentatives favorable vote to begin an impeachment inquiry into President Bill Clinton. Investors were

increasingly attracted to the safety of short-term bonds, pushing their prices up in a volatile trading

session.12

In contrast, the longer maturity yields’ volatility spikes up on, e.g., June 2, 1995, when a dramatic

drop in the payroll employment number seems to have raised fears of a recession, sparking a powerful

bond market rally that sent prices of longer-term bonds to record highs.13 Similarly, on March 8,

1996, the employment report revealed that over 700,000 new jobs were added to the payroll, lowering

the unemployment rate from 5.8% to 5.5%. This event was contrary to the general perception that the

economy was bordering on recession and likely reversed expectations that the Federal Reserve might

plan to cut interest rates.14

interpolation to measure the yield on the bond that just went off-the-run. This approach compensates for possible

liquidity effects that might impact the bond price when it goes off-the-run.
12“There has been a dramatic steepening of the yield curve,” said Michael Boss, a bond trader with IBJ Lanston

Futures in Chicago, on October 8, 1998, to CNN, referring to growing differential between yields on long-term and

short-term Treasury issues. “Fear is the overriding factor here—it has just been really ugly.”
13“Economists fear that downward momentum could feed on itself,” wrote Christopher Georges in the June 5, 1995,

issue of the Wall Street Journal. “Once it gets going, the downward spiral is hard to stop,” said Sung Won Sohn, chief

economist at NorWest Corp. in Minneapolis. “The correction could go on for longer than anticipated.”
14“A paradigm shift on Wall Street today. It all started with a report showing that a stunning number of people got

jobs last month, the fastest improvement in the employment picture in 12 years. That started the “stronger economy”

neon sign flashing, and gone went hopes of lower interest rates. The bond market fell off a cliff... with the 30 year

treasury falling a heart-stopping 3 points,” reported David Brancaccio at CNN.
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These informal accounts are consistent with the widespread finding that macroeconomic announce-

ment effects are prevalent in Treasury securities, often inducing a jump in the yields and an associated

burst of volatility, see, e.g., Johannes (2004) and Andersen et al. (2005a). It also suggests that the

reaction across the maturity spectrum is a function of the news content as well as the prevalent

economic conditions. In particular, the volatility response is highly correlated for nearby maturities

as one would expect if the economic effects were deemed stronger either at the shorter, medium, or

longer-term maturities. The variance of the measurement error for daily realized volatility increases

with the level of the underlying volatility, see, e.g., Barndorff-Nielsen and Shephard (2002b). Hence,

the coherent response across nearby maturities during extreme market events indicates that the re-

alized volatilities capture the relative size of the effects adequately in spite of potential measurement

error problems.
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Figure 1: Realized Volatility Series. The plots depict the square root of the rescaled (yearly percentage)

realized volatility measures, vyτ , for the three- and six-month, one-, two-, five-, and ten-year maturity

yields (sample period: 06/17/1991–06/15/2001).

In Figure 2 we plot the average (sample) yearly realized volatility for the zero-coupon yields for
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the different maturities. For comparison, we also include an alternative measure of yield volatility,

obtained by computing the annualized standard deviation of the daily changes (from 4pm to 4pm) in

the zero-coupon yields. These graphs provide informal estimates of the ‘unconditional’ term structure

of volatility. Both plots exhibit the characteristic ‘snake’ shape documented in, e.g., Piazzesi (2003,

2005). Since our analysis is limited to yields with maturities of at least three months our measures

of volatility are largely unaffected by short-lived deviations of the short rate from the target zone,

which can push the ‘head’ of the snake further up. Moreover, the hump in the ‘back’ of the snake

appears less pronounced than what has been reported in some studies, including Dai and Singleton

(2000, 2003). Such discrepancies may arise from varying degrees of policy inertia across the sample

periods covered by the studies, as suggested by Piazzesi (2003). Overall, our realized volatility series

replicates the qualitative features of prior studies along this dimension quite nicely. Moreover, the

correspondence between the graph constructed from the intraday-yield-based measures and the daily-

yield-based measures adds further credence to the reliability of the realized volatility series.
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Figure 2: The Term Structure of Yield Volatility. The continuous line depicts the annualized percent-

age sample standard deviation of daily changes in zero-coupon yields. The dashed line depicts the

yearly percentage average realized volatility vy. In both cases, the plots are constructed using yields

with maturities of three and six months, one, two, five, and ten years (sample period: 06/17/1991–

06/15/2001).

A final critical feature of the volatility yield series is the degree of temporal dependency. This fea-

ture may be gauged from the sample correlogram for the daily logarithmic realized volatility in Figure

3. The displays reveal a distinct hyperbolically declining pattern that is readily, albeit informally,

assessed in quantitative terms by reference to the superimposed fitted hyperbolic curves. The findings
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are again remarkably similar across the maturities. In terms of the standard coefficient for fractional

integration, d (0 < d < 1), the fitted curves (going from the shorter to longer maturities) imply values

of 0.35, 0.34, 0.36, 0.33, 0.31 and 0.30. This evidence is suggestive of the presence of long-memory-type

persistence in the volatility process for each of these series, consistent with previous evidence from

the analysis of realized volatilities on equities (e.g., Andersen and Bollerslev (1997a) and Andersen,

Bollerslev, Diebold, and Ebens (2001)) and currencies (e.g., Andersen (2000), Andersen and Bollerslev

(1997a,b, 1998b)).
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Figure 3: Sample Autocorrelations. The continuous line plots the sample autocorrelations for daily

logarithmic realized volatility. The dotted line depicts the minimum-distance estimates of the hyper-

bolic decay rate, cLag2d−1. Sample period: 06/17/1991–06/15/2001.

In conclusion, we find that the realized yield volatility series are consistent with prior evidence in

terms of the overall (unconditional) yield volatility level across the term structure, that they appear

to capture the volatility bursts associated with the release of macroeconomic announcements in a

credible fashion, and that they display the type of temporal dependencies that may be anticipated

from existing evidence for equity and foreign exchange markets as well as fixed income markets. These
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findings in combination with the consistent features observed across the nearby maturities suggest that

the series are highly informative regarding the underlying true yield volatility realizations. There is

no indication that the measurement errors associated with the use of ten-minute yield changes or the

impact of microstructure noise has seriously impaired the quality of these volatility proxies.

4.2 Volatility Forecasts

In line with the approach in the preceding section, we explore yield volatility forecasts based on

intraday yield data as well as daily three-month Treasury bill yield observations. This serves both

as a robustness check for the realized yield volatility measures and facilitates direct comparison to

existing studies. We first study the properties of standard daily time series forecasts of volatility and

later explore forecasts generated directly from the historical realized yield volatility series.

4.2.1 EGARCH-Type Volatility Forecasts

This section reports on the estimation of a daily EGARCH-type model for the short-term zero-coupon

yield. The model generates daily volatility forecasts which we compare and contrast to the daily

realized volatility series of Section 4.1.

In order to retain the nonparametric flavor of our analysis we focus on the family of SNP densities

introduced by Gallant and Nychka (1987). Nonetheless, as is commonly done, we rely on a condi-

tionally Gaussian leading term, designed to capture the bulk of the dependency in the conditional

mean and variance of the series, in order to maintain parsimony and avoid excessive overfitting. In

particular, we use an ARMA specification for the conditional mean and an EGARCH structure for

the conditional variance to capture the heteroskedasticity in the short-rate dynamics. Further, we

allow for an additional source of interaction via an interest level effect, i.e., the EGARCH conditional

variance term is scaled by y2δ
t . In line with the SNP approach, we allow a squared Hermite polynomial

expansion to accommodate any remaining non-normality and time-series dependence in the innovation

process. The former consideration is particularly important given the evidence of jump-like outliers

in the daily yield series. In sum, we obtain a conditional density for the daily yield of the following

form:

fK(yt|xt; ξ) = c(yt, xt)
φ(zt)

yδ
t−1

√
ht

, (31)

where φ(.) is the standard normal density, xt = {y1, . . . , yt−1} reflects the information set, ξ is the

SNP density parameter vector, and c(yt, xt) denotes the SNP density expansion designed to allow for

nonnormal innovations and to accommodate remaining conditionally heteroskedastic features in the

innovation process. The c(yt, xt) part of the density representation turns out to be immaterial for the

line of argument we pursue, especially since we end up not incorporating any additional time series

dependence into the model through this term. Hence, we suppress the explicit form of this component
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here, but for completeness it is given in the Appendix. The scaling of c(yt, xt) automatically ensures

that the SNP density appropriately integrates to unity. Finally,

zt =
yt − μt

yδ
t−1

√
ht

, μt = φ0 +
s∑

i=1

φiyt−i +
u∑

i=1

ζi(yt−i − μt−i) ,

ln ht = ω (1 −
p∑

i=1

βi) +
p∑

i=1

βi ln ht−i + (1 + α1L + ... + αqL
q) [ θ1zt−1 + θ2 (b(zt−1) −

√
2/π) ] .

As in Andersen and Lund (1997) and Andersen et al. (2002, 2004), b(z) is used merely as a numerical

device to provide a smooth, twice-differentiable approximation to the absolute value operator in the

EGARCH variance equation. More in-depth discussion of the implementation of the SNP approach

within a similar setting may also be found in those papers.

Because of its prominence in the literature, we focus on the three-month Treasury bill yield series.15

It is well known that a long sample period is required to pin down the moments of a persistent series

like the three-month rate and its volatility. Hence, we use the data series from July 1, 1983, to June

30, 2005, for a total of 5,498 observations. Earlier data are also available, but we purposely avoid the

period involving the FED’s monetary experiment as this arguably represents a regime shift. Table

1 provides summary statistics for the daily yield series. The first two columns correspond to the

full sample period used for estimation of the SNP density (31), while the last two columns represent

the June 17, 1991–June 15, 2001, sample period of our realized volatility series. The basic summary

statistics are quite similar across the two sample periods. In particular, the interest rate levels are

nearly identical and the kurtosis of the yield changes is exceedingly high for both samples. However, it

is apparent that the 1991-2001 period is characterized by a comparatively low level of yield volatility.

Table 1: Summary statistics for U.S. three-month T-Bill yield data. All figures are computed using

daily yields expressed in percentage form on a yearly basis.

07/01/1983–06/30/2005 06/17/1991–06/15/2001

y Δy y Δy

Mean 5.0876 -0.0010 4.6441 -0.0009
Std. Dev. 2.3041 0.0568 0.9198 0.0467
Skewness 0.0475 -0.5392 -0.5512 -0.7656
Kurtosis 2.5134 15.6448 2.2427 19.8250

We estimate the SNP density in (31) by (quasi-)maximum likelihood (QML). The Bayesian (BIC)
15We use the H.15 series of daily three-month T-Bill bank discount rates from the St. Louis FED web site,

http://research.stlouisfed.org/fred2/. Prior to analysis, we convert the H.15 bank-discount-rate data into continuously

compounded yields.
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and Hannan-Quinn (H-Q) information criteria are used to guide model selection while additional

information regarding the proper choice of the ARMA and EGARCH terms is gleaned from Ljung-

Box tests for the autocorrelation of the raw and squared residuals. This analysis leads us to an

ARMA(6,1)-Level-EGARCH(2,1)-Kz(8)-Kx(0) specification.16 The Kx(0) representation implies that

we, as alluded to earlier, found no need for additional conditional heteroskedasticity beyond what

is captured by the EGARCH-Level representation of the conditionally Gaussian leading term. On

the other hand, the Kz(8) term accommodates strong departures from conditional normality of the

standardized innovations.

High-order ARMA and EGARCH terms are needed to capture the conditional mean and volatility

dynamics of the three-month yield series. Further, our analysis points towards extremely persistent

first- and second-order conditional moments, even if the absolute value of the roots of the ARMA and

EGARCH autoregressive polynomials remain outside the unit circle, i.e., the stationarity conditions

are satisfied. Specifically, the inverse of the dominant root for the conditional mean polynomial is

0.9998, while the inverse of the roots for the conditional variance polynomial are 0.9970 and 0.9385.

Obviously, the mean dynamics is hard to distinguish from the unit root case, while the volatility roots

fall within the range that produces an autocorrelation structure which closely mimics the hyperbolic

decay associated with long-memory-type persistence.

The EGARCH-Level-SNP density (31) can be used to construct estimates for the one-day-ahead

(conditional) yield variance:

E(yt|xt; ξ) =
∫

y fK(y|xt; ξ) dy (32)

V (yt|xt; ξ) =
∫

(y − E(y|xt; ξ))2 fK(y|xt; ξ) dy , (33)

where yt is the time-t realization of the yield and xt = {y1, . . . , yt−1}.
Figure 4 depicts the one-day-ahead volatility forecasts obtained from the EGARCH-Level-SNP

model (i.e.,
√

V (yt|xt; ξ)) along with the corresponding daily realized volatility series, vy(t). Hence,

this is literally a plot of volatility forecasts versus subsequent realizations (proxied by vy(t)) in the

spirit of equation (15). The smoothing associated with the formation of ex-ante expectations within

the EGARCH-Level model is readily apparent in the contrast to the jagged nature of the realized

volatility series. Moreover, it is evident that the extreme positive outliers in the realized volatility

series, almost by definition, are not a priori predictable. Nonetheless, there is a good coherence

between the two series constructed from distinct data sources, as the long-run movements in the yield

volatility forecasts clearly are related to corresponding shifts in the overall intensity of the realized

volatility measures. The correlation among the two series amounts to about 44%. Moreover, the

overall degree of explanatory power of the forecasts for the variability of the future realized volatility

is only slightly lower than reported for futures on the 30-year U.S. Treasury yield in Andersen et al.
16Estimation results are available from the authors upon request.
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(2005). It should be kept in mind, as also documented in the latter study, that the yield volatility

predictability is considerably lower for the fixed-income markets than for return volatility in, e.g., the

equity and currency markets. Finally, we also note that the sample means of the two series are very

close at 0.0426% and 0.0486% per day for the SNP forecast and the realized volatility, respectively.
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Figure 4: U.S. three-month T-Bill yield volatility: daily realized volatility (i.e., vy(t)) versus one-day-

ahead volatility forecasts based on the SNP model (i.e.,
√

V (yt|xt; ξ)). Sample period: 06/17/1991–

06/15/2001.

In sum, we conclude that our short-term yield realized volatility series is coherent with the volatility

forecasts obtained from the extended EGARCH model estimated at the daily frequency. The overall

relationship between the forecasts and the subsequent volatility realizations is qualitatively analogous

to what has been found in prior empirical work and it is consistent with the theoretical inquiry

regarding this relationship in Andersen, Bollerslev, and Meddahi (2004, 2005). Hence, the EGARCH-

Level forecasts appear well calibrated, which in turn suggests that the daily realized yield volatility

series provide informative and useful measures of the underlying quadratic yield variation realizations.

4.2.2 Realized Volatility Component Model Forecasts

The availability of daily model-free realized volatility measures facilitates forecast procedures that

rely on standard time-series models built directly on the history of ex-post volatilities. This approach

provides a simple and powerful alternative to the EGARCH-type forecasts explored above. A conve-

nient model along these lines is the HAR-RV form studied in Andersen et al. (2005), Corsi (2003),
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and Müller et al. (1997):

vyτ (t + h, h)2

h
= β0 + βD vyτ (t, 1)2 + βW

vyτ (t, 5)2

5
+ βM

vyτ (t, 21)2

21
+ ε(t + h) , (34)

where the left-hand-side variable is the daily (h = 1), overlapping weekly (h = 5), and overlapping

monthly (h = 21) realized volatility for zero-coupon yields with maturity τ . An important feature

of the HAR-RV model is that the mixing of three volatility components allows for a slow volatility

autocorrelation decay that is nearly indistinguishable from that of a hyperbolic pattern. This is

consistent with the properties of our realized volatility series previously documented in Section 4.1.

In Table 2, we report ordinary least squares (OLS) estimation results for the HAR-RV model (34).

We note that the estimates for βD, βW , and βM confirm the existence of highly persistent volatility

dependence. Moreover, the relative importance of the monthly volatility component increases from

the daily to the weekly and monthly regressions, and vice-versa for the daily volatility component.

Finally, the R2 coefficients improve considerably with the forecasting horizon, consistent with the

theory in Andersen, Bollerslev, and Meddahi (2004) and the evidence documented in, e.g., Andersen

et al. (2003a). Intuitively, the extreme right skew in the realized volatility series induced by occasional

volatility bursts renders it difficult to predict in the metric of explained ex-post sample variation, but

this effect is less prominent at the slightly longer horizons.

Nonetheless, there is good coherence between the HAR-RV forecasts and the ex-post volatility

realizations. This is illustrated in Table 3, where we report sample correlations between the square-root

of the HAR-RV forecasts, v̂yτ (t, h), and the realized volatility series, vyτ (t, h), for different forecasting

horizons, h = 1, 5, and 21. This point is further illustrated in Figure 5, which depict the HAR-RV

forecasts, v̂yτ (t, h), h = 1, along with the corresponding realized volatility series. As seen earlier in

Figure 4, the long-run movements in the forecasts are clearly related to corresponding shifts in the

overall intensity of the realized volatility measures.

In sum, we conclude that our HAR-RV forecasts are informative about the subsequent volatility

realizations. Moreover, the relation between a-priori and ex-post estimates is consistent with the results

in Section 4.2.1 and it is in line with the predictions of the theoretical literature (see, e.g., Andersen,

Bollerslev, and Meddahi (2004, 2005)). This evidence lends some credibility to the empirical analysis

of the affine spanning conditions below.
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Table 2: Daily, Weekly, and Monthly HAR-RV Regressions. We report OLS estimates for
vyτ (t+h,h)2

h = β0 + βD vyτ (t, 1)2 + βW
vyτ (t,5)2

5 + βM
vyτ (t,21)2

21 + ε(t + h) ,

where the dependent variable is the daily (h = 1), overlapping weekly (h = 5), and overlapping

monthly (h = 21) realized volatility for zero-coupon yields with maturity τ = 3M, 6M, 1Y, 2Y,

5Y, and 10Y. Realized volatilities are constructed by using 10-minute yield-changes sampled from

06/17/1991 to 06/15/2001. Standard errors estimates are robust with respect to both autocorrelation

and heteroskedasticy. Coefficient t-ratios are in square brackets.

v2
yτ

, τ = 3M v2
yτ

, τ = 6M v2
yτ

, τ = 1Y

h 1 5 21 1 5 21 1 5 21

β0
0.0012 0.0015 0.0021 0.0012 0.0014 0.0019 0.0018 0.0020 0.0025
[ 4.03] [ 4.44] [ 6.87] [ 4.79] [ 5.35] [ 7.72] [ 6.06] [ 6.67] [ 8.07]

βD
0.0576 0.0442 0.0248 -0.0084 0.0241 0.0125 0.0266 0.0131 0.0072
[ 0.92] [ 2.39] [ 2.07] [-0.30] [ 1.68] [ 1.84] [ 1.10] [ 1.07] [ 1.20]

βW
0.2263 0.1765 0.1349 0.2460 0.1652 0.1338 0.0979 0.0857 0.0844
[ 3.35] [ 3.37] [ 2.36] [ 2.78] [ 3.04] [ 2.88] [ 1.74] [ 1.98] [ 2.41]

βM
0.3658 0.3456 0.2370 0.3715 0.3676 0.2439 0.4339 0.4247 0.3116
[ 2.50] [ 2.77] [ 2.53] [ 4.29] [ 4.14] [ 2.89] [ 5.50] [ 5.20] [ 4.17]

R2
Adj. 8.30% 17.83% 17.99% 5.69% 15.73% 16.85% 3.65% 11.83% 17.03%

v2
yτ

, τ = 2Y v2
yτ

, τ = 5Y v2
yτ

, τ = 10Y

h 1 5 21 1 5 21 1 5 21

β0
0.0024 0.0026 0.0033 0.0023 0.0025 0.0033 0.0025 0.0026 0.0033
[ 6.91] [ 7.51] [ 9.55] [ 8.10] [ 8.77] [11.15] [ 8.17] [ 9.03] [11.42]

βD
0.0291 0.0055 0.0059 0.0470 0.0154 0.0091 0.0185 0.0170 0.0047
[ 1.53] [ 0.57] [ 1.10] [ 1.44] [ 1.43] [ 1.60] [ 0.57] [ 1.77] [ 0.99]

βW
0.0657 0.0936 0.0919 0.1313 0.1398 0.0980 0.1713 0.1206 0.0755
[ 1.32] [ 2.25] [ 2.53] [ 2.65] [ 4.01] [ 3.01] [ 2.27] [ 2.43] [ 2.99]

βM
0.4021 0.3638 0.2175 0.3553 0.3328 0.2316 0.2431 0.2622 0.1825
[ 4.16] [ 3.95] [ 3.14] [ 4.48] [ 4.65] [ 4.22] [ 3.37] [ 3.66] [ 3.07]

R2
Adj. 2.53% 8.88% 11.20% 3.77% 11.09% 12.85% 2.23% 6.96% 7.83%
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Table 3: Sample correlation between the square-root of the HAR-RV forecasts, v̂yτ (t, h), and the

realized volatility series, vyτ (t, h), τ = 3M, 6M, 1Y, 2Y, 5Y, and 10Y. The forecasting horizons are

one day (h = 1), one week (h = 5), and one month (h = 21), respectively.

h 3M 6M 1Y 2Y 5Y 10Y

1 44.37% 36.37% 34.01% 30.60% 33.19% 25.92%
5 50.82% 47.26% 44.37% 40.11% 42.30% 33.36%
21 47.94% 45.63% 46.02% 38.74% 40.93% 32.51%
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Figure 5: One-day-ahead HAR-RV forecasts, v̂yτ (t, 1), and realized volatility series, vyτ (t, 1) (daily

percentage scaling). Sample period: 07/17/1991—03/27/2001.
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5 Evidence on the Affine Spanning Conditions

This section presents our main empirical findings. First, in Section 5.1 we focus on the empirical

implications of multi-factor affine diffusion models previously summarized in Sections 2.1-2.3. Then,

in Section 5.2 we extend our analysis to a jump-diffusion setting, as discussed in Section 2.4.

5.1 Affine Diffusion Models

5.1.1 Can Bonds Hedge Volatility Risk?

The fundamental yield spanning condition in equation (12) should be satisfied by any affine (and

quadratic) diffusion model. In order to assess this prediction empirically, we consider a regression

model in which the dependent variable is the realized yield volatility. To construct a proxy for the

independent variables, we compute the daily average of the intra-day zero-coupon yields series with

three-month, six-month, one-, two-, five-, and ten-year maturity. This approach has the important

advantage of reducing possible problems due to the presence of any non-systematic measurement error

in the zero-coupon yields.

To alleviate the multi-collinearity problem, we extract orthogonal principal components from the

panel of average daily yields. As usual, we find that the first three components correlate very highly

with empirical measures of the yield level, the slope of the yield curve and the curvature of the yield

curve. Although these first three components, as commonly found, capture almost all of the yields’

variation over time, we include all six of them in our regressions to make sure that our right-hand-side

variables capture the entire yields’ variation. This approach provides some robustness towards also

including yields that may be relevant for the quadratic model class, which may involve a substantial

amount of affine yield factors. We denote the principal components, or factors, by PCj , j = 1, . . . , 6.

We use ordinary least squares to estimate the model

v2
yτ

(t, h) = β0 +
6∑

j=1

βjPCj(t, h) + ε(t) . (35)

In this section, we report results based on daily realized volatility measures, i.e., h = 1. As a robustness

check, we also discuss results for volatility measures at the weekly (h = 5) or monthly (h = 21)

frequency in Section 5.1.2 below.

Panel A of Table 4 reports results based on the full sample of daily data from 06/17/1991 to

06/15/2001. For concreteness, we initially focus on the regression with the shortest maturity (three-

month) realized yield volatility, i.e., v2
yτ

, τ = 3M, as the dependent variable. Remarkably, the R2

coefficient of this regression is only 3%. In theory, and ignoring measurement error, this regression

should virtually have one-hundred per cent explanatory power. The result therefore suggests that

a portfolio of bonds has very limited power to span (hedge) volatility risk, in stark contrast to the
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predictions from the entire affine diffusive class of models. In further interpreting this result, it is

noteworthy that the coefficients on the first three principal components are insignificant, while higher-

order factors enter significantly in the regression. Hence, whatever explanatory power the yield cross-

section possesses, it is not represented by the usual factors identified in affine term structure models.

In other words, the findings are even more problematic for three- or four-factor affine diffusive models

which are quite standard in the recent literature. The evidence is also at odds with the findings of,

e.g., Litterman, Scheinkman, and Weiss (1991), who conclude that interest rate volatility is linked to

the curvature factor.

The results from estimating the model (35) with the realized volatility of longer-maturity yields as

the dependent variable are given in Table 4, Panel A. The explanatory power deteriorates considerably

compared to the case involving the shorter rate yield volatility. In particular, for maturities longer

than two years, the R2 coefficients are essentially zero. This evidence has striking implications. In

particular, the failings of the affine diffusive models do not appear to be driven by some idiosyncratic

features of the yield dynamics at the short end of the maturity spectrum. These findings strengthen

the observations in, e.g., Ahn et al. (2003) and Dai and Singleton (2000)) that the standard affine

models have difficulty in accommodating the volatility dynamics of yields at different maturities. Since

the spanning condition we explore is applicable across the entire model class, we conclude that there

is no potential for any model of this type to fit the observed yield volatility structure. Instead, there

seems to be a need for multiple stochastic volatility factors that are not directly tied to the yield

cross-section. Such specifications will either fall outside the affine diffusion model class or incorporate

multiple volatility factors subject to the USV restriction.

We also estimate the covariance matrix of the residuals from the six regressions reported in Panel

A and we use it to perform a principal component analysis. This exercise is in the spirit of Collin-

Dufresne and Goldstein (2002), who perform a principal component analysis of the residuals from

the regressions of returns on at-the-money straddles (i.e., portfolios mainly exposed to volatility risk)

against changes in swap rates. As emphasized previously, however, our test procedure should be the

more powerful one of the two. Nonetheless, consistent with their results, we find that the first principal

component explains more than 77% of the variation in the model residuals (Panel B). This evidence

confirms that the limited explanatory power of the regressions in Panel A is not due to noisy data.

In contrast, there appears to be a dominant common factor that drives the volatility of zero-coupon

yields at different maturities and is unrelated to the level of the yields.

5.1.2 Robustness of the Results

As a robustness check, we estimate the model over many different sub-samples and for the yield

variation measured over different horizons. For each sub-sample, we fit six distinct regressions corre-

sponding to having the realized zero-coupon yield volatility for a specific maturity as the dependent
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variable. However, to conserve space in Table 5 we only report estimates for the regressions based on

the three-month, two-year, and ten-year realized volatility which are representative of the full set of

results.

Panel A contains estimation results for the period considered in Bikbov and Chernov (2004), May

1, 1994 - June 27, 2001. As noted in Piazzesi (2005), starting with the first Federal Open Market

Committee (FOMC) meeting of 1994 the Fed has been announcing the new target overnight rate in

the federal funds market at the end of each meeting. The Fed also changed the size and timing of

target moves. Therefore, this period may arguably be interpreted as a single monetary policy regime.

Again, there is no indication that interest rate volatility can be extracted from a panel of bond yields.

Further, we perform a principal component analysis of the residuals from the regressions estimated

over this sample period. As reported in Panel B, we confirm that a single dominant factor explains

most of the variation in our realized volatility series that is not associated with changes in the yields.

Virtually identical results were found for the related sample period, 02/01/95 to 12/29/2000, analyzed

by Collin-Dufresne and Goldstein (2002).

Panels C and D report results separately for the first and second parts of our sample. The explana-

tory power of the regressions with the short-term realized volatility as a dependent variable improves

slightly compared to what we have found for the full sample. However, bond yields have virtually

no explanatory power towards the realized volatility of longer-maturity rates. Further, contrary to

the findings for the full sample, the loading on the first principal component is generally significant

in both sub-samples. However, it is positive during the first sample and negative during the second.

Since this factor reflects shifts in yield levels, it suggests that the so-called ‘level’ effect in volatility

may not be stable over time. Further, the lack of robustness in coefficient estimates over time suggests

that the improvement in the regressions R2 reflects in-sample over-fitting.17

The analysis in Section 4 suggests that our realized volatility series are highly informative regarding

the true underlying yield variation. In particular, there is no indication that measurement errors

associated with the use of ten-minute yield changes or the presence of microstructure noise seriously

impair the quality of these volatility proxies. Nevertheless, there may be residual concern regarding

the impact of measurement errors in our realized volatility measures. Similarly, we would also like

to assess whether observation errors might contaminate the yield proxies on the right hand side of

the regressions and cause artificial deterioration in the cohesion among the yield level and the yield
17An alternative interpretation is that the switch in sign corresponds to a change in regime within the affine model.

More generally, in such affine diffusive regime-switching models shorter sample periods would correspond more closely

to the presence of one dominant (persistent) regime over the period, which would result in a better fit over those

shorter periods. In order to informally test for this possibility, we split the full sample in five two-year periods and ran

the regressions for each sub-sample. Although the explanatory power was considerably higher for one of the shorter

samples it was still extremely low in most cases. Moreover, the signs of the coefficients associated with different principal

components were highly unstable across the sub-samples. Hence, we still did not detect any sign of a reliable link between

the yield volatility and the yield cross-section. These results are available upon request.
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volatility variation. A simple robustness check involves aggregation to a lower sampling frequency, since

random measurement errors will tend to diversify and be less important relative to the accumulated

signals in the yield changes and yield variation measures. Consequently, we test the spanning condition

(12) at the weekly frequency. For that purpose, we aggregate the daily realized volatility measures

in non-overlapping weekly series. Similarly, we construct a weekly average of the daily yields and

extract principal component from the panel of such series. We use this data to fit model (35) by

OLS. The results, in Table 6, Panel A, are consistent with our previous findings. The small increase

in overall explanatory power is consistent with the substantially lower yield variability at the weekly

compared to the daily frequency. Nonetheless, the explanatory power remains very low and virtually

non-existent for the longer maturity series. Moreover, the residual variation of the yields continues

to have a strong common component as documented in Panel B of Table 6. Hence, the weekly yield

variation also displays a strong covariation across the maturity spectrum which is unrelated to the

yield levels. Finally, we have confirmed that these results carry over to the monthly frequency.18

Finally, we conduct a second check to verify that our results are robust to the proxy used for

the bond yields on the right hand side of the regression model. Specifically, we consider a second

panel of daily yields consisting of the constant-maturity series released by the Federal Reserve Board

of Governors, discussed in detail in Section 3.2. In this case, we have a larger number of maturities

available, namely three and six month, one, two, three, five, seven, ten, and thirty year treasuries.

After converting the par coupon-yields into zero-coupon yields, we extract principal components from

the series and we employ them in the regression (35). Here, the dependent variables are the usual six

realized volatility measures constructed from intra-daily yield observations. The results, in Table 7, are

consistent with those previously reported in Table 4. Most importantly, although the R2 coefficients

for these regressions improve marginally, we still find little or no evidence that a portfolio of bonds

can span (hedge) volatility risk. This evidence makes our earlier conclusions more powerful. First,

it shows that our previous findings were not hampered by the fact that we were not using the yields

on the thirty-year bond. Second, by increasing the number of yields in the right-hand-side of our

regressions we effectively provide evidence suggesting that the spanning condition is violated even in

higher-order affine (or quadratic) models.

18Since the findings are very similar to those for the weekly horizon we do not report them here but they are available

upon request.
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Table 4: OLS Regressions Results. We report OLS estimates for the model

v2
yτ

(t, 1) = β0 +
∑6

j=1 βjPCj(t, 1) + ε(t) ,

where τ = 3M, 6M, 1Y, 2Y, 5Y, and 10Y, and PCj , j = 1, . . . , 6, are the six principal components

extracted from the panel of six zero-coupon yields. Standard errors estimates are robust with respect

to both autocorrelation and heteroskedasticy. Coefficient t-ratios are in square brackets.

Dep. variable β0 β1 β2 β3 β4 β5 β6 R2
Adj.

[t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio]

v2
yτ

, τ = 3M
0.8768 0.0430 -0.1450 -0.4276 2.6139 -4.6304 3.2651 3.12%
[12.70] [ 0.99] [-1.46] [-1.48] [ 2.10] [-3.00] [ 2.36]

v2
yτ

, τ = 6M
0.7818 0.0273 -0.0134 0.4079 2.2262 -2.3046 3.4137 2.00%
[14.75] [ 0.90] [-0.19] [ 1.44] [ 2.57] [-2.55] [ 2.62]

v2
yτ

, τ = 1Y
1.0385 0.0285 0.0614 0.6734 1.9632 -1.9673 4.4724 1.46%
[16.54] [ 0.91] [ 0.86] [ 2.04] [ 2.11] [-1.99] [ 2.51]

v2
yτ

, τ = 2Y
1.2134 0.0094 0.0078 0.7082 1.4372 -0.8654 3.9283 0.56%
[16.71] [ 0.29] [ 0.11] [ 1.80] [ 1.45] [-0.79] [ 1.75]

v2
yτ

, τ = 5Y
1.2274 0.0115 0.0019 0.1663 1.2741 -0.7163 3.2514 0.27%
[18.85] [ 0.40] [ 0.03] [ 0.46] [ 1.54] [-0.66] [ 1.75]

v2
yτ

, τ = 10Y
1.1106 0.0016 0.0749 0.3054 0.8373 -0.7222 3.1961 0.49%
[21.88] [ 0.06] [ 1.33] [ 1.10] [ 1.20] [-0.83] [ 2.03]

Panel A: Daily observations from 06/17/1991 to 06/15/2001.

1st 2nd 3rd 4th 5th 6th

77.33% 11.83% 6.26% 2.69% 1.11% 0.78%

Panel B: Percentage of the variance explained by the principal components
extracted from the OLS regressions’ residuals.
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Table 5: Robusteness Checks. For different sub-samples, we report OLS estimates of the model

v2
yτ

(t, 1) = β0 +
∑6

j=1 βjPCj(t, 1) + ε(t) ,

where τ = 3M, 6M, 1Y, 2Y, 5Y, and 10Y, and PCj , j = 1, . . . , 6, are the six principal components

extracted from the panel of six zero-coupon yields. Standard errors estimates are robust with respect

to both autocorrelation and heteroskedasticy. Coefficient t-ratios are in square brackets.

Dep. variable β0 β1 β2 β3 β4 β5 β6 R2
Adj.

[t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio]

v2
yτ

, τ = 3M
0.9515 -0.1032 0.0070 -0.8208 4.7671 -4.6604 4.1679 4.60%
[12.41] [-1.11] [ 0.09] [-1.66] [ 2.43] [-3.11] [ 2.35]

v2
yτ

, τ = 2Y
1.2404 -0.0302 -0.0302 1.3084 2.1761 -1.2886 5.7523 0.99%
[14.10] [-0.61] [-0.32] [ 1.57] [ 1.94] [-1.28] [ 1.75]

v2
yτ

, τ = 10Y
1.0855 -0.0204 0.1331 0.5950 0.4005 -1.1702 2.6763 0.92%
[20.26] [-0.56] [ 1.95] [ 1.34] [ 0.48] [-1.35] [ 1.40]

Panel A: Daily observations from 01/05/1994 to 06/27/2001.

1st 2nd 3rd 4th 5th 6th

82.52% 12.30% 2.62% 1.22% 0.78% 0.56%
Panel B: Percentage of the variance explained by the principal components
extracted from the OLS regressions’ residuals (01/05/1994—06/27/2001).

v2
yτ

, τ = 3M
0.7475 0.1373 0.1451 -0.6135 2.8796 -0.2054 5.3885 7.58%
[15.54] [ 6.97] [ 2.40] [-2.53] [ 3.69] [-0.14] [ 2.51]

v2
yτ

, τ = 2Y
1.3019 0.0854 -0.0627 0.5212 0.5744 3.3419 6.3412 0.55%
[12.60] [ 2.65] [-0.37] [ 1.24] [ 0.50] [ 1.05] [ 1.58]

v2
yτ

, τ = 10Y
1.1892 0.0438 0.0299 0.2560 1.4946 1.6768 4.0235 0.24%
[15.79] [ 1.56] [ 0.28] [ 0.74] [ 1.63] [ 0.65] [ 1.46]

Panel C: Daily observations from 06/17/1991 to 06/14/1996.

v2
yτ

, τ = 3M
0.9942 -0.3326 -0.2181 -0.0822 1.1435 -6.7605 1.8958 5.24%
[ 9.37] [-2.12] [-1.62] [-0.11] [ 0.61] [-2.31] [ 0.51]

v2
yτ

, τ = 2Y
1.1194 -0.1888 -0.1680 0.5320 0.1181 -1.0952 2.6106 1.80%
[13.42] [-2.27] [-1.17] [ 0.72] [ 0.11] [-0.77] [ 0.98]

v2
yτ

, τ = 10Y
1.0265 -0.0747 0.0045 0.0265 -0.5060 -0.0770 2.8336 0.39%
[17.28] [-1.14] [ 0.05] [ 0.05] [-0.60] [-0.06] [ 1.67]

Panel D: Daily observations from 06/17/1996 to 06/15/2001.
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Table 6: Robusteness Checks. We report OLS estimates for the model

v2
yτ

(t, 5) = β0 +
∑6

j=1 βjPCj(t, 5) + ε(t) .

The dependent variable is the annualized non-overlapping weekly realized volatility for zero-coupon

yields with maturity τ = 3M, 6M, 1Y, 2Y, 5Y, and 10Y. The explanatory variables, PCj , j = 1, . . . , 6,

are the principal components extracted from non-overlapping weekly averages of the zero-coupon

yields. Standard errors estimates are robust with respect to both autocorrelation and heteroskedasticy.

Coefficient t-ratios are in square brackets.

Dep. variable β0 β1 β2 β3 β4 β5 β6 R2
Adj.

[t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio]

v2
yτ

, τ = 3M
0.9051 0.0483 -0.1491 -0.3938 2.6805 -5.1080 3.7347 8.84%
[10.29] [ 0.90] [-1.18] [-1.23] [ 1.67] [-2.74] [ 2.42]

v2
yτ

, τ = 6M
0.8069 0.0289 -0.0140 0.4492 2.2826 -2.4539 3.3300 6.25%
[12.08] [ 0.73] [-0.16] [ 1.41] [ 2.15] [-2.23] [ 2.36]

v2
yτ

, τ = 1Y
1.0710 0.0310 0.0623 0.7299 1.9733 -2.4555 4.0574 4.82%
[13.43] [ 0.75] [ 0.65] [ 1.86] [ 1.64] [-1.96] [ 2.21]

v2
yτ

, τ = 2Y
1.2521 0.0110 0.0069 0.7743 1.2623 -1.1761 3.4252 1.61%
[13.88] [ 0.26] [ 0.08] [ 1.58] [ 1.03] [-0.93] [ 1.39]

v2
yτ

, τ = 5Y
1.2665 0.0133 0.0031 0.2084 1.2706 -1.2214 3.0622 0.49%
[15.30] [ 0.35] [ 0.04] [ 0.44] [ 1.22] [-0.93] [ 1.33]

v2
yτ

, τ = 10Y
1.1467 0.0014 0.0778 0.3433 0.9491 -1.0355 3.1208 1.87%
[19.15] [ 0.05] [ 1.25] [ 1.04] [ 1.15] [-0.93] [ 1.84]

Panel A: Non-overlapping weekly observations from 06/17/1991 to 06/15/2001.

1st 2nd 3rd 4th 5th 6th

77.79% 13.47% 5.09% 2.14% 0.91% 0.60%

Panel B: Percentage of the variance explained by the principal components
extracted from the OLS regressions’ residuals.
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5.1.3 Correlation in Realized Volatility Innovations

Here, we examine the restrictions that the A1(N) affine term structure model imposes on the quadratic

variation of bond yields. In order to check whether the condition in equation (21) is consistent with the

empirical evidence, we use the HAR-RV model discussed in Section 4.2.2 to estimate the innovations

in realized volatility series. Specifically, we construct one-day-ahead HAR-RV forecasts and compute

six innovations series by:

ε̂yτ (t) = vyτ (t, 1)2 − E[ vyτ (t, 1)2 | t − 1 ] , τ = 3M, . . . , 10Y . (36)

After removing the predictable component from the realized volatility series, we compute the

pairwise sample correlation between the volatility innovation series. The results are reported in Table

8. In contrast to the predictions of the A1(N) model, the correlations are considerably below one and

display a systematic pattern across the maturities. For instance, the correlation between the three-

month and ten-year innovations is around 40%, a number significantly below unity. The correlations

for nearly maturities are larger, but they remain much lower than predicted by an affine model with a

single state variable driving the volatility dynamics. These systematic deviations from the theoretical

benchmark suggest the need for additional factors driving the term structure of yield volatility. These

findings are robust to the analysis of different sub-samples (results available upon request).

Table 8: Sample Correlations in Realized Volatility Innovations. We filter out the predictable com-

ponent in the realized volatility series for yields with maturities of three and six months, one, two,

five, and ten years. Below, we report the pairwise percentage sample correlations between the series

of realized volatility innovations. Standard errors are in round brackets.

3M 6M 1Y 2Y 5Y

6M 70.21
(12.45)

1Y 62.75 89.21
(17.82) ( 8.43)

2Y 50.67 79.92 92.11
(19.30) (13.29) ( 7.56)

5Y 44.87 70.84 83.98 93.71
(18.74) (15.61) (11.13) ( 6.45)

10Y 39.11 58.25 64.42 71.63 75.18
(13.51) ( 9.32) ( 7.24) ( 4.33) ( 3.21)

This evidence sheds additional light on the reported tension between the time-series and cross-

sectional properties of affine term structure models. This aspect of the problem has been identified



38

by, e.g., Dai and Singleton (2000), who note that the presence of multiple square-root stochastic

volatility factors improves the model ability to fit interest rate volatility. However, in the affine diffusive

framework such an extension requires additional ‘admissibility’ conditions that force the unconditional

correlations among the factors to be non-negative, a restriction that appears to be inconsistent with

the cross-sectional properties of bond yields.19 Of course, our evidence in the preceding section implies

that a multi-factor extension with any potential of fitting the observed volatility yield structure must

be cast in a framework that transcends the standard affine diffusion models. One recent approach

is to formulate models which embed the USV restriction. These may in principle be extended to

have multiple stochastic volatility factors—including a non-affine factor like that advocated by Ahn et

al. (2003)—while retaining analytic tractability and without constraining the sign of the correlations

among the latent variables. Irrespective of whether such models ultimately will be successful, the joint

availability of realized yield volatility measures and fixed-income derivatives prices seem to provide a

promising basis for future research into these issues.

5.2 Extension to Affine Jump-Diffusion Models

As explained in Section 2.4, the spanning condition (12) for the diffusive case no longer applies in

the presence of jumps. Instead, the appropriate yield spanning condition for the affine jump-diffusion

model is given by equation (26). Of course, under relatively weak auxiliary assumptions, this restriction

is also valid for the conditional expectation evaluated under the P measure, as discussed below equation

(26), and this is the version that we focus on here.

The main difference between the two spanning conditions is that equation (26) represents forward

looking expectations rather than a realization-by-realization linkage. As a result, powerful tests of

the jump-diffusive variant of the spanning condition hinge upon the availability of reliable forecasts

for the quadratic yield variation. To this end, we rely mainly on the HAR-RV forecasts discussed

in Section 4.2.2, but for the three-month yield series we also consider the EGARCH one-day-ahead

forecast discussed in Section 4.2.1. Since condition (26) is strictly valid only when the expected yield

change is negligible, we concentrate on conditional variability forecasts for the daily horizon, although

we report results based on one-week- and one-month-ahead forecasts as a robustness check. For all

these horizons, the expected yield changes are small and the approximation error associated with the

spanning condition should be trivial.

In addition, the implementation of the empirical tests requires data on a set of contemporaneous

yields, representing the right-hand-side regressors of the spanning restriction (26). To this end, we

could either use end-of-the-day yields’ measures (with the potential advantage of providing more
19Ahn et al. (2002, 2003) and Brandt and Chapman (2002) argue that three-factor quadratic-Gaussian models provide

a better fit to interest rate volatility than previously considered specifications in the affine class (including the ‘essentially

affine’ model of Duffee (2002)).
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current informative regarding future yield changes) or a daily average of the past intra-daily yields

(likely measured with less error). Below, we report results based on the latter approach, but we have

confirmed that we obtain similar results using only yield observations sampled towards the end of the

trading day (2-5PM). This provides some further assurance that measurement error issues are not

contaminating our results.

In Table 9, we report OLS estimation results for

E[ vyτ (t, h)2 | t − h ] = β0 +
6∑

j=1

βjPCj(t − h) + ε(t) , (37)

where PCj(t−h), j = 1, . . . , 6, are the six principal components extracted from the sample of average

daily yields.

Panel A presents results for one-day-ahead volatility forecasts (h = 1). It is evident that the

explanatory power is higher than what we found in Section 5.1.1. Specifically, the R2 coefficient

for the three-month series is approximately 10% when the dependent variable is the EGARCH-type

forecast, and 11% in the case of the HAR-RV measure, thus clearly exceeding the 3% R2 found when

examining the contemporaneous yield-variation relation (see Table 4, Panel A). This improvement is

not surprising as the volatility forecasts are smooth ex-ante measures of (expected) volatility, whereas

the ex-post realized volatility measures also reflect the unpredictable yield innovations and, thus,

fluctuate much more. As such, condition (26) is considerably less stringent than version (12) from

Section 5.1.1, simply because there is less sample variation for the cross-section of yields to rationalize.

On the other hand, the 10-11% R2 is still very small given the fact that the yield cross-section should

provide the optimal forecast for future realized volatility. In fact, this finding is only compatible with

theory if the yield cross-section outperforms the time-series forecasts of yield volatility, as discussed in

detail below equation (17). However, comparing the performance of the HAR-RV forecasts reported in

Table 2 with those of the yield cross-section provided in Tables 4 and 6 for the three-month yield series

reveals that the former have considerably more explanatory power for future realized yield variation

both at the daily and weekly horizon.

Moving to results for the longer maturities in Table 9, we find that the explanatory power of these

regressions deteriorates significantly when we consider HAR-RV forecasts of longer-maturity yield

series. For instance, the R2 coefficient for two-, five-, and ten-year yields are approximately 4.4%, 2.2%,

and 5.5%, respectively. Moreover, it is again evident from our prior results that the yield volatility

forecasts constructed from the yield cross-section underperforms those of the HAR-RV model for these

maturities. Finally, it is telling that Panel B documents a strong covariation in the components of

the HAR-RV forecasts which is not explained by the yield cross-section. Hence, the univariate time

series models capture systematic comovements across the yield volatilities that cannot be extracted

from the current yield levels. In other words, there is predictable yield volatility variation which is

unrelated to the yield cross-section. Likewise, Section 5.1 documents that the realized yield variation—
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which is heavily influenced by unexpected yield innovations—cannot be explained by (unexpected)

changes in the yield levels. We have further verified that identical conclusions hold for the weekly and

monthly forecast horizons. Overall, we conclude that there is very compelling evidence against the

yield volatility spanning conditions implied by any standard model within the affine class.
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Table 9: OLS Regressions Results. We report OLS estimates for the model

E[ vyτ (t, h)2 | t − h ] = β0 +
∑6

j=1 βjPCj(t − h) + ε(t) ,

where τ = 3M, 6M, 1Y, 2Y, 5Y, and 10Y, and h = 1, 5, and 21 days. The variance forecasts

E[ vyτ (t, h)2 | t − h ] are based on the HAR-RV model estimates reported in Section 4.2.2. In the τ =

3M case, we also report results based on the one-day-ahead forecast from the SNP model estimated

in Section 4.2.1. PCj , j = 1, . . . , 6, are the principal components extracted from the panel of zero-

coupon yields. The sample period is 06/17/1991–06/15/2001. Standard errors estimates are robust

with respect to both autocorrelation and heteroskedasticy. Coefficient t-ratios are in square brackets.

Dep. variable β0 β1 β2 β3 β4 β5 β6 R2
Adj.

[t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio] [t-ratio]

SNP, τ = 3M
0.5043 0.0158 -0.0523 0.0237 0.9715 -1.4407 2.3697 10.25%
[19.44] [ 1.00] [-1.38] [ 0.19] [ 2.48] [-3.41] [ 3.59]

HAR-RV, τ = 3M
0.8782 0.0366 -0.0812 -0.1954 1.4895 -1.5876 2.7980 11.01%
[21.83] [ 1.45] [-1.35] [-1.30] [ 2.08] [-2.27] [ 2.76]

HAR-RV, τ = 6M
0.7800 0.0219 0.0078 0.2342 1.0881 -0.6961 2.0852 9.67%
[27.45] [ 1.32] [ 0.20] [ 1.65] [ 2.44] [-1.69] [ 2.69]

HAR-RV, τ = 1Y
1.0391 0.0199 0.0473 0.3451 0.7069 -0.5247 2.0495 9.13%
[33.74] [ 1.29] [ 1.28] [ 2.32] [ 1.62] [-1.23] [ 2.41]

HAR-RV, τ = 2Y
1.2181 0.0091 0.0142 0.3111 0.1271 -0.2658 1.6965 4.36%
[39.00] [ 0.63] [ 0.47] [ 1.95] [ 0.31] [-0.63] [ 2.00]

HAR-RV, τ = 5Y
1.2342 0.0134 0.0155 0.0633 0.2546 -0.3681 1.6192 2.24%
[40.72] [ 0.96] [ 0.58] [ 0.39] [ 0.68] [-0.85] [ 1.99]

HAR-RV, τ = 10Y
1.1062 -0.0005 0.0317 0.0928 0.1915 -0.2390 1.6106 5.51%
[60.25] [-0.06] [ 1.63] [ 0.99] [ 0.77] [-0.85] [ 3.19]

Panel A: The dependent variable is the one-day-ahead variance forecast (h = 1 day).

1st 2nd 3rd 4th 5th 6th

75.66% 17.82% 3.49% 1.86% 0.79% 0.38%

Panel B: Percentage of the variance explained by the principal components
extracted from the OLS regressions’ residuals.
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6 Conclusions

In recent years, the study of the term structure of interest rates has relied predominantly on continuous-

time multi-factor models and, in particular, on affine specifications. A general implication of these

models is that the (expected) quadratic yield variation for any fixed-maturity zero-coupon bond is

spanned by the contemporaneous yield cross-section. That is, these models predict that interest rate

volatility can be extracted from current bond prices.

We rely on model-free, yet efficient, yield volatility measures constructed from high-frequency

intraday data to directly test the yield volatility implications for a very broad class of term structure

models. Contrary to the affine model predictions we find that neither realized nor expected future

quadratic yield variation is spanned by the term structure of zero-coupon yields. In fact, we find a

pronounced and systematic covariation in yield volatility across the maturity spectrum that appears

essentially unrelated to the state of the term structure.

Our results shed new light on related empirical findings in the literature. First, there is extensive

evidence that short term interest rates display pronounced stochastic volatility features that are largely

unrelated to the level of the short term interest rate itself (see, e.g., Brenner, Harjes, and Kroner (1996)

and Andersen and Lund (1997)). It does seem natural, in theory, to relate the short rate volatility to

the ‘curvature’ factor in the yield curve, as originally proposed by Litterman, Scheinkman, and Weiss

(1991). This specific linkage has subsequently been questioned by various studies, and we confirm that

there is no empirical support for this specific connection. Indeed, our results imply more generally that

there is, at best, a very weak relation between the short-rate volatility factor and the term structure.

Moreover, any such link becomes virtually non-existent when we relate long maturity yield volatility to

the yield curve. Hence, the model failings are even more glaring at the long end of the term structure.

Second, we also gain a fresh perspective on the recent conflicting evidence regarding the affine

USV restriction. If we accept that standard affine models are seriously deficient in terms of their

implications for the yield volatility dynamics, it is inherently difficult to interpret hypothesis tests

concerning the USV restriction within a broader affine model setting. In fact, rejecting the USV

hypothesis in favor of an encompassing affine model leads directly back to the empirical conundrum

highlighted in the current paper. Moreover, given the additional evidence we have presented against

the specification of affine models with a single factor driving the yield volatility, it is important to exert

caution when interpreting the inference conducted in studies based on parametric representations that

fall within this particular affine framework (e.g., Bikbov and Chernov (2004), CDGJ, and Thompson

(2004)).

Taken together, our findings suggest that further extensions to the affine term structure modeling

framework are warranted. The literature provides a variety of interesting directions to pursue. One

natural and popular approach involves the linkage of the underlying yield curve factors to macroeco-

nomic variables. This may set the stage for a better understanding of the interaction between the
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term structure dynamics and both monetary policy, the general economic environment, and infla-

tionary expectations.20 A related strand of literature explores the yield curve reaction to the release

of regularly scheduled macroeconomic announcements. These news releases contribute significantly

to the observed total quadratic yield variation through both jumps and the associated short-lived

volatility bursts in the fixed-income markets. Our realized volatility measures confirm this evidence.

Further, they suggest that the reaction across the maturity spectrum is a function of the news content

as well as the prevalent economic conditions. In particular, the volatility response is highly correlated

for nearby maturities as one would expect if the economic effects were deemed stronger either at the

shorter, medium, or longer-term maturities. Hence, we find the prospects of combining models which

have general linkages to macroeconomic and monetary policy variables with models that incorporate

time-varying reactions to macroeconomic announcements to be particularly promising. This type of

approach has the potential to improve the explanatory power for the term structure dynamics and to

render the implied evolution of the yield curve more directly interpretable in economic terms.

At the more methodological level, we expect that the use of high-frequency intraday bond data

for improved measurement of the real-time evolution in yield volatility will be informative regarding

the specification of such future candidate term structure models.

Appendix

The full SNP density takes the form,

fK(yt|xt; ξ) =
(

ν + (1 − ν ) × [PK(zt, xt)]2∫
R[PK(zt, xt)]2φ(u)du

)
φ(zt)

yδ
t−1

√
ht

, ν = 0.01 , (38)

zt =
yt − μt

yδ
t−1

√
ht

,

μt = φ0 +
s∑

i=1

φiyt−i +
u∑

i=1

ζi(yt−i − μt−i) ,

ln ht = ω (1 −
p∑

i=1

βi) +
p∑

i=1

βi ln ht−i + (1 + α1L + ... + αqL
q) [ θ1zt−1 + θ2 (b(zt−1) −

√
2/π) ] ,

b(z) = |z| for |z| ≥ π/2K, b(z) = (π/2 − cos(Kz))/K for |z| < π/2K ,

PK(z, x) =
Kz∑
i=0

ai(x)zi =
Kz∑
i=0

⎛
⎝ Kx∑

|j|=0

aijx
j

⎞
⎠ zi , a00 = 1 ,

where j is a multi-index vector, xj ≡ (xj1
1 , . . . , xjM

M ), and |j | ≡ ∑M
m=1 jm.

20Previous studies along these lines include Ang et al. (2005), Bikbov and Chernov (2005), Dai and Philippon (2004),

Diebold, Piazzesi, and Rudebusch (2005), and Piazzesi (2005).
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