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Abstract

The authors study the macroeconomic effects of non-zero trend inflation in a simple dynamic

stochastic general-equilibrium model with sticky prices. They show that trend inflation leads to a

substantial reduction in the stochastic means of output, consumption, and employment. It also

leads to an increase in the variability and persistence of most aggregates. Price dispersion across

firms unambiguously increases the welfare costs of inflation. The effects hold qualitatively no

matter how sticky prices are modelled, but they are quantitatively much stronger under Calvo

pricing.

JEL classification: E24, E32
Bank classification: Business fluctuations and cycles; Economic models; Inflation and prices;
Inflation targets

Résumé

Les auteurs étudient l’incidence macroéconomique d’un taux d’inflation tendanciel non nul à

l’aide d’un modèle d’équilibre général stochastique et dynamique simple où les prix sont rigides.

Ils montrent que la présence d’une inflation tendancielle réduit de beaucoup le niveau des

moyennes stochastiques de la production, de la consommation et de l’emploi. Ils montrent aussi

qu’elle accentue la variabilité de la plupart des agrégats et la persistance de leurs fluctuations. La

dispersion des prix entre entreprises amplifie incontestablement l’effet négatif de l’inflation sur le

bien-être. Ces résultats se vérifient sur le plan qualitatif, peu importe la manière dont l’hypothèse

de rigidité des prix est modélisée, mais les effets sont plus accusés en termes quantitatifs dans un

modèle de détermination des prix à la Calvo.

Classification JEL : E24, E32
Classification de la Banque : Cycles et fluctuations économiques; Modèles économiques;
Inflation et prix; Cibles en matière d’inflation





1 Introduction

The New Keynesian Phillips curve (henceforth NKPC) is a workhorse of
modern macroeconomics.1 It has been used as a key element of dynamic
stochastic general-equilibrium (henceforth DSGE) models for theoretical,
empirical, and monetary policy analysis. The NKPC holds only under re-
strictive assumptions. Either trend inflation must be zero or firms must in-
dex their prices to past inflation, trend inflation, or target inflation.2 Solving
DSGE models without these assumptions is much more tedious. However,
trend inflation rates of zero are exceedingly rare in real-world economies,
and many prices are observed to remain fixed for long periods of time, sug-
gesting less than full indexation. Moreover, the trend level of inflation tends
to change over time. Levin and Piger (2003) and Levin, Natalucci, and
Piger (2003) provide evidence on changing trend inflation rates for several
developed countries.3 Countries whose central banks have adopted official
inflation targets have invariably opted for positive inflation targets.4

In the light of this evidence, it is not difficult to motivate the case for
studying optimizing pricing behaviour without assuming zero trend inflation
or complete indexation. In this paper, we study the macroeconomic effects of
non-zero trend inflation in a simple DSGE model. We solve the model using
a second-order approximation of its equilibrium conditions. In contrast to
previous studies, we focus on the effects of trend inflation on the stochastic
means of macroeconomic aggregates.

Our main findings can be summarized as follows. Price dispersion across
different intermediate inputs increases with trend inflation. The stochastic
mean of a summary measure of price dispersion increases by more than
its deterministic steady state as trend inflation goes up. As a result, the

1See Clarida, Gaĺı, and Gertler (1999) for a recent survey.
2That is to say, in periods when firms cannot reoptimize their prices, they can never-

theless adjust their prices according to the indexation rule. See Yun (1996) for a derivation
in the case of indexation to trend inflation.

3In the case of Canada, one can isolate four periods with different levels of non-zero
average inflation (see Demers 2003). The average rate of Canadian core inflation from
1961Q2 to 1972Q4 was 2.9 per cent, 9.3 per cent from 1973Q1 to 1981Q4, 4.5 per cent
from 1982Q1 to 1990Q4, and 1.9 per cent from 1991Q1 to 2004Q1. Even though the Bank
of Canada has had an inflation target range between 1 and 3 per cent for over a decade, it
is possible that the target range (and corresponding midpoint) may be raised or lowered
in the future.

4Ireland (2005) develops a model that allows inferences concerning the Federal Re-
serve’s inflation target. His results indicate an increase from 1.25 per cent in 1959 to more
than 8 per cent in the late 1970s, followed by a gradual reduction to below 2.5 per cent
in 2004.
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stochastic means of variables such as output, consumption, and employment
decrease. The stochastic mean of inflation increases by much more than
trend inflation when the latter is measured by its mean in a deterministic
steady state. The variability and persistence of most aggregates increase
with trend inflation, and the persistence of inflation itself is particularly
sensitive to trend inflation. Monetary policy is less effective at higher levels
of trend inflation, due to a flattening of the Phillips curve. This effect by
itself leads to an inverse relationship between trend inflation and welfare.
Price dispersion magnifies the welfare costs of trend inflation. Finally, our
results hold qualitatively no matter how nominal-price rigidity is modelled,
but the quantitative effects are much stronger under so-called Calvo pricing
than under Taylor pricing or truncated-Calvo pricing.

Our paper is related to previous studies of the effects of trend inflation.
Ascari (2004) and Bakhshi et al. (2003) set up dynamic general-equilibrium
models with Calvo pricing. They show that because of price dispersion, the
level of output declines in the deterministic steady state as trend inflation
rises. Ascari analyzes the effects of trend inflation on output persistence
by studying the impulse-response functions of output to a money-growth
shock with different levels of trend inflation. Bakhshi et al. carefully exam-
ine the effects of non-zero trend inflation on the slope of the NKPC. They
find that the curve is flatter at higher levels of trend inflation, so that in-
flation is less responsive to changes in either the output gap or a measure
of firms’ real marginal cost. Bakhshi et al. use linearized versions of first-
order conditions to derive their New Keynesian Phillips curve. Ascari uses
second-order approximations, but limits his analysis of the model’s dynamic
properties to impulse-response functions. Our paper innovates principally
by using second-order approximations to uncover the effects of shocks on the
stochastic means of variables, as well as their unconditional second moments
(volatility, correlations, and persistence).

In the second section we outline our model. In the third section we dis-
cuss how to calibrate its structural parameters, and describe our numerical
simulation methodology. We present results in the fourth section. The fifth
section concludes.

2 The Model

The economy consists of a representative household with an infinite plan-
ning horizon, a representative final-good firm, a collection of monopolisti-
cally competitive firms that produce differentiated intermediate goods, and

2



a monetary authority that sets the short-term nominal interest rate follow-
ing a Taylor rule. It finances its issuance of cash balances with lump-sum
taxation. The demand for money is motivated by real balances in the rep-
resentative household’s utility function.

2.1 Households

The representative household maximizes expected utility given by:

maxE0

∞∑

t=0

βtU

(
Ct,

Mt

Pt
,Ht

)
, (1)

where Ct is consumption, Mt is nominal balances, Pt is the price level, Ht is
hours worked, and β ∈ (0, 1) is a subjective discount factor. The functional
form of period utility is given by:

U

(
Ct,

Mt

Pt
,Ht

)
= log




[
C

σ−1
σ

t + b
1
σ
t

(
Mt

Pt

)σ−1
σ

] σ
σ−1


 + η log(1−Ht), (2)

where bt is a preference shock which can be interpreted as a money-demand
shock. The parameter σ > 0 is the elasticity of substitution between con-
sumption and real balances. This functional form leads to a conventional
money-demand equation with consumption as the scale variable. The pref-
erence shock bt follows a stationary AR(1) process in logs:

log(bt) = ρb log(bt−1) + (1− ρb) log(b) + εb,t, (3)

where ρb ∈ (0, 1), and where the stochastic shock term εb,t is identically,
independently distributed (i.i.d.) normal with a zero mean and a standard
deviation of σεA . The representative household’s budget constraint in period
t is:

PtCt +PtIt +PtCACt +Mt +
Bt

Rt
≤ PtwtHt +PtqtKt−Tt +Dt +Mt−1 +Bt−1,

(4)
where wt is the real wage, qt is the real rental rate of capital, Tt is a lump-sum
tax, Dt denotes nominal dividend payments received from monopolistically
competitive firms, It is real investment, Kt is the stock of capital, CACt is
a capital adjustment cost, and Rt is the gross nominal interest rate on debt
between t and t + 1.

Investment increases the household’s stock of capital according to

Kt+1 = (1− δ)Kt + It, (5)
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where δ ∈ (0, 1) is the depreciation rate of capital. Investment is subject to
convex adjustment costs of the following form:

CACt =
ϕ

2

(
It

Kt
− δ

)2

Kt, (6)

where ϕ is a positive parameter. The first-order conditions associated with
the optimal choice of Ct, Mt, Bt, Ht, and Kt+1 are given by:

Ct
1
σ

Ct
σ−1

σ + bt
1
σ

(
Mt
Pt

)σ−1
σ

= λt, (7)

bt
1
σ

(
Mt
Pt

)− 1
σ

Ct
σ−1

σ + bt
1
σ

(
Mt
Pt

)σ−1
σ

= λt

[
1− 1

Rt

]
, (8)

λt = βEt

(
λt+1

Rt

πt+1

)
, (9)

η
1

1−Ht
= λtwt, (10)

λt

[
1 + ϕ

(
It

Kt
− δ

)]

= βEt

{
λt+1

[
1 + qt+1 − δ + ϕ

(
It+1

Kt+1
− δ

)
+

ϕ

2

(
It+1

Kt+1
− δ

)2
]}

, (11)

where λt is the Lagrange multiplier associated with the period-t budget
constraint.

2.2 Firms

2.2.1 Representative final-good firm

The representative competitive final-good firm uses Yt(i) units of each type
of intermediate good to produce Yt units of the final good using the constant-
returns-to-scale production function given by:

Yt =
[∫ 1

0
Yt(i)

θ−1
θ di

] θ
θ−1

, (12)
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where θ > 1 is a parameter denoting the elasticity of substitution between
types of differentiated intermediate goods. The final-good firm sells its out-
put at a nominal price, Pt, and chooses Yt and Yt(i) for all i ∈ [0, 1] to
maximize its profits, given by:

PtYt −
∫ 1

0
Pt(i)Yt(i)di, (13)

subject to (12) in each period. The first-order conditions for this problem
are the constraint and:

Yt(i) =
[
Pt(i)
Pt

]−θ

Yt. (14)

Equation (14) expresses the conditional demand for intermediate good i as
a decreasing function of its relative price and an increasing function of total
output. The exact price index for final output is given by:

Pt =
[∫ 1

0
Pt(i)

1−θdi

] 1
1−θ

. (15)

2.2.2 Intermediate-goods firms

Each intermediate-good firm, indexed by i, uses Kt(i) units of capital, Ht(i)
units of labour, and aggregate technology, At, to produce Yt(i) units of the
intermediate good i. Its production function is:

Yt(i) = AtKt(i)1−αHt(i)α. (16)

The level of technology, At, follows a stationary AR(1) process given by:

log(At) = (1− ρA) log(A) + ρA log(At−1) + εA,t, (17)

where ρA ∈ (0, 1), and where εA,t ∼ N(0, σεA) .
If allowed to reoptimize its price in period t, the firm maximizes the

discounted sum of expected future profits:

maxEt

∞∑

l=0

dt+l

(
βl λt+l

λt

)(
Dt+l(i)
Pt+l

)
, (18)

where Dt+1 represents dividends in period t+ l, (βlλt+l/λt) is the stochastic
discount factor used by shareholders to value profits at date t + l, and dt+l
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is the probability that the price set in time t will still be in force at time
t + l. Different choices for dt+l will lead to different pricing schemes, as
shown below. Nominal dividends, Dt+l(i), are given by:

Dt+l(i) = P ∗
t (i)Yt+l(i)−Wt+lHt+l(i)−Qt+lKt+l(i), (19)

where P ∗
t (i) is the price set by the firm in period t, Wt is the nominal-wage

rate, and Qt is the nominal rental rate of capital. The first-order conditions
of the firm’s problem with respect to Kt(i), Ht(i), and P ∗

t are given by:

Qt

P ∗
t (i)

= (1− α)ψt(i)
Yt(i)
Kt(i)

, (20)

Wt

P ∗
t (i)

= αψt(i)
Yt(i)
Ht(i)

, (21)

P ∗
t (i) =

(
θ

θ − 1

)
Et

∑∞
l=0 βldt+l

λt+l

λt
ψt+l(i)Yt+l(Pt+l)θ

Et
∑∞

l=0 βldt+l
λt+l

λt
Yt+l(Pt+l)θ−1

, (22)

where ψt(i) denotes the real marginal cost at date t associated with firm i’s
maximization problem; it is also equal to the inverse of the markup. Accord-
ing to equations (20) and (21), the marginal products of labour and capital
both exceed their respective marginal costs. Equation (22) is the firm’s
optimal-price equation, derived from the equalization of marginal cost with
marginal revenue in a dynamic context. The term dt+l gives the probability
that the price set by the firm in period t will still apply in period t + l. The
value of dt+l depends on how we model nominal-price rigidity. We consider
three different pricing schemes, as outlined in the following subsection.

2.2.3 Pricing schemes

The pricing schemes that we consider are all time-dependent in that the
probability that a firm will readjust its price is either constant or depends
only on the length of time since it last reoptimized its price, and does not
depend on economic conditions at the firm or aggregate levels. Klenow and
Kryvtsov (2005) show that microeconomic data are broadly consistent with
time-dependent models of price adjustment.

Calvo (1983) develops a model in which each monopolistically compet-
itive firm has a constant probability of being allowed to revise its price at
the beginning of each period:

dt+l = dl, 0 ≤ l < ∞.
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Under Calvo pricing, there are an infinite number of cohorts of firms charg-
ing different prices. The Calvo pricing scheme has the well-known advan-
tage that it facilitates aggregation and leads to simple laws of motion for
the overall price level and for the price newly set by firms in the current
period. Eichenbaum and Fisher (2005) find that Calvo pricing is generally
well supported by the aggregate data.5

We present most of our results for the Calvo pricing scheme. In section
4.5, we compare the results with those obtained under two alternative pricing
schemes. Under truncated Calvo pricing, price rigidity lasts, at the most,
L periods. If a firm has not been allowed to reset its price after L periods,
it resets its price the following period with probability one. This gives the
following for dt+i:

dt+l = dl, 0 ≤ l < L, dt+l = 0, l ≥ L.

There are L different cohorts of firms of differing sizes. Under Taylor (1979)
pricing, all firms reset their prices after precisely L periods. This gives:

dt+l = 1, 0 ≤ l < L, dt+l = 0, l ≥ L.

There are L different cohorts of firms, and firms remain in the same cohort.
For simplicity, we assume that the cohorts are of identical size.

2.3 Monetary authority

The monetary authority sets the short-term nominal interest rate in accor-
dance with the following Taylor rule:

log(Rt) = (1− ρR) log(R) + ρR log(Rt−1)

+ρπ log
(πt

π̃

)
+ ρy log

(
Yt

Y

)
+ εR,t. (23)

Variables without time subscripts denote deterministic steady-state values
and εR,t is a monetary policy shock with εRt ∼ N(0, σεR). The Taylor
rule immediately implies that in the deterministic steady state the rate of
inflation will be equal to π̃. Therefore, it is natural to interpret π̃ as the
target level of inflation as well as its deterministic steady-state level.

5In their empirical model, Eichenbaum and Fisher allow for capital adjustment costs
and variable demand elasticities. We retain the usual assumptions of factor mobility
between firms and constant demand elasticity in order to simplify the exposition.
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The money stock is determined by the demand for real balances, and
lump-sum taxes are used to finance changes in the money supply. The
monetary authority has the following simple budget constraint:

Mt −Mt−1 = Tt. (24)

2.4 Aggregation

Capital is perfectly mobile across firms. Therefore, all firms share the same
capital-to-labour ratio and have identical real marginal costs, so we can drop
the (i) argument in equation (22). All firms that optimize their price in a
given period will choose the same price, so we can also drop the (i) argument
after P ∗

t . Firms setting prices at different dates will in general have different
relative prices.

Each intermediate firm that sets its relative price accepts to supply de-
mand at that price. Integrating over the conditional demand functions for
firms’ output given in (14) gives the following aggregate resource constraint:

Y s
t =

(
Ct + Kt+1 + (1− δ)Kt +

ϕ

2

(
It

Kt
− δ

)2

Kt

) ∫ 1

0

(
Pt(i)
Pt

)−θ

di.

(25)
We define

St ≡
∫ 1

0

(
Pt(i)
Pt

)−θ

di, (26)

and we have:
Y s

t = AtKt
(1−α)Ht

α, (27)

with Y s
t defined as aggregate supply and where Kt and Ht are, respectively,

the aggregate capital stock and aggregate hours worked.
The aggregate resource constraint takes into account the inefficiency in

resource allocation induced by price dispersion across firms. Because in-
dividual intermediate goods enter symmetrically and with equal weight in
the production function for the final good given by equation (12), efficient
resource allocation would dictate producing the same amount of each inter-
mediate good. Price dispersion causes the macroeconomic equilibrium to
deviate from this optimum. It can be shown that St is bounded from below
by one.6 Under Calvo pricing, St evolves according to a non-linear first-
order difference equation, as shown in the appendix. Under Taylor pricing
and truncated Calvo pricing, St can be expressed as a weighted average of

6See Schmitt-Grohe and Uribe (2005).
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past optimal prices set by different cohorts of firms. Under Calvo pricing,
the law of motion for St is given by:

St = (1− d)p∗t
−θ + dπt

θSt−1. (28)

The complete equation system used to simulate the model is given in the
appendix.

3 Calibration and Simulation Methodology

The central bank’s use of the short-term nominal interest rate as the instru-
ment of monetary policy conveys a unit root to the price level. In order to
solve the model, we normalize nominal variables by dividing by the level of
nominal balances in the economy.

We solve the model by numerical simulation, using the Dynare program
described in Juillard (2005). The program computes a second-order approxi-
mation of the model’s equilibrium conditions around its deterministic steady
state.7 As shown by Schmitt-Grohe and Uribe (2004), going from a first-
order approximation to a second-order approximation captures the impact
of a model’s stochastic shocks on the stochastic means of its endogenous
variables. This is crucial for our results.

Calibrating the model’s structural parameters is a prerequisite for nu-
merical simulations. We calibrate the model to quarterly data using stan-
dard parameter values from the literature (Table 1). They are close to the
values in Ambler, Dib, and Rebei (2004), who estimate a model similar to
the one used here by maximum-likelihood techniques.

Under Calvo pricing, the d parameter captures the constant probability
that an individual firm will not be allowed to reset its price at the beginning
of a given period. A value of 0.75 implies that firms’ prices remain fixed
for four quarters on average. With Taylor and truncated-Calvo pricing, we
assume that the maximum length of price rigidity is three periods. Under
Taylor pricing, all firms reset their price after four periods. Under truncated-
Calvo pricing, all firms that have not already been allowed to reset their
prices after four periods do so. In principle, there are several different ways
to equalize the average length of nominal rigidity across different types of
pricing schemes. We could, for example, equalize the unconditional expected
duration of price rigidity or the average length that prices have remained
fixed for the cross-section of firms at a point in time. The unconditional

7The deterministic steady state is the long-run equilibrium of the economy when all
stochastic shocks are set equal to zero, with constant levels of all normalized variables.
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expected duration of contracts under the truncated-Calvo scheme is slightly
shorter than under the other two schemes, but our results do not hinge on
this.

4 Results

We present detailed results for Calvo pricing and discuss below how the
results change with Taylor and truncated-Calvo pricing.

Tables 2 and 3 present a series of unconditional-moment statistics from
our stochastic simulations. The parameter values are those given in Table 1.
We compare the properties of our model economy for trend inflation rates
of zero and 4 per cent on an annualized basis. Figures 1 and 2 illustrate,
respectively, how the stochastic means and standard deviations of output,
consumption, the nominal interest rate, and inflation vary with the trend
rate of inflation. Figures 3 through 5 illustrate the impulse responses of vari-
ous endogenous variables to one-standard-deviation shocks to (respectively)
technology, monetary policy, and money demand. Figure 6 shows the time
paths of the (gross) nominal interest rate from Monte Carlo simulations for
different levels of trend inflation. The curves illustrate the mean response
of the interest rate as well as 95 per cent confidence intervals around the
mean.

4.1 The effect of price dispersion in the steady state

Table 2 shows clearly that the deterministic steady-state of the model is
sensitive to trend inflation. The steady-state levels of output, consumption,
and hours all fall as trend inflation increases. Steady-state output falls by
1.2 per cent and consumption falls by 1.7 per cent as trend inflation increases
from zero to 4 per cent on an annualized basis.

These results confirm those found in similar models by Ascari (2004) and
Bakhshi et al. (2003). The results are due to the effects of trend inflation on
price dispersion across firms. With positive trend inflation, firms that are
allowed to reset their price choose a price above the average price level, since
they know that the relative price of their output will be eroded over time.
Firms that have not been allowed to reset their price for many periods will
have a low relative price. As trend inflation increases, the spread between
firms’ relative prices when they reset their price and the average price level
increases, and the dispersion of prices across firms increases.

10



4.2 The effect of trend inflation on stochastic means

Table 2 illustrates another important result, which is new relative to the pre-
vious literature on the effects of trend inflation. For each of the model’s en-
dogenous variables, the spread between its value in the deterministic steady
state and its stochastic mean is greater with a trend inflation rate of 4 per
cent than with zero trend inflation. The left panels of Figure 1 confirm that
the relationship between trend inflation and the spread is monotonic under
Calvo pricing.

The mechanism that is responsible for increasing the spread between
deterministic steady states and stochastic means operates via the price-
dispersion variable, St. As equation (28) shows, shocks that modify the
optimal relative price of firms that are allowed to adjust their prices have an
impact effect on St, the size of which depends on the fraction of firms that
adjust in any given period, given by (1 − d). St is also affected by its own
first lag, and the size of this effect depends not only on the fraction of firms
that do not adjust their prices, given by d, but also on the current value of
inflation via the term in πt

θ. As trend inflation increases, inflation is higher
on average and deviations of the dispersion variable are more persistent.
The effects are non-linear: persistent increases in the spread have a greater
impact on the model’s endogenous variables than do decreases, leading to a
spread between deterministic steady state and the stochastic mean.

The bottom row of Table 2 shows the impact of trend inflation on
the price-dispersion variable itself. As shown by Schmitt-Grohe and Uribe
(2005), under zero trend inflation the dispersion variable follows, up to first
order, the univariate autoregressive process St = dSt−1. To a first-order ap-
proximation, price dispersion has no real consequences. In addition, we know
that going from a first-order to a second-order approximation affects only the
stochastic means of variables and not their unconditional second moments.
This is reflected by the very slight difference between the stochastic mean
of the dispersion variable and its deterministic steady state. This translates
into a very small impact on the stochastic means of other variables. With
an annualized trend inflation rate of 4 per cent, the spread between the
deterministic steady-state level of price dispersion and its stochastic mean
goes up considerably. This increase in stochastic mean is transmitted to all
of the other variables in the model.

Table 2 also illustrates a remarkable result concerning the average infla-
tion rate. With an annualized trend inflation rate of 4 per cent, the stochas-
tic mean of inflation is close to 7.4 per cent. This means that adopting a
positive inflation target leads to an outcome where inflation systematically
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exceeds its target. When the inflation target is set to zero, inflation is still
on average higher than the target, but only slightly. The gap between the
inflation target and the stochastic mean of inflation grows to 3.4 per cent
when the former increases to 4 per cent. Furthermore, the gap between
the level of the short-term nominal interest rate in the deterministic steady
state and its stochastic mean is 3.6 per cent. This implies that the stochas-
tic mean of the real interest rate varies directly with trend inflation. This
reinforces the negative impact of trend inflation on output and consumption
by negatively affecting the average size of the capital stock.8

4.3 The effect of trend inflation on volatility and persistence

As trend inflation goes from zero to 4 per cent, the standard deviation of
price dispersion increases considerably, as indicated by Table 2. The bottom
row of Table 3 shows that, with positive trend inflation, fluctuations in price
dispersion are highly persistent, with a first-order autocorrelation coefficient
close to one. This translates into a large impact on the standard deviations
and the persistence of all of the variables in the model.

Table 2 shows that the standard deviations of all variables except for real
balances increase as trend inflation goes from zero to 4 per cent per year.
The left panels of Figure 2 show that for output, consumption, nominal
interest rates, and inflation, the relationship between trend inflation and
the standard deviations of these variables is monotonic. The mechanism is
the same as the one driving the spread between deterministic steady states
and stochastic means. Since fluctuations in the spread variable St become
much more persistent at higher rates of trend inflation, the unconditional
variance of the spread is much higher at higher rates of trend inflation.

Table 3 shows that the persistence (measured by the first-, second-, and
third-order autocorrelations) increases as trend inflation goes from zero to 4
per cent. The only exceptions to this rule are the first-order autocorrelation
of the short-term nominal interest rate and the second- and third-order
autocorrelations of the real rental rate of capital. Once again, the mechanism
driving this increase in persistence operates via the macroeconomic impact
of the spread variable St. Since fluctuations in St are more persistent at
higher rates of trend inflation, this persistence spills over into more persistent

8If we take the Taylor rule seriously as a model of central bank behaviour, then it is
clear that a sophisticated central bank could take the dispersion between the deterministic
level and the stochastic mean into account when setting its inflation target. Insofar as
this phenomenon is not widely recognized among academic economists, it is unlikely that
central banks will be aware of it.
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fluctuations of most macroeconomic aggregates. Interestingly, it is inflation
itself whose persistence increases the most in response to an increase in
trend inflation. The intuition for this effect is clear. Firms are restricted to
fixing their nominal price for a number of periods. With low trend inflation,
the most important determinant of profits is the expected evolution of real
marginal cost. As trend inflation rises, the firm’s profits are increasingly
affected by the evolution of inflation over the life of the price contract.
Firms’ pricing decisions become more sensitive to fluctuations in inflation
and relatively less sensitive to fluctuations in macroeconomic conditions.
Fluctuations in inflation have a relatively larger impact on the optimal price
set by firms that can revise their prices. The reduced sensitivity of pricing
decisions to economic conditions means that, ceteris paribus, inflation takes
longer to return to its long-term trend level after the economy experiences
a structural shock.

Figures 3 through 5 present evidence concerning persistence in the form
of impulse-response functions of endogenous variables to different structural
shocks, comparing the impulse responses at zero trend inflation and with a
trend inflation rate of 4 per cent. The impulse-response functions are com-
patible with the evidence provided by Ascari (2004), who shows that impulse
responses are magnified and more persistent with higher trend inflation.

4.4 Trend inflation, the effectiveness of monetary policy, and
welfare

Under Calvo pricing, the system of equations given in the appendix ob-
scures the trade-off between output variability and inflation variability that
is brought out by the NKPC. We show in a companion paper (Amano, Am-
bler, and Rebei 2005) that it is possible to derive the following extended
NKPC using a linear approximation of firms’ pricing decisions around the
trend rate of inflation:

πt = βΠEtπt+1 + γ(Π)yt + εt + vt, (29)

where yt measures the output gap, γ(Π) is a coefficient that depends in-
versely on the rate of trend inflation given by Π, εt is an ad hoc cost-push
shock, and vt is a term that obeys the following dynamic equation:

vt =
γ(Π)(Π− 1)
(1− θΠλ)

{
θΠλ−1[(λ− 1)Etπt+1 + Etvt+1]

}
. (30)

Equation (29) illustrates the result shown by Ascari (2004) and Bakhshi et
al. (2003) that the Phillips curve becomes flatter at higher rates of trend
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inflation. At higher rates of trend inflation, firms put a larger weight on
future inflation relative to future economic conditions (fluctuations in real
marginal cost as proxied by fluctuations in the output gap) when choosing
their optimal price.

One implication of a flatter Phillips curve at higher rates of trend in-
flation is that larger shifts in aggregate demand are required to effect the
same change in current inflation. Monetary policy has effects in our model
because of its impact on aggregate demand. This means that monetary pol-
icy is less effective in reducing short-term fluctuations in inflation at higher
rates of trend inflation.9 We show in our companion paper that this implies
a negative relationship between trend inflation and welfare that results from
the reduced effectiveness of monetary policy under trend inflation. This neg-
ative relationship abstracts completely from the effects of price dispersion on
macroeconomic equilibrium and welfare. Once we account for the effects of
price dispersion by solving the model using higher-order numerical approx-
imation techniques, the argument for price stability (or at least for a very
low rate of trend inflation) becomes even stronger. By reducing the stochas-
tic means of output and consumption, increasing price dispersion at higher
rates of trend inflation reinforces the negative impact of trend inflation on
welfare. Table 2 illustrates this effect clearly. It shows the deterministic
steady-state level of period utility under zero inflation and with inflation at
an annualized rate of 4 per cent. Both decline as trend inflation increases,
and as with other variables, the spread between the deterministic steady
state and the mean increases with trend inflation.10

4.5 Taylor and truncated-Calvo pricing

Figures 1 and 2 show that the main results of our paper concerning the
effects of trend inflation hold qualitatively under different pricing schemes.
The spread between deterministic steady states and stochastic means and
standard deviations are still positively related to trend inflation. However,
the quantitative impact of trend inflation is very much smaller. These results
confirm and extend previous results in the literature. Ascari (2004) shows in
a similar model that when Taylor pricing is used instead of Calvo contracts,

9For some empirical evidence that this in fact has been the case in the United States,
see Boivin and Giannoni (2003).

10Period utility is directly related to unconditional expected welfare. It ignores any
transitional welfare costs during the transition from high trend inflation to a lower level.
Wolman (2001) and Ambler and Entekhabi (2005) show that low positive rates of trend in-
flation can be beneficial for welfare because they reduce the average size of firms’ markups,
but this effect is quantitatively not very important.
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the level of output in the deterministic steady state is much less sensitive
to variations in the level of trend inflation. Bakhshi et al. (2003) show
that steady-state inflation has a much smaller influence on the deterministic
steady-state level of output in a model with Calvo pricing if the probabil-
ity that firms revise their prices is made to depend on the level of trend
inflation. Our results are new in showing the quantitative importance of
different pricing schemes on the spread between deterministic steady states
and stochastic means and on the unconditional variances of macroeconomic
aggregates.

The reasons for the quantitative importance of price dispersion under
Calvo pricing are clear. With Calvo pricing, a small fraction of firms have
not been allowed to adjust their nominal prices for many periods. With
positive trend inflation, their relative prices are substantially below those
of their competitors. As trend inflation increases, they come to capture an
increasingly large share of the total market for intermediate goods. Ascari
(2004) and Bakhshi et al. (2003) show that for even moderate rates of infla-
tion, the steady-state level of output can fall to zero. The inflation rate at
which this occurs depends inversely on the elasticity of substitution across
different types of intermediate goods. One interpretation of their results is
that at higher rates of inflation the firms with low relative prices capture
the entire market, leaving no demand for firms with higher relative prices.

The strong quantitative differences between the stochastic properties of
the model under Calvo pricing and other pricing schemes can explain some
important differences in results in the literature concerning the macroeco-
nomic effects of trend inflation. For example, two recent papers compare
optimal monetary policy and the optimal choice of the inflation target in
models with price rigidity.

Schmitt-Grohe and Uribe (2005) analyze optimal monetary policy in a
model with Calvo pricing. Their model includes government transfers to
households that are calibrated to match their average value in the U.S. data
as a fraction of GDP. In this context, inflation acts as a non-distortionary
way of taxing back a fraction of government transfers. By itself, this effect
would lead to an optimal inflation target that is significantly greater than
zero. However, Schmitt-Grohe and Uribe find that the optimal inflation rate
is very close to zero. In their model, there are three fundamental forces that
affect the optimal inflation rate. The first is the public finance effect that
would lead to positive inflation. The second is the Friedman rule, which
is operative in their model and would lead to negative inflation. The third
is the impact of price dispersion both in the deterministic steady states
and in response to shocks. Schmitt-Grohe and Uribe’s results suggest that,
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with Calvo pricing, it is the effect of price dispersion on macroeconomic
equilibrium and welfare that dominates quantitatively. They also find that
the variability of inflation under optimal monetary policy is very low.

Laforte (2003) studies optimal monetary policy in a model with firms
that adjust their prices subject to quadratic adjustment costs. In such a
model, the distribution of relative prices across firms is degenerate as long
as firms initially charge the same price and are identical. This assumption
completely eliminates the macroeconomic effects of price dispersion from
the model. Laforte finds an optimal inflation rate that is not as close to
zero, and the variability of inflation under optimal monetary policy is much
higher than in Schmitt-Grohe and Uribe (2005). The relative importance of
the effects of price dispersion depending on different pricing schemes can be
used to interpret other results in the literature on optimal monetary policy.

5 Conclusions

We have shown that the macroeconomic properties of a simple dynamic
general-equilibrium model with nominal-price rigidities are quite sensitive
to the assumed level of trend inflation due to the impact on resource al-
location of price dispersion across monopolistically competitive firms. We
go beyond previous results by showing that the effects of shocks on the
stochastic means and unconditional variances of variables including output
and consumption depend on the level of trend inflation. We confirm and
extend previous results by showing that the quantitative effects of price
dispersion on macroeconomic equilibrium are much more important under
Calvo pricing than under alternative pricing schemes.

To the extent that issues such as the optimal rate of target inflation and
the optimal variability of inflation relative to output hinge on the impor-
tance of price dispersion on macroeconomic equilibrium, the path for future
research is clear. We need more detailed comparisons of the quantitative
effects of trend inflation on price dispersion in dynamic general-equilibrium
models, and we also need to uncover empirical evidence on the relationship
between average inflation and price dispersion, when the latter is measured
in ways that are comparable with the price-dispersion variables in our the-
oretical models.
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Table 1: Model Calibration

Parameter Value
Preferences

β 0.99
σ 0.25
η 1.5

Technology
α 0.34
θ 8.00
δ 0.025
ϕ 10.0

Price
adjustment

d 0.75
Taylor rule
coefficients

ρR 0.80
ρπ 1.50
ρy 0.20

Stochastic
processes

ρb 0.80
σεb

0.01
ρA 0.80
σεA 0.01
σεR 0.01
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Table 2: Steady States, Average Values, and Standard Deviations

π = 1.00
1
4 π = 1.04

1
4

Variable
yt

ct

mt

it
ht

wt

rk
t

πt

ψt

Rt

St

Steady state Average Std
0.7877 0.7820 0.0262
0.6405 0.6368 0.0084
0.5063 0.4983 0.0490
0.1473 0.1451 0.0212
0.3326 0.3317 0.0124
1.4508 1.4420 0.0341
0.0351 0.0354 0.0021
1.0000 1.0012 0.0044
0.8750 0.8738 0.0289
1.0101 1.0113 0.0034
1.0000 1.0009 0.0000

Steady state Average Std
0.7728 0.7323 0.0345
0.6290 0.5994 0.0151
0.4199 0.3624 0.0373
0.1438 0.1328 0.0252
0.3301 0.3245 0.0154
1.4270 1.3543 0.0493
0.0351 0.0355 0.0026
1.0098 1.0181 0.0054
0.8708 0.8575 0.0357
1.0201 1.0284 0.0052
1.0068 1.0246 0.0075
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Table 3: Autocorrelations: Order 1, 2, and 3

π = 1.00
1
4 π = 1.04

1
4

Variable
yt

ct

mt

it
ht

wt

rk
t

πt

ξt

rt

St

Autoc. 1 Autoc. 2 Autoc. 3
0.4104 0.3293 0.2832
0.9278 0.8743 0.8278
0.8489 0.7441 0.6591
0.2246 0.1479 0.1138
0.0495 0.0009 -0.0024
0.3129 0.2600 0.2415
0.0924 0.0420 0.0353
0.4854 0.3935 0.3354
0.0880 0.0349 0.0262
0.8384 0.7274 0.6378

— — —

Autoc. 1 Autoc. 2 Autoc. 3
0.5216 0.4596 0.4290
0.9678 0.9421 0.9185
0.9258 0.8724 0.8270
0.2232 0.1510 0.1279
0.0708 0.0106 0.0066
0.5238 0.4794 0.4642
0.0956 0.0341 0.0276
0.7903 0.7230 0.6727
0.0989 0.0355 0.0271
0.9140 0.8542 0.8035
0.9889 0.9688 0.9434
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Figure 1: Stochastic Means

0 2 4
0.65

0.7

0.75

m
ea

n(
Y

t)

Calvo

 

 

Stoch. ss
Determ. ss

0 2 4

0.54

0.56

0.58

0.6

0.62

0.64

m
ea

n(
C

t)

0 2 4

1.02

1.03

1.04

m
ea

n(
R

t)

0 2 4
1

1.01

1.02

1.03

π (annualized)

m
ea

n(
π t)

0 2 4
0.65

0.7

0.75

Calvo truncated

0 2 4

0.54

0.56

0.58

0.6

0.62

0.64

0 2 4

1.02

1.03

1.04

0 2 4
1

1.01

1.02

1.03

π (annualized)

0 2 4
0.65

0.7

0.75

Taylor

0 2 4

0.54

0.56

0.58

0.6

0.62

0.64

0 2 4

1.02

1.03

1.04

0 2 4
1

1.01

1.02

1.03

π (annualized)

22



Figure 2: Standard Deviations
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Figure 3: Technology Shock
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Figure 4: Monetary Policy Shock
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Figure 5: Money-Demand Shock
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Figure 6: Model Simulated Data
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Appendix

Here, we summarize the equation system used to simulate the model. There
is one unit root in the model, induced by the monetary policy rule, which
specifies that the nominal interest rate should react to deviations of inflation
from its target. As a result, the price level, the price set by firms adjusting
their optimal price in period t, nominal money balances, and the nominal
wage rate have a unit root and are cointegrated. We normalize all nominal
variables by dividing through by the price level.

After normalizing, we get the following equations that are common to
the three different pricing schemes that we consider:

Ct
1
σ

Ct
σ−1

σ + bt
1
σ mt

σ−1
σ

= λt;

bt
1
σ mt

− 1
σ

Ct
σ−1

σ + bt
1
σ mt

σ−1
σ

= λt

[
1− 1

Rt

]
;

λt = βEt

(
λt+1

Rt

πt+1

)
;

η
1

1−Ht
= λtwt;

λt

[
1 + ϕ

(
It

Kt
− δ

)]

= βEt

{
λt+1

[
1 + qt+1 − δ + ϕ

(
It+1

Kt+1
− δ

)
+

ϕ

2

(
It+1

Kt+1
− δ

)2
]}

;

Kt+1 = (1− δ)Kt + It;

qt = (1− α)ψt
Y s

t

Kt
;

wt = αψt
Y s

t

Ht
;

Y s
t = AtKt

(1−α)Ht
α;

Y s
t = YtSt;

Yt = Ct + Kt+1 + (1− δ)Kt +
ϕ

2

(
It

Kt
− δ

)2

Kt;
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log(Rt) = (1− ρR) log(R) + ρR log(Rt−1) + ρπ

(πt

π̃

)
+ ρy

(
Yt

Y

)
+ εR,t;

log(bt) = ρb log(bt−1) + (1− ρb) log(b) + εb,t;

log(At) = (1− ρA) log(A) + ρA log(At−1) + εA,t.

The model is completed by a set of pricing equations for firms. These
equations are different under Calvo pricing, Taylor pricing, and truncated-
Calvo pricing.

Calvo pricing

Under Calvo pricing, we can write the optimal pricing equation as well as
the measure of price dispersion in recursive form. See Schmitt-Grohe and
Uribe (2005) for a detailed derivation. Price dispersion evolves according to
a non-linear first-order difference equation:

St = (1− d)p∗t
−θ + dπt

θSt−1,

where we define p∗t ≡ P ∗
t /Pt, the relative price of firms that reset their price

in the current period. The overall price level is just a weighted average of the
last period’s price level and the price set by firms adjusting in the current
period. This gives:

1 = dπt
(θ−1) + (1− d)p∗t

(1−θ).

It is somewhat more complicated to derive the equations for the evolution
of the price set by firms adjusting in the current period. It is possible to
express each of the two infinite sums in equation (22) recursively, in terms
of two artificial variables, labelled xt and zt. This gives:

xt = Ytψtp
∗
t−1

(−θ−1) + dβEt

{
λt+1

λt

(
p∗t

p∗t+1

)(−θ−1)

πt+1
θxt+1

}
,

zt = Ytp
∗
t−1

−θ + dβEt

{
λt+1

λt

(
p∗t

p∗t+1

)−θ

πt+1
(θ−1)zt+1

}
,

xt =
θ

θ − 1
zt.

Under Calvo pricing, we have a system of 19 equations for the following
endogenous variables: C, b, m, λ, R, π, H, I, K, Y , Y s, S, q, w, ψ, A, p∗,
x, z.
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Taylor pricing

Under four-period Taylor pricing, this becomes:

(
θ

θ − 1

)
Et

{
ψtYt

(
P ∗

t

Pt

)−θ

+ β
λt+1

λt
ψt+1Yt+1

(
P ∗

t

Pt

Pt

Pt+1

)−θ

+β2 λt+2

λt
ψt+2Yt+2

(
P ∗

t

Pt

Pt

Pt+1

Pt+1

Pt+2

)−θ

+β3 λt+3

λt
ψt+3Yt+3

(
P ∗

t

Pt

Pt

Pt+1

Pt+1

Pt+2

Pt+2

Pt+3

)−θ
}

= Et

{
Yt

(
P ∗

t

Pt

)(1−θ)

+ β
λt+1

λt
Yt+1

(
P ∗

t

Pt

Pt

Pt+1

)(1−θ)

+β2 λt+2

λt
Yt+2

(
P ∗

t

Pt

Pt

Pt+1

Pt+1

Pt+2

)(1−θ)

+β3 λt+3

λt
Yt+3

(
P ∗

t

Pt

Pt

Pt+1

Pt+1

Pt+2

Pt+2

Pt+3

)(1−θ)
}

.

This can be rewritten as follows:
(

θ

θ − 1

)
Et

{
ψtYt + β

λt+1

λt
ψt+1Yt+1πt+1

θ

+β2 λt+2

λt
ψt+2Yt+2(πt+1πt+2)θ + β3 λt+3

λt
ψt+3Yt+3(πt+1πt+2πt+3)θ

}

=

p∗t Et

{
Yt + βYt+1

λt+1

λt
πt+1

(θ−1)

+β2Yt+2
λt+2

λt
(πt+1πt+2)(θ−1) + β3Yt+3

λt+3

λt
(πt+1πt+2πt+3)(θ−1)

}
.

With four-period Taylor pricing, there are four cohorts of equal size. The
price level is given very simply by:

Pt
(1−θ) = 0.25

{
P ∗

t
(1−θ) + P ∗

t−1
(1−θ) + P ∗

t−2
(1−θ) + P ∗

t−3
(1−θ)

}
.

This can be written as follows:

1 = 0.25

{
p∗t

(1−θ)+p∗t−1
(1−θ)πt

(θ−1)+p∗t−2
(1−θ)(πtπt−1)(θ−1)+p∗t−3

(1−θ)(πtπt−1πt−2)(θ−1)

}
.
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The price dispersion index also has a simple representation under four-
period Taylor pricing. We have:

St = 0.25

{(
P ∗

t

Pt

)−θ

+
(

P ∗
t−1

Pt

)−θ

+
(

P ∗
t−2

Pt

)−θ

+
(

P ∗
t−3

Pt

)−θ
}

.

This can be rewritten as follows:

St = 0.25

{
p∗t
−θ + p∗t−1

−θπt
θ + p∗t−2

−θ(πtπt−1)θ + p∗t−3
−θ(πtπt−1πt−2)θ

}
.

This gives three equations (the equation for the optimal revised price,
the price level definition, and the law of motion for the price-dispersion
variable). We have a system of 17 equations in 17 unknowns.

Truncated-Calvo pricing

The probability that the firm’s price contract will still be in force is equal
to di as long as d < L. The equation determining the evolution of p∗t under
truncated-Calvo pricing becomes:

(
θ

θ − 1

)
Et

{
ψtYt + βd

λt+1

λt
ψt+1Yt+1πt+1

θ

+(βd)2
λt+2

λt
ψt+2Yt+2(πt+1πt+2)θ + (βd)3

λt+3

λt
ψt+3Yt+3(πt+1πt+2πt+3)θ

}

=

p∗t Et

{
Yt + βdYt+1

λt+1

λt
πt+1

(θ−1)

+(βd)2Yt+2
λt+2

λt
(πt+1πt+2)(θ−1) + (βd)3Yt+3

λt+3

λt
(πt+1πt+2πt+3)(θ−1)

}
.

Under truncated-Calvo pricing, firms that are currently resetting their
prices are doing so either because they have randomly drawn the right to do
so or because they have not reset their price for L periods. The cohort of
firms that set their price i periods ago is a fraction di as big as the cohort
currently setting their price. So, the size xi of cohort i (where 0 ≤ i < L) is
given by:

xi =
(1− d)
(1− dL)

di,
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so that the sum of the xi is equal to one.
The price index with four-period truncated-Calvo pricing can be written

as follows:

1 =

{
(1− d)
1− d4)

p∗t
(1−θ) +

(1− d)
(1− d4)

dp∗t−1
(1−θ)πt

(θ−1)

+
(1− d)
(1− d4)

d2p∗t−2
(1−θ)(πtπt−1)(θ−1) +

(1− d)
(1− d4)

d3p∗t−3
(1−θ)(πtπt−1πt−2)(θ−1)

}
.

The price-dispersion index can be written as follows:

St =

{
(1− d)
(1− d4)

p∗t
−θ +

(1− d)
(1− d4)

dp∗t−1
−θπt

θ

+
(1− d)
(1− d4)

d2p∗t−2
−θ(πtπt−1)θ +

(1− d)
(1− d4)

d3p∗t−3
−θ(πtπt−1πt−2)θ

}
.

With truncated-Calvo pricing, we have a system of 17 equations in 17
unknowns.
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