
# Input Indicators of the British Columbia High Technology Sector



A joint project of BC Stats and Leading Edge BC

### 2005 Edition



Service BC Ministry of Labour and Citizens' Services



**BC STATS** 

## Input Indicators of the British Columbia High Technology Sector 2005 Edition

A joint project of:

BC STATS

and

Leading Edge British Columbia

March 2006



Service BC Ministry of Labour and Citizens' Services



http://www.bcstats.gov.bc.ca

http://www.leadingedgebc.ca

#### This paper was prepared by

Jade Norton and Dan Schrier of BC STATS

National Library of Canada Cataloguing in Publication Data Main entry under title: Input indicators of the British Columbia high technology sector. -- 2005 ed.-

"A joint project of BC Stats and Leading Edge British Columbia." Continues: BC high technology sector input indicators report. ISSN 1492-5230. ISSN 1499-299X = Input indicators of the British Columbia high technology sector

1. High technology industries - British Columbia - Statistics - Periodicals. 2. Technology indicators - British Columbia - Periodicals. 3. Science indicators - British Columbia - Periodicals. 4. Educational indicators - British Columbia - Periodicals. 5. Technology assessment - British Columbia - Periodicals. I. BC Stats. II. British Columbia. Leading Edge British Columbia.

Q172.5.S34B33 621.3'0971105 C2001-960241-3

#### **LEADING EDGE BC**

Leading Edge British Columbia is a not-for-profit marketing and investment attraction organization dedicated to marketing British Columbia's competitive business environment for technology enterprise. Leading Edge British Columbia helps technology businesses by:

- Marketing, branding and promoting British Columbia (B.C.) in six key technology clusters: wireless, new media, biotechnology and life sciences, energy technologies, sustainability technologies, and information and communications technology.
- Raising the profile of B.C. investment and business opportunities globally.
- Locating international investment opportunities and business partnerships.
- Working with multiple partners to assist companies market their products and services.
- Organizing and facilitating joint marketing ventures.
- Leading focused business-to-business missions to maximize networking opportunities.
- Assisting investors, enterprise, site selectors and recruits to identify opportunities in B.C.
- Leading Edge British Columbia was elected to represent the technology industry for the Vancouver-Whistler 2010 Olympic and Paralympic Winter Games. Currently business-tobusiness activities are being developed to raise the profile of B.C. companies in the lead up to the Games.

For more information call 1-888-683-5322 or visit www.leadingedgebc.ca

#### **BC STATS**

BC STATS is the provincial government's central statistical agency and has the government's largest concentration of statistical products, services and expertise. BC STATS is in the business of providing government with statistical information and analytical services to support informed decision-making and policy development by:

- Measuring the program performance or organization health with the aid of surveys.
- Assisting in the location of hospitals, schools or other infrastructure, by examining the demographics and potential for growth in the client base.
- Supporting succession planning policy initiatives by analysing the employment dynamics within an organization.
- Helping allocate regional program spending by identifying areas of high socio-economic stress.
- Helping to understand and predict future changes to the economic structure of the province by analysing economic activity by industry and sector.
- Supporting economic policy decisions by analysing the impact of investment decisions on provincial and regional economic growth and tax revenues.
- Helping interpret complex data by presenting statistics in simplified graphic or thematic map formats.
- Helping identify regional pressures by gathering and presenting data that follow an organization's service delivery areas.

For more information call the director of BC STATS at 1-250-356-2119 or visit www.bcstats.gov.bc.ca

### Table of Contents

| Executive Summary                                       | 1          |
|---------------------------------------------------------|------------|
| Introduction                                            | 5          |
| Background                                              | 5          |
| Comparison with Other Jurisdictions                     | 6          |
| The "Quick Summary" Tables                              | 6          |
| Educational Indicators                                  | 7          |
| Educational Attainment                                  | 8          |
| Achievement on Canadian Standardized Tests              | 9          |
| Degrees Awarded1                                        | 10         |
| Technology Adoption1                                    | 14         |
| Technology Licensing1                                   | 16         |
| Performance of R&D by the Higher Education Sector 1     | 18         |
| Business Indicators                                     | 21         |
| Patents and Applications                                | <u>22</u>  |
| Sector Dynamism: Entries and Exits                      | <u>2</u> 3 |
| High Growth Companies                                   | 25         |
| Venture Capital Investment                              | 26         |
| Performance of R&D by the Business Sector 2             | 27         |
| Government Indicators                                   | <u>29</u>  |
| Tax Rates: Individual and Corporate2                    | <u>29</u>  |
| Performance of R&D by the Government Sector             | 31         |
| Gross Expenditure on R&D                                | 32         |
| External Indicators                                     | 35         |
| Educational Background of Immigrants 3                  |            |
| Inter-provincial Migration                              | 37         |
| High Technology Imports                                 | 38         |
| Labour Indicators                                       |            |
| Unemployment Rate in Natural and Applied Sciences       |            |
| Research Personnel 4                                    | 11         |
| Quality of Life4                                        | 12         |
| Cost of Living                                          | 14         |
| Appendix I: BC STATS' Sector Model 4                    | 45         |
| Appendix II: Definitions of the high technology sector5 | 51         |
| Appendix III: Detailed Tables                           | 53         |

#### **Executive Summary**

The 2005 edition of the *High Technology Input Indicators* report, which was prepared by BC Stats, in conjunction with Leading Edge BC, is the fifth in a series of annual reports that highlight conditions affecting the province's high technology sector from a supply-side perspective. This report tracks 35 business and economic climate indicators for the province, and provides comparisons to other provinces for 31 of them. The indicators cover key aspects of the educational, business, government, external, and labour sectors from the point of view of their effect on high technology firms.

The indicators in this report, which might be termed "input" measures, are chosen for their relevance and general acceptance, as well as their availability on an ongoing basis. All indicators have been updated to the latest year for which data is available as of December 2005.<sup>1</sup>

Indicators of the success, or "outputs" of the high technology sector, are covered by a companion report, the *Profile of the British Columbia High Technology Sector*.<sup>2</sup> The *Profile* contains information on high technology GDP, employment, wages and salaries, revenues, establishment counts, exports and imports.

The picture of British Columbia that emerges from the input indicators is varied. In some areas, British Columbia compares favourably with other provinces, and has shown strong growth over the past decade. In other areas, performance has lagged. The detailed indicators offer concrete guidance for potential government policies and industry growth strategies.

A convenient feature of this publication is the simple description of the trends in each indicator as up, down, or stable (indicated in summary tables as:  $\uparrow, \lor$ , or  $\rightarrow$ ). Since the 2003 edition, the trend in some indicators has been re-evaluated, based on the latest information. Summary results for each sector are presented in the body of the report. More detailed information is contained in the tables in Appendix III.

<sup>&</sup>lt;sup>1</sup> Some of the data come from reports, studies, and/or surveys that are only released bi-annually and others less frequently. Every effort has been made to make use of the most recent data possible.

<sup>&</sup>lt;sup>2</sup>Available at http://www.bcstats.gov.bc.ca and http://www.leadingedgebc.ca.

#### Highlights

#### Education sector

The data for the last reporting year show that BC continues to have the highest percentage of the population with high school education. On the other hand, BC shows a deficiency with respect to the training of new graduates in the areas of architecture, engineering & related technology, mathematics, computer & information sciences, and physical and life sciences and technologies. Similarly, higher education research and development (as a percent of GDP) in the province is low by Canadian standards. However, BC's universities have recently made great strides in terms of technology licenses and patents issued. The University of British Columbia now leads all other Canadian G-10 universities in terms of gross income from technology licences. UBC has also been a solid leader in the number of US patents it has been awarded.

#### Business sector

Compared to other Canadian provinces, British Columbia returns below average ratings in most of the business indicators. However, there are some positive developments. Business sector performance of research and development has historically been on par with, and sometimes lagged behind Alberta, but BC has surpassed Alberta for five consecutive years (1999-2003), maintaining a third place ranking among the provinces. Also per capita venture capital investment in BC exceeds the national average.

#### Government Sector

Individual and small business tax rates in the province shrank during the 1990s and early 2000s and individual rates have remained the lowest in the country for the past three years (2003-2005). The corporate income tax rate, which remained fixed from 1993 to 2001, has declined since then and is lower than all but two other provinces. As a share of GDP, combined federal and provincial government research and development activities remain the lowest in the country. However, the province ranks fourth in the country based on gross expenditure on R&D as a share of GDP.

#### External Sector

Immigrants to Canada are increasingly well-trained and educated. BC is more or less on par with other provinces in terms of attracting skilled individuals from other countries. Following the outflow of people from BC to other parts of Canada in recent years, the increase of in-migration from other provinces in 2004 has begun to bolster the province's supply of well-trained, educated workers. BC imports of high technology goods—which can be an indicator of future production since imported components are often used to produce high tech products—increased in 2004 for the first time in three years.

#### Labour

Unemployment rates among workers in the natural and applied sciences fell during the 1990s, but began to creep up from 2001 to 2004, before finally dropping significantly in 2005. However, these rates have consistently remained substantially lower than for the economy as a whole. In terms of researchers per 100,000 population, British Columbia maintained a fourth place ranking in 2002 (the latest year for which data is available). However, the number of researchers has not increased as much as in most other provinces.

| -                                                                            |               |                 |               |      |  |
|------------------------------------------------------------------------------|---------------|-----------------|---------------|------|--|
| INDICATORS                                                                   | Trend         | Latest          | Relative to   | Page |  |
|                                                                              |               | year            | Canadian      |      |  |
|                                                                              |               |                 | average       |      |  |
| EDUCATION SECTOR                                                             |               |                 |               | _    |  |
| E-1: High school diplomas per capita                                         | <b>•</b>      | <b>•</b>        | above average | 8    |  |
| E-2: Post-secondary credentials per capita                                   | 1             | 1               | below average | 9    |  |
| E-3: 16 year-old student achievement in science                              | •             | _ • _           | below average | 10   |  |
| E-4: Total Bachelor degrees awarded per 100,000                              | <b>•</b>      | <b>→</b>        | below average | 11   |  |
| E-5: Total Graduate degrees awarded per 100,000                              | <b>_</b>      | <b>•</b>        | below average | 11   |  |
| E-6: Annual graduates in engineering*                                        | <b>•</b>      | <b>•</b>        | below average | 12   |  |
| E-7: Annual graduates in computer science*                                   | _ ↑           | 1               | below average | 13   |  |
| E-8: Annual graduates in physical & life sciences*                           | <b>•</b>      | $\mathbf{\Psi}$ | below average | 13   |  |
| E-9: Percentage of households with computers                                 | <b>•</b>      | <b>•</b>        | above average | 14   |  |
| E-10: Percentage of households using the Internet                            | <b>•</b>      |                 | above average | 14   |  |
| E-11: Percentage of small businesses using the Internet                      | <b>•</b>      | <b>•</b>        | above average | 15   |  |
| E-12: Gross income per technology license at universities                    | <b>•</b>      |                 | above average | 17   |  |
| E-13: US patents issued to G-10 universities                                 | →             | $\mathbf{+}$    | above average | 18   |  |
| E-14: Higher education performance of R&D to GDP ratio                       | 1             | 1               | below average | 19   |  |
| BUSINESS SECTOR                                                              |               |                 |               |      |  |
| B-1: Patents per 100,000 persons                                             | <b>^</b>      | <b>^</b>        | below average | 22   |  |
| B-2: Patents granted as a percent of patent applications                     | ÷             |                 | below average | 23   |  |
| B-3: Number of Entries to the high tech sector                               | $-\bar{\Psi}$ | 1               | n/a           | 24   |  |
| B-4: Number of Exits from the high tech sector                               | <b>→</b>      | <b>V</b>        | n/a           | 24   |  |
| B-5: Number of high growth high tech companies                               | ÷             | <b>^</b>        | n/a           | 25   |  |
| B-6: Venture capital investment                                              | Ť             |                 | above average | 26   |  |
| B-7: Venture capital investment: share of Canadian total                     | <b>→</b>      |                 | above average | 27   |  |
| B-8: Business performance of R&D to GDP ratio                                | <b>A</b>      | 1               | below average | 27   |  |
|                                                                              |               | •               |               |      |  |
| GOVERNMENT SECTOR<br>G-1: Personal tax index individual with \$80,000 income | V             | $\mathbf{\Psi}$ | helow everen  | 20   |  |
|                                                                              | - <u> </u>    |                 | below average | 30   |  |
| G-2: Small business tax rate                                                 | - 1 -         | - 1 -           | below average | 30   |  |
| G-3: Corporate income tax rate                                               | - 1           | ↓ I             | below average | 31   |  |
| G-4: Government performance of R&D to GDP ratio                              |               |                 | below average | 32   |  |
| G-5: Gross expenditure on R&D (GERD) to GDP ratio                            | Τ             |                 | below average | 33   |  |
| EXTERNAL SECTOR                                                              |               |                 |               |      |  |
| X-1: Percentage of immigrants with higher education                          | <b>•</b>      | <b>•</b>        | below average | 36   |  |
| X-2: Median years of schooling of immigrants                                 | - 1 -         |                 | average       | 36   |  |
| X-3: Net inter-provincial migration                                          | $\bullet$     |                 | above average | 37   |  |
| X-4: High technology imports                                                 | <b>•</b>      |                 | n/a           | 38   |  |
| LABOUR                                                                       |               |                 |               |      |  |
| L-1: Unemployment rate for natural and applied sciences                      | <b>→</b>      | ↓               | average       | 40   |  |
| L-2: Research personnel per 100,000 population                               | n/a           | <b>^</b>        | below average | 41   |  |
| L-3: Quality of life                                                         | n/a           | <b>→</b>        | above average | 43   |  |
| L-4: Cost of Living                                                          | n/a           | Ū.              | above average | 44   |  |
| * The tables for these indicators are split into part (a) for Bachelor deg   |               | (b) for Oregin  |               | _    |  |

#### **TABLE 1: Quick Summary of Indicators**

\* The tables for these indicators are split into part (a) for Bachelor degrees and part (b) for Graduate degrees. Data for degree area of *engineering* includes architecture, engineering and related technologies; data for degree area of *computer science* includes mathematics, computer and information sciences.

#### Introduction

Although industry has been knowledge- and technology-based throughout history, information as a driver of economic growth has grown dramatically in importance in the last quarter-century. Economies are now much more dependent on the production, dissemination and use of knowledge. In turn, output and employment have expanded rapidly in high technology industries, which rely heavily on knowledge as a primary input.

The first edition of *British Columbia High Technology Input Indicators: The 1990s* was released in 2000. The purpose of the report was to monitor the high technology sector from the input side, by measuring and analyzing the production and application of knowledge, and the climate, institutions and funding arrangements that make this knowledge available for the development of the BC high technology sector. The report has been updated regularly since then. This is the fifth edition.

This report is intended to complement another annual publication, the *Profile of the British Columbia High Technology Sector*,<sup>3</sup> which focuses on industry outputs (such as GDP, employment, wages, revenues and exports) to give a broader overview of where BC's high technology sector has been and where it might be heading.

#### Background

While there is obvious value in monitoring the "output" of the high technology sector, information about the processes that give rise to that output are also of key importance, both for potential investors interested in the infrastructure available in the province and for policy-makers that require this data to make informed policy decisions. In fact, the high technology sector and the surrounding infrastructure are a complex system with many players and interactions. Understanding this system is a matter of identifying the various parts and collecting information that shows how these parts behave and interact over time. (See APPENDIX I for a more detailed description of the high technology "system." A list of industries that are included in the high tech sector is available in APPENDIX II.)

Information on the high technology system can help shed light on the best ways to foster growth in the sector, including parts of the system that are only indirectly linked to actual production (and often removed from them in time). For example, improvements to the

<sup>&</sup>lt;sup>3</sup>Available at http://www.bcstats.gov.bc.ca and http://www.leadingedgebc.ca.

secondary school system may seem very different from output subsidies or tax cuts for high technology firms, but both may have the effect of promoting growth in the high technology sector over the longer run. Good information provides policy makers with the tools to assess the current situation, as well as an indication of where more effort may be needed to provide an environment in which high technology and other knowledge-based industries can thrive.

#### Comparison with Other Jurisdictions

Comparisons to other provinces show the range of what is possible, or what has been achieved in the high technology sector within a Canadian context. This publication focuses on trends in British Columbia as they compare to those in Alberta, Ontario, and Quebec. These four provinces have the largest economies, and the most extensive high technology sectors in Canada. They are referred to as the "high technology provinces" in this report.

#### The "Quick Summary" Tables

The thirty-five indicators selected for this publication represent only a fraction of the information base that is available about the high technology sector. However, even this number of indicators measured over time and across provinces poses a challenge to readers looking for an overview of the current situation and an indication of which areas warrant further study. To meet this challenge, this report is first divided according to the four "sectors" outlined in the model diagram (see APPENDIX I). One of the "inputs," labour, is also covered in a separate section. Each of the five resulting sections covers a number of individual indicators. These indicators are listed on the first page of each section, providing a quick summary. The summary makes use of up, down and horizontal arrows  $(\uparrow, \lor, \rightarrow)$  to show whether the indicator has risen, dropped, or remained substantially unchanged. The assessment is made with regard to the trend over the span of time for which the indicator is available and for the latest period. British Columbia is also compared to the Canadian average for each indicator.

Since the arrow indicators show only the direction of change, the summary report gives no indication of the size of changes, or their pattern over time. This information is found in the graphs and text included in each section. Data tables for each indicator are located in APPENDIX III.

### **Educational Indicators**

The educational sector provides "inputs" to high technology firms in two ways:

- 1. When individuals acquire skills and knowledge required for product development and production, and
- 2. During the commercialization of research performed in the educational sector.

The indicators listed below are measures of this dual role. Many are presented on a per capita basis or as a share of gross domestic product (GDP) to allow meaningful comparison with other provinces.

| INDICATORS                                                | Trend    | Latest<br>year  | Relative to other provinces |
|-----------------------------------------------------------|----------|-----------------|-----------------------------|
| E-1: High school diplomas per capita                      | 1        | 1               | above average               |
| E-2: Post-secondary credentials per capita                | <b>^</b> | Ϋ́              | below average               |
| E-3: 16 year-old student achievement in science           | •        | $\mathbf{\Psi}$ | below average               |
| E-4: Total Bachelor degrees awarded per 100,000           | <b>^</b> | →               | below average               |
| E-5: Total Graduate degrees awarded per 100,000           | 1        | <b>^</b>        | below average               |
| E-6: Annual graduates in engineering*                     | <b>^</b> | <b>^</b>        | below average               |
| E-7: Annual graduates in computer science*                | <b>^</b> | <b>^</b>        | below average               |
| E-8: Annual graduates in physical & life sciences*        | 1        | ¥               | below average               |
| E-9: Percentage of households with computers              | <b>^</b> | 1               | above average               |
| E-10: Percentage of households using the Internet         | <b>^</b> | 1               | above average               |
| E-11: Percentage of small businesses using the Internet   | 1        | 1               | above average               |
| E-12: Gross income per technology license at universities | <b>^</b> | 1               | above average               |
| E-13: US patents issued to G-10 universities              | <b>→</b> | $\mathbf{\Psi}$ | above average               |
| E-14: Higher education performance of R&D to GDP ratio    | 1        | <b>^</b>        | below average               |

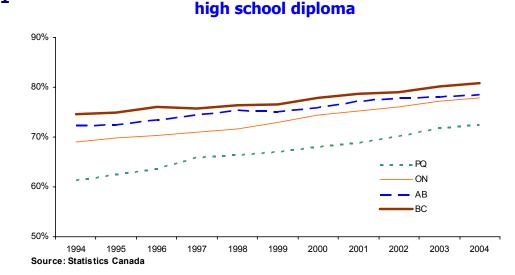
#### TABLE 2: Quick Summary of Indicators for the Education Sector

\* The tables for these indicators are split into part (a) for Bachelor degrees and part (b) for Graduate degrees. Data for degree area of *engineering* includes architecture, engineering and related technologies; data for degree area of *computer science* includes mathematics, computer and information sciences.

Throughout the past decade, British Columbia has had strong educational attainment in the general population. The data for the last reporting year shows BC continuing to have the highest percentage of the population with a high school education. However, BC lags behind other provinces in the training of new graduates in engineering, computer science, and physical & life sciences. Similarly, the BC ratio of higher education R&D to GDP is low when compared to Canadian standards.

#### **Educational Attainment**

Four indicators of educational attainment – the percentage of the population aged 15 and older with a high school diploma, the percentage with post-secondary credentials, and the percentage of


### Why are these indicators important?

Higher levels of educational attainment enable high technology firms to draw from a broader, more highly developed skill base. those with bachelor and graduate level degrees – have all shown steady increase across Canada over the past decade.

BC leads the high technology provinces with the highest percentage of its population having a high school diploma (81%). However, the gap between BC and the other high technology provinces has narrowed over the last ten years. There was a six-percentage-point gap be-

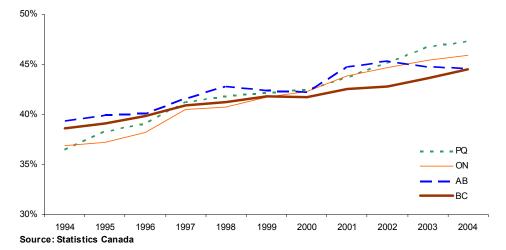
tween British Columbia and Ontario in 1994, and fourteen percentage points separated BC from Quebec. In 2004, the share of the population with a high school diploma was three percentage points higher than in Ontario (78%) and nine percentage points higher than in Quebec (72%).

Percentage of the population 15 years and older with a



Each of the high technology provinces has improved its postsecondary achievement over the past decade, but British Columbia has not done as well as the others. The gaps between the four high technology provinces in the percentage of the population with

#### Indicator E-1


High Technology Input Indicators 2005 Edition

High Technology Input Indicators 2005 Edition

who have not yet completed a program are not included.

post-secondary credentials<sup>4</sup> are quite small, and have narrowed slightly in the period observed. Until the early 2000s, Alberta consistently had the most post-secondary degrees per capita. In 2004, the gap between provinces remained small with 44% of the adult population in BC having post-secondary degrees, compared with slightly higher percentages for Alberta (45%), Ontario (46%) and Quebec (47%).

#### Percentage of the population 15 years and older with post-secondary credentials



#### Achievement on Canadian Standardized Tests

From the inception of the School Achievement Indicators Project, BC has continued to rank in the top four provinces in terms of the percentage of 16-year olds demonstrating excellence on Canada-wide standardized science tests. Alberta has ranked consistently among the top provinces.

The purpose of the science written assessment is to assess students in the following abilities:

- knowledge of the concepts of science,
- understanding of the relationship of science to technology and societal issues,

<sup>4</sup> The measure of the population with post-secondary credentials includes per-

certificates, and apprenticeship programs. People who have enrolled and quit or

- conceptual knowledge,
- procedural knowledge, and
- ability to use science to solve problems.

### Why is this indicator important?

Standardized testing in science offers a comparable measure nation-wide for the demonstrated skills and knowledge of students of a given age. Completed tests are graded into five levels of demonstrated competence. The rankings presented here are based on the percentage of students who achieved at level 4 and above (the upper end of achievement). This indicates the percentage with higher than average abilities in science.

#### **Indicator E-2**

From 1999 to 2004, Alberta ranked first nation-wide in science achievement testing of 16-year-olds. BC jumped from sixth place in 1999 to fourth place in 2004. Ontario climbed up to second in 2004, while Quebec inched down in rank, dropping from fourth place in 1999 to fifth place in 2004. While BC's ranking improved, it should be noted that student achievement fell dramatically in every province between 1999 and 2004, more than wiping out all gains attained between 1996 and 1999. The percentage of students in BC achieving levels 4 or 5 dropped from almost 30% in 1999 to only 22% in 2004, while nationally, only 23% of 16 year-olds scored in the higher levels in 2004, compared to 32% five years earlier.

#### Indicator E-3 Canada-wide rank of 16 year-old achievement in science

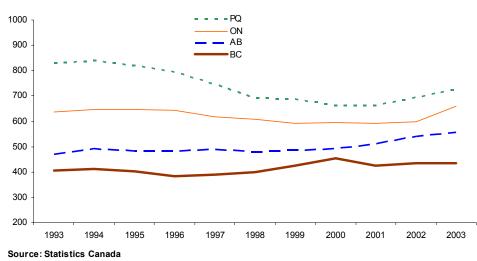
|                           | 1996 rank | 1999 rank | 2004 rank |
|---------------------------|-----------|-----------|-----------|
| Newfoundland and Labrador | 4         | 5         | 2         |
| Prince Edward Island      | 6         | 2         | 9         |
| Nova Scotia               | 10        | 6         | 7         |
| New Brunswick             | 9         | 9         | 9         |
| Quebec                    | 8         | 4         | 5         |
| Ontario                   | 6         | 10        | 2         |
| Manitoba                  | 2         | 3         | 6         |
| Saskatchewan              | 3         | 8         | 8         |
| Alberta                   | 1         | 1         | 1         |
| British Columbia          | 5         | 6         | 4         |

Source: Council of Ministers of Education, Canada

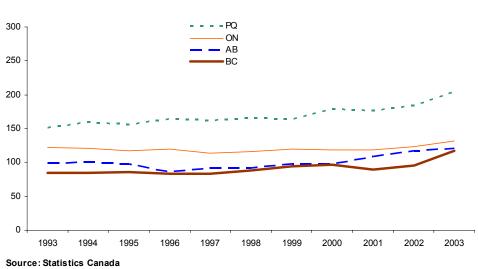
## Why are these indicators important?

The number of degrees awarded within a given population is directly indicative of the potential human resources available to the province. Looking at the degrees awarded on a per capita basis provides some indication of the overall education level of the province and the ability of the high tech sector to use these educated individuals. Engineers, computer & information scientists and physical & life scientists are driving forces behind the high technology sector. They provide a highly specialized form of labour that is integral to the research and development of new or more efficient production processes.

#### Degrees Awarded


The likely presence of skilled and educated professionals in a high technology economy is indicated by the number of graduates per 100,000 persons aged 15 years and older with bachelor and graduate degrees. For these indicators, British Columbia continues to be below the Canadian average.

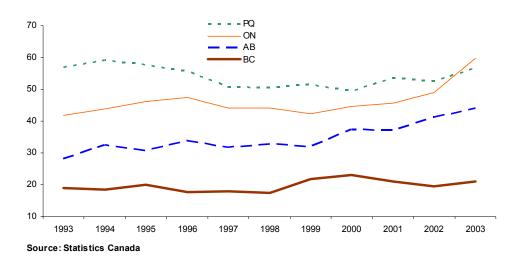
While the actual number of bachelor degrees granted has generally been rising in BC over the past ten years, the province has consistently remained the lowest of the high tech provinces in terms of degrees granted per 100,000 persons, although the gap has narrowed over the past decade. In 2003 (the latest year for which data is available), the number of bachelor degrees awarded in BC per 100,000 people (434) remained unchanged from 2002, while Alberta (558), Ontario (660) and Quebec (726) all posted increases.


**Indicator E-4** 

**Indicator E-5** 

#### Total bachelor degrees awarded per 100,000 persons aged 15 years and older



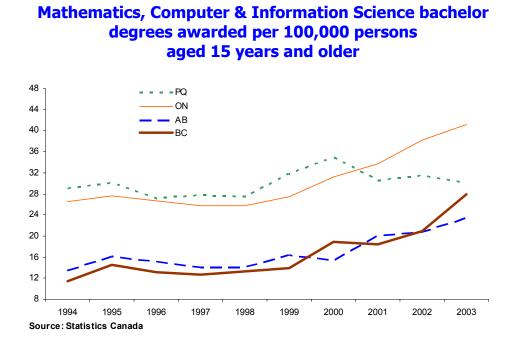

The number of graduate level degrees awarded in a given province can determine, to an extent, the level of expertise available to that province on both an educational and a professional level. BC has continuously ranked fourth among the high tech provinces in terms of graduate degrees awarded per 100,000 persons. More promising, however, is the fact that BC has been outpacing Alberta in terms of annual increases in number of graduate degrees awarded. In 2003, BC awarded 118 graduate degrees per 100,000 persons, the highest recorded over the last decade and not far behind Alberta (121). Quebec (205) remained the leader of the high tech provinces, while Ontario (132) also reported prominent numbers in 2003.



#### Total graduate degrees awarded per 100,000 persons aged 15 years and older

Between 1993 and 2003, BC granted far fewer bachelor degrees in the area of architecture, engineering & related technology per 100,000 persons than did the other leading high technology provinces. BC has consistently retained a fourth place ranking among the high tech provinces for the past decade.

#### Indicator E-6 Bachelor degrees awarded in Architecture, Engineering & Related Technology per 100,000 persons aged 15 years and older

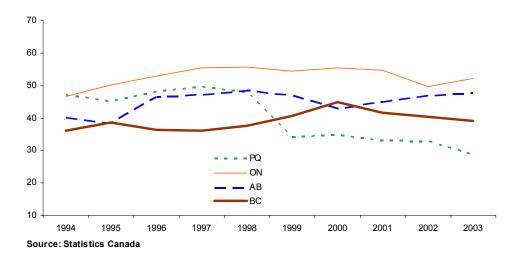



Over the past ten years, BC has shown consistent increases in the number of graduate level degrees awarded per 100,000 persons in this area, but at 11.0, remains well behind the Canadian average (17.1) and more than 50% below Quebec (24.4), the leader of the high tech provinces.

The number of BC graduates with a bachelor degree in the area of mathematics, computer & information science per 100,000 persons remains below the Canadian average. However, the long-term trend of this indicator is positive. The ratio has been rising, and since passing Alberta in 2002, BC continues to rank third among the high technology provinces.

In terms of graduate degrees awarded per 100,000 persons in this disciplinary area, Quebec (10.1) remains the leader among the high tech provinces, while BC (6.5) ranks fourth. However, the number of graduate degrees awarded per 100,000 in mathematics, computer & information sciences in BC has increased significantly over the last few years.

**Indicator E-7** 




At 39.2 per 100,000 persons in 2003 (the latest year for which data is available), the number of BC graduates with a bachelor degree in the area of physical & life sciences & technologies remains below the Canadian average of 44.6. However, during the last five years (1999-2003), BC's rate of new graduates has surpassed that of Quebec, ranking it third among the four high tech provinces.

In 2003, BC awarded 9.4 graduate degrees per 100,000 persons in physical & life sciences & technologies, continuing to rank fourth among the high tech provinces and sitting below the Canadian average (12.3).



#### **Indicator E-8**

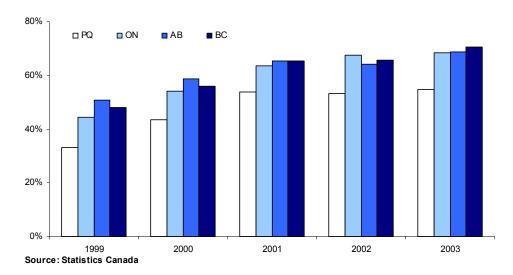


### Why are these indicators important?

High technology businesses are attracted to locations where the population tends toward higher rates of technology adoption. Greater familiarity with technology—for example, computer literacy—is likely to strengthen local market demand for high tech goods and services.

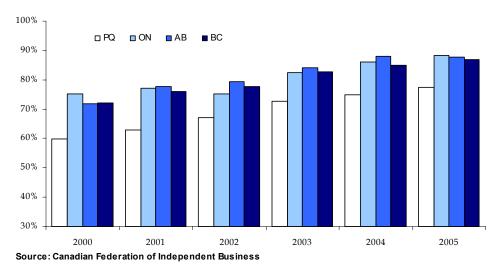
#### **Technology Adoption**

Canadians are increasingly making use of new information technologies. For example, all provinces have recorded increased use of personal computers by households. In 2003, 73% of BC households had home computers, up from 63% in 2000. The prevalence of home computers was the same in Alberta and Ontario (72% in both provinces in 2003), but BC recorded the highest percentage in the country for the second consecutive year.


#### **Indicator E-9**

#### 80% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60% 60%

Percentage of households with home computers


#### **Indicator E-10**

#### Percentage of households using the Internet from any location

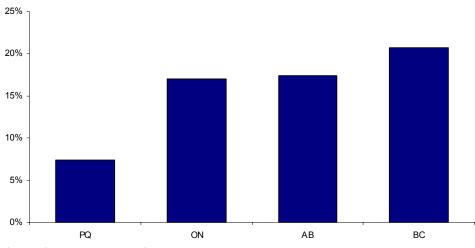


For Internet use, 71% of households in BC regularly went online in 2003—well above the Canadian average of 64%. Historically, Alberta has generally recorded the highest household Internet usage,<sup>5</sup> but in the last two years, it has been out-ranked by BC. While the percentage of people using the Internet was lowest in Quebec (55%), this province had the highest growth rate between 1999 and 2003.

Among small businesses, there has been an upward trend in Internet usage. In BC, the percentage of small businesses using the Internet has risen from 72% in 2000 to 87% in 2005.<sup>6</sup> There has been a similar pattern across provinces, although Quebec lags behind.



Percentage of small businesses using the Internet


There are greater differences when it comes to more intensive Internet usage by business. BC leads the high tech provinces in terms of maintaining a business website and selling on-line. In 2005, 46% of BC's small businesses reported having their own website, the same as in Ontario, compared to 42% in Alberta, and 30% in Quebec. Twenty-four percent of BC's small businesses were selling their goods or services on-line, a notably higher share than in other regions.

#### **Indicator E-11**

<sup>&</sup>lt;sup>5</sup> Note that household Internet use—meaning usage by members of households—includes access from home, work, school, libraries and other locations.

<sup>&</sup>lt;sup>6</sup> Survey conducted March, 2005.

High Technology Input Indicators 2005 Edition



#### Percentage of small businesses selling on-line (2005)

Source: Canadian Federation of Independent Business

Thus, while general business usage of the Internet is similar across most of the high tech provinces, BC firms seem to be doing more to

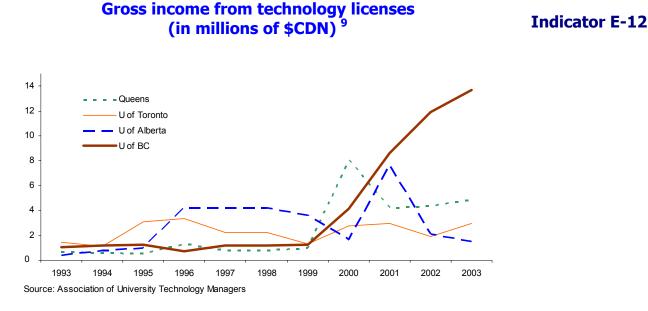
Why are these indicators important?

University faculty members are at the forefront of research. One indication of their research productivity is university technology licenses. These licenses allow the institution to 'spinoff' the commercial aspect of the researcher's discovery, which provides income. By looking at the income per license, we get a picture of the commercial success of the research. The number of US patents issued to Canadian institutions is also an important indicator of future revenues.<sup>7</sup>

integrate the technology into their core business strategies.

#### **Technology Licensing**

Across Canada, universities began to develop industry liaison offices in the mid-1980s. The University of Toronto office opened in 1980; UBC's University-Industry Liaison Office (UILO) opened in 1985; the University of Alberta office opened in 1987. These offices work with industry to spin-off technology developed at the university into successful companies.


During the most recent reporting period, there has been a great deal of shuffling of ranks among the major universities. The University of British Columbia now leads all other G-10 universities<sup>8</sup> with a gross income of

<sup>8</sup> G-10 Universities are composed of the ten leading research universities in Canada and include: University of British Columbia (BC), University of Alberta (Alberta), University of Toronto (Ontario), Queens University (Ontario), University of Waterloo (Ontario), McMaster University (Ontario), University of Western

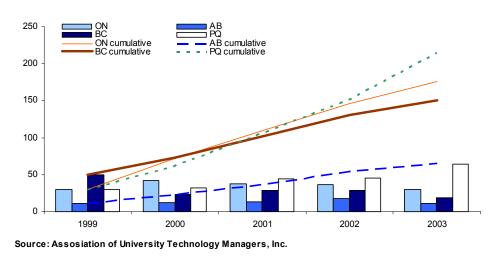
<sup>&</sup>lt;sup>7</sup> As a caution, one must keep in mind that a key purpose of universities is to conduct "primary" research—work that does not have any immediate application. This work, when successful, becomes the foundation of further applied research and development. A good example is the Human Genome Project, which recently completed mapping out the entire genetic structure of the human being. Thus, licensing only provides a partial view of the importance of university research in the high tech sector.

#### BC STATS / Leading Edge BC

nearly \$13.7 million from technology licences in 2003 (the latest year for which data is available). McGill University, which was the leader in 2001, slipped to fourth place in 2003. Ranked second, Queens University was well below UBC with a gross income of \$4.9 million in 2003.



BC has consistently shown strong results in terms of the number of US patents awarded to its top institution (UBC). In 1999, UBC, which is classified as one of Canada's ten leading research universities (G-10), was issued a whopping 50 US patents, more than all five Ontario G-10 universities combined. At 150, BC ranked third in terms of the cumulative number of patents granted in the five year period from 1999 to 2003. Quebec (215) led the pack, followed by Ontario (176) while Alberta's G-10 university was awarded 65 US patents over the same five-year period.


The number of patents issued in the province is rather impressive considering that BC, like Alberta, is home to only one G-10 university. UBC was well ahead of all other G-10 universities in this respect, with McGill (129) being the only other G-10 university to exceed 80 patents issued over the five-year period. In future years, as these patented discoveries are spun-off, this advantage may translate into higher revenues from technology licenses for BC.

Ontario (Ontario), Université de Montréal (Quebec), McGill University (Quebec), and Université Laval (Quebec).

<sup>&</sup>lt;sup>9</sup> Data from the years 1993-2002 have been converted from US dollars to Canadian dollars using annual exchange rate averages.



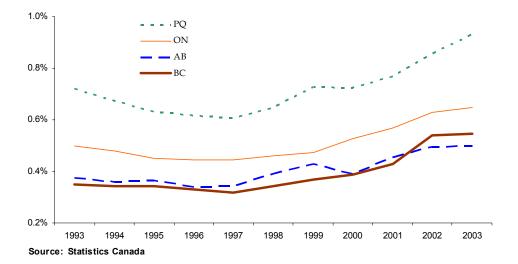
#### US patents issued to selected institutions, actual and cumulative <sup>10</sup>



### Why is this indicator important?

Research and development at universities contribute to high technology's impact on the economy in two ways. Published academic research is available to the public so that it can be used as a resource and universities are increasing partnerships with industry to bring the products and processes of R&D to market (see "Technology Licensing"). The ratio of R&D performed by the higher education sector to GDP is an indicator of the proportional investment in R&D by this sector relative to the size of the overall economy.

### Performance of R&D by the Higher Education Sector


The higher education sector in Canada performed over \$8.2 billion worth of R&D in 2003. This amounted to almost 0.7% of Canada's GDP in that year. The ratio of R&D performed by the higher education sector to provincial GDP was highest in Quebec at 0.9% in 2003. Of the high tech provinces, BC's ratios edged up to 0.6% to rank third. Ontario (0.7%) continued its steady climb, while the ratios were lowest in Alberta (0.5%).

Between 1992 and 1997, the Canadian ratio of higher education R&D to GDP declined. However, in more recent years this indicator has rebounded and by 2003 had reached its highest level in at least a decade. Higher education R&D relative to the size of the economy has increased in all the high tech provinces since 1997, although both Quebec and Alberta saw declines in 2000.

<sup>&</sup>lt;sup>10</sup> Data includes all G-10 universities from each respective high tech province with the exception of Université Laval, which has been excluded due to lack of available data for 1999 and 2000. From 2001 to 2003 Université Laval was issued a total of 22 US patents.

#### Ratio of higher education performance of R&D to GDP

#### **Indicator E-14**



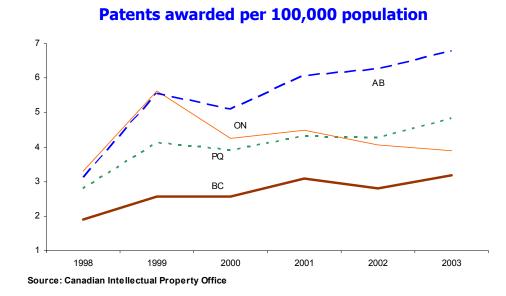
#### **Business Indicators**

This set of indicators is concerned with the stimulus to business formation and growth that comes from internal R&D, patenting, and venture capital. It also measures results that are in part due to these stimuli, in the form of establishment entries and exits, high growth companies, and the overall growth in the number of establishments.

Compared to other provinces, British Columbia returns below average ratings in all of the business stimulus indicators. However, some indicators show long-term upward trends. These include venture capital investment and the ratio of business R&D performance to provincial GDP. Although business sector performance of R&D in BC also lagged the Canadian average, it has risen substantially since 1997.

| INDICATORS                                               | Trend       | Latest<br>year | Relative to<br>other provinces |
|----------------------------------------------------------|-------------|----------------|--------------------------------|
| B-1: Patents per 100,000 persons                         | 1           | <b>^</b>       | below average                  |
| B-2: Patents granted as a percent of patent applications | <b>→</b>    | ♠              | below average                  |
| B-3: Number of Entries to the high tech sector           | ↓           | $\mathbf{+}$   | n/a                            |
| B-4: Number of Exits from the high tech sector           | <b>→</b>    | $\mathbf{+}$   | n/a                            |
| B-5: Number of high growth companies                     | <b>→</b>    | <b>↑</b>       | n/a                            |
| B-6: Venture capital investment                          | <b>^</b>    | Ϋ́             | above average                  |
| B-7: Venture capital investment: share of Canadian total | <b>&gt;</b> | <b>^</b>       | above average                  |
| B-8: Business performance of R&D to GDP ratio            | <b>^</b>    | $\mathbf{+}$   | below average                  |

#### **TABLE 3: Quick Summary of Indicators for the Business Sector**

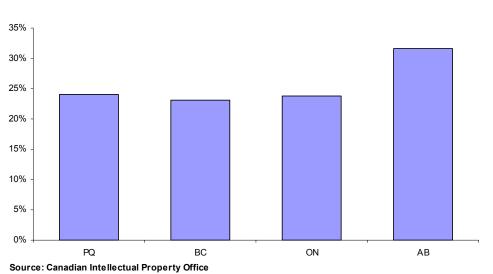

## Why are these indicators important?

Patents establish legal property rights for inventions. According to the Canadian Intellectual Property Office, their mandate is to "grant patents which will result in the protection of the inventor and dissemination of technical information, and the encouragement of the creation, adoption, and exploitation of inventions." Patent applications may be rejected for a number of reasons "including lack of novelty, obviousness, and lack of patentable subject matter."

#### Patents and Applications

Applications and granting of patents are indicators of the success of R&D, whether in the public or private sector. Over the past five years, British Columbia has consistently lagged the other high technology provinces in terms of patents awarded per 100,000 persons. The acceptance rate of BC patent applications is also below average.

There were 132 patents awarded to BC applicants in 2003, or 3.2 per 100,000 population. Alberta, with 6.8 patent awards per 100,000 population, clearly leads other Canadian provinces. Quebec (4.8) and Ontario (3.9) also have comparatively high patent rates – roughly 52% and 22% higher respectively than in BC. Compared to the other high technology provinces, British Columbia has not been highly successful in patenting new inventions.




# Most applications for patent protection are rejected. In BC, only about 23% of applications resulted in the issuing of a patent in the 2001 to 2003 period.<sup>11</sup> This is relatively on par with Quebec (24%) and Ontario (24%), but significantly lower than Alberta (32%).

#### High Technology Input Indicators 2005 Edition

#### Indicator B-1

<sup>&</sup>lt;sup>11</sup> Patent applications take an average of 25 months to be processed. Thus, to know how many applications filed in 2001 were accepted, one must look at patents granted in 2003. Figures presented here show patent grants during 2001-2003 as a percent of applications during 1999-2001.



#### Patents granted as a percent of patent applications (three-year average, 2001-2003)

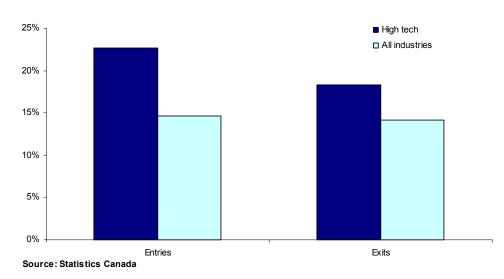
#### **Indicator B-2**

The low acceptance rates across the country suggest that many—or even most—applicants begin the process with little knowledge of their chances of success. This pattern seems somewhat more common in British Columbia.

#### Sector Dynamism: Entries and Exits<sup>12</sup>

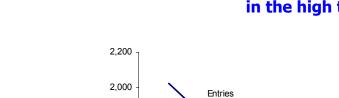
An indicator of the vibrancy of the innovation economy is the number of entries to and exits from the high technology sector. The sector seems to embrace a relatively strong entrepreneurial spirit. One consequence of this, of course, is a high rate of business failures. However, small start-up firms in high tech are often at the leading edge of innovation, and are crucial to the ongoing strength of the sector.

Entrepreneurialism is a characteristic of the high tech sector. For the BC economy as a whole, the entry rates of new firms into the market averaged 14.6% over 1998 to 2004. In the high tech sector, the entry rates were over 50% higher (22.7%). However, exit rates in high tech (18.3%) are also significantly higher than average (14.2%), implying that high tech businesses in the province tend to be volatile.

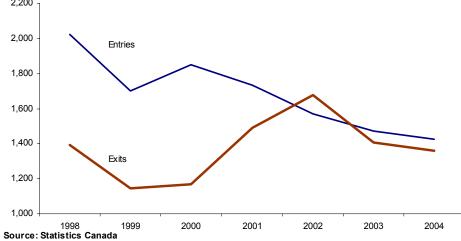

### Why are these indicators important?

A dynamic sector, characterized by a healthy mixture of large and small, old and new firms, is ideal for generating high levels of innovation. Large, established firms provide employment and earnings stability while small start-ups provide market responsiveness and creativity.

High tech sector entry rates indicate the percentage of firms currently in the sector that are new (i.e., did not exist in the previous year). Similarly, exit rates show how many firms left the high tech sector (or went out of business) as a percentage of the total number of high tech firms. Note that only companies with employees are included in these data.


<sup>&</sup>lt;sup>12</sup> Note that a comparison with other provinces for indicators B-3, B-4 and B-5 is not available because BC STATS does not have access to the necessary data.

Indicators B-3 & B-4



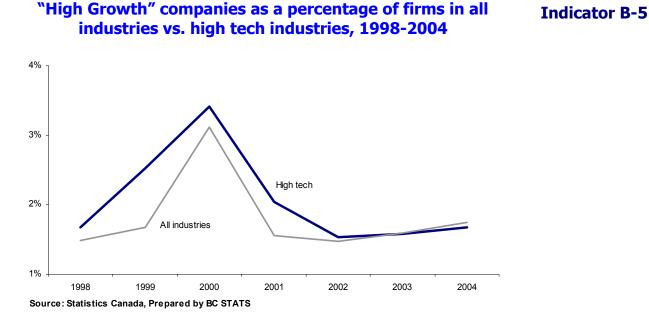

#### Indicators B-3 & B-4 Entry and exit rates are higher than average in the high tech sector, 1998-2004

Over the last five years, the number of entries into the high tech sector has been declining, while exits have grown more frequent. By 2002, exits outweighed entries, and the number of firms in the sector declined for the first time in at least five years. The numbers did, however, begin to show signs of recovery in 2003 and 2004.



#### Exits return to lower levels than entries in the high tech sector




#### **High Growth Companies**

The high technology sector is often thought to be a breeding ground for rapid growth firms—small start-up companies that grow by leaps and bounds. Few firms qualify as "high growth," but they are relatively more common in the high tech sector than elsewhere.

In 2004, only 1.7% of companies in BC showed rapid growth in employees, down significantly from the spike of 2000. While BC's high technology sector had virtually the same percentage of high growth companies in 2004, for most years in the last decade the sector has had more firms with rapid employment growth compared to the aggregate of all companies in the province. Between 1998 and 2004, 1.8% of BC firms were "high growth companies," compared to 2.1% of BC high tech firms.

#### The indicator explained

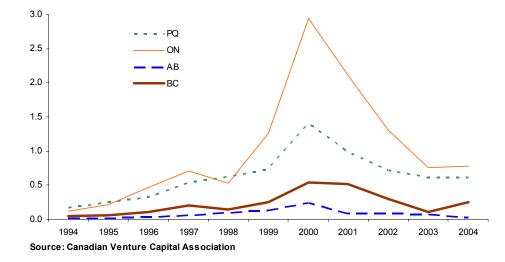
BC Stats defines "high growth companies" as those which increase by at least two employment size categories in one year. For example, a firm that has one to four employees would be considered "high growth" if it expanded to have 10 to 19 employees. Similarly, a company with 100-149 workers expanding to 200-249 workers would also be considered high growth. There are 21 employment size categories, which provide a considerable amount of detail. However, it should be cautioned that because the exact number of workers in a firm is not known, this measure will be somewhat imprecise. Further, because the last employment category is "5,000 and over," it is impossible for a large corporation to be classified as "high growth." These data, then, principally apply to small and medium-sized establishments.



### Why are these indicators important?

Venture capitalists specialize in investing in high-risk company start-ups or expansions, providing the seed funds for projects that are more often than not involved in the development of new products or processes. They take a portfolio approach, such that, while many high-risk investments in their portfolio may never be commercially viable, those that do succeed are expected to provide high enough returns to compensate for the total risk capital invested across the portfolio. Thus, venture capital investment by province gives an indication of both the quality of ventures in a given province as well as the investors' assessment of the business climate. It also reflects the risk tolerance of investors in different regions and over time.

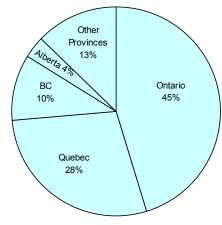
#### Venture Capital Investment


Canadian venture capital investment<sup>13</sup> exploded during the 1990s, rising from a modest \$270 million in 1991 to nearly \$5.3 billion in 2000 (nearly 20 times greater than in 1991). Since then, however, investment has plummeted to \$1.8 billion (a 67% drop from 2000 to 2004).

The boom and bust of venture capital investment has largely been a central Canadian phenomenon, with Ontario and Quebec accounting for 74% of Canadian venture capital over the period 1994 to 2004. At the peak of the boom, BC attracted \$540 million in venture capital investment, compared to \$2.9 billion in Ontario. However, BC has done fairly well in terms of investments per capita, ranking better than the national average.

In 2004, BC's 14% share of venture capital investment was far greater than in any other province outside Canada's industrial core, exceeding the province's share of population. Indeed, the amount of investment in BC over the last decade (\$2.5 billion) exceeds that of Alberta, Saskatchewan, Manitoba and the Atlantic provinces combined (\$2.0 billion).

#### **Indicator B-6**





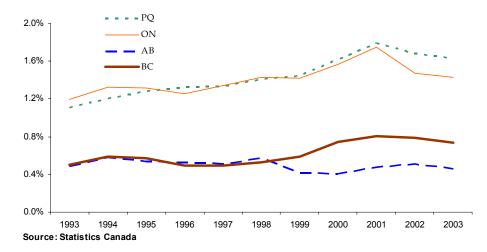

<sup>&</sup>lt;sup>13</sup> Most of the other potential financing indicators, such as debt financing, are either available only for Canada with no provincial breakdown, or do not provide sufficient years of reporting to establish trends and are therefore not included in this report, although table 12 in Appendix III does offer some data on total Canadian investment in scientific and research development.

### Proportional share of Canadian venture capital investment, 1994-2004

## **Indicator B-7**



Source: Canadian Venture Capital Association


### Performance of R&D by the Business Sector

In 2003, the business sector in Canada performed \$13.4 billion worth of R&D, amounting to just over 1% of Canada's GDP in that year. Over the past decade, the ratio of business R&D to provincial GDP has been much higher in Quebec and Ontario than in BC and Alberta. In 2003 (the latest year for which data is available), the ratio decreased in all four provinces.

Ontario and Quebec alone made up 83% of business R&D in Canada in 2003 (BC accounted for 8%). The ratio of business R&D to GDP in Quebec and Ontario is about twice that in BC. In recent years, business R&D has seriously lagged in Alberta, resulting in its falling well behind BC.

## Why is this indicator important?

Research and Development (R&D) provides the potential for innovation and new discoveries either in the form of a new product, a service or a process that eventually enhances productivity. In this way, R&D is viewed as an investment in future output. The ratio of R&D performed by business to GDP is an indicator of the proportional investment in R&D by the business sector relative to the size of the overall economy.



Ratio of business performance of R&D to GDP

**Indicator B-8** 

## **Government Indicators**

The government sector affects high technology firms by providing a regulatory, tax, and infrastructure environment for the private sector to operate within. Government also funds and performs a substantial amount of research and development.

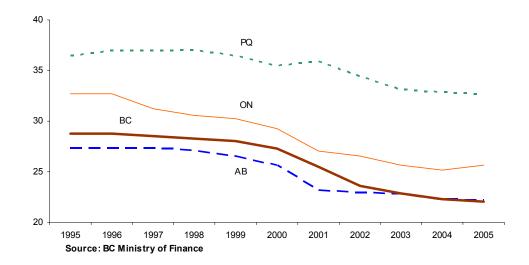
The tax regime is similar across provinces. Quebec has a considerably lower corporate income tax rate than other provinces, while Alberta and New Brunswick have the lowest small business tax rate.

This section also includes a summary of gross expenditures on R&D in British Columbia. This includes R&D performed by business, higher education, and federal and provincial governments. Direct performance of R&D by government has lagged in BC compared to other provinces.

## **TABLE 4:** Quick Summary of Indicators for the Government Sector

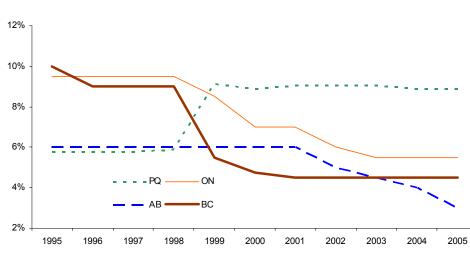
| INDICATORS                                        | Trend           | Latest<br>year | Relative to<br>other provinces |
|---------------------------------------------------|-----------------|----------------|--------------------------------|
| G-1: Personal tax index for \$80,000 income       | $\mathbf{+}$    | $\mathbf{A}$   | below average                  |
| G-2: Small business tax rate                      | •               | <b>→</b>       | below average                  |
| G-3: Corporate income tax rate                    | $\mathbf{\Psi}$ | $\mathbf{+}$   | below average                  |
| G-4: Government performance of R&D to GDP ratio   | •               | $\mathbf{+}$   | below average                  |
| G-5: Gross expenditure on R&D (GERD) to GDP ratio | <b>^</b>        | $\mathbf{A}$   | below average                  |

## Tax Rates: Individual and Corporate


Tax rates are one significant policy area over which the government has complete control. The total taxes levied on a single (unattached) individual earning \$80,000 a year in BC averaged \$22,063 in 2005, the lowest level in Canada (note that this includes all federal and provincial taxes, such as the GST, health care premiums, income tax, etc.). Indeed, the level of taxation in BC for high-income individuals has declined considerably since 1995 (when taxes amounted to \$28,782). Personal taxes on high-income earners continue to drop in all four provinces. Average taxes paid by high-income earners in BC remain well below those in Quebec (\$32,741) and Ontario (\$25,667). Taxes paid in Alberta (\$22,212) are very close to those paid in BC.

# Why are these indicators important?

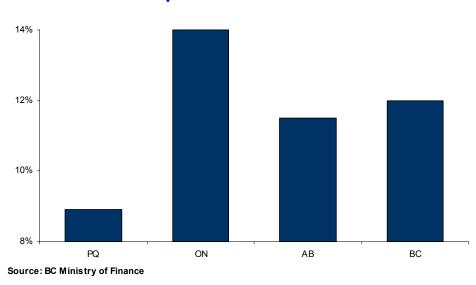
Lower levels of taxation can be tools to attract investment and a skilled workforce, both essential to the high technology sector. However, a better quality of life associated with environmental protection and broad social programs (education, health care, and social services) is also thought to be attractive to high technology workers. These amenities result in higher levels of taxation.


## **Indicator G-1**

All taxes paid by unattached individuals earning \$80,000 per year (\$ '000)



BC's small business tax rate declined in 1996 and 1999 through to 2001, giving the province the lowest small business tax rate (4.5%) of the high technology provinces. In 2003, however, Alberta lowered its small business rate 0.5 percentage points to match the BC rate and has continued its drop through to 2005, where it sits at 3.0%, lowest of all high tech provinces. Quebec's tax rate increased in 1999 (to 9.0%) and, in 2005, remains double the rate in BC (Quebec no longer has a different tax rate for small business).


Small business tax rate



### **Indicator G-2**

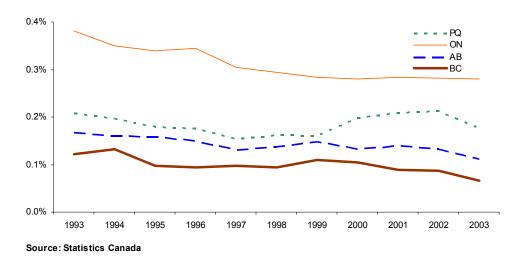
Source: BC Ministry of Finance

In contrast to the small business rate, BC's general corporate income tax rate (12.0%) ranks third among the high tech provinces. Quebec stands out as having a low corporate income tax rate (8.9%), and Ontario's rate (14.0%) is higher, but the difference between BC and Alberta (11.5%) is marginal.



## General corporate income tax rate in 2005

**Indicator G-3** 


## Performance of R&D by the Government Sector

Overall, the government sector in Canada performed \$2.5 billion worth of R&D in 2003 (the latest year for which data is available), posting the first annual decrease in six years, but remaining at one of the highest levels in over a decade. This amount accounted for 0.2% of Canada's GDP.

Within the high technology provinces, Ontario has maintained by far the highest ratio of government R&D to GDP for at least the last decade. BC's ratio has historically ranked last compared to all provinces, while Alberta has held the ninth place rank. These positions held true in 2003. The BC (0.07%) ratio was approximately a third of the Canadian average (0.20%). Alberta's (0.11%) and Quebec's (0.18%) ratios declined slightly while Ontario (0.28%) has remained the same over the last five years.

# Why is this indicator important?

Government tends to fund much more R&D than it actually performs. However, in some fields, governments do maintain research personnel in order to provide independent testing of products, processes and practices. The purpose of most internal government research is not necessarily focused on innovation, but serves a review function. Significant innovations developed by government researchers are often spun-off to the private sector.



## **Indicator G-4**

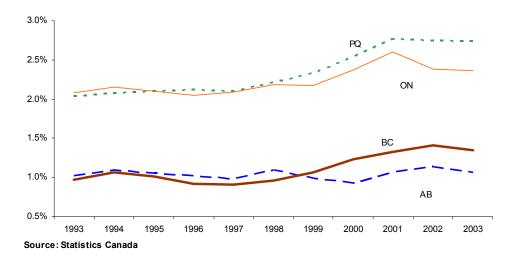
## Ratio of combined federal and provincial performance of R&D to GDP

# Why is this indicator important?

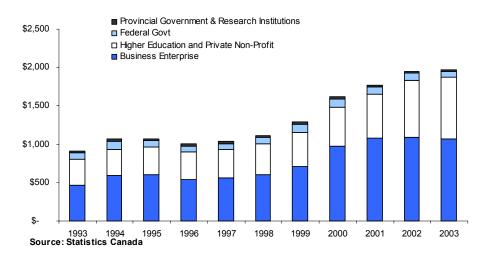
The overall ratio of total R&D effort to the overall economy, also known as the GERD ratio, is a measure of how much a jurisdiction is willing to sacrifice current consumption for potential increased future capacity. The changing structure of the ratio (the relative size of the component investments by the government, business and higher education sectors) over time is a measure of the shifting importance different sectors place on the performance of R&D. Although the meaningfulness of the GERD ratio has been challenged in recent times, the measurement of R&D effort as an indicator for the high technology sector remains a primary objective of national statistical agencies.

## Gross Expenditure on R&D

Gross Canadian expenditure on research and development (GERD) reached almost \$24.0 billion in 2003, amounting to 2.0% of Canada's GDP in that year. Across Canada, the GERD to GDP ratio has been rising since 1996 and reached a high of 2.1% in 2001.


GERD ratios for Quebec and Ontario are the highest in the country, and have increased substantially over the last ten years. Ratios for BC and Alberta hovered at approximately 1.0% of GDP during the same period. By 2003, Alberta's ratio was at 1.1%, while BC's rose to 1.3%.

The business sector in BC performed the bulk of R&D (55%) in 2003. Higher education made up over a third (40%), while the rest (5%) was done by the federal and provincial governments. This is also a common trend among other high tech provinces. In Alberta, higher education accounted for 47% of performed R&D and the business sector made up 43%. The business sector performed most of the R&D in both Quebec (60%) and Ontario (61%) in 2003. As in other high tech provinces, the amount of R&D performed by government in BC


has held steady over the past decade, while R&D in business and higher education has been increasing.



### **Indicator G-5**



## The Business sector is the leading performer of R&D



## **External Indicators**

The British Columbia economy is highly dependent on trade with other provinces and foreign countries both as a source of goods and services used in BC and as markets for its products. Trade relationships play an integral role in the high tech sector, as they do in the economy as a whole. BC imports of high technology goods, which can be an indicator of future production, since imported components are often used to produce high tech products, increased steadily throughout the 1990s, before falling for the first time in 2002. After two years of decline, imports recovered somewhat in 2004.

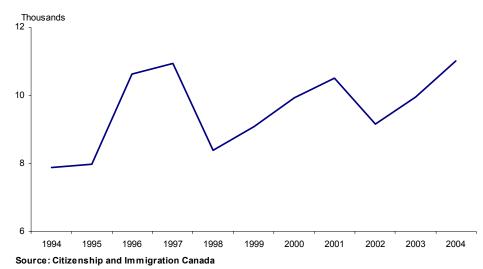
Immigrants to Canada are increasingly well-trained and educated. BC is more or less on par with other provinces in terms of attracting skilled foreigners. In-migration from other provinces has also boosted the province's supply of well-trained, educated workers, but in recent years the flow has reversed, with the province losing people to other parts of Canada.

| INDICATORS                                          | Trend           | Latest<br>year | Relative to other provinces |
|-----------------------------------------------------|-----------------|----------------|-----------------------------|
| X-1: Percentage of immigrants with higher education | 1               | 1              | below average               |
| X-2: Median years of schooling of immigrants        | 1               | Ϋ́             | average                     |
| X-3: Net inter-provincial migration                 | $\mathbf{\Psi}$ | <b>↑</b>       | above average               |
| X-4: High technology imports                        | <b>↑</b>        | <b>↑</b>       | n/a                         |

## **TABLE 5: Quick Summary of Indicators for the External Sector**

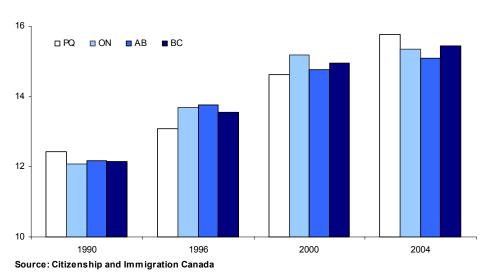
## Educational Background of Immigrants

British Columbia experienced high levels of immigration over the past decade, and this trend continued in 2004. Overall, immigrants to BC tend to be well educated. The median education level of adult immigrants (aged 25 years and older at landing) is 15.4 years of schooling. This is on par with Ontario (15.4) and similar to that in Alberta (15.1) and Quebec (15.8).


The number of skilled immigrants to BC has increased substantially (+201%) since 1990. Quebec (147%) and Ontario (162%) have also experienced a significant influx, whereas Alberta (82%) lags be-

# Why are these indicators important?

The economic effects of immigration depend on the skills and resources immigrants bring with them. An influx of highly educated immigrants an increase in the supply of skilled labour—can provide a significant boost to high technology companies. Immigrants also offset the loss of skilled workers who move to other provinces or out of Canada. hind. Indeed, BC has been a central destination for skilled immigrants. Over the period of 1994 to 2004, BC received over 125,000 immigrants with 16 or more years of education—more than any other province except Ontario. One reason for BC's success in attracting these immigrants is that Asia has become the top origin for immigrants to Canada and BC's relative proximity to Asia compared to the rest of Canada makes it a prime destination for these Asian immigrants.








The median years of schooling of immigrants aged 25 years and older increased over the past decade. In BC, median education rose from 12.3 years to 15.4 years between 1994 and 2004. Other provinces have seen a similar trend.

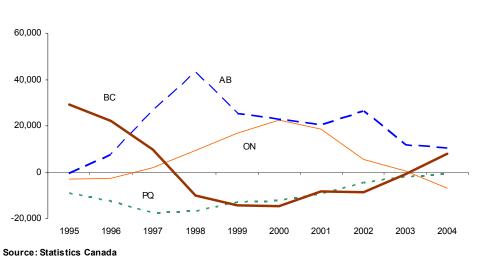
## Indicator X-2 Median years of schooling of immigrants 25 years and older



External Indicators

It seems clear that Canada acquires many high-technology workers. In the past decade, new immigrants have played a significant role in the growth of highly skilled occupations - those customarily requiring a university education. In 2001, for example, 12% of recent immigrants aged 25-44 worked in information technology occupations in contrast to only 3% of Canadian-born workers. Recent immigrants between the ages of 25-44 in the labour force were also over-represented in natural science and engineering professions with 3% working in engineering and 1.2% in natural sciences versus 1% and 0.6% of Canadian-born workers respectively.14

### Inter-provincial Migration


People seeking better economic opportunities contribute significantly to the pattern of inter-provincial migration in Canada. Net

migration to BC peaked in 1992, with a net inflow of nearly 40,000 people. 1994 marked the beginning of a steep downward slide and by 1998 there was a net outflow of over 17,000 individuals. Parallel to this was a soaring increase in migration to Alberta. Indeed, the migration patterns of these two provinces have been almost mirror images over the last decade. Out-migration from BC has gradually eased since 1998, with an inflow of almost 8,000 migrants

## Why is this indicator important?

In aggregate, population movement between provinces is a general indicator of perceived economic opportunity and general attractiveness.

recorded in 2004, but the province is certainly not the destination of choice that it once was.



### Net inter-provincial migration

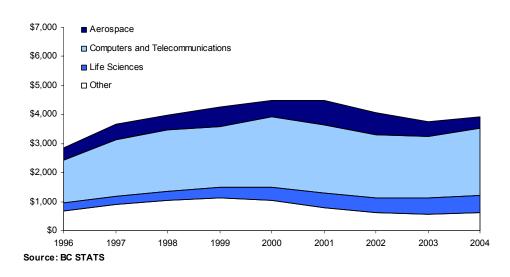
### **Indicator X-3**

Quebec has seen consistent net out-migration over the past decade. In Ontario, population outflows in the early 1990s were reversed in

<sup>&</sup>lt;sup>14</sup> Source: Statistics Canada, 2001 Census.

1997, and in 2000 there were more than 23,000 net migrants to the province. However, by 2004, Ontario recorded a net out-migration of 6,935 individuals.

# Why is this indicator important?


Although a heavy reliance on imports can create a negative trade balance (the difference between the value of goods exported and the value imported), imports of high technology goods are often essential because they can be turned into future exports. For instance, without state-of-the-art telecommunications, the high technology sector as a whole would struggle. Similarly, purchases of computer integrated manufacturing technology would displace future imports of other goods, whether high technology or low technology, and could generate goods for export.

## **High Technology Imports**

BC's high technology sector relies on imports of high technology goods in order to thrive. Computers and telecommunications are the main component (59%) of high technology imports. Aerospace (10%) and life sciences (15%) also make up notable shares. Imports of high technology goods increased steadily between 1991 and 2001, but have declined in recent years. However, 2004 showed promise of a rebound, as BC recorded a 4.9% increase in high technology imports over the previous year.<sup>15</sup>

## **Indicator X-4**





<sup>15</sup> Note that imports have not been adjusted for inflation or exchange rate effects.

## Labour Indicators

Most of the indicators in this report are grouped according to the sector that provides or affects the input. However, in the case of labour input, indicators such as the unemployment rate are not attributable to a single source sector. This section contains a set of indicators that are specific to the labour market but represent a combined impact of the source sectors.

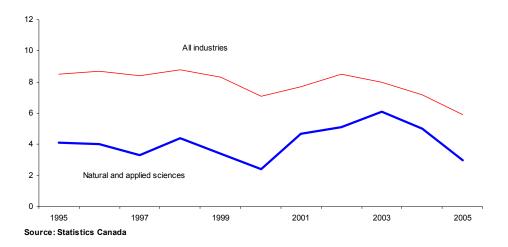
Across the country, unemployment rates among workers in the natural and applied sciences are well under those in the economy overall. Further, these unemployment rates have been falling quite consistently since the early 1990s, although they have begun to climb back up in the last four reporting years (2001-04).

## **TABLE 6: Quick Summary of Indicators for Labour**

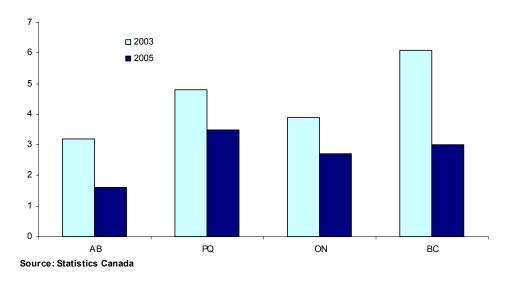
| INDICATORS                                              | Trend    | Latest<br>year | Relative to other provinces |
|---------------------------------------------------------|----------|----------------|-----------------------------|
| L-1: Unemployment rate for natural and applied sciences | <b>→</b> | $\mathbf{A}$   | average                     |
| L-2: Research personnel per 100,000 population          | n/a      | 1              | below average               |
| L-3: Quality of life                                    | n/a      | <b>→</b>       | above average               |
| L-4: Cost of Living                                     | n/a      | $\mathbf{+}$   | above average               |

# Unemployment Rate in Natural and Applied Sciences

Nationally, the highest recorded unemployment rate between 1990 and 2005 for all occupations was 11.4% in 1993. The highest rate of unemployment for natural and applied sciences was 5.9% in the same year. Throughout the 1990s and early 2000s, persons employed in the natural and applied sciences occupations have enjoyed an employment advantage compared to the labour force as a whole.


In 2000, the unemployment rate for natural and applied sciences in BC reached a decade low of 2.4%. However, between 2000 and 2004, BC changed from having the lowest to the highest high tech unemployment rate among the four provinces. The situation improved in 2005 as high tech unemployment in BC dropped to 3.0%, below Quebec's rate of 3.5%, such that BC had the third lowest unemployment rate for natural and applied sciences in 2005.

# Why are these indicators important?


A low level of unemployment in natural and applied sciences occupations is desirable because some components of this group (e.g., computer scientists) are the engines of innovation in the high technology economy. Higher levels of unemployment in this group indicate idle intellectual capital, which has the effect of slowing the overall rate of innovation. Also, a lower ratio between the unemployment rate for natural and applied science occupations and the overall labour force indicates heightened demand for these specializations. This should attract more workers-and students-into this sector of the job market.

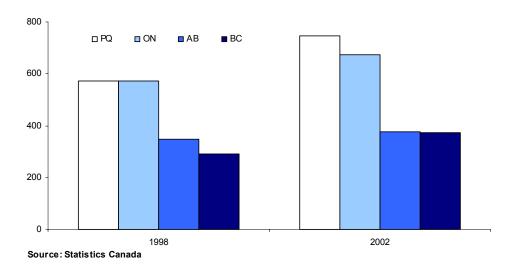
## Indicator L-1

# BC unemployment rate for natural and applied science occupations (%)



## Unemployment rate for natural and applied science occupations has dropped in BC (%)



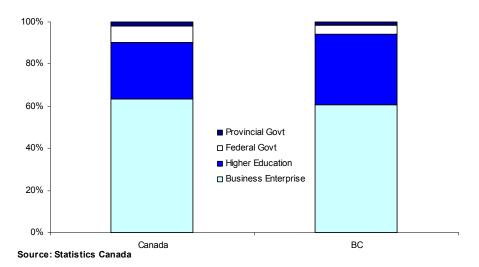

## **Research Personnel**

In 2002 (the latest year for which data is available), there were approximately 566 researchers per 100,000 persons, working in the areas of government, business and higher education across Canada. Business and higher education claimed the largest shares of Canadian research personnel (63% and 27%, respectively).

British Columbia's workforce of researchers and technicians was the fourth largest per 100,000 persons across Canada in 2002, the same rank as in 1998, but up from an eighth place rank in 1995. The total number of researchers in other provinces also increased in 2002. Ontario has the largest research workforce per 100,000 in absolute numbers, followed by Quebec.

# Why is this indicator important?

The absolute number of researchers and technicians engaged in research is an important determinant of the volume of scientific and technical discoveries that may result in patent applications, and later, in the birth of new firms or the growth of existing firms. The structure of the research workforce is also important. Each sector (federal government, provincial government, business enterprise or higher education) has different reasons for developing new technology and different methods of bringing new discoveries to market.




Total research workforce per 100,000 persons

**Indicator L-2** 

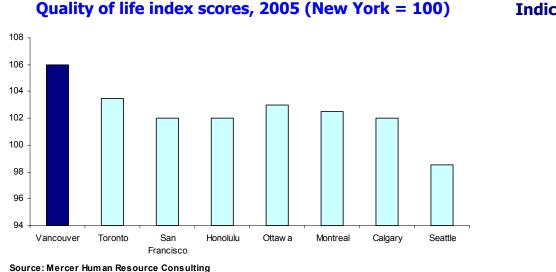
Although business accounts for the largest proportion of the research workforce in each of the high technology provinces, the proportions ranged from 45% of personnel in Alberta to 70% in Quebec in 2002. Ontario has the largest portion of federal research personnel due to the concentration of federal agencies in the National Capital Region (Ottawa). Alberta's provincial government research workforce is more than triple the Canadian average.

## Structure of the research workforce by sector in 2002



## Quality of Life

Vancouver<sup>16</sup> is ranked as having the highest overall quality of life in North America and third highest in the world. Although BC is


## The indicator explained...

Mercer Human Resource Consulting—a large international management firm—developed "quality of life" scales to assist companies in determining hardship pay. Such allowances are often provided when a company sends employees to work in foreign (particularly third world) countries. The Mercer quality of life survey provides rankings based on 39 indicators, grouped into ten categories:

- "Political and social environment (political stability, crime, law, enforcement, etc.)
- Economic environment (currency exchange regulations, banking services, etc.)
- Socio-cultural environment (censorship, limitations on personal freedom, etc.)
- Medical and health considerations (medical supplies and services, infectious diseases, sewage, waste disposal, air pollution, etc.)
- Schools and education (standard of schools)
- Public services and transportation (electricity, water, public transport, traffic congestion, etc.)
- Recreation (restaurants, theatres, cinemas, sports and leisure, etc.)
- Consumer goods (availability of food/daily consumption items, cars, etc.)
- Housing (housing, household appliances, furniture, maintenance services, etc.)
- Natural environment (climate, record of natural disasters)"

<sup>&</sup>lt;sup>16</sup> The Mercer Human Resource quality of life scales give rankings only to large target urban centres. An urban centre's ranking is, however, representative of other surrounding regions.

comprised of many regions and cities, many of the quality of life variables are available at equally high levels in most other parts of the province and since Vancouver is the largest metropolitan area in the province, its high ranking reflects on the province as a whole as well. The positive ranking for Vancouver would seem to provide a substantial competitive advantage in attracting high tech workers.



Vancouver's score of 106.0 on the overall quality of life index is well above Toronto (103.5), Ottawa (103.0), Montreal (102.5), and Calgary (102.0). In terms of ranking among the 235 cities included in the study, Vancouver ranks third (tied with Vienna), far higher than Toronto (14<sup>th</sup>), Ottawa (20<sup>th</sup>), Montreal (22<sup>nd</sup>), and Calgary (25<sup>th</sup>). Key American cities with which BC competes for high tech workers and firms (particularly Seattle and San Francisco) also rank considerably lower than Vancouver.

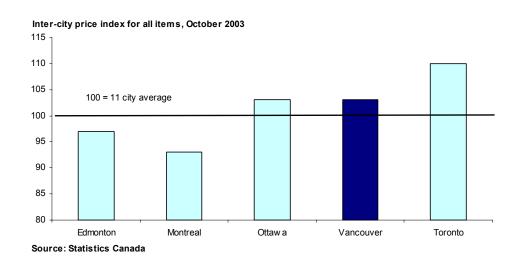
|               | Score | Global Rank | North Am. Rank |
|---------------|-------|-------------|----------------|
| Vancouver     | 106.0 | 3           | 1              |
| Toronto       | 103.5 | 15          | 2              |
| San Francisco | 102.0 | 24          | 4              |
| Honolulu      | 102.0 | 24          | 4              |
| Ottawa        | 103.0 | 20          | 3              |
| Montreal      | 102.0 | 24          | 4              |
| Calgary       | 102.0 | 24          | 4              |
| Seattle       | 98.5  | 45          | 8              |

Indicator L-3

## The indicators explained

The inter-city price index compares the cost of consumer goods and services in different parts of the country. The "all items" price index is based on a bundle of goods and services that represents the expenditure patterns of a hypothetical average Canadian household. The largest component of the all items index is shelter. This includes the cost of owned or rented housing and related expenses (insurance, electricity, fuel oil, etc.). Prices recorded are the final price facing consumers, including sales and excise taxes and are based on a combined city average (100).

## Cost of Living

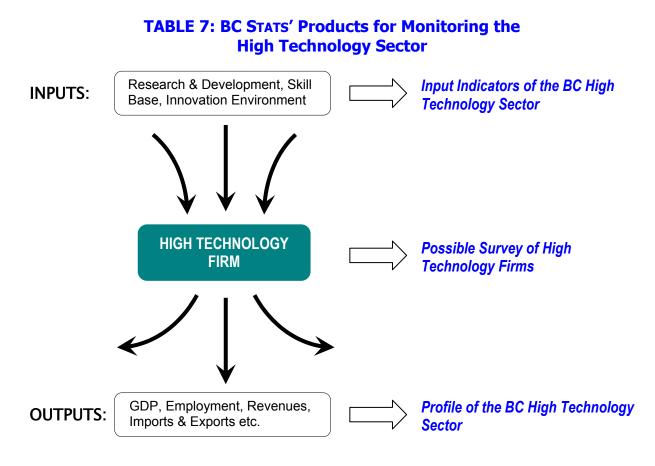

The high quality of life in Vancouver comes with a price. Vancouver is the second most expensive urban centre in Canada, in terms of general retail prices and third in terms of shelter cost.

In Vancouver, retail prices were 3% higher than the combined city average in October 2003, on par with Ottawa and second only to Toronto (10% above average). In Edmonton, prices were 3% below the combined city average and prices in Montreal were 7% below. The absence of a provincial sales tax in Alberta partly explains Edmonton's comparatively low prices. Between 2001 and 2003, retail prices inched down (compared to the average) in Vancouver (from 6% to 3% above average).

The largest component of the inter-city price index is shelter costs. In Vancouver, shelter costs were 3% above the combined city average, the third highest in Canada. In Toronto, shelter costs were a striking 24% above av-

erage. Shelter costs were well below average in Edmonton (12% lower) and Montreal (15% lower).

Vancouver has second-highest retail prices in Canada




## **Indicator L-4**

## Appendix I: BC STATS' Sector Model

In BC STATS' model of the high technology sector (see "Modeling the High Technology Sector," below), the **firm** is the centre of the system of high technology production. The firm receives inputs, in the form of labour, physical and financial capital, raw materials and parts, and knowledge. Knowledge may be embodied in labour (human capital) or other inputs, or it may come in the form of patents and copyrights, books and electronic information, etc. Through its internal operations, the firm then produces outputs. These outputs are products and services, and (in some views) also include employment and other benefits to society.

This firm-centred view underlies BC STATS' publication strategy for high technology sector information, as shown in the diagram below.



## What is an Indicator?

The concept of indicators is well understood in the operation of machines. For instance, the dashboard of a car has many indicators. The speedometer measures the main output, which is forward motion. However, gauges such as oil pressure and water temperature assess how well the engine is working as a system. They predict the engine's future performance, and may suggest the need for specific adjustments.

When we want to predict the future, in terms of the economy, we need to examine the chain of events that leads to the production of specific outputs, and develop indicators for those steps in the chain judged to be most important. When we want to predict the future in terms of the high technology sector, we similarly need to develop a model of what drives growth in the sector, and then obtain indicators for each component of the model.

In selecting indicators, consideration must be given not only to their place in a growth model of the high technology sector, but also to their accuracy and availability. Indicators should meet other tests as well. In the annual (since 1997) *Index of the Massachusetts Innovation Economy*,<sup>17</sup> all potential indicators are subject to a set of five criteria. The indicators selected for inclusion in the report are:

- Derived from objective and reliable data sources,
- Statistically measurable on an ongoing basis,
- Bellwethers that reflect the fundamentals of economic vitality,
- Understood and accepted by the community, and
- Measurements of conditions in which there is an active public interest.

These criteria help ensure that the indicators become relevant to politicians and citizens as well as to statisticians, and have thus been adopted for this report as well.

## How is Research Progressing in this Field?

Detailed and generally accepted models for high technology sector growth do not exist at present. However, there has been loose agreement on some of the most important factors. One of the first

<sup>&</sup>lt;sup>17</sup> Collaborative Economics and Massachusetts Technology Collaborative, *Index of the Massachusetts Innovation Economy*, 2004. Available at:

http://www.mtpc.org/research/

of these factors to be explored was "research and development" spending. At the international level, the Organization for Economic Cooperation and Development (OECD), of which Canada is a member nation, took the lead with the *Frascati Manual: Proposed Standard Practice for Surveys of Research and Experimental Development* (1963). Meeting in Frascati, Italy, national experts of research and development statistics recognized the need for consistent, comparable international measures. Their proposal became the international standard.

In 1995, the Science and Technology Agency of Japan published *Science and Technology Indicators:* 1994 – A Systematic Analysis of Science & Technology Activities in Japan, an update and revision of a similar document published in 1991. This comprehensive project was heavily focused on international comparisons between Japan and other nations, on the one hand comparing ratios of science and technology expenditures to Gross National Product for several leading science and technology countries, while on the other comparing the number of museums in Japan to the number in other countries. The critical focus, however, was on comparisons of R&D expenditures and effort between nations.

In 1997, the Massachusetts Technology Collaborative, a joint effort of government, industry and academia, produced the first of its annual publications, *Index of the Massachusetts Innovation Economy* that presented 33 indicators (a mixture of both input and output indicators). However, these indicators are focused more on the intangible *innovation* economy which is "based on a dynamic conceptual framework that links resources to economic results through an innovation process." The index annually tracks the benchmark performance (indicators) of nine key industry clusters for six leading technology states throughout the United States. The 2004 version of the *Index* covers 30 separate indicators.

A similar effort has been produced by the Progressive Policy Institute (PPI) in the United States, which is responsible for the "New Economy Index." PPI offers thirty-nine indicators at the national level, and seventeen for each of fifty states.<sup>18</sup>

In 1998, Statistics Canada published *Science and Technology Activities and Impacts: A framework for a statistical information system* as well as *A Five-Year Strategic Plan for the Development of an Information System for Science and Technology.* These documents did not themselves contain any indicators but rather proposed a framework and strategy for the collection of science and technology indicators. However,

<sup>&</sup>lt;sup>18</sup> Available at http://www.neweconomyindex.org/states/

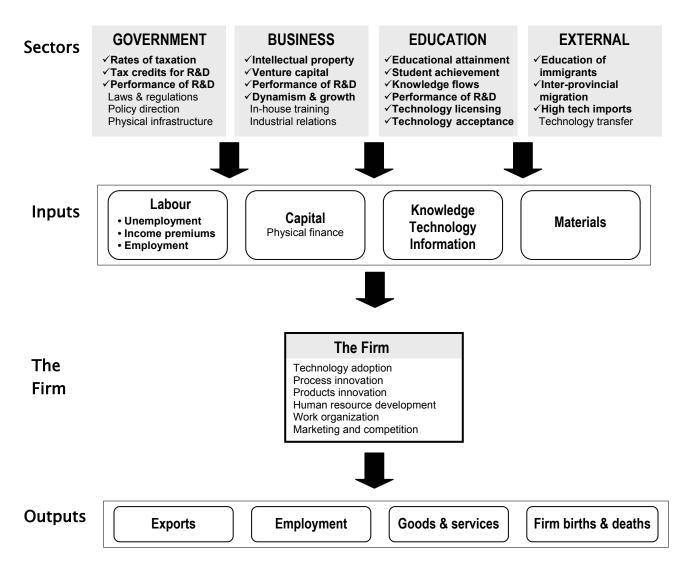
Statistics Canada also stated "There is little underlying theory of how science and technology develops and interacts with other activities in different institutions. There are some procedural measures, many unsubstantiated beliefs and myths, and there are major information gaps." These caveats from Statistics Canada show that there is still much work to be done in this field.

In 1998, BC STATS, the Information, Science and Technology Agency of British Columbia, and the Science Council of British Columbia began a collaboration to devise a model of the BC high technology sector, with an associated set of indicators. This resulted in two working papers. The first reviewed definitions of the high technology sector and models of the innovation economy in other jurisdictions, while the second proposed a model for use in BC, together with a large number of potential indicators for that model.<sup>19</sup> Subsequently BC STATS has simplified the model and prepared a corresponding shorter list of indicators. The simplified model and indicators form the basis for this publication.

## Modeling the High Technology Sector

The traditional model of economic production focuses on land, labour and capital, which are the "factors of production" or inputs into the production process. These factors are transformed by firms, other organizations, or individuals into valued goods and services. GDP is the main measure of that value and is the most common statistic used to describe the production of economic sectors. This traditional model can be thought of as an input/output view of the economy. The inputs are obtained from a variety of sources and enter a production process, resulting in outputs.<sup>20</sup>

The advent of the "information economy" has added a new dimension to traditional economic production, and some efforts to describe it seem quite new as well. However, the input/output view can readily be adapted to the information economy. In the model above the firm is at the centre of the productive system. As in the traditional model, the firm receives inputs; however, knowledge,


<sup>&</sup>lt;sup>19</sup> Koebberling, Uschi and Veneranda Dettmers, "A Model of the BC High Technology Sector: Description of Factors and Linkages Affecting the Growth of the High Technology Sector in the Context of an Innovation Economy," Science Council of BC, April 1999.

<sup>&</sup>lt;sup>20</sup> This is also referred to as the neoclassical model. See Lipsey, Richard G. and Kenneth Carlaw, "A Structuralist Assessment of Technology Policies—Taking Schumpeter Seriously on Policy," Working Paper #25, Industry Canada, Research Publications Program, October 1998. Available at http://strategis.ic.gc.ca

technology, and information are distinguished as a unique category. This can include patents and copyrights, software, information on production methods, etc. In addition, it is recognized that the other factors, labour, capital, and materials each have critical

and increasing quantities of knowledge embodied in them.

The diagram then looks beyond the production inputs, to analyze their sources (the top row of boxes). For example, skilled labour may come from training courses in educational institutions, from in-house training, or from other provinces or countries. The sources for the inputs have been categorized as four "sectors." Within each sector, particular areas that bear on the production inputs are identified. These areas are the ones for which indicator variables have been sought out. The areas listed in bold, and checked, are the ones for which data is available and has been collected by BC STATS.



## **TABLE 8: Model of the High Technology Sector**

While the indicator variables have normally been sought out at the level of the source sectors, certain labour indicators, such as the unemployment rate, are not attributable to a single source sector. Such indicators have been grouped in a separate "labour" section.

Once the inputs are obtained by the firm, they are transformed in a way that depends on the firm's many characteristics. Some of the characteristics of most importance for high technology firms are listed within the FIRM box in the diagram.<sup>21</sup>

Finally, the firm produces and sells goods and services, some of which are consumed locally, while the remainder are exported. This is depicted in the bottom row. It should be recognized that even with a simplified model such as the one set out here, it is possible to imagine a large number of interactions. That is, almost every box or element within the boxes could be joined by an arrow to every other box or element. In turn, a complete statistical system based on the model would track the flows of people, dollars, or information along each of the pathways (arrows). Such a comprehensive approach is neither practical, nor would it in the end necessarily lead to greater understanding and better policy. However, statistics are available on a significant number of the interactions, providing a strong database for future research.

<sup>&</sup>lt;sup>21</sup> For an in-depth study of uses of knowledge within high technology firms, see Canada's 2002 Innovation Strategy reports: *Knowledge Matters: Skills and Learning for Canadians and Achieving Excellence: Investing in People, Knowledge and Opportunity* available at http://www.innovationstrategy.gc.ca/ and Schuetze, Hans, *Innovation, Skills, and Learning: A Study of Knowledge and Human Resources Management in Small and Medium Sized Enterprises in British Columbia,* Centre for Policy Studies in Education, University of British Columbia, March 1998.

## Appendix II: Definitions of the high technology sector

In recent years, a more broadly-based view of high technology has evolved, which encompasses some industries not considered high tech just a few years ago. As such, this edition of the *Indicators* report has incorporated an expanded definition. Note that these definitions were used in this publication to determine the number of establishments, entries, exits and high growth companies for the high tech sector. This is not intended to be a statement of what the permanent definition of high tech is as it is subject to revision in the future.

The table below describes the North American Industry Classification System-based definition of the High Tech Sector in BC. This is the most recent definition developed to describe BC's high technology sector. More detail on the industries and why they are included can be found in the *Profile of the British Columbia High Technology Sector*, which can be found at: *http://www.bcstats.gov.bc.ca*.

| NAICS   | Industry                                                               |
|---------|------------------------------------------------------------------------|
| Manufac | cturing Industries                                                     |
| 325189  | Other Inorganic Chemicals                                              |
| 325410  | Pharmaceutical and Medicine                                            |
| 333310  | Commercial and Service Industry                                        |
| 334110  | Computer and Peripheral                                                |
| 334210  | Telephone Apparatus                                                    |
| 334220  | Radio, Television Broadcasting & Wireless Communications Equipment     |
| 334290  | Other Communications Equipment                                         |
| 334310  | Audio and Video Equipment                                              |
| 334410  | Semiconductor and Other Electronic Components                          |
| 334511  | Navigational and Guidance Instruments                                  |
| 334512  | Measuring, Medical and Controlling Devices                             |
| 334610  | Manufacturing and Reproducing Magnetic and Optical Media               |
| 335315  | Switchgear and Switchboard, and Relay and Industrial Control Apparatus |
| 335920  | Communication and Energy Wire and Cable                                |
| 335990  | All Other Electrical Equipment and Component                           |
| 336410  | Aerospace Products and Parts                                           |
| 339110  | Medical Equipment and Supplies                                         |
|         |                                                                        |

## **TABLE 9: Industries in the High Technology Sector**

#### **Service Industries**

- 511210 Software Publishers
- 512110 Motion Picture and Video Production
- 512190 Post-Production and Other Motion Picture and Video Industries
- 515210 Pay and Specialty Television
- 516110 Internet Publishing and Broadcasting
- 517110 Wired Telecommunications Carriers
- 517210 Wireless Telecommunications Carriers (Except Satellite)
- 517310 Telecommunications Resellers
- 517410 Satellite Telecommunications
- 517510 Cable and Other Program Distribution
- 517910 Other Telecommunications
- 518111 Internet Service Providers
- 518112 Web Search Portals
- 518210 Data Processing, Hosting and Related
- 541330 Engineering
- 541360 Geophysical Surveying and Mapping Services
- 541370 Surveying and Mapping (Except Geophysical) Services
- 541380 Testing Laboratories
- 541510 Computer Systems Design and Related
- 541620 Environmental Consulting
- 541690 Other Scientific and Technical Consulting
- 541710 Research and Development in Physical, Engineering and Life Sciences

## Appendix III: Detailed Tables

## **Educational Indicators**

#### Indicator E-1. Percentage of the population aged 15 years and older with a high school diploma

|        | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 67.1 | 68.0 | 68.8 | 69.9 | 70.6 | 71.4 | 72.6 | 73.6 | 74.5 | 75.8 | 76.3 |
| NFLD   | 55.9 | 57.4 | 58.3 | 58.7 | 60.3 | 61.4 | 62.7 | 63.7 | 65.8 | 67.9 | 67.3 |
| PEI    | 58.0 | 59.7 | 61.1 | 61.3 | 63.1 | 63.4 | 64.8 | 67.2 | 69.6 | 69.9 | 70.6 |
| NS     | 62.1 | 63.3 | 64.2 | 65.9 | 67.3 | 68.0 | 69.0 | 70.9 | 70.8 | 72.4 | 73.2 |
| NB     | 62.0 | 63.2 | 62.5 | 64.9 | 66.5 | 66.6 | 67.0 | 68.7 | 69.8 | 71.3 | 71.9 |
| PQ     | 61.4 | 62.5 | 63.7 | 65.9 | 66.3 | 67.1 | 68.0 | 68.9 | 70.2 | 71.9 | 72.4 |
| ON     | 69.0 | 69.8 | 70.3 | 71.0 | 71.6 | 73.0 | 74.3 | 75.2 | 76.0 | 77.3 | 77.9 |
| MB     | 63.9 | 65.1 | 66.6 | 67.8 | 68.0 | 68.4 | 70.1 | 71.2 | 72.1 | 73.0 | 73.7 |
| SK     | 63.4 | 64.5 | 64.7 | 65.8 | 67.8 | 67.9 | 69.4 | 70.2 | 71.3 | 73.1 | 73.7 |
| AB     | 72.2 | 72.5 | 73.4 | 74.4 | 75.5 | 75.1 | 75.9 | 77.3 | 77.8 | 78.1 | 78.5 |
| BC     | 74.6 | 75.0 | 76.1 | 75.8 | 76.4 | 76.6 | 77.9 | 78.7 | 79.1 | 80.2 | 80.8 |

Source: Statistics Canada

#### Indicator E-2. Percentage of the population aged 15 years and older with post-secondary credentials

|        | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 36.5 | 37.4 | 38.1 | 40.0 | 40.6 | 41.2 | 41.5 | 43.0 | 43.8 | 44.7 | 45.1 |
| NFLD   | 32.2 | 33.9 | 33.5 | 35.2 | 36.4 | 37.6 | 38.2 | 39.3 | 40.9 | 43.1 | 42.2 |
| PEI    | 35.0 | 36.9 | 36.2 | 37.1 | 37.7 | 38.5 | 38.6 | 41.2 | 42.3 | 43.3 | 45.5 |
| NS     | 38.1 | 38.7 | 40.0 | 41.9 | 42.6 | 43.1 | 43.5 | 45.5 | 44.8 | 46.0 | 47.5 |
| NB     | 32.6 | 33.7 | 33.3 | 34.7 | 35.7 | 37.8 | 37.7 | 39.2 | 38.8 | 39.7 | 41.1 |
| PQ     | 36.5 | 38.3 | 39.1 | 41.2 | 41.8 | 42.1 | 42.5 | 43.7 | 45.2 | 46.7 | 47.3 |
| ON     | 36.9 | 37.2 | 38.2 | 40.5 | 40.7 | 41.7 | 42.3 | 43.9 | 44.7 | 45.4 | 45.9 |
| MB     | 30.0 | 32.2 | 33.1 | 34.5 | 36.1 | 37.0 | 36.8 | 37.6 | 37.7 | 38.4 | 38.4 |
| SK     | 31.4 | 32.4 | 31.6 | 32.9 | 34.7 | 34.7 | 35.3 | 36.4 | 37.0 | 39.3 | 38.7 |
| AB     | 39.4 | 39.9 | 40.1 | 41.6 | 42.8 | 42.4 | 42.2 | 44.7 | 45.3 | 44.8 | 44.6 |
| BC     | 38.6 | 39.1 | 39.9 | 40.9 | 41.2 | 41.8 | 41.7 | 42.6 | 42.8 | 43.6 | 44.5 |

Source: Statistics Canada

#### Indicator E-3. Canada-wide rank of 16-year old achievement in science

|                           | 1996 rank | 1999 rank | 2004 rank |
|---------------------------|-----------|-----------|-----------|
| Newfoundland and Labrador | 4         | 5         | 2         |
| Prince Edward Island      | 6         | 2         | 9         |
| Nova Scotia               | 10        | 6         | 7         |
| New Brunswick             | 9         | 9         | 9         |
| Quebec                    | 8         | 4         | 5         |
| Ontario                   | 6         | 10        | 2         |
| Manitoba                  | 2         | 3         | 6         |
| Saskatchewan              | 3         | 8         | 8         |
| Alberta                   | 1         | 1         | 1         |
| British Columbia          | 5         | 6         | 4         |

Source: Council of Ministers of Education, Canada

#### Indicator E-4, table a. Total bachelor degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CANADA | 645.5 | 652.6 | 644.3 | 633.8 | 609.0 | 591.3 | 586.0 | 585.9 | 581.8 | 596.3 | 634.7 |
| NFLD   | 516.3 | 541.0 | 506.6 | 585.6 | 593.1 | 609.5 | 619.9 | 575.6 | 577.7 | 575.4 | 591.2 |
| PEI    | 471.7 | 537.8 | 551.5 | 488.1 | 526.6 | 376.4 | 488.8 | 476.3 | 536.4 | 477.9 | 536.9 |
| NS     | 908.6 | 940.3 | 905.2 | 877.4 | 878.0 | 890.4 | 853.7 | 854.8 | 819.4 | 833.2 | 915.3 |
| NB     | 589.6 | 600.1 | 613.9 | 653.2 | 634.0 | 594.5 | 580.5 | 578.8 | 587.0 | 628.5 | 644.7 |
| PQ     | 828.3 | 840.1 | 820.0 | 794.7 | 744.7 | 693.0 | 686.9 | 663.4 | 663.6 | 694.9 | 726.4 |
| ON     | 637.5 | 646.1 | 647.3 | 644.9 | 616.1 | 607.0 | 591.4 | 595.7 | 592.4 | 597.9 | 660.3 |
| MB     | 607.2 | 642.9 | 638.1 | 604.5 | 586.4 | 559.7 | 535.2 | 525.3 | 528.4 | 518.7 | 564.2 |
| SK     | 709.0 | 577.8 | 607.7 | 601.8 | 554.0 | 562.2 | 576.0 | 604.8 | 595.2 | 601.0 | 613.9 |
| AB     | 471.1 | 491.3 | 483.5 | 483.8 | 490.2 | 481.1 | 486.4 | 492.9 | 511.5 | 539.5 | 557.8 |
| BC     | 406.2 | 413.4 | 401.1 | 383.9 | 389.9 | 400.3 | 423.8 | 452.3 | 424.7 | 434.4 | 434.1 |

\* 2003 is the latest year for which information is available.

#### Indicator E-4, table b. Total bachelor degrees awarded\*

|        | 1993    | 1994    | 1995    | 1996           | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    |
|--------|---------|---------|---------|----------------|---------|---------|---------|---------|---------|---------|---------|
| CANADA | 146,920 | 150,360 | 150,305 | 149,735        | 145,735 | 143,075 | 143,490 | 145,345 | 146,425 | 152,335 | 164,280 |
| NFLD   | 2,360   | 2,465   | 2,295   | 2,635          | 2,645   | 2,680   | 2,710   | 2,505   | 2,500   | 2,490   | 2,565   |
| PEI    | 485     | 560     | 580     | 520            | 565     | 405     | 530     | 520     | 590     | 530     | 600     |
| NS     | 6,710   | 6,980   | 6,745   | 6,575          | 6,610   | 6,725   | 6,490   | 6,525   | 6,275   | 6,430   | 7,110   |
| NB     | 3,525   | 3,605   | 3,705   | 3,965          | 3,865   | 3,630   | 3,560   | 3,565   | 3,630   | 3,905   | 4,025   |
| PQ     | 47,605  | 48,625  | 47,790  | 46,620         | 44,005  | 41,195  | 41,135  | 40,055  | 40,425  | 42,735  | 45,085  |
| ON     | 54,260  | 55,645  | 56,450  | 56,935         | 55,205  | 55,150  | 54,535  | 55,950  | 56,805  | 58,525  | 65,710  |
| MB     | 5,300   | 5,640   | 5,630   | 5 <i>,</i> 365 | 5,225   | 5,005   | 4,820   | 4,765   | 4,825   | 4,770   | 5,230   |
| SK     | 5,455   | 4,470   | 4,740   | 4,735          | 4,370   | 4,450   | 4,570   | 4,790   | 4,705   | 4,750   | 4,865   |
| AB     | 9,625   | 10,195  | 10,195  | 10,400         | 10,795  | 10,910  | 11,295  | 11,710  | 12,430  | 13,430  | 14,135  |
| BC     | 11,590  | 12,175  | 12,170  | 11,990         | 12,445  | 12,935  | 13,850  | 14,955  | 14,245  | 14,770  | 14,955  |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-5, table a. Total graduate degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CANADA | 116.9 | 118.0 | 116.9 | 117.8 | 115.5 | 117.3 | 120.4 | 123.9 | 123.4 | 129.7 | 141.8 |
| NFLD   | 63.4  | 56.0  | 60.7  | 61.1  | 68.4  | 72.8  | 92.6  | 98.8  | 84.4  | 94.7  | 94.5  |
| PEI    | 14.6  | 9.6   | -     | 9.4   | 4.7   | -     | 9.2   | 13.7  | 13.6  | 22.5  | 22.4  |
| NS     | 149.0 | 151.5 | 153.0 | 141.4 | 142.8 | 130.4 | 164.4 | 145.4 | 161.3 | 167.2 | 193.8 |
| NB     | 69.4  | 66.6  | 72.9  | 76.6  | 73.0  | 65.5  | 67.7  | 76.3  | 74.4  | 76.5  | 78.5  |
| PQ     | 151.8 | 159.4 | 155.6 | 164.3 | 162.1 | 166.0 | 164.1 | 178.7 | 176.1 | 183.3 | 204.6 |
| ON     | 122.1 | 121.1 | 117.8 | 120.0 | 114.1 | 116.6 | 119.2 | 118.3 | 118.2 | 123.2 | 132.2 |
| MB     | 75.0  | 73.5  | 77.6  | 74.9  | 75.2  | 71.0  | 68.8  | 63.4  | 63.0  | 82.1  | 61.0  |
| SK     | 76.7  | 71.1  | 87.8  | 84.5  | 81.8  | 81.5  | 80.7  | 86.5  | 87.9  | 86.7  | 90.9  |
| AB     | 98.6  | 100.5 | 98.4  | 85.6  | 91.7  | 92.4  | 97.5  | 98.5  | 109.3 | 117.1 | 121.0 |
| BC     | 84.5  | 84.2  | 86.2  | 84.0  | 83.8  | 88.0  | 93.9  | 97.2  | 89.3  | 95.0  | 117.8 |

- Nil or less than 5

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-5, table b. Total graduate degrees awarded\*

|        | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CANADA | 26,605 | 27,195 | 27,265 | 27,835 | 27,640 | 28,395 | 29,485 | 30,745 | 31,045 | 33,125 | 36,705 |
| NFLD   | 290    | 255    | 275    | 275    | 305    | 320    | 405    | 430    | 365    | 410    | 410    |
| PEI    | 15     | 10     | -      | 10     | 5      | -      | 10     | 15     | 15     | 25     | 25     |
| NS     | 1,100  | 1,125  | 1,140  | 1,060  | 1,075  | 985    | 1,250  | 1,110  | 1,235  | 1,290  | 1,505  |
| NB     | 415    | 400    | 440    | 465    | 445    | 400    | 415    | 470    | 460    | 475    | 490    |
| PQ     | 8,725  | 9,225  | 9,070  | 9,635  | 9,580  | 9,870  | 9,825  | 10,790 | 10,730 | 11,275 | 12,700 |
| ON     | 10,390 | 10,425 | 10,270 | 10,595 | 10,220 | 10,595 | 10,990 | 11,115 | 11,330 | 12,060 | 13,160 |
| MB     | 655    | 645    | 685    | 665    | 670    | 635    | 620    | 575    | 575    | 755    | 565    |
| SK     | 590    | 550    | 685    | 665    | 645    | 645    | 640    | 685    | 695    | 685    | 720    |
| AB     | 2,015  | 2,085  | 2,075  | 1,840  | 2,020  | 2,095  | 2,265  | 2,340  | 2,655  | 2,915  | 3,065  |
| BC     | 2,410  | 2,480  | 2,615  | 2,625  | 2,675  | 2,845  | 3,070  | 3,215  | 2,995  | 3,230  | 4,060  |

- Nil or less than 5

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-6 (a), table a. Architecture, Engineering and related technology bachelor degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 40.9 | 43.1 | 43.6 | 43.6 | 41.2 | 41.3 | 40.2 | 41.3 | 42.4 | 43.6 | 49.6 |
| NFLD   | 26.3 | 26.3 | 29.8 | 27.8 | 28.0 | 29.6 | 30.9 | 28.7 | 37.0 | 41.6 | 49.6 |
| PEI    | 14.6 | 24.0 | 33.3 | 9.4  | 14.0 | 13.9 | -    | -    | 27.3 | 13.5 | 17.9 |
| NS     | 73.1 | 88.9 | 84.6 | 89.4 | 95.6 | 84.1 | 72.3 | 61.6 | 56.8 | 56.4 | 65.7 |
| NB     | 46.8 | 42.4 | 47.2 | 45.3 | 46.7 | 60.6 | 39.1 | 42.2 | 38.0 | 33.0 | 32.0 |
| PQ     | 56.9 | 59.2 | 57.6 | 55.7 | 50.9 | 50.6 | 51.6 | 49.4 | 53.6 | 52.6 | 56.7 |
| ON     | 41.8 | 43.8 | 46.0 | 47.3 | 44.1 | 44.2 | 42.2 | 44.6 | 45.5 | 49.0 | 59.6 |
| MB     | 23.5 | 24.5 | 24.9 | 27.0 | 25.3 | 26.8 | 23.9 | 22.6 | 24.1 | 24.5 | 24.3 |
| SK     | 29.2 | 30.4 | 31.4 | 33.7 | 34.2 | 32.8 | 34.7 | 43.6 | 44.3 | 44.9 | 47.9 |
| AB     | 28.1 | 32.5 | 30.8 | 33.7 | 31.8 | 32.9 | 32.1 | 37.5 | 37.2 | 41.4 | 44.0 |
| BC     | 18.9 | 18.5 | 19.9 | 17.6 | 17.9 | 17.5 | 21.9 | 23.1 | 21.0 | 19.6 | 20.9 |

- Nil or zero

\* 2003 is the latest year for which information is available.

#### Indicator E-6 (a), table b. Architecture, Engineering and related technology bachelor degrees awarded\*

|        | 1993  | 1994  | 1995   | 1996   | 1997  | 1998  | 1999  | 2000   | 2001   | 2002   | 2003   |
|--------|-------|-------|--------|--------|-------|-------|-------|--------|--------|--------|--------|
| CANADA | 9,315 | 9,920 | 10,180 | 10,305 | 9,855 | 9,995 | 9,855 | 10,240 | 10,675 | 11,140 | 12,840 |
| NFLD   | 120   | 120   | 135    | 125    | 125   | 130   | 135   | 125    | 160    | 180    | 215    |
| PEI    | 15    | 25    | 35     | 10     | 15    | 15    | -     | -      | 30     | 15     | 20     |
| NS     | 540   | 660   | 630    | 670    | 720   | 635   | 550   | 470    | 435    | 435    | 510    |
| NB     | 280   | 255   | 285    | 275    | 285   | 370   | 240   | 260    | 235    | 205    | 200    |
| PQ     | 3,270 | 3,425 | 3,355  | 3,265  | 3,005 | 3,010 | 3,090 | 2,985  | 3,265  | 3,235  | 3,520  |
| ON     | 3,555 | 3,775 | 4,015  | 4,180  | 3,950 | 4,015 | 3,890 | 4,185  | 4,365  | 4,800  | 5,935  |
| MB     | 205   | 215   | 220    | 240    | 225   | 240   | 215   | 205    | 220    | 225    | 225    |
| SK     | 225   | 235   | 245    | 265    | 270   | 260   | 275   | 345    | 350    | 355    | 380    |
| AB     | 575   | 675   | 650    | 725    | 700   | 745   | 745   | 890    | 905    | 1,030  | 1,115  |
| BC     | 540   | 545   | 605    | 550    | 570   | 565   | 715   | 765    | 705    | 665    | 720    |
|        |       |       |        |        |       |       |       |        |        |        |        |

- Nil or zero

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-6 (b), table a. Architecture, Engineering and related technology graduate degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 12.4 | 13.3 | 13.3 | 12.9 | 12.8 | 12.5 | 12.0 | 12.4 | 12.9 | 14.8 | 17.1 |
| NFLD   | 8.8  | 4.4  | 4.4  | 7.8  | 7.8  | 12.5 | 9.2  | 6.9  | 8.1  | 8.1  | 9.2  |
| PEI    | -    | -    | -    | -    | -    | -    | -    | •    | -    | -    | -    |
| NS     | 11.5 | 6.7  | 9.4  | 9.3  | 11.3 | 8.6  | 11.2 | 8.5  | 14.4 | 16.2 | 15.4 |
| NB     | 10.9 | 10.8 | 11.6 | 9.9  | 12.3 | 7.4  | 7.3  | 8.9  | 7.3  | 7.2  | 8.8  |
| PQ     | 14.3 | 17.4 | 17.6 | 16.5 | 16.8 | 16.1 | 15.4 | 18.3 | 18.2 | 19.3 | 24.4 |
| ON     | 13.1 | 13.8 | 13.2 | 12.9 | 12.2 | 12.2 | 11.8 | 11.5 | 12.3 | 14.7 | 17.4 |
| MB     | 14.3 | 12.5 | 14.7 | 14.6 | 16.8 | 15.7 | 12.2 | 9.9  | 11.5 | 19.6 | 10.8 |
| SK     | 9.7  | 9.0  | 12.2 | 12.1 | 10.8 | 11.4 | 9.5  | 9.5  | 10.8 | 10.1 | 10.1 |
| AB     | 13.0 | 13.7 | 12.3 | 11.2 | 10.7 | 10.1 | 11.4 | 10.3 | 11.9 | 14.7 | 15.8 |
| BC     | 8.2  | 9.5  | 9.6  | 9.8  | 9.4  | 10.7 | 9.6  | 9.7  | 8.8  | 9.3  | 11.0 |

- Nil or zero

Source: Statistics Canada

\* 2003 is the latest year for which information is available.

#### Indicator E-6 (b), table b. Architecture, Engineering and related technology graduate degrees awarded\*

|        | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CANADA | 2,825 | 3,075 | 3,110 | 3,040 | 3,055 | 3,035 | 2,945 | 3,065 | 3,250 | 3,770 | 4,430 |
| NFLD   | 40    | 20    | 20    | 35    | 35    | 55    | 40    | 30    | 35    | 35    | 40    |
| PEI    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| NS     | 85    | 50    | 70    | 70    | 85    | 65    | 85    | 65    | 110   | 125   | 120   |
| NB     | 65    | 65    | 70    | 60    | 75    | 45    | 45    | 55    | 45    | 45    | 55    |
| PQ     | 820   | 1,010 | 1,025 | 970   | 990   | 955   | 920   | 1,105 | 1,110 | 1,185 | 1,515 |
| ON     | 1,115 | 1,190 | 1,155 | 1,135 | 1,095 | 1,110 | 1,090 | 1,080 | 1,175 | 1,440 | 1,735 |
| MB     | 125   | 110   | 130   | 130   | 150   | 140   | 110   | 90    | 105   | 180   | 100   |
| SK     | 75    | 70    | 95    | 95    | 85    | 90    | 75    | 75    | 85    | 80    | 80    |
| AB     | 265   | 285   | 260   | 240   | 235   | 230   | 265   | 245   | 290   | 365   | 400   |
| BC     | 235   | 280   | 290   | 305   | 300   | 345   | 315   | 320   | 295   | 315   | 380   |

- Nil or zero

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-7 (a), table a. Mathematics, Computer and Information Sciences bachelor degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 23.9 | 23.8 | 25.0 | 23.6 | 23.2 | 23.1 | 25.3 | 28.3 | 28.7 | 31.0 | 33.0 |
| NFLD   | 10.9 | 15.4 | 15.5 | 20.0 | 26.9 | 23.9 | 26.3 | 18.4 | 30.0 | 27.7 | 24.2 |
| PEI    | 14.6 | 9.6  | 4.8  | -    | 14.0 | -    | 9.2  | 4.6  | 4.5  | 13.5 | 8.9  |
| NS     | 25.1 | 30.3 | 30.9 | 35.4 | 33.9 | 32.4 | 34.2 | 36.0 | 30.7 | 33.7 | 41.2 |
| NB     | 17.6 | 20.0 | 19.9 | 19.8 | 18.0 | 19.7 | 22.8 | 22.7 | 30.7 | 33.8 | 32.8 |
| PQ     | 31.6 | 29.0 | 30.0 | 27.1 | 27.8 | 27.5 | 31.8 | 34.9 | 30.5 | 31.5 | 30.0 |
| ON     | 26.5 | 26.5 | 27.6 | 26.7 | 25.8 | 25.8 | 27.5 | 31.1 | 33.7 | 38.2 | 41.1 |
| MB     | 27.5 | 30.8 | 30.6 | 26.5 | 24.1 | 24.0 | 21.7 | 24.3 | 21.4 | 16.3 | 15.1 |
| SK     | 27.9 | 25.2 | 25.6 | 23.5 | 20.3 | 22.7 | 24.6 | 33.5 | 34.2 | 35.4 | 29.7 |
| AB     | 13.2 | 13.5 | 16.1 | 15.1 | 14.1 | 14.1 | 16.4 | 15.4 | 20.0 | 20.7 | 23.5 |
| BC     | 10.0 | 11.4 | 14.5 | 13.1 | 12.7 | 13.3 | 13.9 | 18.9 | 18.5 | 20.9 | 27.9 |

- Nil or zero

\* 2003 is the latest year for which information is available.

#### Indicator E-7 (a), table b. Mathematics, Computer and Information Sciences bachelor degrees awarded\*

|               | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002         | 2003           |
|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|----------------|
| CANADA        | 5,430 | 5,475 | 5,835 | 5,585 | 5,540 | 5,595 | 6,190 | 7,010 | 7,225 | 7,925        | 8 <i>,</i> 530 |
| NFLD          | 50    | 70    | 70    | 90    | 120   | 105   | 115   | 80    | 130   | 120          | 105            |
| PEI           | 15    | 10    | 5     | -     | 15    | -     | 10    | 5     | 5     | 15           | 10             |
| NS            | 185   | 225   | 230   | 265   | 255   | 245   | 260   | 275   | 235   | 260          | 320            |
| NB            | 105   | 120   | 120   | 120   | 110   | 120   | 140   | 140   | 190   | 210          | 205            |
| PQ            | 1,815 | 1,680 | 1,750 | 1,590 | 1,640 | 1,635 | 1,905 | 2,110 | 1,860 | 1,935        | 1,865          |
| ON            | 2,255 | 2,285 | 2,405 | 2,355 | 2,310 | 2,345 | 2,535 | 2,925 | 3,230 | 3,735        | 4,095          |
| MB            | 240   | 270   | 270   | 235   | 215   | 215   | 195   | 220   | 195   | 150          | 140            |
| SK            | 215   | 195   | 200   | 185   | 160   | 180   | 195   | 265   | 270   | 280          | 235            |
| AB            | 270   | 280   | 340   | 325   | 310   | 320   | 380   | 365   | 485   | 515          | 595            |
| BC            | 285   | 335   | 440   | 410   | 405   | 430   | 455   | 625   | 620   | 710          | 960            |
| - Nil or zero | 5     |       |       |       |       |       |       |       | So    | urce: Statis | tics Canada    |

- Nil or zero

\* 2003 is the latest year for which information is available.

#### Indicator E-7 (b), table a. Mathematics, Computer and Information Sciences graduate degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 5.9  | 5.9  | 5.8  | 6.0  | 5.5  | 5.7  | 6.2  | 5.8  | 6.2  | 7.1  | 7.6  |
| NFLD   | 1.1  | 1.1  | 1.1  | 1.1  | 0.0  | 1.1  | 2.3  | 2.3  | 1.2  | 2.3  | 2.3  |
| PEI    | -    | -    | -    | -    | -    | -    | -    | •    | -    | -    | -    |
| NS     | 6.1  | 7.4  | 9.4  | 8.7  | 7.3  | 7.9  | 23.0 | 12.4 | 8.5  | 9.7  | 12.2 |
| NB     | 1.7  | 3.3  | 3.3  | 2.5  | 2.5  | 4.9  | 4.9  | 4.9  | 4.0  | 6.4  | 6.4  |
| PQ     | 6.6  | 6.9  | 6.6  | 7.6  | 8.0  | 7.3  | 7.8  | 8.4  | 8.7  | 9.6  | 10.1 |
| ON     | 6.8  | 6.3  | 6.5  | 6.6  | 5.7  | 5.8  | 5.9  | 5.7  | 6.1  | 7.1  | 7.6  |
| MB     | 2.9  | 3.4  | 2.8  | 2.8  | 2.2  | 2.8  | 2.8  | 2.2  | 1.1  | 1.6  | 2.2  |
| SK     | 3.9  | 4.5  | 3.8  | 3.2  | 3.2  | 4.4  | 3.8  | 3.8  | 2.5  | 3.8  | 3.2  |
| AB     | 5.1  | 5.5  | 5.5  | 4.4  | 3.9  | 4.6  | 3.9  | 3.6  | 4.3  | 5.8  | 6.7  |
| BC     | 5.4  | 4.9  | 4.9  | 5.0  | 4.2  | 4.6  | 4.7  | 3.8  | 5.8  | 6.2  | 6.5  |

- Nil or zero

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-7 (b), table b. Mathematics, Computer and Information Sciences graduate degrees awarded\*

|        | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CANADA | 1,335 | 1,350 | 1,355 | 1,410 | 1,325 | 1,370 | 1,520 | 1,440 | 1,550 | 1,810 | 1,970 |
| NFLD   | 5     | 5     | 5     | 5     | -     | 5     | 10    | 10    | 5     | 10    | 10    |
| PEI    | -     | -     | -     | -     | -     | -     | -     | •     | -     | -     | -     |
| NS     | 45    | 55    | 70    | 65    | 55    | 60    | 175   | 95    | 65    | 75    | 95    |
| NB     | 10    | 20    | 20    | 15    | 15    | 30    | 30    | 30    | 25    | 40    | 40    |
| PQ     | 380   | 400   | 385   | 445   | 470   | 435   | 465   | 505   | 530   | 590   | 625   |
| ON     | 580   | 545   | 565   | 580   | 515   | 525   | 540   | 535   | 585   | 695   | 760   |
| MB     | 25    | 30    | 25    | 25    | 20    | 25    | 25    | 20    | 10    | 15    | 20    |
| SK     | 30    | 35    | 30    | 25    | 25    | 35    | 30    | 30    | 20    | 30    | 25    |
| AB     | 105   | 115   | 115   | 95    | 85    | 105   | 90    | 85    | 105   | 145   | 170   |
| BC     | 155   | 145   | 150   | 155   | 135   | 150   | 155   | 125   | 195   | 210   | 225   |

- Nil or zero

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-8 (a), table a. Physical and Life Sciences bachelor degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997  | 1998  | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|-------|-------|------|------|------|------|------|
| CANADA | 41.2 | 45.7 | 47.1 | 49.9 | 51.5  | 52.3  | 48.3 | 48.1 | 47.2 | 44.1 | 44.6 |
| NFLD   | 36.1 | 49.4 | 53.0 | 57.8 | 67.3  | 85.3  | 78.9 | 74.7 | 62.4 | 58.9 | 56.5 |
| PEI    | 58.4 | 57.6 | 61.8 | 56.3 | 74.6  | 60.4  | 87.6 | 82.4 | 77.3 | 49.6 | 62.6 |
| NS     | 92.1 | 92.9 | 92.6 | 98.7 | 101.6 | 109.2 | 91.4 | 80.6 | 78.3 | 74.5 | 82.4 |
| NB     | 42.6 | 39.1 | 47.2 | 51.1 | 50.9  | 56.5  | 57.9 | 48.7 | 41.2 | 42.7 | 44.0 |
| PQ     | 38.5 | 47.1 | 45.1 | 48.2 | 49.7  | 48.0  | 34.1 | 34.8 | 33.2 | 32.9 | 28.8 |
| ON     | 42.7 | 46.7 | 50.3 | 52.9 | 55.5  | 55.8  | 54.5 | 55.4 | 54.8 | 49.7 | 52.2 |
| MB     | 48.1 | 51.3 | 55.0 | 61.4 | 57.2  | 59.8  | 56.6 | 55.1 | 70.6 | 48.4 | 53.9 |
| SK     | 31.8 | 27.8 | 29.5 | 30.5 | 33.6  | 34.7  | 41.0 | 36.6 | 33.5 | 31.6 | 34.7 |
| AB     | 37.2 | 40.2 | 38.4 | 46.3 | 47.2  | 48.3  | 46.9 | 42.9 | 44.9 | 46.8 | 47.6 |
| BC     | 33.1 | 36.2 | 38.7 | 36.3 | 36.0  | 37.6  | 40.5 | 44.9 | 41.7 | 40.3 | 39.2 |

\* 2003 is the latest year for which information is available.

#### Indicator E-8 (a), table b. Physical and Life Sciences bachelor degrees awarded\*

|        | 1993  | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   |
|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| CANADA | 9,370 | 10,520 | 10,990 | 11,790 | 12,325 | 12,650 | 11,825 | 11,925 | 11,880 | 11,270 | 11,555 |
| NFLD   | 165   | 225    | 240    | 260    | 300    | 375    | 345    | 325    | 270    | 255    | 245    |
| PEI    | 60    | 60     | 65     | 60     | 80     | 65     | 95     | 90     | 85     | 55     | 70     |
| NS     | 680   | 690    | 690    | 740    | 765    | 825    | 695    | 615    | 600    | 575    | 640    |
| NB     | 255   | 235    | 285    | 310    | 310    | 345    | 355    | 300    | 255    | 265    | 275    |
| PQ     | 2,210 | 2,725  | 2,630  | 2,830  | 2,935  | 2,855  | 2,045  | 2,100  | 2,020  | 2,025  | 1,790  |
| ON     | 3,630 | 4,020  | 4,385  | 4,670  | 4,970  | 5,070  | 5,030  | 5,200  | 5,255  | 4,865  | 5,195  |
| MB     | 420   | 450    | 485    | 545    | 510    | 535    | 510    | 500    | 645    | 445    | 500    |
| SK     | 245   | 215    | 230    | 240    | 265    | 275    | 325    | 290    | 265    | 250    | 275    |
| AB     | 760   | 835    | 810    | 995    | 1,040  | 1,095  | 1,090  | 1,020  | 1,090  | 1,165  | 1,205  |
| BC     | 945   | 1,065  | 1,175  | 1,135  | 1,150  | 1,215  | 1,325  | 1,485  | 1,400  | 1,370  | 1,350  |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator E-8 (b), table a. Physical and Life Sciences graduate degrees awarded per 100,000 persons aged 15 years and older\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 11.6 | 11.3 | 11.4 | 12.0 | 12.0 | 12.0 | 11.4 | 11.3 | 11.7 | 11.8 | 12.3 |
| NFLD   | 9.8  | 11.0 | 13.2 | 14.4 | 15.7 | 18.2 | 20.6 | 19.5 | 6.9  | 6.9  | 8.1  |
| PEI    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| NS     | 11.5 | 11.5 | 12.1 | 14.7 | 13.3 | 15.9 | 11.2 | 8.5  | 11.8 | 10.4 | 11.6 |
| NB     | 5.0  | 6.7  | 4.1  | 7.4  | 4.1  | 5.7  | 6.5  | 5.7  | 7.3  | 5.6  | 6.4  |
| PQ     | 13.7 | 13.8 | 14.0 | 14.6 | 14.9 | 14.6 | 14.5 | 14.5 | 16.4 | 16.4 | 17.8 |
| ON     | 12.8 | 12.2 | 12.2 | 13.0 | 12.9 | 12.2 | 11.3 | 11.1 | 11.7 | 11.9 | 12.0 |
| MB     | 8.0  | 8.5  | 7.9  | 8.4  | 10.1 | 8.9  | 8.3  | 8.8  | 6.6  | 10.3 | 7.0  |
| SK     | 9.1  | 5.8  | 9.0  | 8.3  | 7.0  | 9.5  | 10.1 | 8.8  | 8.2  | 8.9  | 8.2  |
| AB     | 8.8  | 9.6  | 9.0  | 8.6  | 8.6  | 8.8  | 9.3  | 9.9  | 9.3  | 9.6  | 10.9 |
| BC     | 10.0 | 8.7  | 9.6  | 9.4  | 9.2  | 10.2 | 8.7  | 9.4  | 8.9  | 9.0  | 9.4  |

- Nil or zero

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

## Indicator E-8 (b), table b. Physical and Life Sciences graduate degrees awarded\*

|        |       |       |       | -     |       |       |       |       |       |       |       |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  |
| CANADA | 2,645 | 2,600 | 2,670 | 2,845 | 2,860 | 2,900 | 2,780 | 2,805 | 2,935 | 3,025 | 3,195 |
| NFLD   | 45    | 50    | 60    | 65    | 70    | 80    | 90    | 85    | 30    | 30    | 35    |
| PEI    | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| NS     | 85    | 85    | 90    | 110   | 100   | 120   | 85    | 65    | 90    | 80    | 90    |
| NB     | 30    | 40    | 25    | 45    | 25    | 35    | 40    | 35    | 45    | 35    | 40    |
| PQ     | 785   | 800   | 815   | 855   | 880   | 870   | 870   | 875   | 1,000 | 1,010 | 1,105 |
| ON     | 1,090 | 1,050 | 1,060 | 1,145 | 1,155 | 1,110 | 1,045 | 1,045 | 1,125 | 1,160 | 1,190 |
| MB     | 70    | 75    | 70    | 75    | 90    | 80    | 75    | 80    | 60    | 95    | 65    |
| SK     | 70    | 45    | 70    | 65    | 55    | 75    | 80    | 70    | 65    | 70    | 65    |
| AB     | 180   | 200   | 190   | 185   | 190   | 200   | 215   | 235   | 225   | 240   | 275   |
| BC     | 285   | 255   | 290   | 295   | 295   | 330   | 285   | 310   | 300   | 305   | 325   |

- Nil or zero

\* 2003 is the latest year for which information is available.

#### Indicator E-9. Percentage of households with home computers

|        | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|
| CANADA | 39.8 | 45.0 | 49.8 | 54.9 | 59.9 | 63.9 | 66.8 |
| NFLD   | 27.9 | 34.4 | 38.6 | 41.7 | 49.3 | 51.5 | 51.9 |
| PEI    | 28.4 | 32.6 | 39.6 | 40.3 | 48.6 | 52.6 | 57.3 |
| NS     | 33.5 | 37.2 | 42.1 | 47.8 | 56.0 | 57.3 | 61.8 |
| NB     | 31.1 | 32.1 | 37.4 | 44.0 | 48.1 | 49.6 | 53.5 |
| PQ     | 31.7 | 38.4 | 42.2 | 44.8 | 51.1 | 56.7 | 59.5 |
| ON     | 44.3 | 48.9 | 54.6 | 60.6 | 66.1 | 67.7 | 71.6 |
| MB     | 33.2 | 40.9 | 44.2 | 47.6 | 51.6 | 57.3 | 61.1 |
| SK     | 36.0 | 37.3 | 42.3 | 48.4 | 51.1 | 57.7 | 60.8 |
| AB     | 46.7 | 50.7 | 57.9 | 61.2 | 66.1 | 70.3 | 72.1 |
| BC     | 46.8 | 51.8 | 54.5 | 63.1 | 64.3 | 71.7 | 72.6 |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

|        | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|
| CANADA | 29.0 | 35.9 | 41.8 | 51.3 | 60.2 | 61.6 | 64.2 |
| NFLD   | 26.1 | 28.8 | 35.2 | 45.5 | 50.2 | 50.8 | 56.3 |
| PEI    | 25.7 | 35.4 | 40.5 | 51.1 | 57.8 | 54.1 | 59.4 |
| NS     | 31.8 | 37.8 | 41.1 | 52.0 | 57.4 | 58.1 | 63.1 |
| NB     | 28.1 | 31.0 | 38.0 | 45.2 | 52.4 | 48.6 | 53.3 |
| PQ     | 19.8 | 26.2 | 33.1 | 43.6 | 53.7 | 53.2 | 54.9 |
| ON     | 32.9 | 39.1 | 44.5 | 54.2 | 63.7 | 67.4 | 68.4 |
| MB     | 28.8 | 33.3 | 38.3 | 49.8 | 56.7 | 60.1 | 64.2 |
| SK     | 26.4 | 33.7 | 39.9 | 46.9 | 52.6 | 57.6 | 62.6 |
| AB     | 34.0 | 45.1 | 50.8 | 58.8 | 65.3 | 64.3 | 68.8 |
| BC     | 33.0 | 42.0 | 48.1 | 55.9 | 65.3 | 65.7 | 70.6 |

#### Indicator E-10. Percentage of households using the Internet (%)\*

\*Includes use from home, work, school, libraries and other locations

2003 is the latest year for which information is available. Source: Statistics Canada

#### Indicator E-11. Percentage of small businesses using the Internet

|        | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|--------|------|------|------|------|------|------|------|------|
| CANADA | 52   | 65   | 70   | 73   | 73   | 80   | 82   | 84   |
| NFLD   | 44   | 58   | 52   | 54   | 68   | 71   | 72   | 84   |
| PEI    | 54   | 69   | 70   | 78   | 80   | 85   | 89   | 86   |
| NS     | 57   | 66   | 75   | 76   | 72   | 80   | 85   | 79   |
| NB     | 49   | 62   | 67   | 70   | 70   | 79   | 79   | 86   |
| PQ     | 36   | 53   | 60   | 63   | 67   | 73   | 75   | 77   |
| ON     | 58   | 69   | 75   | 77   | 75   | 83   | 86   | 88   |
| MB     | 51   | 62   | 67   | 76   | 74   | 81   | 85   | 89   |
| SK     | 49   | 64   | 65   | 63   | 70   | 77   | 77   | 76   |
| AB     | 56   | 72   | 72   | 78   | 79   | 84   | 88   | 88   |
| BC     | 58   | 69   | 72   | 76   | 78   | 83   | 85   | 87   |

Source: Canadian Federation of Independent Business

#### Indicator E-12. Gross income from technology licenses at G-10 universities (in \$ thousands CDN)\*

| INSTITUTION       | 1993  | 1994  | 1995  | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002   | 2003   |
|-------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
| U of Toronto      | 1,444 | 1,121 | 3,091 | 3,354 | 2,223 | 2,224 | 1,328 | 2,749 | 2,981 | 1,889  | 2,955  |
| McMaster U        | -     | -     | -     | -     | -     | -     | -     | 412   | 906   | 731    | 887    |
| U of Western Ont. | 5     | 10    | 15    | 11    | 64    | 63    | 65    | 32    | 206   | 812    | 394    |
| Queens U          | 681   | 602   | 548   | 1,308 | 767   | 767   | 1,003 | 8,023 | 4,195 | 4,372  | 4,874  |
| U of Waterloo     | 1,600 | 1,912 | 1,785 | 1,740 | 1,169 | 2,201 | 682   | 618   | 1,170 | 812    | 827    |
| U of Montreal     | -     | -     | -     | -     | -     | -     | -     | 418   | 4,283 | 548    | 847    |
| McGill U          | -     | -     | -     | -     | -     | -     | -     | 714   | 9,914 | 1,528  | 2,046  |
| U Laval           | -     | -     | -     | -     | -     | -     | -     | -     | 169   | 229    | 179    |
| U of Alberta      | 374   | 792   | 990   | 4,201 | 4,225 | 4,227 | 3,630 | 1,617 | 7,612 | 2,109  | 1,470  |
| U of BC           | 1,023 | 1,201 | 1,277 | 745   | 1,197 | 1,198 | 1,248 | 4,159 | 8,646 | 11,890 | 13,669 |

- Data not available

\* 2003 is the latest year for which information is available.

Source: Association of University Technology Managers

#### Indicator E-13. Number of US patents issued to G-10 universities (actual)\*

| INSTITUTION       | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 1999-2003 |
|-------------------|------|------|------|------|------|------|------|------|------|------|------|-----------|
| U of Toronto      | 4    | 6    | 3    | 5    | 7    | 7    | 6    | 13   | 13   | 11   | 3    | 46        |
| McMaster U        | -    | -    | -    | -    | -    | 0    | 2    | 2    | 1    | 5    | 3    | 13        |
| U of Western Ont. | 1    | 2    | 3    | 4    | 5    | 5    | 4    | 3    | 3    | 1    | 4    | 15        |
| Queens U          | 13   | 9    | 11   | 8    | 3    | 3    | 12   | 19   | 17   | 17   | 14   | 79        |
| U of Waterloo     | 8    | 3    | 11   | 8    | 9    | 6    | 6    | 5    | 4    | 2    | 6    | 23        |
| U of Montreal     | -    | -    | -    | -    | -    | 4    | 13   | 12   | 11   | 17   | 11   | 64        |
| McGill U          | -    | -    | -    | -    | -    | -    | 17   | 20   | 28   | 19   | 45   | 129       |
| U of Laval        | -    | -    | -    | -    | -    | -    | -    | -    | 5    | 9    | 8    | _         |
| U of Alberta      | 11   | 6    | 8    | 13   | 12   | 12   | 11   | 12   | 13   | 18   | 11   | 65        |
| U of BC           | 21   | 18   | 16   | 26   | 18   | 22   | 50   | 23   | 29   | 29   | 19   | 150       |

- Data not available

\* 2003 is the latest year for which information is available.

Source: Association of University Technology Managers

#### Table 10. Simon Fraser University gross income from technology licenses (in \$ '000 CDN) and US patents issued\*

|                           | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|---------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Technology License Income | -    | -    | -    | -    | -    | -    | -    | 256  | 263  | 735  | 86   |
| US Patents Issued         | 2    | 0    | 2    | 3    | 2    | 2    | 5    | 3    | 3    | 4    | 4    |

- Data not available

Source: Association of University Technology Managers \* 2003 is the latest year for which information is available.

#### Indicator E-14. Ratio of higher education performance of R&D to GDP (%)\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 0.51 | 0.49 | 0.47 | 0.45 | 0.45 | 0.49 | 0.52 | 0.54 | 0.58 | 0.65 | 0.67 |
| NFLD   | 0.61 | 0.57 | 0.54 | 0.55 | 0.59 | 0.64 | 0.65 | 0.60 | 0.63 | 0.58 | 0.63 |
| PEI    | 0.16 | 0.16 | 0.15 | 0.14 | 0.18 | 0.37 | 0.35 | 0.45 | 0.44 | 0.51 | 0.60 |
| NS     | 0.65 | 0.61 | 0.61 | 0.60 | 0.62 | 0.77 | 0.88 | 0.82 | 0.81 | 0.84 | 0.91 |
| NB     | 0.37 | 0.36 | 0.35 | 0.34 | 0.35 | 0.46 | 0.47 | 0.45 | 0.44 | 0.48 | 0.53 |
| PQ     | 0.72 | 0.67 | 0.63 | 0.62 | 0.61 | 0.65 | 0.73 | 0.72 | 0.77 | 0.86 | 0.93 |
| ON     | 0.50 | 0.48 | 0.45 | 0.44 | 0.44 | 0.46 | 0.47 | 0.53 | 0.57 | 0.63 | 0.65 |
| MB     | 0.49 | 0.49 | 0.46 | 0.44 | 0.40 | 0.47 | 0.55 | 0.61 | 0.60 | 0.64 | 0.66 |
| SK     | 0.46 | 0.44 | 0.43 | 0.39 | 0.41 | 0.47 | 0.57 | 0.67 | 0.71 | 0.75 | 0.67 |
| AB     | 0.37 | 0.36 | 0.37 | 0.34 | 0.34 | 0.39 | 0.43 | 0.39 | 0.45 | 0.50 | 0.50 |
| BC     | 0.35 | 0.34 | 0.34 | 0.33 | 0.32 | 0.34 | 0.37 | 0.39 | 0.43 | 0.54 | 0.55 |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

### **Business Indicators**

#### Indicator B-1. Patents awarded per 100,000 population\*

|        | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|
| CANADA | 2.73 | 4.34 | 3.64 | 4.01 | 3.86 | 4.06 |
| NFLD   | 0.74 | 1.12 | 0.57 | 0.77 | 0.77 | 0.96 |
| PEI    | 0.74 | 1.47 | 1.47 | 0.73 | 0.73 | 0.73 |
| NS     | 0.43 | 1.18 | 0.64 | 0.86 | 1.82 | 1.39 |
| NB     | 1.87 | 2.26 | 1.07 | 1.33 | 1.33 | 2.00 |
| PQ     | 2.80 | 4.14 | 3.91 | 4.31 | 4.27 | 4.83 |
| ON     | 3.31 | 5.62 | 4.24 | 4.49 | 4.05 | 3.88 |
| MB     | 1.76 | 2.80 | 2.09 | 2.52 | 2.94 | 3.79 |
| SK     | 3.24 | 3.25 | 3.27 | 2.70 | 2.61 | 2.51 |
| AB     | 3.10 | 5.55 | 5.09 | 6.08 | 6.26 | 6.77 |
| BC     | 1.91 | 2.57 | 2.57 | 3.09 | 2.79 | 3.18 |

\* 2003 is the latest year for which information is available. Source: Canadian Intellectual Property Office

| Indicator B-2. Patents granted | l as a percent o | f patent applications* |
|--------------------------------|------------------|------------------------|
|--------------------------------|------------------|------------------------|

|        | 2001 | 2002 | 2003 | Average |
|--------|------|------|------|---------|
| CANADA | 26   | 24   | 25   | 25      |
| NFLD   | 25   | 20   | 24   | 23      |
| PEI    | 13   | 20   | 25   | 19      |
| NS     | 14   | 29   | 22   | 22      |
| NB     | 19   | 17   | 37   | 24      |
| PQ     | 22   | 22   | 27   | 24      |
| ON     | 27   | 24   | 21   | 24      |
| MB     | 28   | 31   | 47   | 36      |
| SK     | 19   | 22   | 26   | 22      |
| AB     | 32   | 33   | 30   | 32      |
| BC     | 26   | 20   | 23   | 23      |

\* 2003 is the latest year for which information is available. Source: Canadian Intellectual Property Office

|                       | high growth companies in the BC economy |         |         |         |         |         |         |         |  |  |  |  |
|-----------------------|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|--|--|--|--|
|                       | 1997                                    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    |  |  |  |  |
| Establishments        | 153,289                                 | 154,027 | 154,944 | 157,371 | 157,421 | 157,652 | 158,470 | 158,421 |  |  |  |  |
| Entries               | n/a                                     | 26,533  | 24,005  | 23,533  | 21,536  | 21,560  | 21,663  | 20,883  |  |  |  |  |
| Exits                 | n/a                                     | 25,795  | 23,088  | 21,106  | 21,486  | 21,329  | 20,845  | 20,932  |  |  |  |  |
| High Growth Companies | n/a                                     | 2,286   | 2,590   | 4,903   | 2,441   | 2,318   | 2,524   | 2,772   |  |  |  |  |

Indicators B-3, B-4 and B-5. Number of establishments, entries, exits, and high growth companies in the BC economy

Source: Statistics Canada

## Indicators B-3, B-4 and B-5. Number of establishments, entries, exits, and high growth companies in the high technology sector

| High tech             | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  |
|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Establishments        | 6,158 | 6,790 | 7,342 | 8,026 | 8,270 | 8,164 | 8,226 | 8,288 |
| Entries               | n/a   | 2,022 | 1,699 | 1,850 | 1,735 | 1,571 | 1,470 | 1,423 |
| Exits                 | n/a   | 1,390 | 1,147 | 1,166 | 1,491 | 1,677 | 1,408 | 1,361 |
| High Growth Companies | n/a   | 114   | 185   | 274   | 169   | 125   | 130   | 139   |

Source: Statistics Canada

#### Indicator B-6. Canadian venture capital investment by province of investment (\$ million)

|          | 1994 | 1995 | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  |
|----------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| CANADA   | 420  | 617  | 1,045 | 1,679 | 1,495 | 2,491 | 5,269 | 3,800 | 2,529 | 1,662 | 1,763 |
| ATLANTIC | 2    | 7    | 27    | 22    | 34    | 61    | 75    | 49    | 34    | 55    | 37    |
| PQ       | 172  | 258  | 325   | 546   | 630   | 727   | 1,410 | 984   | 720   | 614   | 618   |
| ON       | 125  | 218  | 467   | 704   | 531   | 1,257 | 2,939 | 2,107 | 1,304 | 759   | 786   |
| MB       | 21   | 15   | 39    | 88    | 26    | 46    | 39    | 44    | 34    | 20    | 24    |
| SK       | 45   | 37   | 42    | 51    | 34    | 21    | 23    | 14    | 48    | 23    | 28    |
| AB       | 10   | 18   | 42    | 61    | 93    | 129   | 243   | 88    | 87    | 77    | 22    |
| BC       | 45   | 64   | 103   | 207   | 147   | 250   | 540   | 514   | 302   | 114   | 248   |

Source: Canadian Venture Capital Association

#### Indicator B-7. Proportional share of Canadian venture capital investment

|          | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|----------|------|------|------|------|------|------|------|------|------|------|------|
| ATLANTIC | 0.5  | 1.1  | 2.7  | 1.3  | 2.3  | 2.5  | 1.4  | 1.3  | 1.3  | 3.3  | 2.1  |
| PQ       | 40.9 | 41.9 | 32.5 | 32.5 | 42.2 | 29.2 | 26.1 | 25.9 | 28.5 | 36.9 | 35.1 |
| ON       | 29.7 | 35.4 | 46.7 | 41.9 | 35.5 | 50.5 | 54.5 | 55.4 | 51.6 | 45.7 | 44.6 |
| MB       | 5.0  | 2.4  | 3.9  | 5.2  | 1.7  | 1.8  | 0.7  | 1.2  | 1.3  | 1.2  | 1.4  |
| SK       | 10.7 | 6.0  | 4.2  | 3.0  | 2.3  | 0.8  | 0.4  | 0.4  | 1.9  | 1.4  | 1.6  |
| AB       | 2.4  | 2.9  | 4.2  | 3.6  | 6.2  | 5.2  | 4.5  | 2.3  | 3.4  | 4.6  | 1.2  |
| BC       | 10.7 | 10.4 | 10.3 | 12.3 | 9.8  | 10.0 | 10.0 | 13.5 | 11.9 | 6.9  | 14.1 |

Source: Canadian Venture Capital Association

#### Table 11. Canadian venture capital investment per capita (\$)

|          | 1994  | 1995  | 1996  | 1997  | 1998  | 1999   | 2000   | 2001   | 2002   | 2003  | 2004  |
|----------|-------|-------|-------|-------|-------|--------|--------|--------|--------|-------|-------|
| CANADA   | 15.86 | 22.83 | 35.43 | 60.89 | 54.91 | 89.46  | 216.01 | 122.50 | 80.61  | 80.61 | 52.48 |
| ATLANTIC | 0.84  | 2.94  | 11.35 | 9.27  | 14.42 | 25.91  | 31.93  | 20.93  | 14.52  | 23.48 | 15.79 |
| PQ       | 23.92 | 35.74 | 44.85 | 75.06 | 86.35 | 99.27  | 191.65 | 133.03 | 96.70  | 81.95 | 81.93 |
| ON       | 11.55 | 19.91 | 42.14 | 62.70 | 46.71 | 109.24 | 251.51 | 177.09 | 107.75 | 61.93 | 63.42 |
| MB       | 18.70 | 13.28 | 34.39 | 77.46 | 22.86 | 40.26  | 33.99  | 38.22  | 29.42  | 17.22 | 20.51 |
| SK       | 44.58 | 36.48 | 41.21 | 50.09 | 33.42 | 20.70  | 22.82  | 14.00  | 48.20  | 23.13 | 28.13 |
| AB       | 3.70  | 6.58  | 15.13 | 21.55 | 32.08 | 43.68  | 80.87  | 28.79  | 27.92  | 24.38 | 6.87  |
| BC       | 12.24 | 16.94 | 26.59 | 52.42 | 36.91 | 62.32  | 133.69 | 126.03 | 73.38  | 27.44 | 59.02 |

Source: Canadian Venture Capital Association

#### Table 12. Canadian total component investment in scientific and research development (\$1997 million, chained)

| 1994 | 66.5  |
|------|-------|
| 1995 | 134.2 |
| 1996 | 174.4 |
| 1997 | 235.4 |
| 1998 | 276.2 |
| 1999 | 374.6 |
| 2000 | 530.8 |
| 2001 | 758.0 |
| 2002 | 485.3 |
| 2003 | 409.9 |
| 2004 | 633.0 |
| 2005 | 623.2 |

Source: Statistics Canada

#### Indicator B-8. Ratio of business performance of R&D to GDP (%)\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 0.88 | 0.98 | 0.99 | 0.96 | 0.99 | 1.06 | 1.06 | 1.16 | 1.29 | 1.16 | 1.10 |
| NFLD   | 0.11 | 0.12 | 0.10 | 0.16 | 0.13 | 0.15 | 0.15 | 0.14 | 0.15 | 0.11 | 0.10 |
| PEI    | 0.08 | 0.08 | 0.11 | 0.11 | 0.07 | 0.07 | 0.09 | 0.15 | 0.17 | 0.13 | 0.18 |
| NS     | 0.24 | 0.33 | 0.33 | 0.28 | 0.27 | 0.29 | 0.27 | 0.27 | 0.35 | 0.33 | 0.27 |
| NB     | 0.28 | 0.32 | 0.32 | 0.35 | 0.22 | 0.23 | 0.21 | 0.20 | 0.22 | 0.21 | 0.19 |
| PQ     | 1.11 | 1.21 | 1.28 | 1.33 | 1.34 | 1.41 | 1.45 | 1.62 | 1.79 | 1.68 | 1.63 |
| ON     | 1.20 | 1.32 | 1.31 | 1.26 | 1.34 | 1.43 | 1.42 | 1.57 | 1.75 | 1.47 | 1.43 |
| MB     | 0.37 | 0.39 | 0.36 | 0.33 | 0.30 | 0.33 | 0.46 | 0.39 | 0.49 | 0.38 | 0.33 |
| SK     | 0.26 | 0.29 | 0.28 | 0.20 | 0.28 | 0.25 | 0.25 | 0.22 | 0.26 | 0.33 | 0.23 |
| AB     | 0.49 | 0.58 | 0.53 | 0.53 | 0.51 | 0.58 | 0.42 | 0.41 | 0.47 | 0.51 | 0.46 |
| BC     | 0.50 | 0.59 | 0.57 | 0.49 | 0.49 | 0.53 | 0.59 | 0.74 | 0.81 | 0.79 | 0.74 |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

### **Government Indicators**

#### Indicator G-1. Index of all taxes paid by unattached individuals earning \$80,000 per year (\$)

|      | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| NFLD | 32,660 | 32,689 | 32,294 | 32,206 | 31,824 | 30,590 | 29,194 | 28,991 | 28,662 | 28,270 | 28,281 |
| PEI  | 29,764 | 29,791 | 29,771 | 30,142 | 29,723 | 28,859 | 26,986 | 26,785 | 26,299 | 25,910 | 25,938 |
| NS   | 30,160 | 30,188 | 30,029 | 30,385 | 29,170 | 28,491 | 27,893 | 27,693 | 26,685 | 25,817 | 26,301 |
| NB   | 29,604 | 29,632 | 29,452 | 29,587 | 29,120 | 28,430 | 27,378 | 26,981 | 25,558 | 25,165 | 25,115 |
| PQ   | 36,482 | 36,959 | 36,941 | 37,025 | 36,459 | 35,510 | 35,938 | 34,402 | 33,147 | 32,881 | 32,741 |
| ON   | 32,672 | 32,702 | 31,259 | 30,559 | 30,281 | 29,258 | 27,022 | 26,533 | 25,688 | 25,202 | 25,667 |
| MB   | 32,516 | 33,043 | 33,024 | 32,978 | 32,338 | 31,266 | 30,034 | 29,607 | 29,863 | 28,229 | 28,127 |
| SK   | 30,919 | 30,877 | 30,857 | 31,744 | 30,750 | 29,952 | 27,480 | 27,098 | 25,124 | 24,838 | 24,825 |
| AB   | 27,392 | 27,396 | 27,378 | 27,132 | 26,528 | 25,626 | 23,220 | 22,977 | 22,895 | 22,334 | 22,212 |
| BC   | 28,782 | 28,765 | 28,558 | 28,287 | 28,041 | 27,295 | 25,452 | 23,628 | 22,892 | 22,261 | 22,063 |

Source: BC Ministry of Finance

#### Indicator G-2. Small business tax rate

|      | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| NFLD | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  |
| PEI  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  | 7.5  |
| NS   | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  | 5.0  |
| NB   | 7.0  | 4.0  | 7.0  | 7.0  | 6.0  | 6.0  | 4.5  | 4.0  | 3.0  | 3.0  | 2.5  |
| PQ   | 5.8  | 5.8  | 5.8  | 5.9  | 9.2  | 8.9  | 9.0  | 9.0  | 9.0  | 8.9  | 8.9  |
| ON   | 9.5  | 9.5  | 9.5  | 9.5  | 8.5  | 7.0  | 7.0  | 6.0  | 5.5  | 5.5  | 5.5  |
| MB   | 9.0  | 9.0  | 9.0  | 9.0  | 9.0  | 7.0  | 7.0  | 5.0  | 5.0  | 5.0  | 5.0  |
| SK   | 8.0  | 8.0  | 8.0  | 8.0  | 8.0  | 8.0  | 8.0  | 6.0  | 6.0  | 5.5  | 5.0  |
| AB   | 6.0  | 6.0  | 6.0  | 6.0  | 6.0  | 6.0  | 6.0  | 5.0  | 4.5  | 4.0  | 3.0  |
| BC   | 10.0 | 9.0  | 9.0  | 9.0  | 5.5  | 4.8  | 4.5  | 4.5  | 4.5  | 4.5  | 4.5  |

Source: BC Ministry of Finance

#### Indicator G-3. General corporate income tax rate

|      | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|------|------|------|------|------|------|------|------|------|------|------|------|
| NFLD | 16.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 | 14.0 |
| PEI  | 15.0 | 15.0 | 15.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 |
| NS   | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 | 16.0 |
| NB   | 14.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 16.0 | 13.0 | 13.0 | 13.0 |
| PQ   | 8.9  | 8.9  | 8.9  | 9.2  | 9.2  | 9.0  | 9.0  | 9.0  | 9.0  | 8.9  | 8.9  |
| ON   | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 | 14.0 | 14.0 | 12.5 | 12.5 | 14.0 | 14.0 |
| MB   | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 16.5 | 16.0 | 15.5 | 15.0 |
| SK   | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
| AB   | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 | 15.5 | 13.5 | 13.0 | 12.5 | 11.5 |
| BC   | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 | 13.5 | 13.5 | 13.5 | 12.0 |

Source: BC Ministry of Finance

#### Indicator G-4. Combined federal and provincial performance of R&D as a % of GDP\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 0.28 | 0.26 | 0.24 | 0.24 | 0.22 | 0.21 | 0.21 | 0.22 | 0.22 | 0.22 | 0.20 |
| NFLD   | 0.41 | 0.36 | 0.29 | 0.28 | 0.26 | 0.27 | 0.25 | 0.25 | 0.23 | 0.22 | 0.15 |
| PEI    | 0.45 | 0.44 | 0.34 | 0.35 | 0.36 | 0.34 | 0.38 | 0.48 | 0.47 | 0.21 | 0.31 |
| NS     | 0.44 | 0.48 | 0.43 | 0.44 | 0.38 | 0.39 | 0.34 | 0.38 | 0.29 | 0.30 | 0.25 |
| NB     | 0.24 | 0.20 | 0.19 | 0.20 | 0.20 | 0.20 | 0.19 | 0.15 | 0.15 | 0.24 | 0.15 |
| PQ     | 0.21 | 0.20 | 0.18 | 0.18 | 0.15 | 0.16 | 0.16 | 0.20 | 0.21 | 0.21 | 0.18 |
| ON     | 0.38 | 0.35 | 0.34 | 0.34 | 0.30 | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
| MB     | 0.35 | 0.32 | 0.27 | 0.27 | 0.20 | 0.16 | 0.18 | 0.21 | 0.23 | 0.20 | 0.18 |
| SK     | 0.29 | 0.25 | 0.25 | 0.21 | 0.29 | 0.22 | 0.22 | 0.21 | 0.22 | 0.18 | 0.18 |
| AB     | 0.17 | 0.16 | 0.16 | 0.15 | 0.13 | 0.14 | 0.15 | 0.13 | 0.14 | 0.13 | 0.11 |
| BC     | 0.12 | 0.13 | 0.10 | 0.09 | 0.10 | 0.09 | 0.11 | 0.10 | 0.09 | 0.09 | 0.07 |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Indicator G-5. Total expenditures (private and public sector) on R&D as a % of GDP\*

|        | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 1.68 | 1.73 | 1.70 | 1.65 | 1.66 | 1.76 | 1.80 | 1.92 | 2.09 | 2.03 | 1.97 |
| NFLD   | 1.14 | 1.05 | 0.94 | 0.99 | 0.98 | 1.06 | 1.04 | 0.99 | 1.01 | 0.91 | 0.89 |
| PEI    | 0.69 | 0.67 | 0.60 | 0.60 | 0.61 | 0.77 | 0.82 | 1.07 | 1.08 | 0.86 | 1.09 |
| NS     | 1.34 | 1.42 | 1.37 | 1.32 | 1.26 | 1.45 | 1.48 | 1.47 | 1.46 | 1.47 | 1.43 |
| NB     | 0.88 | 0.88 | 0.85 | 0.90 | 0.77 | 0.89 | 0.87 | 0.80 | 0.80 | 0.93 | 0.87 |
| PQ     | 2.04 | 2.08 | 2.10 | 2.12 | 2.10 | 2.22 | 2.33 | 2.54 | 2.77 | 2.75 | 2.74 |
| ON     | 2.08 | 2.15 | 2.10 | 2.05 | 2.09 | 2.18 | 2.17 | 2.37 | 2.60 | 2.38 | 2.36 |
| MB     | 1.20 | 1.20 | 1.09 | 1.04 | 0.90 | 0.97 | 1.20 | 1.21 | 1.32 | 1.22 | 1.17 |
| SK     | 1.02 | 0.98 | 0.96 | 0.81 | 0.98 | 0.94 | 1.05 | 1.11 | 1.20 | 1.26 | 1.07 |
| AB     | 1.03 | 1.10 | 1.06 | 1.02 | 0.98 | 1.10 | 0.99 | 0.93 | 1.07 | 1.14 | 1.06 |
| BC     | 0.97 | 1.06 | 1.01 | 0.92 | 0.91 | 0.96 | 1.07 | 1.23 | 1.32 | 1.41 | 1.35 |

\* 2003 is the latest year for which information is available.

Source: Statistics Canada

#### Table 13. Profile of the BC total expenditures on R&D (\$ million)\*

|                                               | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 |
|-----------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
| Business Enterprise                           | 471  | 591  | 602  | 538  | 564  | 608  | 714  | 973  | 1080 | 1086 | 1075 |
| Higher Education and Private Non-Profit       | 330  | 344  | 363  | 361  | 364  | 396  | 444  | 507  | 571  | 747  | 797  |
| Federal Govt                                  | 88   | 103  | 81   | 78   | 83   | 85   | 106  | 111  | 96   | 99   | 80   |
| Provincial Government & Research Institutions | 27   | 29   | 22   | 25   | 28   | 24   | 26   | 25   | 22   | 21   | 17   |

\* 2003 is the latest year for which information is available.

## **External Indicators**

#### Indicator X-1. Percentage of immigrants aged 25 years and older with 16 or more years of education

|        | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 24.8 | 28.3 | 32.7 | 35.9 | 36.8 | 40.1 | 42.3 | 43.4 | 45.0 | 44.6 | 47.1 |
| NFLD   | 47.5 | 51.2 | 48.4 | 48.5 | 48.8 | 48.0 | 52.1 | 41.6 | 45.3 | 47.2 | 45.9 |
| PEI    | 21.5 | 33.7 | 22.6 | 42.2 | 34.2 | 27.1 | 29.9 | 38.6 | 27.9 | 38.1 | 52.8 |
| NS     | 42.0 | 42.2 | 40.3 | 43.0 | 44.1 | 41.8 | 45.5 | 48.6 | 51.2 | 53.5 | 57.9 |
| NB     | 37.2 | 42.9 | 42.8 | 41.2 | 46.3 | 45.0 | 42.4 | 45.4 | 49.4 | 45.4 | 50.2 |
| PQ     | 27.7 | 30.1 | 30.2 | 30.2 | 34.4 | 38.7 | 40.5 | 44.2 | 49.6 | 52.0 | 53.0 |
| ON     | 23.9 | 27.2 | 33.3 | 37.2 | 37.8 | 41.7 | 44.2 | 44.6 | 45.8 | 44.3 | 46.9 |
| MB     | 26.6 | 30.7 | 30.4 | 34.9 | 31.6 | 31.3 | 29.9 | 28.5 | 31.1 | 27.7 | 29.4 |
| SK     | 32.1 | 38.9 | 37.9 | 37.0 | 38.7 | 40.1 | 39.3 | 41.2 | 40.5 | 42.9 | 48.0 |
| AB     | 22.2 | 28.2 | 32.9 | 34.9 | 36.7 | 38.4 | 39.4 | 39.8 | 41.1 | 38.6 | 43.5 |
| BC     | 24.7 | 27.8 | 32.1 | 35.4 | 35.8 | 38.0 | 39.8 | 40.9 | 40.4 | 42.5 | 44.6 |

Source: Citizenship and Immigration Canada

#### Indicator X-2. Median years of schooling of immigrants aged 25 years and older

|        | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 12.3 | 12.6 | 13.6 | 14.1 | 14.4 | 14.8 | 15.0 | 15.1 | 15.2 | 15.2 | 15.4 |
| NFLD   | 15.3 | 15.6 | 15.3 | 14.8 | 15.0 | 15.4 | 15.9 | 14.7 | 15.4 | 15.6 | 15.2 |
| PEI    | 12.2 | 13.8 | 12.2 | 13.7 | 12.9 | 13.2 | 13.1 | 14.1 | 12.8 | 14.3 | 15.7 |
| NS     | 14.5 | 14.5 | 14.2 | 14.7 | 14.6 | 14.7 | 15.1 | 15.5 | 15.7 | 15.8 | 16.0 |
| NB     | 14.0 | 14.7 | 14.6 | 14.7 | 15.1 | 15.1 | 14.9 | 15.0 | 15.6 | 15.1 | 15.6 |
| PQ     | 12.5 | 13.0 | 13.1 | 13.2 | 13.9 | 14.4 | 14.6 | 15.0 | 15.6 | 15.7 | 15.8 |
| ON     | 12.2 | 12.5 | 13.7 | 14.3 | 14.5 | 15.0 | 15.2 | 15.2 | 15.3 | 15.2 | 15.4 |
| MB     | 12.4 | 13.5 | 13.7 | 14.0 | 13.7 | 13.9 | 13.8 | 13.8 | 14.0 | 13.6 | 13.9 |
| SK     | 12.6 | 14.1 | 14.0 | 14.0 | 14.3 | 14.5 | 14.5 | 14.8 | 14.7 | 15.0 | 15.5 |
| AB     | 12.1 | 12.6 | 13.7 | 14.0 | 14.3 | 14.7 | 14.8 | 14.9 | 15.0 | 14.8 | 15.1 |
| BC     | 12.3 | 12.5 | 13.5 | 14.0 | 14.3 | 14.8 | 15.0 | 15.0 | 15.0 | 15.2 | 15.4 |

Source: Citizenship and Immigration Canada

#### Indicator X-3. Net inter-provincial migration (number of persons)

|      | 1994    | 1995   | 1996    | 1997    | 1998    | 1999    | 2000    | 2001   | 2002   | 2003   | 2004   |
|------|---------|--------|---------|---------|---------|---------|---------|--------|--------|--------|--------|
| NFLD | -6,204  | -6,974 | -7,436  | -8,134  | -9,490  | -5,695  | -4,263  | -4,493 | -3,352 | -1,683 | -2,027 |
| PEI  | 694     | 349    | 638     | 136     | -416    | 193     | 104     | 165    | 62     | 165    | 144    |
| NS   | -2,694  | -2,741 | -1,245  | -1,648  | -2,569  | 201     | -270    | -2,077 | -898   | 510    | -772   |
| NB   | -505    | -813   | -369    | -1,263  | -3,192  | -1,244  | -1,183  | -1,530 | -1,218 | -843   | -760   |
| PQ   | -10,252 | -8,947 | -12,626 | -17,436 | -16,958 | -13,065 | -12,146 | -9,442 | -4,350 | -1,829 | -822   |
| ON   | -4,527  | -2,841 | -2,822  | 1,977   | 9,231   | 16,706  | 22,369  | 18,623 | 5,354  | 637    | -6,935 |
| MB   | -4,010  | -3,220 | -3,566  | -5,873  | -5,276  | -2,113  | -3,456  | -4,323 | -4,344 | -2,875 | -2,565 |
| SK   | -3,958  | -3,652 | -2,161  | -2,794  | -1,940  | -4,333  | -7,947  | -8,410 | -8,820 | -5,141 | -4,521 |
| AB   | -2,684  | -556   | 7,656   | 26,282  | 43,089  | 25,191  | 22,674  | 20,457 | 26,235 | 11,903 | 10,606 |
| BC   | 34,449  | 29,291 | 22,025  | 9,880   | -10,029 | -14,484 | -14,610 | -8,286 | -8,556 | -1,037 | 7,865  |

Source: Statistics Canada

#### Indicator X-4. Value of high technology imports to BC by commodity type (\$ million)

|                                   | 1994    | 1995    | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    |
|-----------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Biotechnology                     | 17.4    | 21.7    | 24.6    | 21.6    | 32.5    | 33.8    | 33.7    | 57.6    | 53.3    | 55.2    | 49.2    |
| Life Sciences                     | 228.5   | 253.6   | 267.6   | 276.1   | 313.9   | 367.5   | 448.6   | 506.7   | 528.2   | 555.0   | 578.8   |
| Opto-Electronics                  | 71.3    | 72.8    | 78.1    | 96.3    | 97.4    | 93.6    | 121.8   | 123.7   | 104.6   | 94.3    | 112.6   |
| Computers and Telecommunications  | 1,438.3 | 1,464.2 | 1,463.1 | 1,940.3 | 2,132.9 | 2,087.3 | 2,432.6 | 2,340.0 | 2,177.3 | 2,120.4 | 2,321.0 |
| Electronics                       | 397.6   | 476.7   | 371.7   | 545.2   | 680.0   | 676.9   | 547.7   | 333.4   | 228.0   | 203.4   | 249.3   |
| Computer Integrated Manufacturing | 168.4   | 154.5   | 145.2   | 183.3   | 133.8   | 153.0   | 186.9   | 166.3   | 162.6   | 169.5   | 162.1   |
| Material Design                   | 29.0    | 27.8    | 31.0    | 33.2    | 62.5    | 141.0   | 133.0   | 83.1    | 29.9    | 21.7    | 22.1    |
| Aerospace                         | 305.7   | 256.2   | 427.0   | 532.7   | 501.1   | 672.0   | 539.6   | 835.3   | 752.5   | 493.4   | 396.8   |
| Weapons and Nuclear               | 30.8    | 29.7    | 34.7    | 30.2    | 24.1    | 24.2    | 31.2    | 34.5    | 28.6    | 28.0    | 32.7    |
| Total                             | 2,687.0 | 2,757.2 | 2,842.9 | 3,658.8 | 3,978.1 | 4,249.3 | 4,475.0 | 4,480.6 | 4,065.0 | 3,740.9 | 3,924.6 |

Source: BC STATS

## Labour Indicators

#### Indicator L-1. Unemployment rate for natural and applied science occupations (%)

|        | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 4.2  | 4.3  | 3.6  | 3.5  | 3.4  | 3.0  | 3.8  | 4.5  | 4.5  | 3.8  | 2.9  |
| NFLD   | 8.9  | 6.7  | 6.8  | 8.0  | 9.7  | 8.2  | 8.2  | 7.8  | 9.3  | 6.7  | 9.5  |
| PEI    | 19.2 | 12.9 | 14.8 | 12.5 | 9.4  | 7.1  | 5.9  | 5.4  | 8.3  | 11.4 | 5.0  |
| NS     | 4.8  | 5.2  | 6.1  | 5.4  | 4.2  | 4.6  | 4.5  | 5.9  | 7.2  | 4.2  | 5.0  |
| NB     | 5.9  | 5.4  | 6.0  | 6.5  | 5.0  | 5.6  | 5.2  | 4.7  | 5.5  | 4.6  | 5.5  |
| PQ     | 5.7  | 5.7  | 5.1  | 4.4  | 3.4  | 3.1  | 4.2  | 4.4  | 4.8  | 4.5  | 3.5  |
| ON     | 3.2  | 3.6  | 2.7  | 2.7  | 3.2  | 2.8  | 3.5  | 4.7  | 3.9  | 3.3  | 2.7  |
| MB     | 2.7  | 3.5  | 2.8  | 2.7  | 2.5  | 3.0  | 2.8  | 3.5  | 3.1  | 1.9  | -    |
| SK     | 3.7  | 4.5  | 3.2  | 2.8  | 4.3  | 4.5  | 2.6  | 2.7  | 4.7  | -    | -    |
| AB     | 4.1  | 4.1  | 2.4  | 2.1  | 3.1  | 2.7  | 2.6  | 3.0  | 3.2  | 3.4  | 1.6  |
| BC     | 4.1  | 4.0  | 3.3  | 4.4  | 3.4  | 2.4  | 4.7  | 5.1  | 6.1  | 5.0  | 3.0  |

- Data not available

Source: Statistics Canada

#### Indicator L-2. Research workforce per 100,000 population, 1998 and 2002\*

|        | Fed  | eral | Prov | incial | Busi  | ness  | Higher e | ducation | Ot   | her  | TO    | ΓAL   |
|--------|------|------|------|--------|-------|-------|----------|----------|------|------|-------|-------|
|        | 1998 | 2002 | 1998 | 2002   | 1998  | 2002  | 1998     | 2002     | 1998 | 2002 | 1998  | 2002  |
| CANADA | 45.4 | 44.5 | 9.5  | 10.5   | 253.6 | 356.4 | 146.4    | 150.9    | 7.9  | 2.3  | 462.8 | 564.6 |
| NFLD   | 38.9 | 40.4 | 0.0  | 0.0    | 37.0  | 48.1  | 133.4    | 161.7    | 0.0  | 0.0  | 209.3 | 250.3 |
| PEI    | 58.9 | 43.8 | 0.0  | 0.0    | 36.8  | 65.7  | 73.6     | 87.6     | 0.0  | 0.0  | 169.3 | 197.2 |
| NS     | 70.8 | 61.0 | 0.0  | 0.0    | 68.7  | 105.9 | 81.6     | 166.9    | 2.1  | 5.4  | 223.2 | 339.2 |
| NB     | 34.6 | 29.3 | 13.3 | 13.3   | 50.6  | 80.0  | 101.3    | 114.6    | 4.0  | 2.7  | 203.9 | 239.9 |
| PQ     | 27.4 | 32.6 | 12.1 | 12.4   | 342.4 | 523.7 | 185.0    | 177.0    | 6.7  | 0.5  | 573.6 | 746.2 |
| ON     | 71.6 | 67.4 | 5.1  | 8.6    | 341.1 | 447.6 | 144.5    | 147.4    | 10.7 | 0.9  | 573.0 | 672.0 |
| MB     | 38.7 | 48.5 | 5.3  | 3.5    | 86.2  | 116.0 | 130.1    | 130.7    | 22.0 | 10.4 | 282.2 | 308.9 |
| SK     | 44.2 | 42.2 | 25.6 | 21.1   | 71.7  | 92.4  | 127.8    | 140.6    | 0.0  | 0.0  | 269.3 | 296.2 |
| AB     | 25.9 | 20.5 | 22.4 | 23.7   | 140.0 | 164.9 | 146.2    | 157.2    | 12.1 | 11.2 | 346.6 | 377.7 |
| BC     | 17.3 | 16.3 | 7.5  | 5.1    | 142.9 | 226.2 | 122.5    | 124.7    | 0.8  | 1.0  | 291.0 | 373.2 |

FTE: full time equivalent position

\* 2002 is the latest year of which information is available

Source: Statistics Canada

#### Table 14. Structure of the research workforce by sector in 2002 (%)\*

|    | Federal | Provincial | Business | Higher education | Total FTE |
|----|---------|------------|----------|------------------|-----------|
| PQ | 4.4     | 1.7        | 70.2     | 23.7             | 55,520    |
| ON | 10.0    | 1.3        | 66.7     | 22.0             | 81,210    |
| AB | 5.6     | 6.5        | 45.0     | 42.9             | 11,420    |
| BC | 4.4     | 1.4        | 60.8     | 33.5             | 15,320    |

FTE: full time equivalent position

\*2002 is the latest year of which information is available.

#### Indicator L-3. Quality of life index scores, 2005 (New York = 100)

|               | Score | Global Rank | North Am. Rank |
|---------------|-------|-------------|----------------|
| Vancouver     | 106.0 | 3           | 1              |
| Toronto       | 103.5 | 15          | 2              |
| San Francisco | 102.0 | 24          | 4              |
| Honolulu      | 102.0 | 24          | 4              |
| Ottawa        | 103.0 | 20          | 3              |
| Montreal      | 102.0 | 24          | 4              |
| Calgary       | 102.0 | 24          | 4              |
| Seattle       | 98.5  | 45          | 8              |

Source: Mercer Human Resource Consulting

#### Indicator L-4. All Items inter city retail price index (units)\*

|           | Oct-02 | Oct-03 |
|-----------|--------|--------|
| Edmonton  | 95     | 97     |
| Montreal  | 95     | 93     |
| Ottawa    | 105    | 103    |
| Vancouver | 105    | 103    |
| Toronto   | 110    | 110    |

\*2003 is the latest year of which information is available. Source: Statistics Canada

## **Reference Tables**

#### **Reference Table 1. Total population**

|        | 1995       | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002             | 2003       | 2004       | 2005       |
|--------|------------|------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|
| CANADA | 29,302,091 | 29,610,757 | 29,907,172 | 30,157,082 | 30,403,878 | 30,689,035 | 31,021,251 | 31,372,587       | 31,669,150 | 31,974,363 | 32,270,507 |
| NFLD   | 567,442    | 559,807    | 551,011    | 539,932    | 533,409    | 528,043    | 521,986    | 519,449          | 518,350    | 517,027    | 515,961    |
| PEI    | 134,407    | 135,751    | 136,109    | 135,819    | 136,296    | 136,486    | 136,672    | 136,934          | 137,266    | 137,864    | 138,113    |
| NS     | 928,193    | 931,413    | 932,481    | 931,907    | 933,847    | 933,881    | 932,389    | 934,507          | 936,165    | 936,960    | 937,889    |
| NB     | 750,979    | 752,312    | 752,543    | 750,551    | 750,611    | 750,518    | 749,890    | 750,327          | 750,896    | 751,384    | 752,006    |
| PQ     | 7,219,446  | 7,246,896  | 7,274,630  | 7,295,973  | 7,323,308  | 7,357,029  | 7,396,990  | 7,445,745        | 7,492,333  | 7,542,760  | 7,598,146  |
| ON     | 10,949,976 | 11,083,052 | 11,228,284 | 11,367,018 | 11,506,359 | 11,685,380 | 11,897,647 | 12,102,045       | 12,256,645 | 12,392,721 | 12,541,410 |
| MB     | 1,129,146  | 1,134,188  | 1,136,137  | 1,137,515  | 1,142,491  | 1,147,373  | 1,151,285  | 1,155,584        | 1,161,552  | 1,170,268  | 1,177,556  |
| SK     | 1,014,126  | 1,019,100  | 1,018,067  | 1,017,506  | 1,014,707  | 1,007,767  | 1,000,134  | 995 <i>,</i> 886 | 994,428    | 995,391    | 994,126    |
| AB     | 2,734,515  | 2,775,163  | 2,830,056  | 2,899,452  | 2,953,255  | 3,004,940  | 3,056,739  | 3,116,332        | 3,158,641  | 3,201,895  | 3,256,816  |
| BC     | 3,777,004  | 3,874,276  | 3,948,544  | 3,983,077  | 4,011,342  | 4,039,198  | 4,078,447  | 4,115,413        | 4,154,591  | 4,201,867  | 4,254,522  |

Source: Statistics Canada

#### Reference Table 2. Population aged 15 years and older

|        | 1995       | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       | 2004       | 2005       |
|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| CANADA | 23,328,961 | 23,625,206 | 23,929,642 | 24,198,590 | 24,484,577 | 24,805,470 | 25,166,713 | 25,547,149 | 25,883,529 | 26,232,820 | 26,585,051 |
| NFLD   | 453,063    | 449,951    | 445,937    | 439,690    | 437,141    | 435,225    | 432,718    | 432,771    | 433,861    | 434,485    | 435,176    |
| PEI    | 105,177    | 106,527    | 107,289    | 107,604    | 108,439    | 109,166    | 110,000    | 110,893    | 111,756    | 112,861    | 113,661    |
| NS     | 745,107    | 749,403    | 752,823    | 755,263    | 760,226    | 763,378    | 765,807    | 771,728    | 776,765    | 781,311    | 785,827    |
| NB     | 603,510    | 606,984    | 609,634    | 610,579    | 613,260    | 615,958    | 618,379    | 621,320    | 624,333    | 627,228    | 630,489    |
| PQ     | 5,828,149  | 5,866,034  | 5,909,345  | 5,944,436  | 5,988,636  | 6,037,533  | 6,091,888  | 6,149,751  | 6,206,828  | 6,269,182  | 6,340,112  |
| ON     | 8,720,499  | 8,828,780  | 8,959,902  | 9,086,175  | 9,221,832  | 9,392,459  | 9,588,641  | 9,787,746  | 9,951,721  | 10,105,931 | 10,265,004 |
| MB     | 882,302    | 887,579    | 891,019    | 894,291    | 900,627    | 907,042    | 913,111    | 919,530    | 926,938    | 936,664    | 945,881    |
| SK     | 779,974    | 786,751    | 788,789    | 791,538    | 793,432    | 792,056    | 790,469    | 790,328    | 792,509    | 796,718    | 799,466    |
| AB     | 2,108,608  | 2,149,784  | 2,202,366  | 2,267,761  | 2,322,379  | 2,375,617  | 2,430,106  | 2,489,564  | 2,534,019  | 2,580,088  | 2,632,956  |
| BC     | 3,034,379  | 3,123,597  | 3,192,111  | 3,231,184  | 3,268,249  | 3,306,213  | 3,353,847  | 3,400,337  | 3,445,350  | 3,496,998  | 3,559,109  |

Source: Statistics Canada

#### **Reference Table 3. Number of households\***

|        | 1996       | 1997       | 1998       | 1999       | 2000       | 2001       | 2002       | 2003       |
|--------|------------|------------|------------|------------|------------|------------|------------|------------|
| CANADA | 10,650,340 | 10,851,840 | 11,017,230 | 11,209,960 | 11,361,810 | 11,552,010 | 12,021,010 | 12,214,130 |
| NFLD   | 184,920    | 184,520    | 184,940    | 185,830    | 188,830    | 190,580    | 196,450    | 197,680    |
| PEI    | 47,600     | 48,110     | 48,760     | 50,020     | 50,380     | 50,580     | 53,250     | 53,970     |
| NS     | 328,490    | 340,220    | 338,960    | 348,010    | 350,790    | 355,160    | 366,850    | 369,240    |
| NB     | 264,510    | 269,430    | 273,700    | 277,200    | 276,160    | 281,780    | 290,090    | 291,670    |
| PQ     | 2,771,560  | 2,825,110  | 2,843,900  | 2,869,180  | 2,930,590  | 2,953,150  | 3,082,910  | 3,116,620  |
| ON     | 3,924,200  | 3,974,730  | 4,043,020  | 4,147,740  | 4,210,680  | 4,302,710  | 4,487,230  | 4,559,920  |
| MB     | 403,870    | 402,420    | 406,860    | 406,390    | 407,970    | 412,250    | 424,290    | 427,620    |
| SK     | 356,390    | 365,120    | 364,720    | 366,560    | 372,500    | 371,220    | 380,170    | 380,140    |
| AB     | 962,840    | 993,800    | 1,020,710  | 1,044,520  | 1,056,890  | 1,084,100  | 1,139,820  | 1,162,790  |
| BC     | 1,405,960  | 1,448,380  | 1,465,310  | 1,487,090  | 1,517,030  | 1,520,870  | 1,599,960  | 1,623,170  |

\*Canada is the sum of the 10 provinces. 2003 is the last year for which information is available. Source: Statistics Canada

#### Reference Table 4. Population of immigrants aged 25 years or older

|        | 1994    | 1995    | 1996    | 1997    | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    |
|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| CANADA | 140,252 | 132,644 | 141,097 | 135,121 | 108,978 | 121,291 | 145,750 | 161,355 | 148,895 | 144,024 | 151,633 |
| NFLD   | 364     | 369     | 401     | 266     | 240     | 256     | 257     | 221     | 243     | 231     | 344     |
| PEI    | 93      | 101     | 84      | 90      | 79      | 85      | 107     | 83      | 68      | 97      | 178     |
| NS     | 1,773   | 1,886   | 1,747   | 1,529   | 1,074   | 961     | 938     | 1,031   | 863     | 891     | 1,110   |
| NB     | 379     | 406     | 456     | 417     | 460     | 420     | 467     | 489     | 431     | 414     | 516     |
| PQ     | 15,791  | 15,960  | 17,921  | 16,613  | 15,846  | 18,030  | 20,569  | 24,301  | 25,025  | 26,428  | 29,431  |
| ON     | 74,319  | 72,463  | 74,910  | 73,666  | 57,934  | 66,508  | 85,654  | 95,431  | 86,381  | 77,641  | 79,734  |
| MB     | 2,534   | 2,277   | 2,444   | 2,234   | 1,758   | 2,162   | 2,551   | 2,627   | 2,608   | 3,627   | 4,060   |
| SK     | 1,372   | 1,245   | 1,126   | 1,066   | 984     | 1,070   | 1,094   | 975     | 951     | 943     | 1,141   |
| AB     | 11,395  | 9,016   | 8,726   | 8,201   | 7,071   | 7,825   | 9,125   | 10,400  | 9,539   | 10,216  | 10,353  |
| BC     | 31,885  | 28,734  | 33,132  | 30,886  | 23,394  | 23,864  | 24,888  | 25,669  | 22,682  | 23,416  | 24,660  |

Source: Citizenship and Immigration Canada

| Reference Table 5. Unemployment rate | e for all occupations (%) |
|--------------------------------------|---------------------------|
|--------------------------------------|---------------------------|

|        | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 |
|--------|------|------|------|------|------|------|------|------|------|------|------|
| CANADA | 9.5  | 9.6  | 9.1  | 8.3  | 7.6  | 6.8  | 7.2  | 7.7  | 7.6  | 7.2  | 6.8  |
| NFLD   | 18.0 | 19.1 | 18.4 | 17.9 | 16.9 | 16.7 | 16.1 | 16.7 | 16.5 | 15.7 | 15.2 |
| PEI    | 14.8 | 14.7 | 15.4 | 13.9 | 14.3 | 12.1 | 11.9 | 12.0 | 11.0 | 11.3 | 10.8 |
| NS     | 12.2 | 12.4 | 12.2 | 10.5 | 9.6  | 9.1  | 9.7  | 9.6  | 9.1  | 8.8  | 8.4  |
| NB     | 11.4 | 11.6 | 12.7 | 12.2 | 10.2 | 10.0 | 11.1 | 10.2 | 10.3 | 9.8  | 9.7  |
| PQ     | 11.5 | 11.9 | 11.4 | 10.3 | 9.3  | 8.5  | 8.8  | 8.6  | 9.1  | 8.5  | 8.3  |
| ON     | 8.7  | 9.0  | 8.4  | 7.2  | 6.3  | 5.8  | 6.3  | 7.1  | 6.9  | 6.8  | 6.6  |
| MB     | 7.3  | 7.3  | 6.5  | 5.6  | 5.6  | 5.0  | 5.1  | 5.1  | 5.0  | 5.3  | 4.8  |
| SK     | 6.7  | 6.7  | 6.0  | 5.8  | 6.1  | 5.1  | 5.8  | 5.7  | 5.6  | 5.3  | 5.1  |
| AB     | 7.8  | 6.9  | 5.9  | 5.6  | 5.7  | 5.0  | 4.6  | 5.3  | 5.1  | 4.6  | 3.9  |
| BC     | 8.5  | 8.7  | 8.4  | 8.8  | 8.3  | 7.1  | 7.7  | 8.5  | 8.0  | 7.2  | 5.9  |

Source: Statistics Canada

#### Reference Table 6. Gross domestic product (\$ million)

|        | 1994    | 1995    | 1996    | 1997    | 1998    | 1999    | 2000      | 2001      | 2002      | 2003      | 2004      |
|--------|---------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|
| CANADA | 770,873 | 810,426 | 836,864 | 882,733 | 914,973 | 982,441 | 1,076,577 | 1,108,048 | 1,154,204 | 1,216,191 | 1,290,185 |
| NFLD   | 10,264  | 10,652  | 10,417  | 10,533  | 11,176  | 12,184  | 13,922    | 14,179    | 16,452    | 18,131    | 19,433    |
| PEI    | 2,521   | 2,662   | 2,823   | 2,800   | 2,981   | 3,159   | 3,366     | 3,431     | 3,715     | 3,845     | 4,023     |
| NS     | 18,667  | 19,296  | 19,512  | 20,368  | 21,401  | 23,059  | 24,658    | 25,909    | 27,079    | 28,715    | 29,879    |
| NB     | 15,286  | 16,380  | 16,626  | 16,845  | 17,633  | 19,041  | 20,085    | 20,684    | 21,152    | 22,179    | 22,976    |
| PQ     | 170,478 | 177,331 | 180,526 | 188,424 | 196,258 | 210,809 | 224,928   | 231,624   | 242,011   | 252,367   | 265,063   |
| ON     | 311,096 | 329,317 | 338,173 | 359,353 | 377,897 | 409,020 | 440,759   | 453,701   | 478,141   | 493,345   | 517,407   |
| MB     | 25,958  | 26,966  | 28,434  | 29,751  | 30,972  | 31,966  | 34,057    | 35,157    | 36,644    | 37,719    | 39,990    |
| SK     | 24,480  | 26,425  | 28,944  | 29,157  | 29,550  | 30,778  | 33,828    | 33,127    | 34,327    | 36,394    | 39,999    |
| AB     | 88,041  | 92,036  | 98,634  | 107,048 | 107,439 | 117,080 | 144,789   | 151,274   | 150,814   | 171,175   | 187,152   |
| BC     | 100,512 | 105,670 | 108,865 | 114,383 | 115,641 | 120,921 | 131,333   | 133,514   | 138,252   | 145,948   | 157,241   |

Source: Statistics Canada

#### Reference Table 7. Gross domestic product (\$1997 million, chained)

|        | 1994    | 1995    | 1996    | 1997    | 1998    | 1999    | 2000      | 2001      | 2002      | 2003      | 2004      |
|--------|---------|---------|---------|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|
| CANADA | 810,695 | 833,456 | 846,952 | 882,733 | 918,910 | 969,750 | 1,020,488 | 1,038,702 | 1,070,789 | 1,092,388 | 1,124,428 |
| NFLD   | 10,672  | 10,913  | 10,407  | 10,533  | 11,107  | 11,715  | 12,322    | 12,515    | 14,564    | 15,471    | 15,248    |
| PEI    | 2,546   | 2,708   | 2,789   | 2,800   | 2,928   | 3,052   | 3,111     | 3,078     | 3,255     | 3,304     | 3,365     |
| NS     | 19,090  | 19,410  | 19,529  | 20,368  | 21,127  | 22,285  | 22,970    | 23,700    | 24,702    | 24,925    | 25,271    |
| NB     | 16,013  | 16,533  | 16,652  | 16,845  | 17,462  | 18,553  | 18,942    | 19,257    | 20,105    | 20,449    | 20,867    |
| PQ     | 177,782 | 180,781 | 182,564 | 188,424 | 194,414 | 206,467 | 215,424   | 218,626   | 224,574   | 229,244   | 234,445   |
| ON     | 328,500 | 340,081 | 343,826 | 359,353 | 376,716 | 405,034 | 429,105   | 436,762   | 450,636   | 457,649   | 470,026   |
| MB     | 27,753  | 27,828  | 28,683  | 29,751  | 31,014  | 31,503  | 32,846    | 33,111    | 33,735    | 34,338    | 35,136    |
| SK     | 26,968  | 27,269  | 28,063  | 29,157  | 30,398  | 30,459  | 31,252    | 30,953    | 30,894    | 32,073    | 33,168    |
| AB     | 95,278  | 98,268  | 100,264 | 107,048 | 112,677 | 114,227 | 121,153   | 123,250   | 126,328   | 130,256   | 135,837   |
| BC     | 105,669 | 108,194 | 110,857 | 114,383 | 115,883 | 119,604 | 125,145   | 125,924   | 130,324   | 133,888   | 139,205   |