Aggregate Operators Best Management Practices Handbook

PART II

Chapter 5 - 2: Planning Modules PROCESSING MODULE - PM

Table of Contents	
PROCESSING MODULE - PM	2
Common Concerns: Aggregate Processing	2
Addressing Processing Plant Concerns	2
Processing Plant Location	2
Plant Type	2
The Processing Plant Flow Sheet	3

Tables and Figures

	0	
Table PM - 1:	Basic types of processing plants.	3
Figure PM - 2:	Example of a Processing Plant Flow Sheet for a 500 ton per hour (tph) plant	4
Table PM - 3:	Typical processing plant equipment and components and related potential noise,	
	dust and visual issues.	5
Table PM - 4:	Concerns, requirements and by-products of aggregate processing plants	6

PROCESSING MODULE - PM

Common Concerns: Aggregate Processing

The processing plant at an aggregate operation may include crushers, screens, wash plants, generators and conveyors, and is often the focal point for heavy equipment activity at the site. As a result, aggregate processing may cause concerns relating to noise, dust and visual impacts. This module will discuss how and where to set up processing facilities to minimize land disturbance and community and environmental concerns.

Process planning can identify changing plant needs, in order to coordinate improvements with the development of other site activities over the life of a mine. To identify these needs, processing planning should consider:

- extraction planning,
- stockpiling planning,
- stormwater & erosion control planning, and
- traffic planning.

Addressing Processing Plant Concerns

Processing of aggregate material can use a lot of water and energy, and may create undesirable noise, dust and visual impacts, and by-products such as sediment-laden water and wash-water fines. Reducing or mitigating processing plant concerns can start with the design of the processing plant and with equipment selection and layout. Table PM-3 lists various types of processing equipment, potential concerns associated with them, notes, pointers, and BMPs that can be used to address concerns. Table PM-4 lists some potential concerns and offers suggestions and BMP selections for mitigation.

Safety is an important factor in plant design. Individual equipment should have adequate guarding, conveyor rules should be established and followed, and operating protocols should be clearly established. Refer to the <u>Health, Safety and Reclamation Code</u> Section 6-8 for plant safety regulations.

Processing Plant Location

The location of the processing plant should allow for the coordination of extraction, stockpiling, load-out facilities, available space and other strategies to contain noise, dust and visual impacts. As Tables PM-3 and PM-4 indicate, strategic location is a primary tool for mitigating processing plants, and sometimes-different factors must be balanced. For example, a high plant location will facilitate the directing and treating of stormwater, whereas low locations are advantageous when noise or dust may be a significant issue. Extraction planning will help determine if and where there will be in-pit crushing or whether a fixed primary crushing station will be used.

Plant Type

Before starting to purchase equipment, an operator should determine what type of processing plant would provide the best balance between optimizing production and potential noise, dust and visual concerns. The basic types of plants are listed Table PM - 1.

	Processing Plant Type	Description
1	Stationary Plant	 buildings and infrastructures with concrete foundations long-term and large operation large space requirements
2	Semi-fixed Plant	 less than 10 year life expectancy skid-mounted equipment and mobile conveyor systems
3	Mobile Plant	 used at different locations for in-pit processing during separate phases of the mine extraction plan can also be used for smaller operations equipment is rubber-tired or skid mounted
4	Seasonal / Contract Plant	 contract processing facility seasonal or intermittent rubber tired or skid mounted equipment

Table PM - 1:	Basic types of processing plan	its.
	Busic types of processing plur	100.

After: Pit & Quarry Quarryology 101, Lesson 3 Plant Design / Components, Part 1, "Type of Plant".

The Processing Plant Flow Sheet

The selection of specific equipment with individual production capacities should be based on the type and estimated volume of processing proposed for the operation. This selection can be assisted using a *Processing Plant Flow Sheet*, as illustrated in Figure PM - 2. The *Flow Sheet* illustrates the "planned" configuration of machines, conveyors and chutes, and shows estimates of the tonnes-per-hour flow of each component. When putting together a *Processing Plant Flow Sheet*, an operator can begin to solve some of the following problems:

- What is the best plant type? (stationary, semi-fixed, mobile, or seasonal)
- What are the crusher requirements? (crusher required? contract required? size, type, power requirements, etc.)
- Should wet or dry processing be used?
- What types of screening will be required? (fractionation needs, screen types, volume, numbers of screens, sizes, etc.)
- Will sand screws be used?
- What are the washing requirements?
- How will surge piles be used? (where, how deposited, how big, reclaim equipment,etc.)

The *Processing Plant Flow Sheet* attempts to predict processing plant performance given the variability of the raw material feed, rates of feed and desired production and output rates. It can also help to predict the space requirements for equipment, stockpiles, support facilities and access. Pointers for equipment selection and planning notes are given in table PM-3 for many of the typical equipment types and components in an aggregate processing plant.

After: Bowers et al. 1990, figure 8.18, page 8-70.

Component	Description	Issue	Process Flow Sheet Pointers	Planning Notes	BMPs
Crusher	 reduces the size of material 	 noise dust from feed and discharge 	 make large size (> 4 : 1) reductions in stages primary crushers are usually jaw crushers 	 noise travels in uninterrupted lines of sight, and can reflect off barriers and buildings place crusher in hollow or low on the property use working face as noise barrier for primary crusher enclose or surround crushers with berms, walls or other sound barriers surround with or locate near thick vegetation water spray into the crusher feed can effectively reduce dust 	Berm Drop Height Dust Skirts Equipment Selection
Screens	 separate aggregates into various sizes 	 noise dust from feed and discharge wet screenings produces silt laden water 	 dry screening reduces product drying and water processing requirements, yet may require dust suppression 	 polyurethane and rubber screens are quieter than wire cloth screens 	 Fences Lighting Management Sinking the Plant Water Spray
Conveyors	 transport aggregate on powered belts 	 dust from feed and discharge visual 	 variable height conveyors can limit stockpile segregation and dust 	 dampen material to reduce dust at transfer points variable height conveyors may reduce dust generation and visual impacts 	
Chutes	direct falling aggregate into a feeder	 dust from feed and discharge 	gravity feed is controlled by material size and moisture content		
Grizzly	 static rejection of oversize removes fines to bypass primary crusher 	dustnoise	 commonly overloaded and inefficient 		
Surge Pile	 isolates components of processing plant, smoothing out erratic production rates 	 dust noise appearance	 should be large enough to ensure no one piece of equipment overwhelms / undersupplies the next station large piles allow for operational flexibility, but are segregation-prone and require more space 	 sprinklers should not be used on surge piles with automated recovery tunnels, as high moisture content may limit flow rates and processing efficiency (not an issue for front-end loader recovery) 	 <u>Drop Height</u> <u>Dust Skirts</u> <u>Signage</u>
Transfer Points	 where a stream of aggregate, such as on a conveyor, makes an abrupt change in direction or elevation 	• dust		hoods control exposure to wind and reduce dust	Drop Height <u>Fences</u> <u>Water Spray</u>
Washing / Rinsing	rinsing material to remove fine particles to meet product specifications	silt-laden water	 budget for 10 - 40 litres per tph use proper high pressure nozzles keep material in thin layer to wash prior to washing, remove as many (dry) fines as possible pre-wet material 		Lighting <u>Management</u> <u>Settling Pond</u>
Settling Ponds	 recovery and disposal of suspended fines from wash water 	 suspended load discharge 	 keep storm water separate from processing water 	 for decanting, closed circuit settling ponds require substantial land base, with periodic clean outs containment cells, clarifiers, and flocculants 	<u>Settling Pond</u>

Table PM - 3:	Typical processing plant equipment and	components and related potential	noise, dust and visual issues.
---------------	--	----------------------------------	--------------------------------

Factor	Related Plan	Issue	Mitigation	BMPs
Water Supply		 washing / rinsing can use 10 - 40 litres per tph, of which a significant portion is lost in processing 	Makeup Water Options: • captured storm water • water well • municipal water • water licence from local stream or lake	
Energy		 energy can be a major component of the cost per tonne of product mobile electric generating plants may be noisy and dusty 	 purchase energy from a grid use enclosed plants with appropriate mufflers 	
Noise	Noise Plan	 noise may be generated by: power plants rock impacting metal equipment noise (crushers) loaders used to supply the plant load out facilities & trucks 	 use rock on rock transfer points use rubber or polyurethane products for screens, chutes and truck liners use low profile processing systems so noise is absorbed or blocked by the landscape use non-audible back-up alarms (<u>HSRC</u> Section 12.31) 	Berm Buffer Zone Fences Sinking the Plant
Dust	Dust Plan	 potential sources of dust include: roads feeds and discharges for conveyors, crushers, screens front end loaders moving material, loadout facilities 	 water roads or use surfactants (calcium chloride) wheel washer wash down trucks pave high use areas install bag house water sprays wind breaks 	Buffer Zone Drop Height Dust Skirts Water Spray
Visual	Visual Landscape Plan	 processing facilities may be less attractive than overall surroundings 	 low profile processing systems use downcast lighting berms for screening vegetation cover to blend in with native vegetation select a location which is hidden by local topography 	Berm Buffer Zone Fences Lighting Management
Water Treatment	Processing Plan	 process water is heavily silt-laden, in very high rainfall locations, periodic discharge may be necessary 	 closed circuit settling ponds for decanting (requiring substantial land base, with periodic clean outs) containment cells clarifiers approved flocculants dilute occasional discharge with stormwater 	<u>Settling Pond</u>
Silt	By-product and Recycling Plan	 recovery and disposal of fines from settling pond, retention basin and other sediment traps such as check dams 	 remineralization as an agricultural supplement 	
Stormwater	Stormwater Plan	 stormwater may cause erosion and deposition of fine sediment in local waterways 	 place processing plant in a locally high and dry location wash down equipment to prevent rain water siltation off equipment surfaces 	Ditches Retention Basin

Table PM - 4: Concerns, requirements and by-products of aggregate processing plants.