Irrigation FACTSHEET

Order No. 595.000-1 February 2001 Agdex: 753

GUIDE TO IRRIGATION SYSTEM DESIGN WITH RECLAIMED WATER

This guide is to provide a reference for the design of irrigation systems in British Columbia using reclaimed water in accordance with the Municipal Sewage Regulation (MSR). Irrigation systems can be used to apply reclaimed water to landscape and agricultural crops in regions with a moisture deficit during the growing season, for frost protection in the spring and fall, and crop cooling purposes during the hot part of the summer. The general philosophy is that the irrigation system shall be designed and operated to make beneficial use of reclaimed water, as opposed to disposal in a watercourse or to ground. This philosophy is necessary to prevent excessive irrigation and subsequent negative impact on the irrigated lands and lands down-gradient from them.

Reclaimed Water Use

Schedule 2 of the MSR outlines the permitted uses and standards for reclaimed water use. The water quality parameters and use categories for irrigation extracted from Schedule 2 of the MSR are shown in Table 1. For a complete Schedule 2 and the appended explanatory notes see the MSR. The two standards for reclaimed water are:

Category 1

"*Restricted Public Access*" – means that the reclaimed water quality is of a quality that the public is to be restricted from having access to the irrigated lands or contact with the reclaimed water both during actual reclaimed water application or use and thereafter.

Category 2

C"*Unrestricted Public Access*" – means that the reclaimed water quality is of sufficiently high quality that public access to areas that are irrigated with reclaimed water or contact with the reclaimed water is allowed as prescribed in the MSR and the Code of Practice for the Use of Reclaimed Water.

Excerpted from Schedule 2 of the MSR – Permitted Uses and Standards for Reclaimed Water							
Category 1 - Unrestricted Public Access							
Permitted Uses for Irrigation	Treatment Requirements	Effluent Quality Requirements	Monitoring Requirements				
Agriculture	Secondary	pH = 6 – 9	pH – weekly				
Orchards and Vineyards Seed Crops	Chemical Addition	$\leq 10 \text{ mg/L BOD}_5$	BOD – weekly				
Frost Protection Crop Cooling	Filtration	$\leq 2 \text{ NTU}$	Turbidity – continuous				
Pasture (no lag time for - animal grazing)	Disinfection	number of fecal coliform organisms $\leq 2.2/100$ ml	Coliform - daily				
	Emergency Storage						
Urban and Landscape Parks		Provider must demonstrate that reclaimed water does not					
Playgrounds		contain pathogens or parasites					
Cemeteries		at levels that are of concern to					
Golf Courses		health authorities.					
Road Right of Ways		Levels for metal and nutrient					
Residential Lawns		concentrations are governed by					
Landscape around buildings		crop limitations at various growth					
Greenbelts		stages where applicable.					
	Category 2 - Restr	icted Public Access					
Permitted Uses for Irrigation	Treatment Requirements	Effluent Quality Requirements	Monitoring Requirements				
Agriculture	Secondary	pH = 6 - 9	pH – weekly				
Commercially processed	D						
food crops	Disinfection	\leq 45 mg/L BOD ₅	BOD – weekly				
and Vinevards		< 45 mg/L TSS	TSS daily				
Fodder and Fibre		\leq 45 mg/L 155					
Nurserv and Sod farms		number of fecal coliform	Coliform - weekly				
Silviculture		organisms $\leq 200/100$ ml					
Pasture (with a 6 day lag							
time for milking animals and	Remote areas of parks,	Levels for metal and nutrient					
3 days for other cattle	school grounds during	concentrations are governed by					
grazing)	vacation periods, and golf	crop limitations at various					
Spring Frost Protection	courses can be considered	growth stages where					
Urban and Landscana	category provided a	applicable.					
Parks	minimum of 60 days storage	Setback from a potable well					
Golf Courses	is provided, concerns of	must be > 30 m.					
School Grounds	local health authorities are						
	resolved, the manager is	Spray drift must not exceed					
	satisfied that access is	boundaries of property where					
	controlled and the use is	reclaimed water is being					
	approved in writing by the	applied and drift must not					
	manager and neatth.	to the public					

System Selection

Various types of irrigation systems can be selected for use with reclaimed water. For reclaimed water use allowing unrestricted public access any type of sprinkler or drip system can be used on agricultural crops. Pop-up sprinkler and spray heads or drip/trickle systems may be used on turf and landscape areas. For reclaimed water that has a restricted public access designation, sprinkler irrigation systems may be used on forage crops but only trickle or drip systems may be used for orchard or vineyard crops. Vegetable crops must be irrigated with subsurface drip systems.

The irrigation system types that are commonly used for reclaimed water application are:

- Handline Aluminum pipes that are moved by hand from one set to the next. Lateral pipe sizes are commonly in the 2" to 3" range.
- Wheelmove Heavy gauge 4" or 5" aluminum pipe mounted on wheels with a motorized mover located at the center of the lateral. Lateral lengths are generally ¼ of a mile. Generally used for forage systems.
- Solid Set Sprinkler Laterals are permanently installed underground or on a trellis. Lateral spacing is matched to sprinkler performance. Microsprinkler systems will have the laterals spaced closer together while the larger more conventional sprinklers can be spaced up to 60 feet apart. These systems are often used on nurseries and horticulture systems such as tree fruits, grapes and vegetables. In tree fruits the sprinklers can be installed either overtree or undertree.
- **Pop-up Sprinkler or Spray Systems** These systems consist of sprinklers (rotors) and spray heads located inside a case that is installed at ground level. When the system is turned on the head pops up above ground to irrigate.
- Stationary Gun Gun systems are referred to as high volume sprinklers with flow rates that exceed 100 gpm, usually in the 150 350 gpm range. Flow rates can go as high as 1000 gpm. Stationary guns are mounted on tripods and must be moved by hand.
- Travelling Gun Gun systems that are mounted on a travelling machine. A 2" 5" hard or soft hose is attached to the gun cart to supply irrigation water.
- Center Pivot A lateral mounted on a truss system that travels in a circle about a pivot point. Sprinkler sizes can range from spray heads to larger conventional sprinklers. Sprinklers can be mounted at the truss or on dropper tubes.

- Drip Systems Emitters are installed on low density polyethylene tubing to reduce the flow rate at the emission point to 2 l/hr. Drip systems can be suspended on a trellis, laid on the ground or buried below ground.
- Trickle Systems Trickle systems use emitters that apply water in a spray pattern to enhance the moisture distribution through the soil profile.

System management is also a major consideration. The application rate of stationary guns is usually very high, requiring the system to be moved every four to six hours if the available soil water storage capacity is not to be exceeded. These systems are not considered to be practical unless there is sufficient labour available at all times.

Some systems may be better suited to certain crops than others. Travelling gun and center pivot systems can irrigate mature corn crops much easier than handline or wheelmove systems. For tree and vine crops drip/trickle irrigation or solid set sprinklers are the best choices.

Application Efficiency

Irrigation system efficiency should be considered when selecting a system for reclaimed water application. The range of application efficiencies can vary quite dramatically depending on system type, crop irrigated, climate, and weather conditions at the time of irrigation. Table 2 provides a guide as to the maximum irrigation application efficiencies that are possible for the areas shown in Figure 1. Actual efficiencies may be less depending on system design, maintenance and operation. Efficient systems will require more land base for reclaimed water application than inefficient systems.

Further information on irrigation system selection and design can be found in the B.C. Sprinkler Irrigation Manual and the B.C. Trickle Irrigation Manual available from the Irrigation Industry Association of British Columbia.

Irrigation Design Considerations

The objective, when designing an irrigation system for the application of reclaimed water, is to ensure that the crop water consumption is maximized. The amount applied must not exceed the soil limitations that exist. For sprinkler irrigation systems the soil texture and corresponding water holding capacity will determine the rate and amount of water that can be applied during an irrigation interval. Irrigation applications in excess of the soil's infiltration rate will cause surface run off. Exceeding the soil water holding capacity will cause percolation out the bottom of the soil profile to groundwater. Each irrigation application must therefore be matched to the water holding capacity of the soil within the plant's rooting depth. The maximum soil water deficit (MSWD) is a term used to describe the maximum amount of water that can be stored by the soil within the plant's rooting depth. See the B.C. Sprinkler Irrigation Manual for further information on MSWD.

Design Application Rates

The rate that water infiltrates into the soil surface is determined by soil texture, soil structure, ground slope and type of ground cover. The irrigation system design application rate must be limited to the infiltration capability of the soil. (See B.C. Sprinkler Irrigation Manual). For reclaimed effluent systems where the ground slope exceeds 20%, the irrigation system application rate should be less than 75% of the maximum allowable design application rates. A drip system may be a viable alternative in these situations.

Evapotranspiration Rates

The irrigation system must be designed using the process outlined in the B.C. Sprinkler Irrigation Manual or the B.C. Trickle Irrigation Manual. Peak E.T. values should be used to ensure that the irrigation system is capable of supplying the daily crop water needs during the peak of the season.

Determining Reclaimed Water Irrigation Requirements in British Columbia

A reclaimed water system usually generates the same volume of water annually. An increase in reclaimed water supply will be gradual as the population of the service area slowly increases. However the amount of water required by a crop will vary from one season to another. In wetter seasons irrigation will be less frequent as it will take longer for the MSWD to be depleted. Hot dry seasons will allow more frequent irrigation applications as the MSWD will be depleted more quickly. To determine the land base that can be irrigated on an average year, the average seasonal irrigation requirement must be determined. Determining the land base using average seasonal irrigation requirements will ensure that for most years there is sufficient land available. The average seasonal irrigation requirement is used to determine the land base area needed to accept the annual amount of reclaimed water produced each year. In drier years more can be applied and on wetter years less. Storage will be required to buffer the climatic variations, and to carry over the excess effluent from wetter seasons to drier seasons. (See next section on storage calculation.)

In the late 70's and early 80's the Air Management Branch, British Columbia Ministry of Environment did an analysis of the average seasonal irrigation requirement for 78 locations in British Columbia. The values shown in Table 5 are calculated based on empirical relationships developed from average seasonal irrigation requirements reported by Coligado, Baier and Sly in the Agriculture Canada series of bulletins entitled "Risk Analysis of Weekly Climatic Data for Agricultural and Irrigation Planning". These values, when adjusted for leaching requirement and irrigation system application efficiency, should be used for determining the crop land area required for the application of reclaimed water.

To determine the average seasonal irrigation requirement the crop rooting depth and available water storage capacity of the soil must be known.

Crop Rooting Depth

Plants derive most of their water requirements from the upper portions of the root zone. For most plants the effective rooting depth is less than the maximum depth of the plant's root development. The effective rooting depth is dependent on soil texture, subsoil formations, water table limitations, cultural practices and soil fertility. The rooting depths in Table 3 can be used providing the water table depth and soil conditions do not limit the crop rooting depth.

Soil Texture

Soil texture has important influences on the selection of crops, choices on farming practices, planning of the distribution system and the irrigation system type to be used. Soil texture also governs the water holding capacity and infiltration rate of the soil. The soils to be irrigated require a thorough investigation and attention in developing irrigation plans. The texture of the soil is determined by the content of sand, silt and clay. (See Figure 1)

Available Water Storage Capacity

Forms of soil moisture are classified as hygroscopic water, gravity water and capillary water. Hygroscopic water is taken into the pores of soil mineral particles or attached as thin films to their surfaces. It is not available to plants. Gravity water is readily taken down through pore spaces in the soil by the force of gravity. Capillary water is held in the small pores by capillary forces and is the principal source of water used by plants. The AWSC is the amount of water stored in the soil between field capacity and the permanent wilting point. The capacity of the soil to store water depends on the soil texture and structure. To approximate the AWSC of a soil it is necessary to determine the texture of the soil. Table 4 provides a guide to AWSC for various soil textures.

Figure 1 Soil Texture Triangle

Shallow	Medium Deep	Deep
0.45 m (1 ½ ft)	0.90 m (3 ft)	1.20 m (4 ft)
Blueberries	Brussels Sprouts	Alfalfa
Cucumber	Cereals	Asparagus
Cabbage	Red Clover	Field Corn
Ladino Clover	Corn (Sweet)	Grapes
Lettuce	Eggplant	Raspberries
Pasture Species	Kiwifruit	Tree Fruits
Potatoes	Peppers	
Tomatoes	Squash	
Strawberries	Tree Fruits (smaller root stocks)	

Table 3 Effective Rooting Depths for Various Crops

(from B.C. Sprinkler Irrigation Manual)

Table 4 Guide to AWSC for Soil Textures

Soil Texture	AWSC			
	mm/m	in./ft.		
Sand	85	1.0		
Loamy Sand	100	1.2		
Sandy Loam	125	1.5		
Fine Sandy Loam	140	1.7		
Loam	175	2.1		
Silt Loam	210	2.5		
Clay Loam	200	2.4		
Clay	200	2.4		

(from B.C. Sprinkler Irrigation Manual)

Table 5 Availability Coefficient

Сгор	Availability Coefficient Maximum percent			
Peas	35			
Potatoes	35			
Tree Fruits	40			
Grapes	40			
Tomatoes	40			
Forages	50			
Other Crops	50			

(from B.C. Sprinkler Irrigation Manual)

Moisture Availability Coefficient

Water is not equally available to plants over the AWSC soil moisture range. Different crops will have varying capabilities of drawing moisture out of the soil. Only a portion of the AWSC is readily available to the plant. Table 5 provides a guide to the availability coefficient that should be used. Allowing the soil moisture to deplete below levels that are determined by the availability coefficient may result in reduced water use and reduced yields.

Maximum Soil Water Deficit

The maximum soil water deficit (MSWD) is a term used to describe the maximum amount of water that can be stored by the soil within the plant's rooting depth. The following example illustrates how to calculate MSWD.

Maximum Soil Water Deficit Calculation

An alfalfa crop is growing in a deep loam soil. Calculate the MSWD.

Rooting Depth - F	from Table 3 - Alfalfa crop	= 1.2 m
Soil Storage - F	From Table 4 – Loam soil	= 175 mm/m
Availability Coeffic	cient – From Table 5	= 0.5
AWSC	= 1.2 m x 175 mm/m	= 210 mm.
MSWD	= AWSC x Availability	Coefficient
	= 210 mm x 0.50 = 10	5 mm

Average Seasonal Irrigation Requirement

The MSWD can now be used to determine the average seasonal irrigation requirement (IR) from Table 6 for many locations throughout British Columbia. Care should be taken to ensure that the location of the reclaimed water use site is close to where the weather station data will have been taken. Changes in elevation, northern versus southern exposure can make a significant difference.

For example: If reclaimed water were to be used to irrigate alfalfa in a loam soil near Kamloops, (along the Thompson River or in the valley bottom) the average seasonal irrigation requirement will be:

MSWD = 100 mm

Table 6 - Kamloops for 100 mm MSWD the IR = 379 mm (14.9 in).

	Irrigation Requirement (IR) for MSWD of					
Location	13 mm	25 mm	50 mm	75 mm	100 mm	125 mm
	(0.5 in)	(1 in)	(2 in)	(3 in)	(4 in)	(5 in)
Abbotsford	206 mm	174 mm	123 mm	94 mm	64 mm	41 mm
	(8.1 in)	(6.9 in)	(4.8 in)	(3.7 in)	(2.5 in)	(1.6 in)
Aberfeldie	247	219	173	145	118	93
	(9.7)	(8.6)	(6.8)	(5.7)	(4.6)	(3.7)
Agassiz	195	157	100	69	35	14
	(7.7)	(6.2)	(3.9)	(2.7)	(1.4)	(0.6)
Alberni	286	261	219	190	164	139
	(11.3)	(10.3)	(8.6)	(7.5)	(6.5)	(5.5)
Alta Lake	208	176	125	95	66	43
	(8.2)	(6.9)	(4.9)	(3.8)	(2.6)	(1.7)
Ashcroft	424	407	370	340	314	289
	(16.7)	(16.0)	(14.6)	(13.4)	(12.4)	(11.4)
Baldonnel	246	218	172	144	117	92
Ft. St. John	(9.7)	(8.6)	(6.8)	(5.7)	(4.6)	(3.6)
Babine Lake	206 (8 1)	173	122 (4.8)	93 (3 7)	63 (2 5)	40
Barkerville	230	201	154	125	98	73
	(9.1)	(7.9)	(6.1)	(4.9)	(3.8)	(2.9)
Beatton River	208	175	124	95	66	43
	(8.2)	(6.9)	(4.9)	(3.8)	(2.6)	(1.7)
Big Creek	256	229	184	155	129	104
	(10.1)	(9.0)	(7.2)	(6.1)	(5.1)	(4.1)
Bralorne	263	237	193	164	138	113
	(10.4)	(9.3)	(7.6)	(6.5)	(5.4)	(4.5)
Carmi	238	210	163 (6.4)	135	108 (4.2)	83 (3 3)
Chilliwack	(9.4) 195 (7.7)	160 (6.3)	104 (4.1)	(3.3) 74 (2.9)	42 (1.6)	20 (0.8)
Comox	251	224	178	150	123	98
	(9.9)	(8.8)	(7.0)	(5.9)	(4.9)	(3.9)
Cowichan	276	251	207	179	153	127
Lake	(10.9)	(9.9)	(8.2)	(7.0)	(6.0)	(5.0)
Cranberry	275	250	207	178	152	127
(Valemont)	(10.8)	(9.8)	(8.1)	(7.0)	(6.0)	(5.0)
Cranbrook	350	329	289	260	235	209
	(13.8)	(12.9)	(11.4)	(10.3)	(9.3)	(8.2)
Creston	359	338	299	270	245	219
	(14.1)	(13.2)	(11.8)	(10.6)	(9.6)	(8.6)
Cumberland	276	251	207	179	153	128
	(10.9)	(9.9)	(8.2)	(7.0)	(6.0)	(5.0)
Dease Lake	206	174	122	93	63	40
	(8.1)	(6.8)	(4.8)	(3.7)	(2.5)	(1.6)
Dog Creek	233	204	157	128	100	76
	(9.2)	(8.0)	(6.2)	(5.0)	(4.0)	(3.0)
Dome Lake	235	206	159	130	103	79
	(9.2)	(8.1)	(6.3)	(5.1)	(4.1)	(3.1)
Fauquier	282	257	214	186	160	135
	(11.1)	(10.1)	(8.4)	(7.3)	(6.3)	(5.3)
Fernie	233	204	156	128	100	76
	(9.2)	(8.0)	(6.2)	(5.0)	(4.0)	(3.0)
Ft. Nelson	205	173	121	92	62	39
	(8.1)	(6.8)	(4.8)	(3.6)	(2.4)	(1.5)
Ft. St. James	233 (9,2)	204 (8.0)	157 (6.2)	128 (5.0)	101 (4.0)	76 (3.0)

Table 6 Average Seasonal Irrigation Requirements in British Columbia

	Irrigation Requirement (IR) for MSWD of					
Location	13 mm	25 mm	50 mm	75 mm	100 mm	125 mm
	(0.5 m)	(1 11)	(2 11)	(3 11)	(4 11)	(5 11)
Germansen	221	190	142	113	85	61
Landing	(8.7)	(7.5)	(5.6)	(4.4)	(3.3)	(2.4)
Golden	285	261	218	189	164	138
	(11.2)	(10.3)	(8.6)	(7.5)	(6.4)	(5.4)
Hedley	382	362 (14.3)	324	295	269	244
Норе	204 (8.0)	171 (6.7)	120 (4.7)	90 (3.6)	60 (2.4)	37
Horsefly Lake	196 (7.7)	161	106	76 (3.0)	44	22
Hudson Hope	232	203	155	127	99	75
Joe Rich Creek	271	245	201	(5.0)	(3.9)	(3.0)
V	(10.7)	(9.7)	(7.9)	(6.8)	(5.8)	(4.8)
Kamioops	486 (19.2)	(18.6)	(17.2)	(16.0)	(14.9)	(13.9)
Kaslo	250	222	177	148	122	97
	(9.8)	(8.8)	(7.0)	(5.8)	(4.8)	(3.8)
Kelowna	425	407	370	341	315	289
	(16.7)	(16.0)	(14.6)	(13.4)	(12.4)	(11.4)
Keremeos	485	470	434	404	377	352
	(19.1)	(18.5)	(17.1)	(15.9)	(14.9)	(13.9)
Kimberly	349	328	289	260	234	209
	(13.7)	(12.9)	(11.4)	(10.2)	(9.2)	(8.2)
Kleena Kleene	288	263	221	192	166	141
	(11.3)	(10.4)	(8.7)	(7.6)	(6.6)	(5.6)
Lytton	449	433	397	367	341	315
	(17.7)	(17.0)	(15.6)	(14.4)	(13.4)	(12.4)
McBride	311	288	247	218	193	167
	(12.3)	(11.3)	(9.7)	(8.6)	(7.6)	(6.6)
McCulloch	245	218	172	143	117	92
	(9.7)	(8.6)	(6.8)	(5.6)	(4.6)	(3.6)
Merritt	403	384	347	317	292	266
	(15.9)	(15.1)	(13.7)	(12.5)	(11.5)	(10.5)
Nanaimo	247	219	174	145	118	94
	(9.7)	(8.6)	(6.8)	(5.7)	(4.7)	(3.7)
New Hazelton	217	186	137	108	79	56
	(8.5)	(7.3)	(5.4)	(4.3)	(3.1)	(2.2)
Okanagan Centre	385	366	328	299	273	248
	(15.2)	(14.4)	(12.9)	(11.8)	(10.8)	(9.8)
Oliver	504	490	455	425	398	373
	(19.9)	(19.3)	(17.9)	(16.7)	(15.7)	(14.7)
150 Mile House	257	231	186	157	131	106
	(10.1)	(9.1)	(7.3)	(6.2)	(5.2)	(4.2)
Pemberton	290	265	223	194	169	143
Meadows	(11.4)	(10.4)	(8.8)	(7.6)	(6.6)	(5.6)
Penticton	452	436	400	370	344	318
	(17.8)	(17.2)	(15.7)	(14.6)	(13.5)	(12.5)
Powell River	221	190	142	113	85	61
	(8.7)	(7.5)	(5.6)	(4.4)	(3.3)	(2.4)
Prince George	218	188	138	122	84	58
	(8.6)	(7.4)	(5.5)	(4.4)	(3.3)	(2.3)
Princeton	398	279	342	312	287	261
	(15.7)	(14.9)	(13.5)	(12.3)	(11.3)	(10.3)

Table 6 Average Seasonal Irrigation Requirements in British Columbia

	Irrigation Requirement (IR) for MSWD of					
Location	13 mm	25 mm	50 mm	75 mm	100 mm	125 mm
	(0.5 in)	(1 in)	(2 in)	(3 in)	(4 in)	(5 in)
Quesnel	231	202	154	126	98	74
	(9.1)	(7.9)	(6.1)	(4.9)	(3.9)	(2.9)
Revelstoke	211	180	129	100	71	48
	(8.3)	(7.1)	(5.1)	(3.9)	(2.8)	(1.9)
Rossland	289	265	222	194	168	143
	(11.4)	(10.4)	(8.8)	(7.6)	(6.6)	(5.6)
Saanichton	274	249	205	177	151	125
	(10.8)	(9.8)	(8.1)	(7.0)	(5.9)	(4.9)
Salmon Arm	308	285	243	215	189	164
	(12.1)	(11.2)	(9.6)	(8.5)	(7.5)	(6.5)
Saltspring Island	269	243	199	171	145	120
	(10.6)	(9.6)	(7.9)	(6.7)	(5.7)	(4.7)
Shawnigan Lake	317	295	254	225	200	174
	(12.5)	(11.6)	(10.0)	(8.9)	(7.9)	(6.9)
Sinclair Pass	212	181	131	102	73	49
	(8.4)	(7.1)	(5.2)	(4.0)	(2.9)	(1.9)
Smithers	235	206	159	131	103	79
	(9.3)	(8.1)	(6.3)	(5.1)	(4.1)	(3.1)
Summerland	423	405	369	339	313	288
	(16.7)	(16.0)	(14.5)	(13.4)	(12.3)	(11.3)
Tappen	335	314	273	245	219	194
	(13.2)	(12.3)	(10.8)	(9.6)	(8.6)	(7.6)
Tatlayoko Lake	289	265	222	193	168	142
	(11.4)	(10.4)	(8.7)	(7.6)	(6.6)	(5.6)
Telkwa	222	192	143	114	86	62
	(8.7)	(7.5)	(5.6)	(4.5)	(3.4)	(2.5)
Terrace	199	166	113	83	52	30
	(7.9)	(6.5)	(4.4)	(3.3)	(2.1)	(1.2)
Vananda	214	182	133	104	75	51
	(8.4)	(7.2)	(5.2)	(4.1)	(2.9)	(2.0)
Vancouver	239	210	164	135	108	83
Airport	(9.4)	(8.3)	(6.4)	(5.3)	(4.3)	(3.3)
Vanderhoof	227	197	149	121	93	69
	(8.9)	(7.8)	(5.9)	(4.8)	(3.7)	(2.7)
Vavenby	308	284	243	214	189	163
	(12.1)	(11.2)	(9.6)	(8.4)	(7.4)	(6.4)
Vernon	328	306	266	237	212	186
Coldstream	(12.9)	(12.1)	(10.5)	(9.3)	(8.3)	(7.3)
Victoria	358	338	299	270	244	219
	(14.1)	(13.3)	(11.8)	(10.6)	(9.6)	(8.6)
Westwold	381	362	232	294	269	243
	(15.0)	(14.2)	(12.7)	(11.6)	(10.6)	(9.6)
White Rock	216	185	136	107	78	55
	(8.5)	(7.3)	(5.3)	(4.2)	(3.1)	(2.2)
Williams Lake	208	176	126	96	67	44
	(8.2)	(6.9)	(4.9)	(3.8)	(2.6)	(1.7)
Wistaira	226	196	148	120	92	68
	(8.9)	(7.7)	(5.8)	(4.7)	(3.6)	(2.7)

Table 6 Average Seasonal Irrigation Requirements in British Columbia

Calculation of the Leaching Requirement

In order to prevent salt accumulation in the soil, it is necessary in the design of an irrigation system using reclaimed water to allow a net leaching of water through the soil profile. The seasonal LEACHING REQUIRE-MENT can be approximated using the technique outlined in the Food and Agriculture Organization of the United Nations publication "Guide for Predicting Crop Water Requirements". The leaching requirement (LR) is expressed as a fraction of the irrigation requirement.

$$LR = EC_{irr}$$

where: EC_{irr} is the electrical conductivity of the irrigation water expressed in mmhos.

Data on the electrical conductivity of irrigation waters in British Columbia is available from the Agriculture Canada publication "Suitability for Irrigation of Water from Lakes and Streams in the Southern Interior of British Columbia". Electrical conductivity of sewage effluent would have to be determined by laboratory analysis. Unless the electrical conductivity of the effluent exceeds 1.0 mmhos, an assumed leaching requirement of 20% (LR = 0.2) is sufficient.

An example of the leaching requirement calculation can be considered using a hypothetical electrical conductivity of the irrigation effluent water $EC_{irr} = 1.2$ mmhos.

Therefore the leaching requirement can be calculated as:

LR =
$$\frac{EC_{irr}}{4} = \frac{1.2}{4} = 0.3$$

Calculation of the average seasonal irrigation requirement including the need for leaching water (IR_o) is done as follows:

$$IR_{o} = \frac{IR}{1-LR}$$

If this effluent was to be used to grow alfalfa on a loam soil in the Kamloops area (see earlier example) then the average seasonal irrigation requirement including leaching will be:

IR =
$$379 \text{ mm}$$

IR_o = $379 \text{ = } 541 \text{ mm}$
 $1 - 0.3$

Application Efficiency

The irrigation system application efficiency accounts for water losses due to spray drift and evaporation from the crop and soil surface. The efficiency varies due to the sprinkler type, nozzle size and operating pressures, prevalent wind, temperature and humidity conditions. The application efficiencies shown in Table 2 can be used in the calculation below.

The following formula can be used to calculate the average seasonal irrigation requirement including the application efficiency (IR_{Tot}).

$$IR_{Tot} = IR_{o}$$

Continuing the earlier example, the alfalfa crop in the Kamloops area with an effluent electrical conductivity of 1.2 mmhos is irrigated with a wheelmove system. From Table 2 an irrigation application efficiency of 72% is determined. The IR_{Tot} is then calculated as:

$$IR_{Tot} = 541 = 751 \text{ mm}$$

Storage

Reclaimed water storage is required for three conditions:

- S Irrigation Purposes for times when the method of application is not continuous. In the case of irrigation, storage will be required during the non growing season. Schedule 7, note 6 of the MSR outlines design standards and storage requirements for the use of reclaimed water with irrigation. The methodology for determining storage capacity is provided here.
- S Normal Balancing (Seasonal) Storage for times when normal reclaimed water production exceeds reclaimed water usage (particularly for the winter non-irrigation season).
- S Emergency Storage for times when reclaimed water usage is inadvertently interrupted.

Irrigation Storage

For irrigation the storage facility must be large enough to contain the design average daily reclaimed water flow occurring outside the annual normal irrigation period. The normal irrigation period is defined as the number of days in the year when irrigation is required due to a climatic moisture deficit occurring during the growing season. It is estimated from the length of the normal growing season, climatic trends, the annual climatic moisture deficit and knowledge of irrigation periods in British Columbia. Table 7 provides information on the normal growing season, climatic moisture deficit and estimated normal irrigation period for various regions in the province of British Columbia.

Wet Climates

The storage facility may also have to take into account an allowance for cumulative volumes of reclaimed water due to reduced irrigation because of wet weather. If the average seasonal irrigation requirements are used to determine the irrigation area this will not be necessary. If the land base area is not sufficient to accommodate the average seasonal irrigation requirement, the cumulative volume of 5 years of wet weather for a 5 year return period should be added to storage.

Restricted Public Access

In addition, for restricted public access the number of irrigation days may be reduced due to the grazing of animals or harvesting of crops. See schedule 7, item 6.3b of the MSR. If the irrigated site is large enough to allow for the rotation of irrigation applications to accommodate the requirements for restricted public access there will not be additional implications on storage. If not the reduced number of irrigation days due to cattle grazing or irrigation system management must be subtracted from the normal irrigation period shown in Table 7.

Frost Protection

The use of reclaimed water for frost protection will not effect the storage size calculation. While frost protection is an acceptable use and may allow for reclaimed water use earlier in the spring or later in the fall than normal irrigation, frosts cannot be predicted in advance and can therefore not be relied upon every year.

Example Storage Calculation

Reclaimed water is to be used for irrigation of agricultural crops from a development in the South Okanagan. The average daily reclaimed water flow is 100,000 gallons per day. *What storage size is required if there is no alternative discharge?*

From Table 7, the normal irrigation period for Osoyoos = 150 days.

The storage facility must therefore store: 365 days - 150 days = 215 days of effluent.

 $\frac{215 \text{ days x } 100,000 \text{ gallons/day}}{325830 \text{ gallons/ ac- ft}} = 66 \text{ acre feet.}$

Location	*Normal Growing Season (days)	*Climatic Moisture Deficit (mm)	⁺ Normal Irrigation Period (days)	
Abbotsford	169	98	140	
Armstrong	119	387	120	
Ashcroft	143	395	150	
Big Creek	41	235	90	
Comox	179	174	140	
Cranbrook	91	353	110	
Creston	148	287	140	
Dease Lake	44	81	90	
Duncan	164	304	140	
Elko	131	200	120	
Fernie	98	128	110	
Ft. Nelson	104	24	100	
Ft. St. James	76	124	90	
Ft. St. John	55	34	90	
Golden	103	359	100	
Grand Forks	121	441	140	
Greenwood	90	420	100	
Hedley	148	399	150	
Heffley Creek	108	327	120	
Kamloops	152	444	140	
Kelowna	151	350	140	
Keremeos	184	427	160	
Kimberley	92	377	110	
Lytton	185	427	160	
Okanagan Centre	170	354	140	
Oliver	137	498	140	
Osoyoos	179	391	150	
Penticton	142	421	140	* From RAB Technical Paper 1 -
Prince George	78	68	90	Climatic Capability Classification fo
Princeton	99	414	90	Agriculture in British Columbia
Quesnel	98	165	90	Normal Growing Season is taken a
Revelstoke	140	176	110	the Frost Free Period
Saanichton	226	202	140	* Estimated from Normal Growing
Salmon Arm	147	282	120	Season and the Climatic Moisture
Smithers	52	180	90	Deficit
Steveston	172	177	140	
Summerland	174	382	140	
Terrace	155	29	90	
Valemont	73	234	75	
Vernon	153	295	140	
Westwold	90	377	110	
Williams Lake	101	157	100	

Table 7 Guide to the Normal Irrigation Period for B.C. Locations

References

The following manuals should be used as a reference for the design of irrigation systems.

The B.C. Sprinkler Irrigation Manual The B.C. Trickle Irrigation Manual B.C. Frost Protection Guide Chemigation Guidelines for British Columbia From: Irrigation Industry Association of British Columbia Irrigation Industry Association of British Columbia B.C. Ministry of Agriculture and Food B.C. Ministry of Agriculture and Food

For further information, contact: Ted Van der Gulik, Senior Engieer Phone: (604) 556-3112 RESOURCE MANAGEMENT BRANCH Ministry of Agriculture, Food and Fisheries 1767 Angus Campbell Rd., Abbotsford, BC V3G 2M3