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Résumé

Dans ce rapport, on traite de la détection de la cyclotrimé thylene-trinitramine (RDX) par
spectrométrie de mobilité ionique (SMI). On évalue un certain nombre de techniques
de traitement numérique des signaux post-ionisation, en vue d’améliorer la sélectivité et
les seuils de détection de la SMI.

L’évaluation fait appel a des données de SMI obtenues expérimentalement, ainsi qu’a
des pics SMI simulés. Les données expérimentales, qui ont été fournies par le Conseil
national de recherches du Canada, représentent des échantillons de cuir, des
échantillons de RDX, et du cuir combiné a diverses quantités de RDX. Les pics simulés
ont été obtenus a l'aide de programmes élaborés dans le cadre de contrats (988-4783
R et 990-1266/1045). Ces programmes geénerent des pics semblables a ceux obtenus
avec un SMI, auxquels on peut attribuer une valeur quelconque pour 'amplitude, I'écart-
type, la séparation inter-pics et le rapport signal/bruit (rapport S/B). Ainsi, on peut
déterminer trés précisément, en termes de sensibilité et de sélectivité, les limitations de
tout algorithme de détection des pics.

Les résultats indiquent que ce sont les méthodes de calcul différentiel qui offrent la
meilleure sélectivité, avec des séparations inter-pics minimum décelables de 0,20 msec.
Toutefois, leur sensibilité est médiocre en raison de leur susceptibilité au bruit. Ce sont
les méthodes de corrélations croisées qui offrent la meilleure sensibilité, c.-a-d. le
meilleur seuil de détection, les quantités minimales décelables de RDX étant de 0,01
nanogramme. Malgré leur faible seuil de détection, les méthodes de corrélation
possédent une sélectivité médiocre en raison de leur effet de lissage. Un algorithme
multirésolutions, combinant les méthodes de calcul différentiel et les méthodes de
corrélation et possédant les avantages de ces deux méthodes, a été mis au point a
contrat. Dans cet algorithme, décrit dans ce rapport, on applique les méthodes de
corrélations croisées au signal original, afin de déterminer les endroits ou des pics
risquent d’'étre observés. On applique ensuite des méthodes de calcul différentiel a
l'intérieur de fenétres temporelles spécifiques, en procédant a un lissage approprié aux
limites.

Dans le rapport, on examine aussi dans quelle mesure les réseaux neuronaux peuvent
étre appliqués au probléme de détection des pics en spectromé trie de mobilité ionique.
On donne un bref apergu des réseaux neuronaux et on examine de fagon plus détaillée
le réseau de Hopfield qui a été sélectionné comme celui dont la structure convient le
mieux au probléeme de détection des pics SMI. Les résultats des simulations montrent
que les réseaux neuronaux permettent d’obtenir une résolution dans le temps supérieure
aux limites des techniques classiques. Les réseaux de Hopfield permettent de
distinguer des pics dont la séparation est égale au produit écart-type du pic x 0,65, alors
que la séparation obtenue avec les techniques classiques est égale a I'écart-type x 1.
D’autres résultats permettent d’analyser la performance des réseaux neuronaux dans
des cas ou le rapport signal/bruit est faible.






ABSTRACT

This report addresses the detection of Cyclotrimethylenetrinitramine (RDX) using Ion
Mobility Spectrometry (IMS). It evaluates a number of post ionization Digital Signal Processing
(DSP) techniques for improving the selectivity and detection limit in IMS.

The evaluation is based on experimental IMS data as well as simulated IMS peaks. The
~experimental data, provided by the National Research Council of Canada, represents leather
samples, RDX samples, and leather combined with various amounts of RDX. The simulated
peaks were generated using the programs developed under contracts (988-4783 R), and
(990-1266/1045). These programs generate IMS-like peaks with any desired amplitude, standard
deviation, peak separation, and signal to noise ratio (SNR). This way, the limitations of any peak
detection algorithm in terms of sensitivity and selectivity can be determined very precisely.

The results indicate that derivative methods provide the best selectivity, with minimum
detectable peak separations of 0.20 msec. However, their susceptibility to noise results in poor
sensitivity. Cross-correlation methods provide the best sensitivity, or detection limit, with
minimum detectable RDX quantities of 0.01 nanogram. Despite their good detection limit,
correlation methods suffer from a poor selectivity due to their smoothing effect. A multiresolution
algorithm combining derivative methods with correlation methods, and providing the advantages
of both, was developed under this contract and is described in this report. In the proposed
algorithm cross correlation methods are applied to the original signal in order to determine
potential peak locations. Derivative methods are then applied within specific time windows with
proper smoothing at the edges.

The report also discusses the applicability of neural networks to the peak detection
problem in IMS. A brief overview of neural networks is presented with an emphasis of the
Hopfield network which was selected as the most appropriate structure for the IMS peak
detection problem. Simulation results demonstrate that neural networks are capable of achieving
a time resolution beyond the limits of conventional techniques. Hopfield networks are shown to
resolve peaks separated by 0.65 times the peak’s standard deviation, as opposed to one standard
deviation using conventional techniques. Other results also analyze the performance of neural
networks in low signal to noise cases.
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1.0 INTRODUCTION

Cyclotrimethylenetrinitramine, or RDX, is a component of plastic explosives and its
detection is important in a number of security screening scenarios. Ion Mobility Spectrometry
(IMS) has recently emerged as a technology which allows the rapid detection of sub-nanogram
quantities of RDX and other plastic explosive residues.

In IMS, ion diffusion and mobility are studied by measuring the time it takes an ion to
drift a specified length in an applied electric field. Gaseous molecules are converted into product
ions by collisions with reactant ions. Product ions are then accelerated by an electric field against
the countercurrent of a drift gas. The individual ion mobility depends on ionic mass, shape, and
charge distribution. Complete ion drift patterns are obtained by ineasun'ng the time of flight of
the ions as they drift through the electric field at atmospheric pressure [2]. Because of its
detection limit, fast response, and operation at atmospheric pressure, IMS has been successfully
miniaturized into a compact detection system suitable for field use[3].

Although IMS exhibits a very high and distinctive response toward some nitroaromatics
(e.g. TNT), nitroesters (e.g. EGDN), and nitramines (e.g. RDX), it has drawbacks namely,
moderate resolution and low chemical signal-to-noise ratio. Consequently, DSP techniques are
necessary in order to improve the confidence levels in the output of IMS-based explosive
detectors.

Chapter 2 of this report describes the experimental set-up and experimental data files used
throughout the work. A literature survey of the relevant background material is also presented,
including a description of the IMS signal, an analysis of the peak shapes and noise, and a brief
review of peak detection algorithms commonly used in IMS-based detection.

Chapters 3, 4, and 5 deal with the derivative, cross-correlation, and neural network
methods, respectively. Each method is described and its limitations regarding the detection of
RDX traces using IMS are established. Finally, the conclusions resulting from this work are
summarized in chapter 6.



2.0 THE IMS SIGNAL

2.1 Introduction

When a gaseous mixture is injected into an lon Mobility Spectrometer, the resulting
output signal comprises peaks corresponding to the various compounds in the mixture, and noise.
The main goal of any detection algorithm is to identify the various peaks in the IMS output
signal with a high level of confidence. Any algorithm is rated by its detection limit, or sensitivity
to noise, and by its selectivity, or ability to resolve closely located peaks. Both, the detection
limit and selectivity in IMS can be improved in the ionization stage using analytical chemistry
techniques or at the post ionization stage using Digital Signal Processing (DSP) techniques
[1,6,7]. This report deals with signal improvement in IMS using post ionization DSP techniques.

Sections 2.2 and 2.3 describe the experimental set-up and the experimental IMS data files
used throughout this work. Section 2.4 addresses the IMS signal corresponding to RDX. The peak
shapes and the noise are analyzed. Finally, the various peak detection algorithms applicable to
IMS signals are summarized in section 2.5.

2.2 Experimental Set-Up

The experimental IMS data used in this work were obtained using a Phemto-Chem 100
ion mobility spectrometer (PCP Inc. West Palm Beach, FL). The experimental parameters used
to operate the instrument are shown in table 1. At each scan of the IMS an analog output signal,
containing a number of noisy peaks embedded in noise, is generated. A Low-Pass filter
connected at the output stage of the IMS rejects the out-of-band noise. Furthermore, In order to
minimize the noise at this stage, several scans are performed, and the IMS output signal is
averaged over these scans. The number of scans in most of the tests presented in this work was
set at 2048. The averaging process is based on the fact that given that the IMS actual signal is
deterministic, averaging a number of them will maintain the signal energy, whereas given that
the noise is random, averaging it will tend to reduce it. The averaged signal is therefore a
smoothed version of the original IMS output signal at each scan. The averaging is performed
using a Nicolet 1170 signal averager.

The averaged IMS signal is then digitized using a linear Analog to Digital (A/D)
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converter with 12 bits of precision. The digital data were then transferred to an IBM compatible
486 Personal Computer and to a SUN workstation (Sun Microsystems Inc., Mountain View, CA)
for processing and analysis using several Fortran 77 and C programs, as well as the MatLab
software package (Mathworks Inc. Sherborn, MA).

Cell Length 14 cm

Drift Length 10 cm
Carrier Gas (*) (Nitrogen Spiked with Dichloromethane) 200 mL/min
Drift Gas (Nitrogen) 600 mL/min
Inlet and Drift Temperature 200 °C

Drift Voltage - 2700 Volts
Dwell Time 2 us/Channel
Gate Width 0.2 msec
Delay Time (*) 9.1 msec
Pressure Atmospheric

(") RDX peak corresponds to RDX (Cl" ) of m/z 256
(*) Time between gate opening and start of data collection

Table 1. IMS (Phemto-Chem 100) instrument parameters

2.3 Experimental IMS Data Files

The results discussed in this work are based on the analysis of IMS output signals corre-
sponding to various amounts of RDX and interfering compounds due to the presence of leather
using the procedure described in [2]. A number of IMS data files were provided by the Trace
Vapour Detection Section of the National Research Council of Canada. The first set of files,
shown in figure 2.1 , represents RDX injections with quantities ranging from 0.01 up to 0.2
nanogram. The horizontal axis represents the drift time in msec, while the vertical axis represents
the amplitude of the averaged IMS output signal, the higher the quantity of injected RDX the
higher the peak value and the higher the signal to noise ratio (SNR).

A second set of files representing experimental IMS signals corresponding to leather and
RDX was also provided by the National Research Council. Figure 2.2 shows pure leather and
pure RDX, and Figure 2.3 shows leather with various amounts of RDX impurity.
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IMS Signal: Pure Leather and Pure RDX

Fig 2.2
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IMS Signal: Dominant Leather with RDX Impurity

Fig 2.3
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2.4 IMS Signal Analysis, Modelling, and Simulation

Two main approaches are generally used in order to characterize and model IMS signals.
The first one attempts to model the ion’s behaviour in the IMS process and thus determine the
IMS pulse shapes [4]. The resulting model is usually very complicated, and the introduction of
simplifications leads to many inaccuracies. A different approach is to analyze experimental data
obtained from actual IMS tests. Statistical information related to the peak shapes and noise is
then extracted from the data and used to build the model. This approach, which was adopted in
this work, leads to a more realistic simulation of IMS signals, however, its success is related to
the amount of data being analyzed [8].

The analysis of the peaks in IMS signals [8] revealed that the peak shapes for the data
being analyzed could be approximated by a Gaussian shape. In order to establish a quantitative
measure to the finding, a program that generates a Gaussian peak, according to equation (1), was
developed. For each experimental data file, the parameters of the Gaussian curve were optimized
in order to achieve the best fit by minimizing the mean square of the error signal, defined as the
difference between the experimental data and the ideal Gaussian curve.

y(ty = Y+ 2 e o (1)

Where: * is the standard deviation in msec

is the scaling factor or area under curve

is the horizontal deviation or mean in msec
is the vertical deviation

is the horizontal time scale in msec

t) represents the IMS peak signal

~ " < ® P> Q



For the RDX IMS output files, with the mass of chemicals injected in these experiments
(0.01 -0.2 nanogram), the standard deviation (o) and the horizontal deviation (or mean ) were
found to be constant at 0.18 msec and 9.8 msec, respectively. The goodness of fit factor (t) was
define as:

= Ideal Gaussian Curve Energy (2)
Error Signal Energy

; The signal energy is calculated in a window of +/- 3 o around the mean, thus ensuring
that 99.74 % of the area under the curve is considered. The error signal is the difference between
the ideal Gaussian curve and the experimental data curve; its energy is calculated using the same
time window. Under these conditions, the Signal to Noise Ratio (SNR) for large quantities (ca.
20 nanogram) of RDX was found to be approximately 2500 (or 34 dB), meaning that the
goodness of the Gaussian fit was 0.04 %.

It is important to emphasize that the error signal energy is a combination of errors due
to the noise from the IMS process, thermal noise from the analog processing, quantization noise,
as well as modelling errors due to the peaks shape not being perfectly Gaussian and fitting errors
due to the fitting algorithm. In order to evaluate the Gaussian approximation for the peak shape,
it is necessary to consider the modelling error only. This is achieved by minimizing as much as
possible all the other sources of error. The IMS process error and the thermal noise are
minimized by considering the curves with high chemical concentrations, whereas the fitting error
is minimized by reducing the step size of the fitting algorithm.

Autocorrelation tests of the noise in IMS signals result in no clear repetitive patterns
which indicates that the noise is random. Windowing and Fast Fourier Transform (FFT) tests
indicate that the noise is bandlimited due to the low pass filtering performed at the output stage
of the IMS. Finally, amplitude distribution tests of the noise signal indicate that it is Gaussian.
It is therefore concluded that the noise present on IMS signals is random, bandlimited, and
Gaussian.

Based on the previous findings an IMS signal simulator was developed. The simulator is
capable of artificially generating IMS-like signals with any desired peak parameters, peak separa-
tion, and SNR. The signals are then used to test the detection limit and the selectivity of peak
detection algorithms.



2.5 Summary of IMS Peak detection algorithms

The aim of IMS is to determine the various compounds existing in a given mixture. This
is achieved by detecting the various peaks existing in the IMS output signal using a peak
detection algorithm. The main problems facing any of these algorithms are the presence of noise
and overlapping peaks.

Small quantities of a component result in a low energy peak whose amplitude is close to
the amplitude of the noise (i.e low SNR). The minimum peak level that could be detected by
a given algorithm determines the detection limit of such algorithm. The detection threshold of
an algorithm could be lowered by varying its parameters. However this could result in false
detection where the algorithm interprets a noise spike as an actual peak. The detection limit of
a given algorithm could therefore be increased at the expense of false detection (or false alarm).
The selectivity of a given algorithm is determined by the minimum peak separation that could
be correctly detected by the algorithm. The resolution is a function of the peak separation, the
standard deviation of each peak, the relative amplitude of the peaks, as well as the signal-to-noise
ratio. These parameters were evaluated in reference' with respect to the second derivative
algorithm. The detection limit and the selectivity of any detection algorithm should therefore be
optimized based on the expected IMS peaks in the application, the signal-to-noise ratio, as well
as the desired detection level, selectivity, and probability of false detection.

Several peak detection algorithms have been proposed [6,7,8,11] for resolving peaks in
IMS and other similar situations. The most widely used algorithms, the derivative methods, and
the cross correlation methods, are described and evaluated in detail in chapters 3 and 4 of this
report. Another promising algorithm, using the Hopfield neural network, is evaluated in chapter
5. This section presents other possible peak detection algorithms that have been reported in the
literature or have been tested in previous work by the authors. Curve fitting methods and adaptive
signal processing methods are described in subsections 2.5.1 and 2.5.2 respectively.

2.5.1 Curve Fitting Methods

In curve fitting methods [6,11] the signal is resolved into distinct bands. For each band,
a best fitting polynomial of order (n) is calculated using the least squares method. The
polynomial coefficients are then used to estimate the parameters of the peak in this specific band.



In [6] it is assumed that the peaks have a Gaussian shape, which could approximated by
a quadratic equation. A linear least-squares fit to a quadratic equation is therefore implemented
for each band. The coefficients of the quadratic best fit are then used to calculate the parameters
of the Gaussian curve, namely the standard deviation, the mean, and the area. Other models for
the signal, such as Lorentzian peak shapes, have been analyzed in [11].

In curve fitting methods, the order of the fitting polynomial is crucial. A low order
polynomial will tend to smooth the original data, and hence remove most of the noise by on the
other hand remove the slight variations in the signal due to overlapping peaks. As a result, the
detection limit will be enhanced and the expense of selectivity. A high order polynomial increases
the computational complexity of the best-fitting algorithm and allows more noise into the system. -
Curve fitting algorithms are generally very accurate as far as estimating the peak position.

2.5.2 Adaptive Signal Processing Methods

Most Digital Signal Processing (DSP) applications require a filtering operation in some
way. Adaptive filtering is the central module in many applications; some examples include:
acoustic echo cancelling in audio teleconferencing, electronic echo cancelling and channel
equalization in telephony, noise cancelling using a reference signal, adaptive coding of speech
signals (ADPCM, speech companding, and scrambling), adaptive control systems, and image
processing. Moreover, fixed filtering could be considered as a special case of adaptive filtering.
Therefore, we will consider the case of a Finite Impulse Response (FIR) transversal filter using
the stochastic gradient algorithm for adaptation [14, 15].

Figure 2.4 shows a block diagram of the filter. The incoming sample is entered into a tap
delay line. The filter output is a weighted sum of the delayed samples. Therefore,

y(t) = > ci . x(t-i)
i- 0
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In a fixed filter the coefficients Ci’s are constant, whereas in an adaptive filter the
coefficients are updated according to the desired adaptation algorithm. The coefficients are
therefore a function of time, and the ith coefficient at time t is written as Ci (t) . If we
consider the simple Least Mean Square ( LMS ) or Stochastic Gradient adaptation algorithm,
which is the most widely used one, a coefficient at time (t+1) is updated according to :

Ci (t+1) = Ci(t) + B .e(t) .x(t-i)

where,

* Ci(t+1) is the updated coefficient of stage i

* Ci(t) is the old coefficient of stage i

*x(t-1) is the input at stage i

*B is the step size, which determines the speed of adaptation, or
convergence

*e(t) is the error term, defined as the difference between the desired signal

and the estimated signal.

Adaptive algorithms such as the LMS can be used in order to improve the performance
and limitations of a number of peak detection algorithms. For example, in the curve fitting
methods [6,11] introduced in section 2.5.1 of this report, the LMS algorithm can be used for
improving the fitting procedure. The LMS algorithm has also been used in [8,9] and in chapter
2 of this report in order to implement the best fitting Gaussian curve onto the experimental IMS
data files and therefore determine the signal to noise ratio and other parameters of the files.
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Another approach is to take advantage of some known information and accordingly
estimate other parameters. For example if a substance with known drift time and known standard
deviation is known to be in a mixture, this information could be used by an adaptive DSP
subsystem in order to calibrate the measurement, automatically. The know signal could also be
removed, or cancelled, from the IMS output and therefore improving the resolution of the
remaining peaks.

Adaptive techniques could also be used for removing unwanted noise signals from the
IMS output. For example, other sensors could be installed in order to detect possible noise
sources such as vibration or interference. Adaptive noise cancellation techniques [14,15] could
then be used in order to estimate the noise on the IMS signal and attempt to remove it. This
approach has been successfully used in other applications such as adaptive acoustic noise
cancellation and echo cancellation. Figure 2.5 shows a block diagram of a typical noise canceller.
The primary input represents the signal obtained from the Ion Mobility Spectrometer, which
includes the IMS information in addition to other noise sources, for example vibration related
noise. The secondary input in this case represents the output of a vibration sensor. The adaptive
filter would then attempt to model the transfer function between the primary and the secondary
inputs and would therefore estimate the vibration noise on the primary input and attempt to
remove it.

13
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3.0 DERIVATIVE METHODS

3.1 Introduction to derivative methods

Derivative methods are based on differentiating the IMS signal. Any variations in the
slope of the original IMS signal results in large peaks in the second derivative. Therefore, slight
slope variations in the original IMS signal due to weak or overlapping peaks can be detected
using the second derivative method. Higher order derivatives, where the derivative of the IMS
signal is again differentiated, emphasize any slight variations in the original signal.

However, any noise on the original IMS signal will also result in large peaks showing on
the derivative curve. Derivative methods are therefore very susceptible to noise, and, any realistic
second derivative algorithm has to be preceded by very precise filtering in order to remove the
out-of-band noise. The performance of any second or higher order derivative algorithm depends
critically on the stop band attenuation and the slope of the Low-Pass Filters (LPF) used.

Analog techniques have been widely used for implementing second derivative algorithms,
however, the limited performance of the analog LPFs used limit their performance. In this work,
second derivative algorithms were implemented using DSP, where more stringent filtering was
performed.

The selectivity of the derivative methods is the highest among the various peak detection
algorithms discussed in this report. However, due to their susceptibility to noise, derivative
methods exhibit a high probability of false detection, unless their detection limit is reduced. In
summary, derivative methods provide an excellent selectivity at the expensé of a low detection
limit or a high probability of false detection.

3.2 Second order derivative

A peak identification algorithm based on the second derivative method was developed [8].
Each Low Pass Filter (LPF) was implemented as a 130 taps Finite Impulse Response (FIR)
transversal filter. The filter coefficients, calculated using the Remez Exchange algorithm, provide
a cut-off frequency of 2.2 KHz and a stop band attenuation of -80 dB. It is important at this point
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to emphasize that the performance reported in the later subsections depends critically on the
shape, cut-off frequency, slope, and stop-band attenuation of the LPF. Tailoring the filter
parameters to a specific experiment could improve' the performance for this specific case,
however, it might deteriorate the performance in other situations. For example, reducing the cut-
off frequency of the filter slightly could improve the detection limit in the presence of one peak
while reducing the selectivity. Each differentiator is implemented using a 24 taps transversal FIR
configuration.

The IMS signal simulator described in section 2.4 was used to generate IMS signals
exhibiting two peaks. The standard deviation of each peak was set at 0.18 msec, similar to the
typical values of RDX obtained in the experimental tests. The peak separation was varied, as well
as the amplitude ratio. Peak separations down to 0.27 msec in a high SNR environment and a
1:1 amplitude ratio were resolved. When the amplitude ratio was changed to 6:1, the minimum
peak separation to be resolved was found to be 0.35 msec. The previous results depend very
critically upon the standard deviation of the Gaussian peak and are therefore only valid for a peak
standard deviation of 0.18 msec. The smaller the standard deviation, the better is the resolution.
It is therefore possible to related the minimum resolvable peak separation to the standard
deviation of the peak. The results indicate that second order derivative methods can resolve equal
peaks separated by at least 1.5 of their standard deviation in a high signal to noise ratio (SNR)
environment. In terms of sensitivity, single peaks were detected in an 18 dB SNR environment.

Figures 3.1 and 3.2 show the results of the application of second derivative methods to
experimental IMS signals representing RDX. In each figure the solid line shows the IMS signal
and the dotted line shows the second derivative. In figure 3.1, with an injected RDX quantity of
0.1 nanogram, the second derivative plot has a single distinct minimum in the peak region, which
indicates a correct detection of the peak. When the injected RDX quantity is reduced to 0.05
nanogram, as depicted in figure 3.2, the second derivative plot shows several local minima in the
peak area. This is an indication that the second derivative algorithm has failed and that the
algorithm is confusing the RDX peak with noise.
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RDX Sample and its Second Derivative

Fig 3.1
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RDX Sample and its Second Derivative

Fig3 .2
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3.3 High order derivatives

In higher order derivatives, the original IMS signal is again differentiated a number of
times in order to emphasize and amplify any slight fluctuations in its slope. Each differentiation
stage is followed by a LPF. An Nth order derivative is therefore generated by cascading N
second derivative stages. Higher order derivatives are more susceptible to noise than second order
derivatives [5], each differentiation stage decreases the SNR.

The results indicate that in the case of two Gaussian peaks with equal amplitude, equal
standard deviation of 0.17 msec, and a peak separation of 0.23 msec, second derivative methods
are not capable of detecting the peaks, whereas the 6th derivative shows, very clearly two distinct
peaks. When the peak separation is reduced to 0.20 msec, neither the 2nd, 4th, nor 6th derivatives
show any visible peaks, whereas when the 10th order derivative is used, figure 3.3, two distinct
peaks can be observed. It is important to notice that the peaks in this experiment were pure
peaks, with no additive noise. Therefore the results only determine the limitation of derivative
methods in terms of peak separation. In practical cases any weak noise could result into
unacceptable performance, as described in [5].

The resolvable peak separation is also a function of the standard deviation of the Gaussian
peaks. In the previous experiments the standard deviation was set at 0.17 msec, a value similar
to most chemicals considered. When the standard deviation is increased to 0.18 msec, the
minimum resolvable peak separation, with no noise added, was found to be 0.21 msec.

Therefore, very high order derivatives are very powerful in terms of selectivity and
resolution. However, in practical situations, their use makes the system very susceptible to noise
which introduces unacceptable false detection probabilities. The poor detection limit of high order
derivative methods restricts their use to high SNR environments. Nevertheless, such very high
order derivatives could still be used in practical situations in conjunction with other peak
detection algorithms such as cross-correlation methods.
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IMS Signal and its 10th Derivative

Fig 3.3
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4.0 CORRELATION METHODS

Given two sequences, or vectors x and v, each having a length (N), their cross-
correlation function is a sequence of length (2 N - 1), and is defined as:

i=N
Y x(i) y*(i+m) (3)

i=-N

C(m)

The cross-correlation function is similar to a convolution operation for symmetrical
signals. It shows how correlated the two sequences are for a relative shift of -N up to +N. When
the two sequences are normalized the cross-correlation function is maximum when the two
signals are identical and is zero when the two sequences are uncorrelated. If the two sequences,
for example, are independent random numbers, or white noise, the cross-correlation function will
be flat and will not show any peaks. If the sequence x represents a square peak embedded in
white noise, while the sequence y represents a square peak similar to the one in x, the cross-
correlation function will have a triangular peak at the position where the two squares coincide.
The same case applies to a Gaussian peak embedded in white noise, such as the case in IMS. The
optimum correlating sequence in that case would be a Gaussian shape.

In peak detection using cross-correlation, the output signal of the IMS is cross correlated
with a given function. The choice of such function is a main factor in determining the system
performance. Reference [7] analyzes three different functions, square, triangular, and Gaussian
functions. It proves that with an even zero-area function the linear background component ( g,
+ a, t ) is completely filtered out, as opposed to the higher order components. Based on the RDX
data files, this feature is very useful. It was found that all the RDX files have a large linear back-
ground component ( a, ).

Since IMS peaks are Gaussian, the optimum cross-correlating function should also be
Gaussian, with similar parameters. In this work, extensive simulation was undertaken in order
to determine the optimal parameters of the cross-correlating Gaussian curve. Based on [7] an
even zero-area curve is required. There are two parameters to be determined, the standard
deviation of the curve and the base width. Given that most of the IMS data files analyzed
throughout this work had a standard deviation around 0.16 msec, it was decided to experiment
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with three sets of Gaussian curves, with standard deviations of 0.1, 0.16, and 2.00 msec. As far
as the base width is concerned, it was thought that given that the data files have a span of about
2 msec, base widths of 2.0, 1.5, 1.0, and 0.5 msec would be considered which gives a total of
12 different cross-correlating functions.

Each one of the 12 cross-correlating Gaussian curves described before was cross-
correlated with the experimental RDX files. It was found that with the 0.2, 0.1, and 0.05
nanogram quantities the algorithm was able to perform a correct detection with almost all cross-
correlating curves. Proper selection of standard deviation and base width resulted in detecting
concentrations down to 0.01 nanogram. Large values of standard deviation and base width tend
to smooth the peaks, whereas small values extract the main peak but are also affected by the
noise around it. Figures 4.1 and 4.2 show the effect of correlating the Gaussian curves (0=0.10
msec BW=2 msec) and (0=0.16 msec BW=2 msec) with an RDX file corresponding to a quantity
of 0.01 nanogram.
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Cross-Correlation with a Zero-Area Gaussian Curve
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Fig u.2 Cross-Correlation with a Zero-Area Gaussian Curve
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5.0 SIGNAL DECOMPOSITION USING NEURAL NETWORKS

5.1 Introduction

The problem of detecting two or more closely spaced Gaussian pulses can be viewed as
a signal decomposition problem. The objective is to observe a noisy recorded signal and decide

on how many Gaussian pulses are in it, and also decide the amplitude, centre and variance of
each detected pulse. If two pulses are separated by a sufficiently large time delay, the two peaks
of the pulses will be visible and the detection problem is trivial. As the two pulses move closer
to each other, their peaks will merge into a single peak. Under this condition, taking the first
derivative of the recorded signal can be used to detect the presence of two pulses [1]. As the
time delay between the pulses is further reduced, higher time derivatives may be needed to
perform the detection. But, time derivatives enhance the noise, and higher derivatives result in
a noisy signal which obscure the detection as this method reaches its resolution limit.

In this section, the use of neural networks to perform the detection is being proposed and
analyzed. The neural network approach is different from the more conventional linear signal
processing approaches, but it is based on the same mathematical basis. This section is organized
as follow: In 5.2 the problem is formulated mathematically to illustrate the detection complexity
when one is seeking a fine resolution. The problem is cast as a decomposition problem using
Gaussian basis functions. Since closely spaced Gaussian pulses are not orthogonal, the analysis
resulted in a set of cross-coupled equations, which are hard to solve analytically. In 5.3. a
recursive approach is suggested to solve the equations. The recursive processing block diagram
is very similar to a well known class of neural networks called "Hopfield Networks" [17-19].
In 5.4. we describe the Hopfield approach, and develop all equations needed to simulate the
system. The details of an experimental simulation study of Hopfield network are given in 5.5.
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5.2 Problem Formulation

Let r(t) be the noisy recorded signal:

r(t) =x(t) +z(t) ;O0ststy, (4)

where x(t) is the signal of interest (SOI) and z(t) is additive noise. The recorded signal is
sampled at a rate of 1/T samples per second to form the sequence {r(n); n=1,2,..,N}, where
1(n)=r(t=nt) and N=t_, /T.

x(t) is assumed to be made up of Gaussian pulses of the form:

g(t;1,mk) =a;exp

(E-cy) ?
— k. (5)
om
where {a}, {c,} and {o,} are sets of discrete amplitudes, centres and standard deviations; and
a,=lAa ;1=1,2,..,L
c, = kAt ;k=12,..K
o, = mAc ; m=1,2,.,.M
Aa, At and Ao are the amplitude, displacement and standard deviation resolutions, respectively.
Now, x(t) can be written as:
L K M
x(t) =;;EA1kmg(t;l,k,m) (6)
=] k=

1 m=1

where the parameter A, =1 if g(t;1.k,m) is present in the recording and equal zero otherwise.
Our objective is to obtain the values of {A,,} from the noisy record.
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Substitute Eqn.(6) in (4) (written in a sampled form):

;;E A, g(nT;1,k,m) +z(n) ;n=1,2,..,N (7)
=1

m=1

We can isolate any given parameter ,A,.,.,. , in Eqn.(7) by multiplying both sides of the equation
by the reciprocal of g(Nt;I",k’,m") and re-arranging the terms:

Arere o= r (n) g(nT;1,k,m _ _ z(n)
Tk g (nT; 1%, k", m") 121: k;;,; L nT.Z k*,m*)  g(nT;1* k*,m")

(8)

We can extend Eqn.(8) by summing over all terms in the recorded signal. This will result in a

transform term plus a cross-coupling term and a noise term:

Altk.m. = Il.k.mo —Cl.k.m. +Zl.k.m. (9)
where

z(n) (10)

, 1
T,epe,« =1nput term= =
1km p Nn-O g(nTil‘/k‘/m‘)

N

P | g(nT;1,k,m (11)
Ciepepe = Cross-coupling == A f =t
1%k an_; l§. k%;. m%,,:. g (nT; 1%, k*, m*)

N
, 1 z(n)
Z,eps« =NOise term=-= (12)
1%k"m N&{ g(nT; 1%, k%, m*) ‘

Eqn.(9) defines the signal decomposition process, and illustrates its complexity.

If we ignore the noise term, Eqn.(9) will be reduced into a deterministic set of "LKM"
cross-coupled equations in "LKM" binary unknowns; namely the set {A,; [=1,2,..,.L; k=1,2,...K;
m=1,2,..,M}. It is difficult to find an analytical solution to this set of equations. Instead, we
propose to use a neural network approach to find the solution iteratively as explained in the
section 5.3.
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5.3 Recursive Solution

It is useful to think of the "LKM" equations as a multi-input/multi-output process as
shown in Figure 5.1. The input vector is the N-dimensional recorded signal R={r(n); n=1,2,..,N}.
The output is the binary vector A={A,,, 1=1,2,..,.L; k=1,2,.,K; m=1,2,.,M}. The input vector,
R, is processed according to Eqn.(10) to produce the input-related terms. The output vector, A,
is processed according to Eqn.(11) to produce the cross-coupled terms. The difference between
the two sets of terms is a new value for the vector, A. Since A is binary, values of A computed
in each cycle is quantized to 0 or 1 through a set of threshold devices.

The solution illustrated in Figure 5.1 is an iterative one. We could start the algorithm by
setting the vector A to an initial value A(0)=0. Then, the cross-coupling terms will all be zeros
and the first estimate of A, A(1), will be due to the input vector only. As we iterate A through
the cross coupling processor, its value will change from cycle to cycle. When we hit the right
decomposition, the vector A will remain unchanged.

The system structure shown in Figure 5.1 is similar to a well known neural network
structure called Hopfield net [19]. In fact, a problem similar to the one considered in this work
has been considered by Hopfield et.al.[20]. In the next section, a description of Hopfield network
is given.

5.4 Hopfield Networks

Hopfield network is a member of an emerging signal processing technology called "neural
networks". The word "network" in the name is there to signify the similarity between this type
of processing and some biological neural systems. Although artificial neural networks are far
inferior than their biological counterparts, the two types of networks share one important
characteristic; that is the processing in done in parallel using a large number of simple, identical
processors. This is in sharp contrast with today’s computers and signal processing systems,
which are invariably built around a single powerful processor called the Central Processing Unit
(CPU). Another similarity between artificial and biological neural networks is that both learn
their function by training rather than a sequential instructions imposed by an external entity.
Again, the sequential instructions (or software) is the basis of operation of today’s computers.
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Figure 5.1- The Signal Decomposition Process
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A more comprehensive discussion of neural networks is outside the scope of this report.
Here, we will limit the discussion to Hopfield network only, and we will look at its structure as
just a one possible way to solve a number of simultaneous equations.

Hopfield network has the re-current structure shown in Figure 5.2. The network consists
of a single layer of Q simple identical processors called neurons. Each neuron adds up all of its
inputs and compares the sum to a threshold value. If the sum is greater than the threshold, the
neuron output is set to one, otherwise it is set to zero. Each neuron output is fed back to the
inputs of all neurons except its own input. The feedback connections are called weights. For
example, the feedback connection between the output of neuron k and the input of neuron m is
the weight W, . Consequently, each neuron receives (Q-1) feedback signals at its input, and the
sum of these feedback signals is of the form Y, = £ W_.A,. All the feedback connection
weights and threshold values are either pre-computed or adaptively adjusted to solve an
optimization problem which suits the application being considered. The neuron also receives
signals from an external source through a fixed set of connections. The sum of inputs from the
external source form a bias term which remains constant while the network iterates to find the
best output vector. For the kth neuron, the input bias term, I, is a function of R: I, =I(R)).
Then, the total input to the kth neuron is:

X, = feedback term + bias term
0 (13)

=Y WyAy + I (Ry)
g=1

The next issue is how to determine the connection weights {W _, } and the relation between
I, and R,?. The answer to this question provides the essence of Hopfield approach, which is
simple but quite powerful.

Hopfield network finds a good solution to a stated problem by minimizing an artificial
energy function, E, related to the problem. The energy, E, is a measure of how far the value of
the output vector A is from an accepfable solution. The initial value of A corresponds to a high
energy state (i.e. the solution is not acceptable). The energy, E, which is a function of the output
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vector, A, is designed such that any change in A either reduces E or leaves it unchanged.
Therefore, each iteration can only reduce the energy and bring the output closer to a good
solution.

Selecting an appropriate energy function is the most critical step in designing the network.
E is selected as a function of A to satisfy certain constraints, or certain description of an
acceptable solution, and since A is a function of the connection weights, the weight can be
computed from the energy function. We will demonstrate the procedure of selecting E and
calculating the weights through our problem of signal decomposition.

In the model presented in section 5.2, the input vector, R, is a sampled version of a
recorded signal with N samples. The output vector, A, is a binary vector. Each element in A
is an indicator of the presence or absence of a Gaussian pulse with specific amplitude, centre and
variance. There are LKM possible Gaussian pulses, and the Hopfield network should contains
KIM neurons. Therefore, we will set the length of the output vector A to Q=KLM. The energy
function of this problem will be selected to satisfy three requirements:

(D If we construct a signal using the output vector, the difference between the constructed
signal and the original recording should be small.

(2)  All elements of the vector A are binary [0 or 1]
3) The matrix of the feedback connections should have zeros on the diagonal.

The first two requirements are obvious. The third requirement is applicable to all Hopfield
networks. It is a condition that guarantees the stability of the solution as explained in [2].

To satisfy the first condition, we create an energy term that represents the difference
between the original and reconstructed signals:

N 2
E, =§ r(n) -qz-; A.g(nT;q) (14)

The structure of E, satisfies the first condition, but it does violate the last condition, since
squaring the summation inside the brackets results in diagonal terms. The second term of the
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energy function E, is designed to cancel out the diagonal terms and at the same time favours
a binary output:

N Q
= ZZgz (nT;q) A, (Ag-1) (15)

n=1 g=1

Since the range of A_ is between 0 and 1, E, will be minimum (equal to zero) when all
A, are either 0 or 1. Any other value of A, (between 0 and 1) will result in a positive increase
in E,. Also notice that using g’(Nt;q) as coefficients produces A *g’(Nt;q) terms which cancel
out the diagonal terms in E,.

The energy function, E, is the sum of E, and E,:

= J i (16)
E=Y \|z(n)-Y Ag(nT;q)| - A,(A,;-1) g*(nT;q)
n=1 =1 =1

Eqn.(16) can be re-arranged into the following form:

E=YY Y AquGqu+EZAq[G§-2r(n) Gq] + R2 (17)
n q

n g meg

where
N
R?=)" r?*(n) (18)
n=1
and
Ge=g(nTi Q) (19)

We note that the term R? is constant and independent of the output vector, A; so we may
drop it without changing the optimization procedure. This gives us the final form of E as a
function of the basis functions {g(nT;q)}, the input vector, R and the output vector, A:

E=3 L) GaCd2ate* 1 3 [0a 22 (m) G2 (20)

n qg m*q
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The next stage of this procedure is to relate the energy function as written in Eqn.(20) to
the connection weights of Eqn.(13); namely, {W;} and I,(R,)). We start by writing the energy
function in terms of {Y.} and {I } (refer to Eqn.(13) and Figure 5.2):

Q Q
E=-|Y YA, +Y IA, (21)
1 1
where
Y,=-Y Y G,G,A, (22)
n meq
and
Iq=zn: [21(n) Gg-G¢] (23)
Comparing Eqn.(13) to (22) reveals that the feedback connection weights are:
Wag = = GuGq (24)
n

The final step in this analysis is to show that the energy function as expressed in Eqn.(21)
satisfies the objective of producing a correct output. To illustrate this point, we only need to
show that any permissible change in A (from iteration to iteration) must lower E, because
reducing E brings the output closer to the correct answer. Take the first derivative of both sides
of Eqn.(21) with respect to one of the output, A

. (25)

AE= -[Yq+Iq] AA

But, the new value of A_ is simply the sign of the term between brackets. Then, AA can

either be zero, or it can have the same sign as [Y +],]. Consequently, AE can either be zero (i.e.
no change in the energy level), or it can be negative (i.e. lower energy).

This concludes the analysis of Hopfield network as a method for decomposing a signal
into a number of Gaussian basis functions. In the remainder of this report, we will report on a
simulation study performed on the basis of the analysis given above to test the capability of
Hopfield solution, and to compare the resolution of this techniques to that of a more conventional
technique based on higher order derivatives.
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5.5 Simulation Study

The simulation study will be presented in a step by step fashion, which would allow the
reader to review the analysis and methodology of section 3.

Step 1: Select the resolution and time parameters

N =-the length of the input vector R = 1024
This means that the input signal consists of 1024 points

At = time resolution = N/Z
where Z is the number of Gaussian basis functions. This means that the minimum
distance between two consecutive Gaussian pulses is At points (which will
normally be set equal to the standard deviation). Z is also the number of neurons
in Hopfield model. Figure 5.3 illustrates the set of Gaussian basis pulses. The
function of Hopfield net is to determine which of them are present in the input
signal.

Ao = standard deviation resolution = 0
There is no standard deviation tolerance. There is only one standard deviation.

Aa = amplitude resolution = 0

Only one amplitude is allowed a=1
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Gaussian Basis Functions

36



In the illustrative examples shown here, Z will be set to 12, which means that
At=N/Z=85.33 points. With this specific set of parameters, we only have 12 basis function (
Q=12 ) of the form:

g(nT; k) =exp

{z2]]
.33 (26)

where ; n=1,2,

This also means that Hopfield network will have 12 neurons, one for each basis function.

Step 2: Compute the feedback connections

The weight connections {W;} are calculated using Eqn.(24), and {G,} in Eqn.(24) are
calculated according to Eqn.(22). The resulting equation is given below (Eqn.(27)). It should
be noted the W, =0; i.e. the resulting matrix has zeros on the diagonal. The matrix has 12 x 12
elements, 12 of them are zeros. Also, the matrix is symmetric around the diagonal, which means
that only 66 non-zero coefficients are to be calculated using Eqn.(27):

Wiy=- ) exp

""""""""""""""""""""" where 1,3=1,2,..,12
17 Ci=85|33i
c;=85.33 j

37



Step 3. Computing the input bias term

The input bias terms {I_} are calculated according to Eqn.(26), which is re-written here in details:

1024 2 2
n-c n-c
I, =2 r(n) exp|-| —L | |-exp|-2 q
¢ ,,.1{ (n) exp (85.33) P (85.33) }

where ; 'c;'= g*85.33

While the feedback connections are calculated once for each set of basis functions (i.e.
once per network), the feed-forward bias terms must be calculated to each new signal.

Step 4 The de-composition process

1 The signal {r(n)} is applied to the input terminals, and the bias terms for this
signal are computed as explained in step 3.

2 Initially the output vector A={A_} is set to zero; A(0)=0.

3 The first possible solution, A(1), is computed as A =sign[l ].

4 A(1) is fed-back through the feedback weights to form the {Y } terms, which are
added to the bias terms {I,} and the sum is used to generate the next estimate of

A using: A (2)=sign[l.+Y].

5 Step 4 is repeated as many times as necessary until the vector A reaches an
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equilibrium state: A(m+1)=A(m). The equilibrium vector A(l) is the solution.

Test Signals:

The most critical step in preparing test signals is to simulate noise signals with the correct
characteristics and to be able to accurately determine the signal-to-noise ratio (SNR).  The noise,
z(t), is assumed to be Gaussian and white. The power spectral density of the pre-filtered noise
is flat with a height equal N,, which extends from f=-o to +o. In a sampled form, z(t) can be
simulated as an un-correlated sequence of zero-mean Gaussian random numbers whose
variance=N,. z(t), as described above, has an infinite power. Much of this power is irrelevant
to the detection problem at hand. Essentially, we must cut-out the frequency components in the
noise spectrum that fall outside the effective bandwidth of the signal of interest. The relevant
noise power is:

P =W.N i (29)
where W is the noise bandwidth.

A simple way to estimate the relevant noise is to compute the noise components that fall
within a specified range around the peak. Normally, the noise is computed for a range of +/- 3o
around the centre of the peak. In the case where more than one pulse is present and the distance
between the two pulses is small (merged peaks) the same approximation remains good.

In the case of simulated data, the signal to noise ratio (SNR) is computed by first
generating the signal (Gaussian pulses) and calculating their energy within +/- 30, and then
generating the additive noise and computing its energy within the same range. Since we are only
interested in the ratio between the signal and noise, the energy for either the signal or the noise
can be calculated by adding up the squares of the discrete signals. In the case or real data, the
signal and noise cannot be separated, and in this case we must estimate the SNR from the ratio
of (signal+noise)/(signal only). The signal only part is estimated by the approximation of the
signal as a Gaussian pulse with known parameters.
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Test Signal Preparation Procedure:

Since all experimental data represent cases where the peak separations are greater the
standard deviation, o, we will use only simulated data to illustrate the improved resolution of the
neural network technique.

1. Generate Gaussian pulses with different amplitudes, variances and centres and add them
up to form a 1024 point signal vector: x={x(n); n=1,2,...,1024}.

2. Square each point in x and add up all the squares to obtain the signal energy.

3. Specify the desired SNR in dB’s and convert it into a ratio y=10S"1°,

4. Determine the noise variance as: (signal energy)/(SNR)

5. Generate 1024 un-correlated samples of Gaussian noise with the correct variance (as

calculated in step 4) and add them to x (sample by sample).

6. Filter the signal pulse noise vector (generated in step 5) in a lowpass filter which is wide
enough such that it does not distort the signal but created correlated noise samples.

7. Estimate the filter delay (by numerical techniques) and compensate for the delay by back-
shifting of the vector.

8. The result of step 7 is a vector with known SNR and partially correlated noise samples.
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5.6 Resuits

This section describes the results of a series of tests designed to explore the advantages,
disadvantages and performance limits of Hopfield method. The parameters used in the simulation
are:

(1) Signal-to-Noise Ratio (SNR)

(2) Relative Amplitude: In the case of a single pulse, the amplitude is fixed at "1". In the
case of two pulses, the amplitude of the two pulses are denoted by Al and A2, where the
"1" refers to the first (early) pulse and the "2" refers to the second pulse.

3 Delay: The delay between the two pulses is either one standard deviation (denoted in the
figure by "s") or less.

4) Shift: Since the delays between the basis Gaussian pulses is fixed at "s", when the spacing
between two pulses in the test signals is less than "s", one of the pulses will be shifted
from its ideal centre location. The shift parameter refer to the displacement of a pulse
from its corresponding basis function. |

Sensitivity to Noise:

In this test one Gaussian pulse (with zero shift) is used. The noise level was increased
gradually until the network failed to produce the correct output. The minimum SNR was found
to be -3 dB. At this level, the noise power is twice the signal power. Reducing the SNR below
this level resulted in an unreliable performance. Figure 5.4 shows the network input (top trace)
and the output (bottom trace) at SNR=-3 dB. The horizontal axis is the delay in msec and the
vertical axis is the relative amplitude. For illustrative purposes, the noise-free signal is
superimposed on the noisy signal. Of course, only the noisy signal is fed to the network.

This result indicates that Hopfield network is very tolerant to noise, which means that
even a minute quantity of compound could be detected by a neural network processor.
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Relative Amplitude:

In this test, we used two pulses which are synchronized to the positions of their basis
Gaussian pulses counterparts. The two pulses are separated by a fixed delay of one standard
deviation. Figure 5.5. illustrates the case of high SNR and equal amplitude. The network has
no problem detecting both signals. In Figure 5.6., the SNR was dropped to 0 dB (equal noise
and signal power). Again, the detection was reliable, which confirms the high tolerance of
Hopfield network to noise. Reducing the SNR below 0 dB resulted in unreliable performance.

Next, the amplitude of one pulse was reduced gradually until the network failed to
produce the correct output. The limit of amplitude ratio was about 0.6. Figure 5.7. illustrates
this limit case at high SNR. This level of amplitude resolution can still be achieved at lower
SNR down to about 10 dB. It should be noted, however, that the test parameters interact with
one another. For example, when the amplitude of one pulse is reduced, the detection became
more sensitive to the noise level. We were able to establish that two pulses of equal standard
deviation separated by a standard deviation and differ in amplitude by 0.6 can be detected when
the SNR is 10 dB and higher. This case is illustrated in Figure 5.8. When the two pulses have
the same amplitude, the minimum detectable SNR was 0 dB as was illustrated earlier by Figure
5.7.

Minimum Delay:

Since Hopfield technique relies on matching the input signal to a set of pre-deﬁned
Gaussian basis functions, the delay resolution cannot be better than half the distance between two
consecutive basis functions (i.e. half the standard deviation). We have tried to store Gaussian
basis functions separated by less than the standard deviation, but that did not work since the cross
talk between the pulses was very high. Therefore, the best time resolution lies somewhere
between 1 and 0.5 o.

Figure 5.9. shows a case where the time resolution is less than the standard deviation.
The SNR is high (30 dB), and the two pulses are equal in magnitude. The time separation
reported in this figure is 0.88 s (note that in this section we use s and o inter-changeably). Next,
the delay between the two pulses was reduced in steps until the network failed to identify the
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correct combination. This has established 0.65 s as a limit on the time resolution as shown in
Figure 5.10.

It should be noted that when a single pulse is located mid-way between two basis pulses,
the network incorrectly indicates the presence of the two basis pulses. To test the validity of the
time resolution as reported in Figure 5.10, we repeated the test with only one pulse shifted by
35% from its corresponding basis pulse. The network correctly identified the output as that of
a single pulse as shown in Figure 5.11.

Finally, we tested the combination of a minimum delay and an amplitude difference. The

limit is illustrated by Figure 5.12, which is a minimum delay of 0.65 s at an amplitude ratio of
0.8

5.7 Conclusion

This simulation study demonstrates the fundamental advantage of neural networks which
is the capability of achieving a time resolution beyond the limit of conventional techniques. The
derivatives and correlation methods can not resolve two pulses separated by less than a standard
deviation, o, while Hopfield network can resolve pulses separated by 0.650. Another advantage
of Hopfield network is its tolerance to a high level of noise. In the case of a single pulse, SNR
as low as -3dB can be tolerated. In the presence of two pulses, the limit on the SNR ranges
between 0 and 10 dB depending on other factors such as the amplitude ratio and the pulses
separation.

In spite of these two great advantages, the neural network solution is not as obvious as
it may appear in this study. For instance, Hopfield solution depends on a prior knowledge of the
pulses standard deviation. This is essential since the technique relies on matching the input
signal to a set of known basis function. Another disadvantage is the tendency of Hopfield
network to produce spurious response when the pulses are separated by a large delay. In fact,
the network has failed to recognize some cases which were easily identified by the derivative or
correlation method.

This suggests that The neural network be incorporated in a more elaborate detection
system. One that combines the advantage of the ultra high resolution of Hopfield network and
the reliability of the derivative method. The following system is suggested:
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A pre-processing stage, where the IMS signal is filtered and detected by a derivative
method. If the solution is evident, we may stop at this point, otherwise, we move to the
second stage.

The second stage is used when the derivative method fails to resolve two closely pulses
(i.e. two pulses are suspected but the derivative method produces only one output). In
this second stage, the parameters of the suspected compounds are used to calculate the
biases and connection weights of a Hopfield network. In this stage, it may be necessary
to change the standard deviation in steps and re-calculated the connection weights.

A post processing stage, where the output of Hopfield network in response to several
standard deviations in analyzed to confirm or deny the presence of two pulses.
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7.0 CONCLUSIONS

IMS files with RDX quantities ranging from 0.2 down to 0.01 nanogram injected into the
IMS were analyzed. It was revealed that RDX IMS files could be approximated by Gaussian
peaks with a standard deviation of about 0.17 to 0.18 msec, and white noise, bandlimited to about
2.2 kHz. Other files representing leather contaminated by various amounts of RDX were also
analyzed. Several peak detecting algorithms, such as derivative methods, cross-correlation
methods, and neural network-based methods were evaluated.

The results indicate that using second derivative algorithms, peak detection was achieved
down to 0.1 nanogram of RDX injection into the IMS. Lower quantities, for example 0.05
nanogram, introduced a high probability of false detection. Derivative methods were able to
resolve leather peaks with RDX contamination. The selectivity of derivative methods was also
determined. Using equal Gaussian peaks with a standard deviation of 0.17 msec each, peak
separations down to 0.20 msec were resolved.

The work establishes the lower detection limit for the cross-correlation to be at 0.01
nanogram quantities. It reveals the possibility of combining a number of detection algorithms in
order to improve both the detection limit and the resolution in IMS. A typical configuration
would therefore include a number of detectors operating simultaneously, followed by a control
system which monitors the behaviour of each detector, generates global parameters, and makes
the final decision as to the existing peaks in a given mixture. A more specific configuration is
to use cross-correlation methods in order to set a time window within which higher order
derivative methods are activated.

A study of the applicability of using neural networks to the peak detection problem in
IMS was carried. This simulation study demonstrates the fundamental advantage of neural
networks which is the capability of achieving a time resolution beyond the limit of conventional
techniques. The derivatives and correlation methods can not resolve two pulses separated by less
than a standard deviation, o, while Hopfield network can resolve pulses separated by 0.650.
Another advantage of Hopfield network is its tolerance to a high level of noise. In the case of
a single pulse, SNR as low as -3dB can be tolerated. In the presence of two pulses, the limit on
the SNR ranges between 0 and 10 dB depending on other factors such as the amplitude ratio and
the pulses separation.

54



In spite of these two great advantages, the neural network solution is not as obvious as
it may appear in this study. For instance, Hopfield solution depends on a prior knowledge of the
pulses standard deviation. This is essential since the technique relies on matching the input
signal to a set of known basis function. Another disadvantage is the tendency of Hopfield
network to produce spurious response when the pulses are separated by a large delay. In fact,
the network has failed to recognize some cases which were easily identified by the derivative or
correlation method.

It is therefore suggested that a combination of several peak detection algorithms be used
simultaneously. Cross correlation methods, for example, could predict the existence of a potential
peak. Derivative methods and neural network methods could then be used in order to improve
the selectivity by estimating whether it is indeed a single peak or whether there are several
superimposed peaks. This way, it is possible to maintain the excellent sensitivity and detection
limit performance of cross correlation methods while achieving a selectivity performance similar
to derivative and neural network methods. The proposed system could also offer a better
detection confidence and robustness, with a computational complexity within the limits of real-
time implementation using present technology.
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