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ABSTRACT 

 

The objectives of this paper are to examine the effect of liquidity on 
interest rate option prices, and to determine whether it is driven by a 
common systematic factor. Using daily bid and ask prices of euro (€) 
interest rate caps/floors, we document a negative effect of liquidity on 
option prices – illiquid options trade at higher prices relative to liquid 
options, after controlling for the volatility smile and term structure 
variables.  This is opposite to the evidence for other assets such as 
equities, bonds and currency options. We also identify a systematic 
common factor that drives liquidity, across option maturities and strike 
rates. This liquidity factor is driven by the changes in uncertainty in the 
equity and fixed income markets. Our results have important 
implications for the pricing and hedging of liquidity risk in derivatives 
markets.  
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LIQUIDITY HAS LONG BEEN RECOGNIZED as an important factor driving prices in any market.  
Financial economists have been concerned with quantifying the impact of liquidity on the prices 
of financial assets.  In an early paper, Amihud and Mendelson (1986) conclude that stocks with 
higher transaction costs command higher expected returns. Longstaff (1995a) derives an 
analytical upper bound for the discount in security prices for lack of marketability. More recently, 
financial economists have focused on the commonality in liquidity across various assets and its 
implications for asset pricing. For example, Chordia et al. (2000), Hasbrouck and Seppi (2001), 
and Huberman and Halka (2001) find that there is significant commonality in liquidity across 
different stocks. Amihud (2002) shows that this common component in liquidity has a role in 
explaining the return on the market portfolio. Pastor and Stambaugh (2003) and Acharya and 
Pedersen (2005) find evidence that liquidity risk, captured by the variation in the common 
liquidity component, is important for explaining the cross-section of stock returns. 
 
Liquidity effects have been explored in the context of other markets as well. Amihud and 
Mendelsen (1991) show that illiquidity affects bond prices adversely. Chordia et al. (2003) 
provide evidence that common factors drive liquidity in the stock and bond markets.  Elton et al. 
(2001) and Longstaff et al. (2005) investigate the impact of commonality in liquidity in the 
corporate bond market. They show that a significant part of the corporate bond spreads (over 
benchmark treasury and swap rates) can be explained by a common liquidity factor. In the 
Treasury bond market, Krishnamurthy (2002) shows that investors prefer liquid assets for which 
they are willing to pay a premium, while Longstaff (2004) shows that Refcorp bonds trade at 
higher yields compared to Treasuries due to the flight-to-liquidity premium in Treasury bonds. 
 
Thus far, the literature has identified several stylized facts about liquidity in the stock and bond 
markets and its impact on the prices and returns of the respective assets. However, very little is 
known about the commonalities in liquidity or their implications for pricing in derivatives 
markets, such as those for equity or interest rate options. An exception in this relatively sparse 
literature is the study by Brenner, Eldor and Hauser (2001), who report that non-tradable 
currency options in Israel are discounted by 21 percent on average, as compared to exchange-
traded options.1

 
We investigate the impact of liquidity in the market for interest rate derivatives. We raise and 
answer three questions: Does liquidity have an effect, positive or negative, on option prices? Is 
there a common factor that explains liquidity across strike rates and maturities? How is this 
common factor related to macro-economic variables such as the parameters of the term structure 
and volatilities in other markets? These are important questions in the very large market for over-

                                                           
1 In other related studies, Vijh (1990) documents the trade-off between depth and bid-ask spreads in equity 
options, Mayhew (2002) examines the effects of competition and market structure on equity option bid-ask 
spreads, while Bollen and Whaley (2004) present evidence on the impact of supply and demand effects on 
equity option prices.  
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the-counter interest rate options such as caps/floors and swaptions, which are among the most 
liquid options that trade in the global financial markets, with about $27 trillion in notional 
principal outstanding, as of December 2004.2

 
According to the existing literature, the impact of illiquidity on asset prices is overwhelmingly 
presumed to be negative, since potential holders of an asset demand to be compensated for the 
lack of immediacy they face, if they wish to sell the asset.  Thus, the liquidity premium on the 
asset is expected to be positive – other things remaining the same, the more illiquid an asset, the 
higher is its liquidity premium and its required rate of return, and hence, the lower is its price.  
For example, in the case of a bond or a stock, which are assets in positive net supply, the buyer of 
the asset demands compensation for illiquidity, while the seller is no longer concerned about the 
liquidity of the asset after the transaction. In fact, within a two-asset version of the standard 
Lucas economy, Longstaff (2005) shows that a liquid asset can be worth up to 25 percent more 
than an illiquid asset, even if both have identical cash flow dynamics.  
 
However, derivative instruments differ from their underlying assets, such as stocks and bonds in 
three important respects. First, as pointed out earlier by Brenner, Eldor and Hauser (2001), 
derivative assets are generally in zero net supply, i.e., the net amount outstanding across agents 
in the market is zero. Second, in the case of derivatives, the risk exposures of the short side and 
the long side may not be the same.  Third, since derivatives can be hedged by taking offsetting 
positions in the underlying asset as well, the liquidity effects of the latter may also play a role in 
determining the impact of liquidity in the derivatives market. For example, in the case of an 
option, both the buyer and the seller continue to have exposure to the asset after the transaction, 
until it is unwound. The buyer demands a reduction in price to compensate her for the illiquidity, 
while the seller demands an increase. In addition, due to the asymmetry of the payoffs, the seller 
has higher risk exposures than the buyer. The net effect of the illiquidity is determined in 
equilibrium, and one cannot presume ex ante, that it will be either positive or negative.  
 
In the Black-Scholes world, both the buyer and the seller hedge costlessly in the underlying 
market; consequently, illiquidity should not have an affect on the price of a derivative asset. 
However, one cannot derive any general conclusions, if there is some asymmetry between the 
two parties in terms of their motivations for engaging in the derivatives transaction and 
consequently their motivation for hedging. For instance, the buyer may be a corporation 
attempting to reduce its exposure to interest rate fluctuations, while the seller may be a bank, 
which hedges its position in the derivative by taking offsetting positions in the underlying 
interest rate instruments – cash instruments or other derivatives such as futures contracts or 
swaps.  Further, the seller may be concerned about the costs of maintaining a long-term hedge, 
given the transactions costs in the market for the underlying asset. In this case, the buyer is more 
concerned about buying protection against interest rate fluctuations, while it is the seller who is 
                                                           
2 BIS Quarterly Review, June 2005, Bank for International Settlements, Basel, Switzerland. 
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more concerned about liquidity.  Consequently, it is quite possible that the impact of illiquidity in 
the derivatives market as well as the market for the hedge instrument may cause the seller to raise 
his price. 3  Hence, illiquidity in this case may have a positive impact on the price, rather than the 
conventional negative impact identified in most of the liquidity literature. 
  
These general observations can be interpreted in the context of the specific institutional structure 
of interest rate option markets.  These markets are almost entirely institutional, with hardly any 
retail presence. Most interest rate options, particularly the long-dated ones such as caps, floors 
and swaptions, are sold over-the-counter (OTC) by large market makers, typically international 
banks.4 The customers are usually on one side of the market (the ask-side), and the size of 
individual trades is relatively large. Many popular interest rate option products, such as caps, 
floors and collars are relatively long-dated portfolios of options (up to ten years maturity or 
more), which creates enormous transactions costs if the seller just dynamically hedges using the 
underlying interest rate markets. These features lead to significant issues relating to 
supply/demand and asymmetric information about the order flow. Since interest rate options are 
traded in an OTC market, there are also important credit risk issues that may influence the 
pricing of these options, especially during periods of crisis. Thus, the determination of the 
direction of the impact of illiquidity on the prices of these interest rate options is a complex issue, 
which is best resolved through empirical means.5   
 
We make three important contributions to the literature. First, contrary to the findings in the 
existing literature about other asset markets, we find that higher bid-ask spreads (i.e. greater 
illiquidity) increase the prices of interest rate options. This effect goes in the opposite direction to 
what is observed for stocks, bonds, and even for some exchange traded currency options, as 
pointed out in the discussion above.  To the best of our knowledge, our paper is the first paper to 
document such a liquidity effect in any market. This result has important implications for 
incorporating liquidity risk in derivative pricing models, since we show that the conventional 
intuition, which holds in other asset markets, may not hold in some derivative markets.  
 
                                                           
3 The results in Brenner, Eldor, and Hauser (2001), that illiquid currency options were priced lower than 
traded options, can also be explained by the same argument. In their case, the liquidity effect goes in the 
opposite direction - since these options were auctioned by the Central Bank of Israel, the buyers of these 
options are the ones who are concerned about illiquidity, and not the seller. 
4 Unlike exchange traded option markets, the only metric of liquidity available in the OTC interest rate 
option markets is the bid-ask spread – there are no volume, depth, or open interest data available. Therefore, 
in spite of its potential shortcomings, we are constrained to rely on the bid-ask spread alone for all our 
liquidity analyses, which still lead to important findings. 
5 In this context, Constantinides (1997) argues that, with transaction costs, the concept of the no-arbitrage 
price of a derivative is replaced by a range of prices. From a theoretical standpoint, he argues that 
transaction costs are more likely to play an important role in the pricing of the customized, over-the-counter 
derivatives (which include most interest rate options), as opposed to plain-vanilla exchange-traded 
contracts, since the seller has to incur higher hedging costs to cover short positions, if they are customized 
contracts. In a similar vein, Longstaff (1995b) shows that in the presence of frictions, option pricing models 
may not satisfy the martingale restriction. 
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Second, we find that there is a single common factor determining the liquidity of interest rate 
options at different strike rates and maturities that explains about one-third of the variation in 
liquidity across these options. Third, this systematic liquidity factor appears to be related to the 
changes in uncertainty in equity and fixed income markets. This finding has important 
implications for the measurement and hedging of liquidity risk in interest rate option portfolios. 
Perceptions of greater uncertainty in these markets result in greater illiquidity. Further, these 
uncertainty shocks shift liquidity from in-the-money and at-the-money options to out-of-the-
money options, on average. We are not aware of any other study that has documented a common 
liquidity factor in any derivatives market.  This investigation of the commonality of liquidity 
complements similar studies for other markets such as those for stocks, Treasury and corporate 
bonds. 
 
The structure of our paper is as follows. In Section I we describe the data set and present 
summary statistics. Section II documents the time-variation in euro interest rate option prices as 
summarized by the scaled implied volatility. This section also provides evidence on the pattern 
of implied volatility across strike rates as described by the volatility smile. After controlling for 
the term structure and volatility factors, a simultaneous equation system is estimated to examine 
the relationship between the price (scaled implied volatility) and the liquidity (scaled bid-ask 
spread) of interest rate options.  Section III explores the commonality in the liquidity of interest 
rate options, across strike rates and maturities, and links this systematic factor to changes in 
macro-economic variables.  Section IV concludes with a summary of the main results and 
directions for future research.   
 
 

I. Data 
 
The data for this study consist of an extensive collection of euro (€) cap and floor prices over the 
29-month period, January 1999 to May 2001, obtained from WestLB (Westdeutsche Landesbank 
Girozentrale) Global Derivatives and Fixed Income Group. These are daily bid and offer quotes 
over 586 trading days for nine maturities (2 years to 10 years, in annual increments) across twelve 
different strike rates ranging from 2% to 8%. (Prices are not available for all of the maturity-strike 
combinations each day.)6  Therefore, this dataset allows us to control for strike price biases in the 
liquidity analysis of caps and floors. These caps and floors are portfolios of European interest rate 

                                                           
6The Euro OTC interest rate derivatives market is extremely competitive, especially for plain-vanilla contracts 
like caps and floors. The BIS estimates the Herfindahl index (sum of squares of market shares of all 
participants) for Euro interest rate options (which includes exotic options) at about 500-600 during 1999-
2004, which is even lower than that for USD interest rate options (around 1,000). Since a lower value of this 
index (away from the maximum possible value of 10,000) indicates a more competitive market, it is safe to 
rely on option quotes from a top European derivatives dealer (reflecting the best information available with 
them) like WestLb during our sample period. Thus, any dealer specific effects on price quotes are likely to 
be small and unsystematic across the over 30,000 bid and ask price quotes each that are used in this paper.  
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options on the 6-month Euribor with a 6 monthly reset frequency.7 Along with the options data, 
we also collected data on € swap rates and the daily term structure of euro interest rates curve 
from the same source. These are key inputs necessary for checking cap-floor parity, as well as for 
conducting the subsequent empirical tests.  
 
Table I provides descriptive statistics on the midpoint of the bid and ask prices for caps and 
floors over our sample period. The prices of these options can be almost three orders of 
magnitude apart, depending on the strike rate and maturity of the option. For example, a deep 
out-of-the-money, two-year, cap may have a market price of just a few basis points, while a deep 
in-the-money, ten-year, cap may be priced above 1500 basis points. Since interest rates have 
varied substantially during our sample period, the data have to be reclassified in terms of 
moneyness (“depth in-the-money”) to be meaningfully compared over time. In Table I, the prices 
of options are grouped together into “moneyness buckets,” by estimating the Log Moneyness 
Ratio (LMR) for each cap/floor. The LMR is defined as the logarithm of the ratio of the par swap 
rate to the strike rate of the option. Since the relevant swap rate changes every day, the 
moneyness of the same strike rate, same maturity, option, as measured by the LMR, also changes 
each day. The average price, as well as the standard deviation of these prices, in basis points, is 
reported in the Table. It is clear from the Table that cap/floor prices display a fair amount of 
variability over time. Since these prices are grouped together by moneyness, a large part of this 
variability in prices over time can be attributed to changes in volatilities over time, since term 
structure effects are largely taken into account by our adjustment.  
 
We also document the magnitude and behavior of the liquidity costs in these markets over time, 
for caps and floors across strike rates. We use the bid-ask spreads for the caps and floors as a 
proxy for the liquidity of the market. As mentioned earlier, in an OTC market, this is the only 
measure of liquidity available for these options; other measures of liquidity common in 
exchange-traded markets such as volume, depth, market impact etc., are just not available. The 
data on even the bid-ask spreads are not widely available for the market as a whole. In our 
sample, we do observe the bid-ask spread for a particular dealer for each option every day. 
Therefore, we settle for using this metric as a meaningful, although potentially imperfect, proxy 
for liquidity. 
 
It is important to note that these are measures of the liquidity costs in the interest rate options 
market and not in the underlying market for swaps. Although the liquidity costs in the two 
markets may be related, the bid-ask spreads for caps and floors directly capture the effect of 
various frictions in the interest rate options market, in addition to the transaction costs in the 
underlying market, as well as the imperfections in hedging between the option market and the 
underlying swap market. In Table II, we present the bid-ask spreads scaled by the average of the 
bid and ask price of the option, defined as the ScaledBAS, grouped together into moneyness 
                                                           
7 In the appendix, we provide the details of the contract structure for these options.  

5 



 

buckets by the LMR. Close-to-the-money caps and floors have proportional bid-ask spreads of 
about 8% - 9%, except for some of the shorter-term caps and floors that have higher bid-ask 
spreads. Since deep in-the-money options (low strike rate caps and high strike rate floors) have 
higher prices, they have lower proportional bid-ask spreads (3% - 4%). Some of the deep out-of-
the-money options have large proportional bid-ask spreads - for example, the two year deep out-
of-the-money caps, with an average price of just a couple of basis points, have bid-ask spreads 
almost as large as the price itself, on average about 80.9% of the price. Part of the reason for this 
behavior of bid-ask spreads is that some of the costs of the market makers (transactions costs on 
hedges, administrative costs of trading, etc.) are absolute costs that must be incurred whatever 
may be the value of the option sold. However, some of the other costs of the market maker 
(inventory holding costs, hedging costs, etc.) would be dependent on the value of the option 
bought or sold. It is also important to note that, in general, these bid-ask spreads, are much larger 
than those for most exchange-traded options. 
 
For our empirical tests, we pool the data on caps and floors, since it allows us to obtain a wider 
range of strike rates, covering rates that are both in-the-money and out-of-the-money, for both 
caps and floors. Before doing so, we check for put-call parity between caps and floors, and find 
that, on average, put-call parity holds in our dataset, although there may be deviations from 
parity for some individual observations. However, these apparent deviations are unsystematic, 
and they may not be actual violations due to the high cost of carrying out the arbitrage using 
“off-market” swaps. These parity computations are a consistency check as well, which assures us 
about the integrity of our dataset. 
 
 

II. How do Liquidity and Option Prices vary? 
 
We use implied volatilities from the Black-BGM model to characterize option prices throughout 
the analysis from here on.8 The raw implied volatility obtained from the Black model removes 
underlying term structure effects from option prices.9 Therefore, a change in the implied 
volatility of an option from one day to the next can be attributed to changes in interest rate 
uncertainty, or other effects not captured by the model, and not simply due to changes in the 
underlying term structure. Further, we scale the implied volatility of an option at a particular 

                                                           
8 The use of implied volatilities from a variant of the Black-Scholes model, even though it is a model 
dependent measure, is in line with all prior studies in the literature, including Bollen and Whaley (2004). 
The details of the calculation of implied volatility are provided in the appendix. 
9 Our implied volatility estimation is likely to have much smaller errors than those generally encountered in 
equity options (see, for example, Canina and Figlewski (1993)). We pool the data for caps and floors, which 
reduces errors due to mis-estimation of the underlying yield curve. The options we consider are much 
longer term (the shortest cap/floor is 2 year maturity), which reduces this potential error further. In 
addition, for most of our empirical tests, we do not include deep ITM or deep OTM options, where 
estimation errors are likely to be larger. Furthermore, since we consider the implied flat volatilities of caps 
and floors, the errors are further reduced due to the implicit “averaging” in this computation. 
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strike rate by the implied volatility of an at-the-money option with the same maturity on the 
same day, to obtain the scaled implied volatility (ScaledIV) of that option on that particular day. 
The ScaledIV is a cleaner measure of option prices, since even the at-the-money option volatility 
has been factored out of the implied volatility of each option contract. In addition, in the 
empirical tests where we use ScaledIV, we control for the shape of the volatility smile (using 
functions of LMR), and use several term structure variables as approximate controls for the 
skewness and excess kurtosis in the underlying interest rate distribution. In the presence of these 
controls, the changes in the ScaledIV for a particular option cannot be attributed to changes in the 
underlying term structure or to changes in the level of volatilities at that maturity. Therefore, the 
ScaledIV can be effectively used to examine factors such as liquidity, other than the underlying 
term structure or interest rate uncertainty that may affect option prices in this market.10 In the 
rest of the paper, we use the ScaledIV as the “adjusted” price of the option, for every strike and 
maturity. 
 
A. Time-variation in Liquidity and Option Prices 
 
Figure 1 presents the surface plots for the ScaledIV over time, by moneyness represented by 
LMR.11 The plots are presented for three representative maturities - 2-year, 5-year, and 10-year - 
for the pooled cap and floor data. These plots clearly show that there is a significant smile curve 
in interest rate options in this market, across strike rates. The smile curve is steeper for short-term 
options, while for long-term options, it is flatter and not symmetric around the at-the-money 
strike rate. Both the curvature and the slope of the volatility smile show significant time-
variation, sometimes even on a daily basis. The changes in the curvature and slope over time are 
more pronounced for the 2-year maturity options, although they are also perceptible for the 
longer maturity options.  Figure 1 also presents the surface plot of the Euro spot rates from two to 
ten years maturity over our sample period. Similar to the volatility surfaces, the Euro term 
structure surface also shows significant time variation. It is clear that there is an increase in spot 
rates in the early part of our sample, followed by a flattening of the term structure due to an 
increase, primarily in the rates at the shorter end of the term structure, during the latter part of 
our sample period. Therefore, both the level of interest rates and the slope of the term structure 
exhibit significant time variation over our sample period. 
 
Figure 2 presents the time series plots of the scaled bid-ask spreads for each maturity bucket, by 
moneyness. The out-of-the-money bucket contains caps with LMR less than -0.1 and floors with 
LMR greater than 0.1. Similarly, the in-the-money bucket contains caps with LMR greater than 

                                                           
10 Changes in the ScaledIV, in the presence of these controls, are somewhat analogous to the excess returns 
used in asset pricing studies.  
11 These plots are presented for representative maturities of 2, 5, and 10 years, since the plots for the other 
maturities are similar. In addition, since 3-D plots require the data to be complete over the entire grid, we 
present the volatility smiles over the LMR range from -0.3 to +0.3, which is the subset of strikes over which 
complete data are  available over a substantial number of days in our dataset.  
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0.1 and floors with LMR less than -0.1. The at-the-money bucket contains caps and floors with 
LMR between -0.1 and 0.1. For each day and each maturity, the scaled bid-ask spreads within 
each bucket are averaged, and then plotted over time. Each plot present the time-series of the 
scaled bid-ask spreads for the nine option maturities, separately for the three moneyness groups. 
These plots clearly indicate that there is significant time-variation in scaled bid-ask spreads, 
across maturity and moneyness. In addition, within each moneyness group, there appear to be 
both systematic and unsystematic components (across maturities) to the time variation in the 
scaled bid-ask spreads. Indeed, the extent of commonality in the time-variation in bid-ask 
spreads in this market is one of the primary questions we investigate in this paper. 
  
B. Smile Across the Strike Rates 
 
As argued in the introduction, the relationship between the liquidity of an asset and its price is of 
fundamental importance in any asset market. This relationship for common underlying assets 
like stocks and bonds usually predicts that more liquid assets have lower returns and higher 
prices. However, for derivative assets, especially options, this relationship may go the other way. 
In addition, there is no reason to expect that either liquidity or price is exogenously determined. 
Both liquidity and price may be endogenously determined by some set of exogenous variables. 
Therefore, in this section, we estimate a simultaneous equation model of liquidity (scaled bid-ask 
spreads) and price (ScaledIV), using an array of macro-financial variables as the exogenous 
determinants of these two endogenous variables.  
 
However, unlike underlying asset markets, option markets have another dimension (the strike 
price/rate), along which both liquidity and price change, as shown in the figures before. 
Therefore, we must control for these strike rate effects, in order to correctly interpret the effect of 
the exogenous variables on price and liquidity. In order to correctly control for strike rate effects, 
we must estimate the relationship between the option price and the strike rate, i.e., the overall 
form of volatility smiles in this market. Therefore, we estimate various functional forms for 
volatility smiles, using pooled time-series cross-sectional regressions of ScaledIV on various 
functions of LMR. The most common functional form for the volatility smile is a quadratic 
function of LMR, which is also supported by the plots in Figure 1. In order to account for the 
asymmetry, if any, in the smile curve, we allow the slope of the smile curve to differ for in-the-
money and out-of-the-money options, as follows: 
 

( )LMRcLMRcLMRccScaledIV LMR *1*4*3*21 0
2

<+++=   (1) 
 
In Table III, we report the results for this quadratic functional form with the asymmetric slope 
term, since it fits the observed volatility smiles the best.12 The regression coefficients in all the 

                                                           
12 We also tested a specification with an asymmetric term for the curvature of the smile, but it did not add 
any significant explanatory power over the specification with the asymmetric term for just the slope of the 
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alternative specifications, for each maturity, are highly significant. In addition, the specification 
we report explains over half of the variability in the scaled implied volatilities. In most 
specifications, the asymmetry term for the slope of the smile is statistically significant, indicating 
that the shape of the volatility function is different for in-the-money options, as compared to that 
for out-of-the-money options. We also considered including other option Greeks in the above 
specifications. We did not do so for two reasons. First, the squared term for the LMR included 
above is an (approximate) proxy for the convexity term. Second, introducing other option Greeks 
explicitly may introduce potential collinearity, since, to a first order approximation, these risk 
parameters can be modeled as linear functions of volatility and the square root of the time to 
expiration.13 Therefore, in all the tests that follow, we control for the strike price effects using the 
asymmetric quadratic function of LMR.  
 
C. How are Liquidity and Price Related in the Interest Rate Options Market? 
 
We first estimate the correlation between ScaledBAS and ScaledIV, within each of the three 
moneyness buckets defined earlier (OTM/ATM/ITM), separately for each maturity. For 
example, the correlation between the ScaledBAS and the ScaledIV for the 5-year maturity 
caps/floors is 0.78 for OTM options, 0.46 for ATM options, and 0.43 for ITM options. Figure 3 
presents the sample scatter plots for the 5-year maturity options, for all the three moneyness 
buckets. The plots for the other maturities are similar. Across all the nine maturities, we find that 
the average of the correlation coefficients (between the ScaledBAS and ScaledIV) is 0.68 for OTM 
options, 0.50 for ATM options, and 0.46 for ITM options. Although these are just raw correlations 
between illiquidity and price, they do indicate that, on average, more illiquid options appear to 
have higher prices, across all moneyness buckets and maturities. However, there is no reason to 
expect that either price or liquidity is exogenously determined – most likely, both price and 
liquidity affect each other endogenously, while being jointly determined by a set of exogenous 
macro drivers.  
 
Next, we estimate a simultaneous model that endogenizes both price and liquidity, using several 
macro-financial variables as fundamental exogenous drivers of these two endogenous variables, 
controlling for strike price effects, for each of the 9 option maturities individually: 
 

( )

DAXVoldDefSprddScaledIVddScaledBAS
SwpnVolcSlopecMratec

LMRcLMRcLMRcScaledBASccScaledIV LMR

*4*3*21
8*76*6                    

.1*5*4*3*21 0
2

+++=
++

+++++= < 
(2) 

 
 
                                                                                                                                                                             
smile.  We got similar results when we tested a polynomial specification with higher order terms, which 
turned out to be statistically unimportant. 
13 See, for example, Brenner and Subrahmanyam (1994), who provide, in the context of the Black-Scholes 
model, approximate values for the risk parameters of options that are close to being at-the-money on a 
forward basis. 
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The intuition for examining these macro-financial variables is as follows. In the first equation of 
the simultaneous equation model, we include variables that are more likely to affect option prices 
directly rather than through the liquidity effect. These include term structure variables, as well as 
LMR controls for strike price effects. In the second equation, we include variables that are more 
likely to directly affect the liquidity of these options. These include variables reflecting 
uncertainty in the equity markets and the aggregate credit risk in the banking sector. Of course, 
due to the simultaneous nature of the model, all the exogenous variables, including the LMR 
controls for strike price effects, affect both price and liquidity.14 These five macro-financial 
variables, taken together, incorporate most of the relevant information about fundamental 
economic indicators, like expected inflation, GDP growth rate, and risk premia. Since these 
fundamental economic variables are available at most monthly, we must rely on daily proxies for 
the expectations of these economic factors in the financial markets. 
 
The spot 6-month Euribor (6Mrate) and the slope of the yield curve (Slope, defined as the 
difference between the 5-year and 6-month spot rates) are included as proxies for general 
economic conditions and the stage of the business cycle, as well as the direction of interest rate 
changes in the future. For example, if interest rates are mean-reverting, very low interest rates are 
likely to be followed by rate increases. Similarly, a steeply upward-sloping yield curve also 
signals rate increases. This would manifest itself in a higher demand for out-of-the-money caps in 
the market, thus affecting the prices and liquidity of these options. These variables also proxy for 
the expectations in the financial markets about future inflation and money supply. The swaption 
volatility (SwpnVol) is added to examine whether the patterns of the smile vary significantly with 
the level of uncertainty in the interest rate options market. During uncertain times, information 
asymmetry issues are likely to be more important than during periods of lower volatility. If there 
is significantly greater information asymmetry, market makers may charge higher than normal 
prices for away-from-the-money options, since they may be more averse to taking short position 
at these strike rates. This will lead to a steeper volatility smile, implying higher scaled implied 
volatilities of options. Also, during times of greater uncertainty, a risk-averse market maker may 
demand higher compensation for providing liquidity to the market, which would affect the shape 
of the smile. Since we have divided the volatility of each option by the volatility of the 
corresponding ATM cap to obtain the scaled IV, we use the ATM swaption volatility as an 
explanatory variable here, in order to avoid having the same variable on both sides of the 
regression equation. The ATM swaption volatility can be interpreted as a general measure of the 
future interest rate volatility.15   

                                                           
14 We considered other macro-financial variables as well, such as yields on speculative grade long-term 
debt, the short term repo rate as a proxy for money supply, and stock returns in European equity markets. 
These variables were eliminated due to collinearity with the five macro variables included in the model. 
15 Although swaption implied volatilities are not exactly the same as the cap/floor implied volatility, they 
both tend to move together. Hence, swaption implied volatilities are a valid proxy for the perceived 
uncertainty in the future interest rates, as reflected in the option market. The data on the ATM swaption 
volatility in the Euro market was obtained from DataStream. 
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The ATM volatility and term structure variables act as approximate controls for a model of 
interest rates displaying skewness and excess kurtosis. Typically, in such models, the future 
distribution of interest rates depends on today’s volatility and the level of interest rates. Thus, by 
including the contemporaneous volatility and interest rate variables in the regression, we try to 
ensure that the relationship of the scaled implied volatilities to liquidity is separate from the 
effect arising out of a more detailed structural model for the interest rates.  
 
In the second equation of the simultaneous equation model, the 6-month Treasury-Euribor 
spread (DefSprd) is included as a measure of the default risk of the constituent banks in the 
Euribor fixing. The volatility of the DAX index (DAXVol) proxies for the level of uncertainty in 
the European equity markets, which could also have an impact on market expectations of the 
future liquidity. Since stock prices reflect expectations about future cash flows and discount rates, 
the average volatility in equity market also proxies for the level of uncertainty in the expectations 
about future cash flows and discount rates. 
 
This simultaneous equation model is estimated using three-stage least squares, since the 
residuals in each equation are correlated with the endogenous variables, and the residuals are 
correlated across the two equations. We use instrumental variables to produce consistent 
estimates, and generalized least squares (GLS) to account for the correlation structure of the 
residuals across the two equations. In the first stage, we develop instrumented values for both the 
endogenous variables, using all exogenous variables in the system as instruments. In the second 
stage, based on a two-stage least squares estimation of each equation, we obtain a consistent 
estimate of the covariance matrix of the equation disturbances. Using this covariance matrix of 
residuals from the second stage, and the instrumented values of the endogenous variables from 
the first stage, we then do a GLS estimation as the third stage of the three stage least squares 
estimation.  
 
The results for this model are presented in Table IV. Our primary inference is regarding the sign 
of the coefficients c2 and d2. Both these coefficients are positive and statistically significant for all 
option maturities. This shows that, within an endogenous framework specified above, controlling 
for strike price effects and potential exogenous drivers of price and liquidity in this market, 
higher values of ScaledBAS are associated with higher values of ScaledIV, and vice-versa. In 
other words, more liquid options are priced lower, while less liquid options are priced higher, after 
taking into account the effects of other macro variables. This is an important result, and is quite 
different from the joint behavior of price and liquidity observed in underlying asset markets, like 
those for stocks and bonds. For example, in the equity markets, it has been shown that more 
liquid stocks have lower returns (higher prices) – what we observe here is the opposite, i.e., more 
liquid options have lower prices, and higher liquidity is actually associated with a discount, not a 
premium. The primary explanation for this result is the fundamental difference between 
derivative assets and underlying assets alluded to in the introduction – the fact that derivatives 
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are in zero net supply, have asymmetric risk exposures, and are tied to their underlying assets in 
terms of price and liquidity.  As argued earlier by Brenner, Eldor and Hauser (2001), for an asset 
in zero net supply, both the buyer and the seller are concerned about illiquidity pushing the 
prices in opposite direction. Depending on the risk exposure and the hedging needs of each side, 
either the “buyer-effect” (lower prices for illiquid assets) or the “seller-effect” (higher prices for 
illiquid assets) could dominate. In this market, we find that the “seller-effect” dominates and the 
more illiquid options have higher prices. In addition, we see that the coefficients c2 and d2 are 
generally increasing in the maturity of these options. This indicates that the longer maturity 
options exhibit a stronger liquidity effect, perhaps to compensate the seller for the illiquidity over 
a longer time frame. This sheds some light on the term structure dimension of liquidity effects in 
this market. 
 
The coefficients on the exogenous variables in the two equations provide important information 
about the common determinants of price and liquidity in this market. Higher spot rates are 
generally associated with higher scaled implied volatility, implying that when there are inflation 
concerns and expectation of rising interest rates, the dealers charge even higher prices (and wider 
bid-ask spreads) for away-from-the-money options. Note that the strike price effects are already 
controlled for, by including the LMR functions; so, this effect is incremental to the normal smile 
effects observed in this market. Once the effect of the spot rate is accounted for, the slope of the 
yield curve does not appear to have a significant effect on the ScaledIV. The impact of increasing 
interest rate uncertainty is similar – when swaption volatilities are higher, the scaled implied 
volatilities are also higher. This is indicative of a steepening of the volatility smile as options 
become more expensive. When there is more uncertainty in fixed income markets, dealers appear 
to charge even higher prices (and wider bid-ask spreads) for these options. Aggregate credit risk 
concerns, proxied by the default spread, do not appear to be significantly related to either price or 
liquidity in this market. However, equity market uncertainty does appear to be significantly 
associated with wider bid-ask spreads, and higher scaled implied volatilities. When there is 
greater uncertainty about future cash flows and discount rates in the economy, the scaled implied 
volatilities and bid-ask spreads of interest rate caps and floors is higher, adjusting for other 
effects. It appears that the revelation of information in the equity markets is one of the 
determinants of price and liquidity quotes posted by fixed income option dealers. 
 
To analyze the relationship between price and liquidity further, we re-estimate the simultaneous 
equation model on first differences. In Table V, we present the results of the simultaneous 
equation model where daily changes in ScaledIV and ScaledBAS are regressed on each other as 
well as changes in LMR functions and macro-financial variables, as follows: 
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This model explicitly tests for the relationship between daily changes in the price and liquidity of 
options, as opposed to the relationship between levels examined earlier. As before, we estimate 
this model separately for each option maturity. The results in Table V are similar to the ones 
reported in Table IV, although these models have lower explanatory power, which is not 
surprising since they are estimated based on daily changes. The daily change in ScaledIV is 
positively associated with the daily change in ScaledBAS, controlling for changes in option 
specific and macro-financial variables. In addition, we find that positive shocks to the level of 
uncertainty in the equity as well as fixed income markets are associated with positive shocks to 
both price and liquidity of these interest rate options, although these effects are weaker than 
those observed in the simultaneous equation model in levels. One of the reasons why these 
effects are weaker could be the nature of the relationship between shocks to liquidity/price and 
the shocks to these macro-financial variables: If the relationship between them is not 
contemporaneous, and one affects the other with a lag, we may not observe strong significance in 
the contemporaneous models estimated above. We deal with the issue of lagged responses in our 
later sections.   
 
The analysis above helps us understand the joint determinants of price and liquidity in this 
market. However, as the results indicate, there is a term structure element to the liquidity effects 
in this market, i.e., the variation in liquidity is not the same for all maturities. In addition, there 
are strike rate effects that we have controlled for. Therefore, the natural question is to what extent 
this liquidity is driven by common factors, across different strikes and maturities. In the next 
section, we explore these common drivers of liquidity in the interest rate option markets.  
 
 

III. Are there Common Drivers of Liquidity in this Market? 
 
We first examine the average correlations between scaled bid-ask spreads across different 
moneyness groups. As before, we categorize all the options into three moneyness groups (by 
LMR) – OTM, ATM, and ITM. Within each moneyness group, we have nine maturity buckets. For 
each maturity bucket, we have a time-series of scaled bid-ask spreads over 586 trading days. We 
compute the correlation between the scaled bid-ask spreads across different maturities, within 
each moneyness group. We average these correlations within the moneyness groups – these are 
reported as the diagonal elements in Table VI. For example, the OTM/OTM value of 0.68 is the 
average correlation between the nine maturity buckets within OTM options (so it is an average of 
9x8/2, i.e., 36 correlations). This indicates that the average correlation within OTM option scaled 
bid-ask spreads, across all maturities, is 0.68. In addition to the average correlations within each 
moneyness group, we also estimate the average correlations across the moneyness groups. For 
example, the OTM / ITM value of 0.24 is the average correlation between each maturity bucket 
within the OTM options segment with the corresponding maturity within the ITM options 
segment (there are 9x9, i.e. 81 correlations). This indicates that the average correlation between 
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OTM and ITM option scaled bid-ask spreads, across all maturities, is 0.24. These correlations 
indicate some interesting patterns. First, the scaled bid-ask spreads seem to be fairly highly 
correlated across maturities within each moneyness group, although this correlation is a bit lower 
for OTM options. Second, the correlations across moneyness groups is considerably lower, 
especially between OTM options and either ATM or ITM options. It appears that there is 
significant movement in the scaled bid-ask spreads, across maturities and strikes, but the OTM 
options seem to vary a bit differently from ATM and ITM options. The time-series plots of scaled 
bid-ask spreads presented in Figure 2 indicate similar patterns. 
 
These correlations and time-series plots indicate that some part of the variation in the scaled bid-
ask spreads appears to be systematic. From a market-wide perspective, it is important to 
understand if there is any systematic component to the liquidity shocks that have an impact on 
this market. This issue has strong implications for the pricing of liquidity risk in this market, as 
well as for hedging aggregate liquidity risk in interest rate options. If the liquidity shocks to this 
market are entirely unsystematic, then they do not create liquidity risk concerns, since they can 
be diversified away in a portfolio of options. However, if there is a systematic component to these 
liquidity shocks, then there may be liquidity risk concerns in this market, especially during 
periods of market stress.16 The structure of such systematic liquidity shocks, and their macro-
economic interpretation, can provide very important inputs for designing strategies to hedge 
aggregate liquidity risk in this market.  
 
A. Extracting the Common Liquidity Factor 
 
We use a panel regression framework to examine whether the time-series variation in the 
liquidity of individual options has any systematic market-wide component, after controlling for 
the changes in option specific information. We divide our options into 27 panels (9 maturities 
each for the 3 moneyness groups – OTM/ATM/ITM), and estimate the following regression 
model on daily changes: 17
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We include fixed effects for each panel to account for any panel-specific effects that may not be 
captured by the specification above. The intuition behind this regression is to examine the 
changes in liquidity, and remove the part of those changes that can be explained by changes in 
option specific variables, such as price (ScaledIV) and functions of LMR. Although the panels are 
formed based on three categories for moneyness, we still include the functions of LMR as 
                                                           
16 This issue has been explored in the equity market by Pastor and Stambaugh (2003) and Acharya and 
Pedersen (2005), and in the bond market by Longstaff (2004) and Longstaff et al (2005). 
17 In the equity markets, Jameson and Wilhelm (1992) show that the bid-ask spreads for options are related 
to option Greeks. As explained earlier, our asymmetric quadratic function of LMR acts as an approximate 
control for these Greeks, in addition to controlling for the shape of the volatility smile.  
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controls, because even within a moneyness bucket, the LMR of an option will change every day. 
Hence, we must account for the part of the change in ScaledBAS that is due to changes in LMR. In 
addition, including the change in ScaledIV takes into account the change in any other option 
specific information. 
 
We estimate this panel regression model using the Prais-Winsten Full FGLS estimator. The 
disturbances in this model are assumed to be heteroskedastic and potentially correlated across 
the 27 panels. In addition, we allow for first-order autocorrelation in the disturbances, within 
each panel, with the coefficient of the AR(1) process allowed to be different for each panel. 
Therefore, the standard errors are robust to the error structure specified in the model, and the 
parameter estimates are conditional on the estimates of the disturbance covariance matrix and the 
autocorrelation parameters estimated for each panel. For robustness, we estimate this panel 
regression using alternative error structures and estimation procedures (including maximum 
likelihood), and find similar results. 
 
The results for this panel regression are presented in Table VII. As expected, based on the results 
in the previous section, positive changes in scaled implied volatilities are associated with positive 
changes in the scaled bid-ask spreads, suggesting that improvements in liquidity are associated 
with a decrease in prices in this market, controlling for strike rate effects. Since this regression is 
estimated as a panel over our entire dataset, we have a very large number of observations. Across 
all of these 49,731 observations, we are trying to explain the changes in liquidity in terms of 
changes in prices and changes in LMR controls, using only 5 parameters. The model is 
statistically significant and explains about 6% of the variation in liquidity changes. Therefore, 
even though some part of the liquidity changes are statistically significantly associated with 
changes in option specific parameters, there appears to be a large part of the change in liquidity 
that may have systematic components.  
 
If there are no systematic components in the changes in liquidity in this market, then we should 
not see any structure in the residuals obtained from this regression. Any structure in these 
residuals would point towards a missing common systematic factor that affects liquidity changes. 
Therefore, we examine the principal components of the correlation matrix of these residuals 
across the panels. We use the correlation matrix, since principal components are sensitive to the 
units in which the underlying variables are measured. Using the correlation matrix instead of the 
covariance matrix avoids this potential error. 
 
Since we have 27 panels, we obtain a 27x27 correlation matrix, which provides us with 27 
principal components, each one of length 27. If the residuals were perfectly correlated, the first 
eigen value would be 27, and a single factor would explain all the variation. If the residuals were 
uncorrelated, all 27 eigen values would be 1.  The results of this principal components analysis 
are presented in Table VIII. The first eigen value is 8.66, which implies that about 32% (8.66/27) 
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of the variation in these residuals can be explained by first common factor. This is statistically 
significant, and indicates that about one-third of the variation in the changes in residual liquidity 
(those not explained by the changes in option specific variables) is accounted for by one common 
factor. This strongly suggests that there is a market-wide systematic component to the liquidity 
shocks that affect this market. The second principal component explains an additional 14% of the 
variation, while the third principal component and others are statistically insignificant.  
 
The structure of these principal components (eigenvectors), especially the first one, shows some 
interesting patterns. The first principal component has a negative weight on all the OTM options, 
and a positive weight on the ATM and the ITM options. Further, the weight on the ITM options is 
greater than that on the ATM options. Within each moneyness bucket, the weights across 
maturities are relatively flat. This suggests that the market-wide systematic liquidity shock affects 
the OTM options differently from the ATM and the ITM options. In particular, the effect of this 
common liquidity shock is to widen the bid-ask spreads for the ATM and the ITM options, while 
at the same time narrowing the bid-ask spreads for the OTM options. This indicates a 
substitution effect, where the market demand, when hit by an adverse common liquidity shock, 
shifts away from the ATM and the ITM options to the OTM options. Since the OTM options are 
much cheaper than the ATM/ITM options, this finding is quite intuitive – adverse common 
liquidity shocks do not just dry up the liquidity of these options across the board. Instead, they 
shift the demand from expensive to cheaper options. The loading on the ITM options is even 
higher than that on the ATM options, which supports this explanation, since it implies that the 
reduction in demand is greater amongst the ITM options than in the ATM options. The second 
principal component is a parallel shock across all maturities and moneyness, while the third 
eigenvector and others have no significant structure.  
 
B. Macro-economic Drivers of the Systematic Liquidity Shock 

 
Our results, so far, indicate the presence of a significant common factor that drives liquidity 
changes in interest rate options across strikes and maturities. In this section, we shed light on the 
more primitive drivers of this systematic liquidity factor. If changes in macro-economic variables 
can be linked with contemporaneous or future changes in the systematic liquidity factor, this 
would have important implications for the measurement of liquidity risk in this market, as well 
as for hedging aggregate liquidity risk in a portfolio of interest rate options.  
 
The simultaneous equation models estimated earlier in this paper indicate that changes in the 
uncertainty in equity and fixed income markets are associated with changes in liquidity for 
options, across strikes rates, for all maturities. In this section, we use the same five macro-
financial variables to examine how much of the systematic liquidity factor they can explain.  
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We first construct a daily systematic liquidity factor based on the residuals analysis in the 
previous section. We use only the first principal component, which explains 32% of the residual 
variation in the scaled bid-ask spreads. Using the first eigenvector as weights, for each day, we 
estimate a weighted-average residual across the 27 maturity-strike buckets. This gives us a daily 
time-series of the unexplained first common factor of liquidity changes in this market. We regress 
this factor on contemporaneous and lagged daily changes in the five macro-financial variables 
(the short rate, slope of the term structure, swaption volatility, default spread, and equity market 
volatility). We use the Akaike information criterion to determine the appropriate number of lags 
to include in the regression. The results of this regression model are presented in Table IX. 
 
We find that the incremental improvement in the explanatory power of the model is insignificant 
beyond the fourth lag in the macro-financial variables. These macro-financial variables together 
explain about 25% of the unexplained first common liquidity factor in this market. The short rate 
and the slope of the term structure do not appear to have much effect on contemporaneous and 
future values of this factor. This implies that the expectations about inflation, money supply, or 
general business conditions do not appear to have a significant effect on the liquidity of the 
options in this market. Nor do they appear to affect the prices of these options, beyond the effects 
dictated by the no-arbitrage conditions embedded in the option pricing models themselves.   
 
Similarly, an increase in aggregate credit risk concerns in the economy, proxied by the default 
spread variable, do not appear to be related to the systematic liquidity shock that affects the fixed 
income options markets. In the case of option contracts, only the buyer of the option is exposed to 
the credit risk of the seller of the option. Since the market for these options is an OTC market, the 
buyers of these caps and floors are exposed to the risk of the dealers defaulting. However, there 
are two primary reasons why these credit risk effects do not appear to affect the liquidity in this 
market. First, most of the dealers in this market are investment grade institutions – in fact many 
of them are high investment grade firms, with very little credit risk.18 Therefore, cap and floor 
buyers generally do not worry about the dealers defaulting on these contracts. Second, and more 
importantly, this is a dealer-driven market where most of the trades are in the form of dealers 
selling caps and floors to corporate clients, with the prices being set by the dealers, who have 
more market power than the typical buyer of these contracts. Therefore, it is not surprising to 
find that the dealers do not care as much about aggregate credit risk in the economy, since they 
are mostly on the sell side. It would be interesting to examine the impact of credit risk concerns 
on the liquidity of options where the buy side is as influential as the sell side in setting prices and 
bid-ask spreads, as would happen in exchange-traded option markets.  
 
The uncertainty proxies, both in the fixed income and equity markets, appear to be significant 
drivers of this systematic liquidity shock in fixed income options markets. Lagged changes in the 

                                                           
18 The institution that supplied our data, WestLB, was an AAA-rated institution, during the period of this 
study, since it was de facto guaranteed by the German Treasury.    
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DAX index volatility up to three days earlier, and lagged changes in the swaption volatility up to 
4 days earlier, are significant in explaining the time variation in the systematic liquidity factor. 
However, for both of these variables, the coefficient on contemporaneous changes is either 
insignificant or weakly significant. The coefficients on lagged changes, with a lag of between one 
and four days, are mostly significant. These results indicate that the traders in fixed income 
option markets appear to use the levels of uncertainty in both the fixed income and equity 
markets to form their own expectations about future liquidity and the liquidity risk premium. 
When they observe a positive shock to the uncertainty in these markets, they appear to respond 
by increasing the price of caps and floors, while simultaneously widening the bid-ask spreads 
that they quote. It appears that these liquidity effects in the fixed income option markets appear 
between one and four days after volatility shocks are observed in the fixed income as well as 
equity markets.  
 
As a robustness check, we return to the panel regression model of equation (4), and re-estimate 
the model, after including contemporaneous and four lags for each of the five macro-financial 
variables. The intuition behind this exercise is to check whether the macro-financial variables, 
identified as being related to the unexplained systematic variation in scaled bid-ask spreads, do 
indeed help in explaining the variation in the scaled bid-ask spreads of these options across strike 
rates and maturities. We find that this augmented panel regression model explains about 12.7% 
of the variation in the scaled bid-ask spreads, up from about 6% that was explained only by the 
changes in option specific variables. Therefore, introducing contemporaneous and lagged 
changes in these macro-financial variables more than doubles the explanatory power of the panel 
regression model, which attempts to jointly model the time-variation in the scaled bid-ask 
spreads across different strike rates and maturities using nearly 50,000 observations. Further, the 
first principal component of the correlation matrix of residuals from this augmented panel 
regression model accounts for about 14.5% of the variation in the residuals. While statistically 
significant, it is much lower than the 32% explained by the first principal component of residuals 
from the panel regression model without the macro-financial variables. Therefore, adding the 
macro-financial variables explains a large part of the common factor that drives liquidity in this 
market. In fact, the macro-financial variables, especially the volatilities in the equity and fixed 
income markets, remove most of the structure in the part of the variation in liquidity in caps and 
floor unexplained by changes in option-specific variables. The remaining unexplained variation 
in the liquidity of these options is largely unsystematic.  
 
Our results in this section indicate a certain level of predictability in the systematic liquidity 
shock that affects the fixed income option markets. This has important implications for the 
measurement of liquidity risk in this market, as well as for the hedging of aggregate liquidity risk 
in portfolios of caps and floors. From a risk measurement perspective, since the liquidity factor in 
this market is related to lagged changes in volatilities, a GARCH-type model could be used for 
forecasting the volatility in equity and fixed income markets, and the systematic liquidity shock 
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estimated based on these volatility shocks. From a risk-hedging perspective, institutions holding 
portfolios of caps and floors could construct macro hedges against the liquidity risk in these 
options by taking appropriate positions in the volatilities in equity and fixed income markets. For 
both of these objectives, it is crucial to understand the extent of commonality in liquidity in this 
market, and the primitive structure of this systematic liquidity factor. 
 
 

IV. Conclusions 
 
The liquidity of an asset has an important influence on its market price.  This influence has been 
analyzed extensively in the U.S. equity markets, and, to a lesser extent, in the U.S. treasury,  
corporate bond, and some foreign exchange option markets, in recent years.  Two important facts 
have emerged from these investigations – illiquidity suppresses the price of an asset, resulting in 
higher expected return, and there is a common factor in liquidity across various assets, 
covariation with which may be a systematic risk factor.  
 
In contrast to this work on the underlying stock and bond markets, there is very little work on the 
influence of liquidity in the derivatives market. This gap is striking for three reasons. First, 
derivatives markets are an important segment of the global financial markets, and thus need to be 
taken into account, in assessing overall liquidity in financial markets.   Second, as pointed out in 
the introduction, the effect of liquidity on the prices of derivatives is, by no means, clear cut.  
With zero net supply, both the buyers and sellers of derivatives are exposed to its illiquidity. 
Depending on the risk exposures and the hedging needs of either side, the prices of illiquid 
derivatives could be higher or lower, as compared to the prices of derivatives that are more 
liquid. Third, the interest rate derivatives market is an OTC market, where the counter-parties 
have to take into account the risk of default on the contract.  In times of crisis, this risk becomes 
high and may have an influence on the liquidity in these markets.  
 
We shed light on this important question and find that more illiquid interest rate options are 
more expensive. Thus, this result is in sharp contrast to earlier findings in the stock/bond markets 
and some exchange traded currency option markets. As our results indicate, the relationship 
between illiquidity and asset prices cannot be generalized based on evidence from just the stock 
and the bond markets. 
 
Our second result, on the commonality in liquidity across options, is similar to what has been 
found in other markets. We find that there is a significant common component to the liquidity of 
interest rate options at various strike prices and maturity. We also find that this common 
movement is explained by the shocks to the volatility in the equity and interest rate markets. An 
increase in uncertainty in the equity and interest rate markets appears to cause a negative 
liquidity shock in the interest rate options market. In terms of more primitive macro-economic 
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factors, it is not the expectations about inflation or growth that seem to affect the liquidity in 
interest rate options – it is the uncertainty about these expectations that affects the liquidity in 
this market. Interestingly, this systematic liquidity shock causes shifts in the demand for these 
options towards cheaper OTM options, and away from relatively more expensive ATM and ITM 
options.  
 
Our results have important implications for the role of liquidity in the prices of derivative 
instruments.  It would be worthwhile to explore this effect in other derivatives markets and for 
derivative instruments other than options, to see if this influence is similar, especially in different 
market settings.  It would also be interesting to focus on crisis periods, such as the aftermath of 
the Russian default in 1998 and the LTCM failure that followed thereafter, to examine the issue of 
liquidity in such an extreme scenario.  A related question that has not been explored in the 
literature so far is the interplay between the liquidity effects in the underlying asset market 
versus the market for derivatives.  The key question is whether and how the commonality in the 
liquidity factor affects the interactions and the lead-lag relationships between these two markets.  
We leave these questions for future research. 
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Appendix: Implied Volatility in the Black Model for Caps and Floors 

The standard model used for dealer quotations for interest rate caps and floors is the Black (1976) 
model of pricing of options on futures/forward contracts. The model is a variant of the basic 
Black and Scholes (1973) option-pricing model. Applied to the interest rate option context, the 
model assumes that interest rates are lognormally distributed and relates the price of a European 
call option (C) and a put option (P), at time 0, on an interest rate forward rate agreement (FRA) to 
the underlying variables as follows:19
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where 
f = forward interest rate for the period t  to t+m, 
σ = annualized volatility of the forward interest rate t on the maturity date, 
m= the maturity period of the underlying loan, 
t = maturity date of the option, 
k =  strike rate of the option, 
BB

                                                          

0,t+m= the zero bond price at time 0, for the bond maturing at date t+m. 
 
Of course, the key variable in the above equations, which is not observable, but about which 
market participants may have differing views, is the volatility. Interest rate option quotations are 
usually for the implied volatility that reflects the market price, rather than the price directly. 
 
An interest rate cap (floor) is a collection of caplets (floorlets). A caplet (floorlet), in turn, is a 
single European call (put) option on a reference interest rate, expiring on a specific date. Hence, a 
cap (floor) can be regarded as a portfolio of European call (put) options on interest rates, or 
equivalently, put (call) options on discount bonds. Typically, an interest rate cap is an agreement 
between a cap writer and a buyer (for example, a borrower) to limit the latter’s floating interest 
payments to a specific level for a given period of time. The cap is structured on a specific 
reference rate (usually the 3- or the 6- month Libor (London Interbank Offer Rate) or Euribor 

 
19 This formula is also consistent with the model proposed by Brace, Gatarek and Musiela (1997) [BGM] and 
Miltersen, Sandmann and Sondermann (1997), which is popular among practitioners. BGM derive the 
processes followed by market quoted rates within the HJM framework, and deduce the restrictions 
necessary to ensure that the distribution of market quoted rates of a given tenor under the risk-neutral 
forward measure is lognormal. With these restrictions, caplets of that tenor satisfy the Black (1976) formula 
for options on forward/futures contracts. 
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(Euro Interbank Offer Rate)) at a predetermined strike level. The reference rate is reset at periodic 
intervals (usually 3- or 6- months). In a similar manner, an interest rate floor contract sets a 
minimum interest rate level for a floating rate lender. The cap and floor contracts are defined on a 
pre-specified principal amount.20

 
A caplet with maturity ti and strike rate k, pays at date ti, an amount based on the difference 
between the rate (ri) at time ti and the strike rate, if this difference is positive, and zero otherwise. 
The amount paid is based on the notional amount and the reset period of the caplet and is paid 
on a discounted basis at time ti. The payoff of this caplet at date ti on a notional principal of €A is:  
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The payoff from a floorlet can be described in a similar manner.  
 
Since the interest rate over the first period is known, there is no caplet corresponding to the first 
period of the cap. For example, a 2-year cap on the 6-month Euribor rate, with 4 semiannual 
periods over its life, would consist of 3 caplets, the first one expiring in 6 months, and the last one 
in 1 year and 6 months. Thus, the underlying interest rate for the first period is the 6-month 
Euribor rate on the date 6 months from initiating the cap contract. 
 
Each caplet or floorlet has to be valued separately, using a valuation model such as the Black or 
BGM model in equation (1),  (the same model that is generally used by the market for quotation 
purposes), with the price of the cap or floor being the sum of these prices. The volatilities used for 
each caplet or floorlet, which are generally different, across strike rates and maturities, are 
sometimes called spot volatilities. The market quotation for interest rate caps and floors, however, 
is based on the same volatility for all the caplets in a particular cap (or the floorlets in a particular 
floor). In other words, the market price of a cap (or floor) can be derived by plugging in this 
constant volatility for all the component caplets (or floorlets) in the contract. This constant 
volatility is referred to as the flat volatility for the particular cap (or floor) and varies with the 
maturity of the contract. Since caps are portfolios of caplets, the implied flat volatilities of caps 
reflect some average of the implied spot volatilities of individual caplets. In this paper, our 
primary objective is to examine liquidity effects in interest rate options. For doing that, we need 
to focus on traded assets, which are caps and floors. Therefore, we use the flat volatilities of caps 
and floors, since spot volatilities would correspond to caplets and floorlets, which are, untraded 
assets. We also checked the prices of the individual caplets/floorlets, which are obtained by 
“bootstrapping” and found that our results are broadly similar. 

                                                           
20 Interest rate caps and floors for various maturities and reference rates in all the major currencies are 
traded in the over-the-counter (OTC) markets. The most common reference rate is the 3-month Libor for 
USD caps/floors, and the 6-month Euribor in the euro markets. 
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Table I 
 

Descriptive Statistics for Cap and Floor Prices 
 

This table presents descriptive statistics on euro (€) interest rate cap and floor prices, across maturities 
and strike rates, over the sample period Jan 99 - May 01, obtained from the WestLB Global Derivatives 
and Fixed Income Group. The caps and floors are grouped together by moneyness into five categories. 
The moneyness for these options is expressed in terms of the Log Moneyness Ratio (LMR), defined as the 
log of the ratio of the par swap rate to the strike rate of the cap/floor. All prices are averages, reported in 
basis points, with the standard deviations of these prices in parenthesis.  
 

 
Maturity  

   
Caps 

      
Floors 

  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 
 LMR 

< -0.3 
-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 2.1 11.1 43.2  107.7 250.5  250.5 153.7 55.5 13.6 3.6 

 (0.5)   (5.8) (19.8)  (30.9)   (58.8)   (48.1)  (50.7)  (25.4)  (7.9 ) (2.0) 
            

3-year 10.7  37.7  91.9  209.6 481.3   529.1  285.3  111.3  32.7  6.9  
 (10.0)  (20.0)  (33.8)  (52.3)  (133.4)  (114.2)  (74.7)  (44.6)  (18.0)  (4.6) 

4-year 22.3  72.6  152.7 311.3  674.4   728.3  406.4  176.1  62.1  12.0  
  (12.5) (32.2)  (49.7)  (78.3)  (193.1)  (138.7)  (98.9)  (64.8)  (27.8)  (7.9) 

5-year 42.7  119.4  221.7  409.1  872.3   910.8  519.5  244.7  94.3  19.2  
 (16.3) (48.6)  (67.2)  (95.4)  (252.2)  (161.2)  (122.5)  (84.5)  (35.2)  (13.9) 

6-year 66.9  163.7 286.6  507.9  1,006.6  1,093.1  663.8  323.7  128.6  27.2  
 (20.2)  (64.4)  (84.6)  (109.5)  (257.4)  (173.2)  (133.1)  (101.9)  (43.5)  (18.7) 

7-year 93.7 210.9  355.8  610.8  1206.4  1,239.0  809.3  393.3  164.1  36.9  
 (25.4)  (82.2)  (99.3)  (125.3)  (275.5)  (147.0)  (127.5)  (115.2)  (51.9)  (33.0) 

8-year 123.9  264.2  433.2  706.8  1,248.2  1,284.7  924.7  425.2  199.2  46.8  
 (31.4)  (98.1)  (115.9)  (162.8)  (253.4)  (120.8)  (139.3)  (108.3)  (59.6)  (32.8) 

9-year  152.1  309.6  509.9  811.8  1,310.3  NA     997.1  482.3  235.0  58.9  
  (35.6)  (103.2)  (128.7)  (172.2)  (205.3)       (150.2)  (120.9)  (69.6)  (41.5) 

10-year  179.6  347.8  598.0  881.3  1,493.4  NA 815.5  541.7 242.9  71.3  
 (39.8) (106.7)  (140.0)  (153.4)  (275.3)       (31.1) (139.6)  (61.9) (50.1) 
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Table II 
 

Scaled Bid-Ask Spreads for Caps and Floors 
 

This table presents summary statistics on the bid-ask spreads for euro (€) interest rate caps and floors, 
scaled by the average of the bid and ask prices for the options, across strike rates, for different maturities. 
The statistics are presented for the entire sample period, Jan 99 - May 01, based on data obtained from the 
WestLB Global Derivatives and Fixed Income Group. The caps and floors are grouped together by 
moneyness into five categories. The moneyness for these options is expressed in terms of the Log 
Moneyness Ratio (LMR), defined as the log of the ratio of the par swap rate to the strike rate of the 
cap/floor. All the spreads are averages, reported as percentages, with the standard deviations of the 
scaled spreads in parenthesis.  
 
 

Maturity 
   

Caps 
      

Floors 
  

            
 Deep 

OTM 
OTM ATM ITM Deep 

ITM 
 Deep 

ITM 
ITM ATM OTM Deep 

OTM 
 LMR 

< -0.3 
-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

 LMR 
< -0.3 

-0.3 < 
LMR 
< -0.1 

-0.1 < 
LMR 
< 0.1 

0.1 < 
LMR 
< 0.3 

LMR 
> 0.3 

            
2-year 80.9% 32.4% 14.7% 7.1% 3.8%  2.5% 4.5% 13.3% 30.8% 77.2% 

 (21.2%) (14.3%) (4.8%) (2.4%) (0.5%)  (1.3%) (1.3%) (7.9%) (11.7%) (24.1%) 

3-year 44.2% 19.0% 11.4% 7.0% 3.8%  2.9% 4.7% 11.2% 31.6% 72.0% 
 (22.9%) (5.7%) (3.2%) (2.5%) (0.6%)  (1.1%) (1.1%) (6.1%) (18.1%) (25.2%) 

4-year 26.1% 14.4% 9.1% 6.2% 4.1%  2.9% 4.5% 8.4% 22.2% 59.9% 
 (9.4%) (4.7%) (2.5%) (2.2%) (1.0%)  (1.0%) (1.0%) (2.5%) (14.5%) (28.7%) 

5-year 20.0% 12.6% 8.6% 6.1% 4.1%  3.1% 4.7% 8.2% 19.8% 59.5% 
 (5.5%) (3.9%) (2.3%) (2.1%) (0.9%)  (1.0%) (1.1%) (2.3%) (13.2%) (27.4%) 

6-year 18.3% 12.1% 8.5% 5.7% 4.1%  3.3% 4.7% 7.9% 15.8% 50.2% 
 (4.8%) (3.6%) (2.2%) (1.4%) (0.9%)  (0.9%) (1.2%) (2.0%) (7.5%) (24.6%) 

7-year 17.6% 11.5% 8.4% 5.5% 4.1%  3.4% 4.6% 7.8% 14.0% 45.3% 
 (4.4%) (3.4%) (2.1%) (1.3%) (3.9%)  (0.9%) (1.1%) (1.9%) (5.0%) (24.6%) 

8-year 17.1% 11.1% 8.3% 5.6% 4.0%  3.2% 4.5% 8.1% 14.0% 42.3% 
 (3.8%) (3.3%) (2.0%) (1.1%) (0.3%)  (1.0%) (1.1%) (2.0%) (5.1%) (21.9%) 

9-year 17.1% 11.0% 8.3% 6.0% 4.2%  NA 4.8% 8.3% 14.0% 40.0% 
 (3.4%) (3.1%) (1.9%) (0.7%) (0.3%)   (1.0%) (2.0%) (5.2%) (20.8%) 

10-year 17.1% 11.2% 7.9% 6.2% 4.1%  NA 4.7% 8.1% 14.9% 38.6% 
 (2.9%) (3.0%) (1.8%) (0.6%) (0.3%)   (1.2%) (2.2%) (5.5%) (20.6%) 
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Table III 
 

Functional Form for Controlling Strike Rate Effects 
 
This table presents regression results when the scaled implied flat volatility for euro (€) interest rate caps 
and floors, for various maturities, is regressed on a quadratic function of the Log Moneyness Ratio (LMR) 
with an asymmetric slope term, as follows: 
 

LMRcLMRcLMRccIVScaled LMR *1*4*3*21 0
2

<+++=  
 

The statistics are presented for the entire sample period, Jan 99 - May 01, based on data obtained from the 
WestLB Global Derivatives and Fixed Income Group. The coefficients and regression statistics are 
presented based on data for caps and floors pooled together, for all maturities. The asterisk implies 
significance at the 5% level. 
 

 
Maturity 

 

 
c1 

 
c2 

 
c3 

 
c4 

 
Adj R2

      

2-year 1.06* -1.27* 3.67* 0.99* 0.58 

3-year 1.09* -0.82* 2.12* 1.07* 0.51 

4-year 1.08* -0.61* 1.69* 0.91* 0.60 

5-year 1.05* -0.02* 0.77* -0.05 0.58 

6-year 1.01* 0.40* 0.08* -0.69* 0.48 

7-year 1.02* 0.55* -0.10* -0.83* 0.42 

8-year 1.00* 0.38* -0.11* -0.44* 0.54 

9-year 1.00* 0.32* -0.05* -0.36* 0.58 

10-year 1.06* 0.34* -0.04* -0.27* 0.64 
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Table IV 
 

Determinants of Implied Volatility and Bid-Ask Spreads in Caps and Floors 
 

This table presents the results for a simultaneous equation model where scaled implied volatility of euro 
(€)  interest rate caps and floors and scaled bid-ask spreads are determined endogenously as a function of 
each other and other exogenous variables, based on data obtained from the WestLB Global Derivatives 
and Fixed Income Group,  for the entire sample period,  Jan 99 - May 01: 
 

( )

DAXVoldDefSprddScaledIVddScaledBAS
SwpnVolcSlopecMratec

LMRcLMRcLMRcScaledBASccScaledIV LMR

*4*3*21
*8*76*6                    

.1*5*4*3*21 0
2

+++=
++

+++++= <
 
 
 
 
 
 
ScaledIV is implied volatility of the mid-price of the cap/floor scaled by ATM implied volatility. 
ScaledBAS is bid-ask spread scaled by the mid-price. LMR is the logarithm of the ratio of swap rate to the 
strike rate of the option. 6Mrate is the 6 month Euribor rate. Slope is the difference between the 5-year 
and 6-month Euribor rates. SwpnVol is the implied volatility of at-the-money swaption of comparable 
maturity. DefSprd is the difference between the 6-month Euribor and the 6-month Treasury rate. DAXVol 
is the volatility of the DAX index.  
 
 Panel A: ScaledIV as dependent variable  
 

Maturity c1 c2 c3 c4 c5 c6 c7 c8 Obs R2

2-year 0.625 0.025** -0.826** 2.826** 0.037 1.095 1.838* 1.792** 3313 0.251 
3-year 1.243** 0.093** -0.194** 1.494** 0.030 1.728 1.582** 1.927** 6294 0.489 
4-year 1.310** 0.376** -0.026 1.216** 0.040** 0.941** 1.058** 1.896** 6592 0.691 
5-year 1.392** 0.272** 0.171** 0.996** 0.022** 1.583** -0.821 1.836** 6990 0.647 
6-year 1.076** 0.422** 0.045** 0.249** 0.009** 0.588* -0.676 0.427** 6758 0.611 
7-year 1.156** 0.262** 0.295** 20123** 0.038** 1.452** -11.276 2.563** 6195 0.615 
8-year 1.029** 0.431** 0.080** -0.009 0.011** 0.253 -0.273 0.254** 5341 0.435 
9-year 1.034** 0.245** 0.129** 0.042 0.014** 1.115* 0.480 0.535** 4994 0.643 

10-year 1.231** 0.281** 0.225** 0.409** 0.038** 1.049** -5.812 0.958** 4147 0.433 
           

 
Panel B: ScaledBAS as dependent variable 

 

Maturity d1 d2 d3 d4     Obs R2

2-year 0.203** 0.006* 0.000 0.001**     3313 0.060 
3-year 0.066** 0.150** 0.000 0.003**     6294 0.103 
4-year -0.121** 0.297** 0.000 0.003**     6592 0.172 
5-year -0.501** 0.664** 0.000 0.004**     6990 0.310 
6-year -1.103** 1.141** 0.000** 0.001**     6758 0.533 
7-year -0.972** 1.029** 0.000 0.002**     6195 0.373 
8-year -1.713** 1.760** 0.000 0.001**     5341 0.196 
9-year -1.722** 1.771** 0.000 0.001*     4994 0.395 

10-year -1.215** 1.322** 0.001** 0.004**     4147 0.412 
           

 

** implies significance at the 5% level; * implies significance at the 10% level.  
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Table V 
 

Determinants of Changes in Implied Volatility and Bid-Ask Spreads 
 

This table presents the results for a simultaneous equation model where daily changes in scaled implied 
volatility of euro (€) interest rate caps and floors and daily changes in scaled bid-ask spreads are 
determined endogenously as a function of each other and changes in other exogenous variables, based on 
data obtained from the WestLB Global Derivatives and Fixed Income Group, for the entire sample period, 
Jan 99 - May 01: 
 

( )

DAXVoldDefSprddScaledIVddScaledBAS
SwpnVolcSlopecMratec

LMRcLMRcLMRcScaledBASccScaledIV LMR

Δ+Δ+Δ+=Δ
Δ+Δ+Δ

+Δ+Δ+Δ+Δ+=Δ <

*4*3*21
*8*76*6                    

.1*5*4*3*21 0
2 

 
 
 
 
 
ScaledIV is implied volatility of the mid-price of the cap/floor scaled by ATM implied volatility. 
ScaledBAS is bid-ask spread scaled by the mid-price. LMR is the logarithm of the ratio of swap rate to the 
strike rate of the option. 6Mrate is the 6 month Euribor rate. Slope is the difference between the 5-year 
and 6-month Euribor rates. SwpnVol is the implied volatility of at-the-money swaption of comparable 
maturity. DefSprd is the difference between the 6-month Euribor and the 6-month Treasury rate. DAXVol 
is the volatility of the DAX index.  
 
 Panel A:  Changes in ScaledIV as dependent variable  
 

Maturity c1 c2 c3 c4 c5 c6 c7 c8 Obs R2

2-year -0.001 1.194* -0.474 1.979 0.001 -9.857 3.242 4.377* 3089 0.027 
3-year 0.000 6.928* 0.056 2.788 0.010 -4.198 -1.605 7.550** 5902 0.081 
4-year 0.002 6.176* -0.061 1.394 0.005 -5.296 -0.848 6.385** 6213 0.089 
5-year 0.000 1.421** 7.750* -0.256 -0.014* -6.575* -1.764* 5.270** 6589 0.100 
6-year 0.000 0.397** 0.276 0.359 -0.001 -5.724 -6.500 1.997* 6371 0.106 
7-year 0.000 1.290** 2.384** 0.301* -0.003 -4.791** -3.187** 4.101* 5849 0.187 
8-year 0.000 1.851* 1.843 -0.524 -0.001 -2.608 -6.640 1.802* 5027 0.177 
9-year -0.002 1.209** 1.972 -3.369 0.033** -3.568 -1.842 1.618 4697 0.139 
10-year 0.000 0.310** 0.928** -0.079 -0.004 -6.818** -9.038** 4.814** 3898 0.282 

           
 

Panel B:  Changes in ScaledBAS as dependent variable 
 

Maturity d1 d2 d3 d4     Obs R2

2-year 0.000 0.033* 0.000 0.001     3089 0.004 
3-year 0.000 0.123** 0.000 0.001*     5902 0.023 
4-year 0.000 0.097** 0.000 0.001*     6213 0.049 
5-year 0.000 0.055** 0.000 0.001**     6589 0.054 
6-year 0.000 0.204** 0.000 0.001*     6371 0.049 
7-year 0.000 0.122** 0.000 0.001**     5849 0.083 
8-year 0.000 0.124** 0.000 0.001*     5027 0.060 
9-year 0.000 0.201** 0.000* 0.000*     4697 0.043 

10-year 0.000 0.122** 0.000** 0.001**     3898 0.088 
           

 

** implies significance at the 5% level; * implies significance at the 10% level.  
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Table VI 
 

Correlations Amongst Scaled Bid-Ask Spreads 
 
This table presents average time-series correlations between scaled bid-ask spreads across moneyness 
buckets (at-the-money – ATM, in-the-money – ITM and out-of-the-money – OTM) of euro (€)  interest 
rate caps and floors. The numbers below are averaged across the correlations between the nine maturities 
within each moneyness bucket. For example, the OTM/OTM value is the average correlation between the 
nine maturity buckets within OTM options (so it is an average of 9x8/2, i.e., 36 correlations). The OTM / 
ITM value is the average correlation between each maturity bucket within OTM options with the 
corresponding maturity within ITM options (so it is an average of 9x9, i.e. 81 correlations), and so on. The 
correlations are calculated for the entire sample period, Jan 99 - May 01, based on data obtained from the 
WestLB Global Derivatives and Fixed Income Group. 
 

 
 

Average Correlations 

 OTM ATM ITM 

 
OTM 0.68   

ATM 0.34 0.86  

ITM 0.24 0.65 0.78 
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Table VII 
 

Determinants of Changes in Bid-Ask Spreads 
 
This table presents results of a panel regression of changes in scaled bid-ask spreads on changes in scaled 
implied volatility of mid-price and changes in the moneyness variables of euro (€)  interest rate caps and 
floors. 
 

( ) ititLMR

itititit

LMRc
LMRcLMRcScaledIVccScaledBAS

ε+Δ
+Δ+Δ+Δ+=Δ

< .1*5                             
*4*3*21

0

2
 
 
 
Scaled IV is implied volatility of mid-price of cap / floor scaled by at-the-money implied volatility. Scaled 
BA is bid-ask spread scaled by the mid-price. LMR (Log Moneyness Ratio) is the log of the ratio of swap 
rate to the strike rate of cap / floor. Δ indicates first difference. There are 27 groups in the panel 9 
maturities (2 year to 10 year) X 3 moneyness groups (at-the-money, out-of-the-money and in-the-money) 
for each maturity. The table presents GLS estimates for the entire sample period, Jan 99 - May 01, based 
on data obtained from the WestLB Global Derivatives and Fixed Income Group.  
 

 c1 c2 c3 c4 c5 Obs Adj R2 p-value for F 
statistic 

 

Coefficient 0.000 0.068 0.002 -0.001 0.000 49,731 0.06 0.005 

t-stats 1.68 2.18 1.97 -0.66 1.07    
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Table VIII 
 

Commonality in Changes in Bid-Ask Spreads 
 

This table presents the structure of the principal components of the correlation matrix of the residuals 
obtained from the panel regression: 
 

( ) itLMRitit LMRcLMRcLMRcScaledIVccScaledBAS ε+Δ+Δ+Δ+Δ+=Δ < .1*5*4*3*21 0
2

 
 

ScaledIV is the implied volatility of the mid-price of the option scaled by the ATM implied volatility. 
ScaledBAS is the bid-ask spread scaled by the mid-price. LMR is the logarithm of the ratio of swap rate to 
the strike rate of the option. Δ indicates first difference. There are 27 groups in the panel (i=1 to 27) 
consisting of 9 maturities (2 years to 10 years) for the 3 moneyness groups (OTM/ATM/ITM). The 
regression is estimated by for the entire sample period, Jan 99 - May 01, based on data on euro (€)  interest 
rate caps and floors obtained from the WestLB Global Derivatives and Fixed Income Group. 
   

 Principal Component 
  1 2 3 

Eigen value  8.66 3.74 1.66 
% explained  0.32 0.14 0.06 
________________________________________________________ 
Moneyness Maturity Eigenvectors 

OTM 2-year -0.04 0.05 0.23 
OTM 3-year -0.03 0.17 0.16 
OTM  4-year -0.04 0.24 0.08 
OTM 5-year 0.03 0.19 0.16 
OTM  6-year -0.03 0.18 -0.04 
OTM 7-year -0.02 0.21 0.00 
OTM 8-year -0.05 0.17 0.07 
OTM 9-year -0.06 0.21 0.11 
OTM 10-year -0.07 0.15 -0.11 
ATM 2-year 0.02 0.13 0.1 
ATM 3-year 0.11 0.25 0.05 
ATM 4-year 0.12 0.3 -0.04 
ATM 5-year 0.14 0.3 0.14 
ATM 6-year 0.07 0.26 -0.15 
ATM 7-year 0.18 0.34 0.02 
ATM 8-year 0.2 0.09 -0.25 
ATM 9-year 0.19 0.12 -0.45 
ATM 10-year 0.3 0.17 -0.24 
ITM 2-year 0.2 0.03 0.16 
ITM 3-year 0.27 0.05 0.33 
ITM 4-year 0.34 0.08 0.28 
ITM 5-year 0.33 0.1 0.3 
ITM 6-year 0.2 0.31 0.07 
ITM 7-year 0.36 0.11 0.11 
ITM 8-year 0.25 0.24 -0.25 
ITM 9-year 0.23 0.16 -0.27 
ITM 10-year 0.33 0.11 -0.12 
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Table IX 
 

Macro-Economic Determinants of the Systematic Liquidity Factor 
 
This table presents the results of the regression of the first principal component of the correlation matrix 
of residuals (from the panel regression in Table 5) on contemporaneous and lagged changes in macro-
financial variables. 6Mrate is the 6 month Euribor. Slope is the difference between the 5 year and 6 month 
Euribor rates. DefSprd is the difference between 6m Euribor and the 6 month Treasury rate. DAXVol is 
the volatility of DAX index. SwpnVol is the implied volatility of at-the-money swaption of comparable 
maturity. The regression is estimated by for the entire sample period, Jan 99 - May 01, based on data on 
euro (€)  interest rate caps and floors obtained from the WestLB Global Derivatives and Fixed Income 
Group. 
 
 

 Coefficient. t-stats 

Constant 0.03 0.19 
6Mrate   
Contemporaneous 0.22 0.04 
Lag 1 0.85 0.24 
Lag 2 4.15 0.87 
Lag 3 3.65 0.98 
Lag 4 6.17 1.47 
Slope   
Contemporaneous 0.36 0.09 
Lag 1 0.97 2.37 
Lag 2 1.99 1.67 
Lag 3 5.92 1.01 
Lag 4 1.35 1.20 
DefSprd   
Contemporaneous -3.41 -1.31 
Lag 1 -2.79 -1.01 
Lag 2 1.57 0.52 
Lag 3 2.65 0.87 
Lag 4 1.17 1.50 
DAXVol   
Contemporaneous 0.21 1.82 
Lag 1 0.10 2.66 
Lag 2 0.12 2.84 
Lag 3 0.14 2.09 
Lag 4 0.02 1.18 
SwpnVol   
Contemporaneous 0.08 0.55 
Lag 1 0.26 1.79 
Lag 2 0.38 1.98 
Lag 3 0.11 2.60 
Lag 4 0.10 2.30 
R2  0.25 
p-value for F-stat  0.0034 
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Figure 1. Time variation in volatility smiles and the Euro term structure. This figure presents 
surface plots showing the time variation in the implied flat volatilities of euro (€) interest rate caps and 
floors as well as the Euro term structure over our sample period (Jan 99 - May 01), using data obtained 
from the WestLB Global Derivatives and Fixed Income Group. The first three plots (for three 
representative maturities - 2-year, 5-year, and 10-year), the vertical axis corresponds to the implied 
volatility of the mid-price (average of bid and ask price) of the option, scaled by the at-the-money 
volatility for the option of similar maturity. The horizontal axes in these plots correspond to the logarithm 
of the moneyness ratio (defined as the ratio of the par swap rate to the strike rate of the option), and time. 
The fourth plot depicts the Euro spot rate surface by maturity (in years) over time (daily). 
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Figure 2. Time variation in scaled bid-ask spreads. This figure presents the time-series plots of the 
scaled bid-ask spreads of euro (€)  caps and floors for each of the nine maturities (from 2 years to 10 
years), separately by moneyness, over our sample period (Jan 99 - May 01) using data obtained from the 
WestLB Global Derivatives and Fixed Income Group. Each plot has nine time series representing the nine 
option maturities. The OTM bucket contains caps with LMR less than -0.1 and floors with LMR greater 
than 0.1. The ITM bucket contains caps with LMR greater than 0.1 and floors with LMR less than -0.1. The 
ATM bucket contains caps and floors with LMR between -0.1 and 0.1. 
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Figure 3. Plots of liquidity versus price. This figure presents three sample scatter plots showing the relationship 
between the ScaledBAS and the ScaledIV for 5-year maturity caps and floors, separately for OTM, ATM and ITM 
options. The plots for other maturities are similar. The plots are constructed using data for euro (€) interest rate caps 
and floors over our sample period (Jan 99 - May 01), obtained from the WestLB Global Derivatives and Fixed 
Income Group.  
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