Open GIS Consortium Inc.

Date: 19-September-2002

Reference number of this OpenGIS® project document: OGC 02-058
Version: 1.0.0

Category: OpenGIS® Implementation Specification

Status: Adopted Specification

Editor: Panagiotis A. Vretanos

Web Feature Service Implementation Specification

Document type: OpenGIS® Publicly Available Standard
Document stage: Final
Document language: English

WARNING: The Open GIS Consortium (OGC) releases this specification to the public without

warranty. It is subject to change without notice. This specification is currently under active revision
by the OGC Technical Committee

Requests for clarification and/or revision can be made by contacting the OGC at
revisions@opengis.org.




Copyright 1999, 2000, 2001,2002 CubeWerx Inc.
Copyright 1999, 2000, 2001,2002 Intergraph Corp.
Copyright 1999, 2000, 2001,2002 IONIC Software s.a.
Copyright 1999, 2000, 2001,2002 Laser-Scan Limited

The companies listed above have granted the Open GIS Consortium, Inc. (OGC) a nonexclusive, royalty-free, paid up, worldwide
license to copy and distribute this document and to modify this document and distribute copies of the modified version.

This document does not represent a commitment to implement any portion of this specification in any company’s products.
OGC’s Legal, IPR and Copyright Statements are found at http://www.opengis.org/legal/ipr.htm
NOTICE

Permission to use, copy, and distribute this document in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the above list of copyright holders and the entire text of this NOTICE.

We request that authorship attribution be provided in any software, documents, or other items or products that you create pursuant to
the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of OGC documents is granted pursuant to this license. However, if additional
requirements (as documented in the Copyright FAQ at http://www.opengis.org/legal/ipr_faq.htm) are satisfied, the right to create
modifications or derivatives is sometimes granted by the OGC to individuals complying with those requirements.

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE
CONTENTS THEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to this document or its contents
without specific, written prior permission. Title to copyright in this document will at all times remain with copyright holders.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in subdivision
(c)(1)(ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013

OpenGIS® is a trademark or registered trademark of Open GIS Consortium, Inc. in the United States and in other countries.



OpenGIS® Specification 0OGC 02-058
Contents

i g ) 1 N iv
il Submitting organizations...........eeeeeeccnerccscsnreccscnnns “V
iii. Submission cONtACt POINLS .....ccovuererreiessninssnisssnnissssncssssnessssesssssosssssssssssssssssssssses v
iv. Revision hiStory ......cceeiiecccsneiccscnnnecnns e Vi
V. Changes to the OpenGIS Abstract Specification ..........coeeeeveicivencscsencscnrcsenns vii
Vi. FUtUTe WOTK cccccoiueiiiiiiinniicnisnnicnsssniicsssssnncssssssssesssssssssssssssssssssssssssssssssssssssssssssane vii
FOreword ......eeneinnnennnennsnensecnsnecnnnnssessecsssessssseaenes viii
INErOAUCTION cociceeeneiiiiiinniicnisnniecsssnsicssssnsnessssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssasss ix
1 1) 1 1
2 L0117 11100 9 11 1 L 4
3 NOrmMAative FeferenCes ....uuiiueinreecrennsrensensssensnnsssensnnsssessessssessssssssesssassssassssessasses 4
4 Terms and definitions ........eeeceivcvricsiisniicnsssnnicssssnnnesssssssecsssssssessssssssssssssssssssssssss 5
5 CONVENTIONS. . .ceiruiiieensenssnecsnnisaeisecsssecssnssssssssessssessassssassssasssssssassssassssasssssssassssasssse 6
5.1 INOIMALIVE VEIDS ceceiiiiinniiiniisnniicsisnniicsssnnicssssssnesssssssessssssssssssssssssssssssssssssssssssssssss 6
5.2 Abbreviated terms........c.ceceeuveennen. 6
5.3 Use Of eXAMPIES...ueeiiiiirrricisssnricnsssannesssssssicsssssssssssssssessssssssssssssssssssssssssssssssssssssssss 6
6 Basic service elements ........coeecveeeneensnensnensnensnecsnensnecsnnes 7
6.1 INtrOAUCHION .cuueiiireiiinniensnnicisanncssanisssanesssanessssssssnssssssssssssssssssssssssssssassssssssssnsssssnes 7
6.2  Version numbering and NegOotiation ..........ceveeireeessenssnensnesseecsansssacsssecsssecsansssacens 7
6.2.1 Version NUMDEr fOrM......ciciniicireicisnicssanisssanssssarsssnssssssssssssssssssssssassssssssssssssssnssss 7
6.2.2  Version changes.........ceeenseecsenssnesseenssnecssenssnennne 7
6.2.3 Appearance in requests and in service metadata .........ccecerererercsinicssnnicssanecsnanes 7
6.2.4 Version number NegotiatioN ........ccceveerseecserssresseecssrecsaenssnesssnssssesssnssssesssassssessssses 7
6.3 General HTTP request rules ........coeecenseicccsnncssnncssnncssnssssanssssssssssssssssssssssssssnass 8
6.3.1  INLrOAUCEION couveeieircrnniicsisnriecssssnrecssssnnesssssssssssssssesssssssssssssssssssssssssesssssasssssssasssssase 8
6.3.2 HTTP GET.....uoorriieiirinniinsniisnisssecssisssnssssssssessssessssssssssssassssssssssssassssssssssssasess 8
6.3.3  HTTP POST...cciiiiiiiitinniinnninnnissnisssisssssssssssssssssssssssssssssssssssssssssssssssssessssssssns 9
6.4 General HTTP response rules......cieiicinnrccnsnncsssencssnnssssnsssssssssssssssssssssassssases 9
6.5 Request encoding..........coeeecceeicsnrcssnercssnencsneessnnnes 10
6.0  INAIMESPACES couvererrunrcssanssssanessssnessssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssasssssassssses 10
7 CommMmON ElEMENLS ....uveeierirrnniecsssseriecssssnrecsssssnesssssssesssssssssssssssssssssssssssssssssssssnsass 11
7.1 Feature identifier........icceicinveicnssnncissnncissnicssnncssnnssssnsssssssssssssssssssssssssssssssssssssse 11

© OGC 2002 — All rights reserved i



7.2 FRALULE STALE....ceeeerreennneeireeeeerereresesesessessessssssssssssssssssssssssssssssssssssssssssssssssssssssasssses 12

7.3 Property NAmES......cccccceeicciisnricssssnnnicsssnnsecsssssssesssssssssssssssssssssssssesssssssssssssssssssssse 12
7.4 Property references .......ieeeecssrecssencssnncssnnncsssnscsssessssessssnes 13
741 INErOAUCTION cuuverreerinnriensssnnrecsssnnsnesssssssesssssssnessssssssssssssssssssssssssssssssssssssssssssssssssssss 13
7.4.2 XPath expressions .......cccceeeuneeee .13
7.5 <INAtiVe™ CleMENTt.....uueeeiiiiisnricnissnniicsssssncsssssssesssssssnsssssssssssssssssesssssssssssssssssssssns 16
A T 5 1 1) OO OO 17
7.7  EXception reporting......c.ccccseecsssescsssrssssarsssasssssassssssssses 17
7.8 Common XML attriDULes .....ccoveierveicisninssnncsssnncssnncssnsicssssecssssssssssesssssesssssessnss 18
7.8.1  Version AttribDULe .....eeiceveiciveicssricssnninssnnessssncssssncsssnsssssssssssssssssssssssessssssssssssssnss 18
7.8.2  Service attribute .......ccccccvvveiccsssnriccsssnnnecssssnnsecsssssssecssonnns 18
7.8.3 Handle attriDULE ......ueeeeveiiivveiiissnicisnicssnnicsssrissssnssssssssssssssssssssssssssssssssssssssssssssss 18
8 DescribeFeatureType Operation.......cceeicccccseerccssssnneccsssnnsscssssssesssssssssssssssssssans 18
8.1 INtrOdUCHION c.cuueiienriiiniiiiniennnicssnnicssanisssnnisssnssssnesssssossssssssssssssssssssssssssssssnssoses 18
8.2 REQUEST c..eereriiininnricnsssnniicssssnniessssssesssssssssssssssssesssssssssssssssssssssssssssssssssssssssssssssass 18
8.3 RESPONSE c.cuuerienniiirnriirnriisnncisnicsssniessssisssssesssssssssssssssssssssssosssssosssssssssssssssssssssssses 19
8.3.1 Supporting multiple NAMESPACES ....ccecervreriicscsnricssssnnrecsssassesssssssssssssssssssssssssess 19
8.4 | D5 QU 110 0] 1 O 20
8.5 | D5 €1 111 1] L2 20
9 GetFeature operation.................. 25
9.1 INEroOdUCTION ccccccueeeeiiiiiirnnricsisnniensssnnnicsssnsnesssssssscsssssssasssssssssssssssssssssssssssssssssssssans 25
9.2 REQUESE c...cueeriineiiiniiiiiiinsniensnicssnsicssssesssssisssssessssssssssosssssssssssssssssssssssssssssssssssses 25
9.3 RESPOMSE.c.cuuurerriiiirnriinsssnnicssssnnnessssssnsssssssssssssssssesssssssssssssssssssssssssssssssssssssssssssssase 26
9.4 EXCEPLIONS .ccecuericrcnricrsnricssnnccssnncssnncssnnessnsnosanns 27
9.5 | D5 €1 111 0] L 27
10 LoCKFeature OPeration ...........cceeeeiseccssnnicsssncssssnesssnessssnossssnessssssssssssssssssssssses 34
10.1  INErOdUCTION cuceeeereeeiicsssnrresscsnnnecssssnssssssssssssssssssnsssssssssssssssssssssssssssssssassssssssssssssne 34
10.2  REQUEST uueiceeericinriiinressntessanncssssisssssesssssesssssesssssosssssssssssssssssssssssssssssssssssssssssssssnss 34
10.2.1 Schema definition .....cccueeiieiivniiciissniicsisnricsssssnnncsssssssessssssssssssssssesssssssssssssssssssns 34
10.2.2 State machine notation from UML..........coeeiieesennseenseensnecsenssncnsecsssecsseecsaees 35
10.2.3 State machine for WEFS 10CKING.......ccouvvueriiiivniiicsssnnicssssnnricsssnsnccssssssncsssssssscsans 36
10.3  RESPOMSE..cuueiicssericssnressnncssarnesssresssssesssssesssssesssssssssssssssssssssssssssssssssssssssssssssssssssnss 37
10.4  EXCEPLIONS .cuvererrrerensnrcssrnnssssnsssssnssssssssssasssssssssssassssases 38
I LRSI 05 €11 11 1] (-3 38
11 Transaction OPeration.......c.eicireicsseicssanesssanesssansssssssssssssssssssssnsssssassssssssssssssssnns 41
11,1 INtrodUCHiON ..cccovvveeiecicsericcsssannecssssnnsesssssnssesssssssessssssssssssssasssssssssssssssssssssssssasssssase 41
11,2 REQUEST cuueeieierinirnnenssarisssanesssanssssansssssssssssssssssssssssssssssssssssssssssssssssssssasssssasssssassssnes 41
11.2.1 Schema definition .......cciceivveiiciissnniecssssnniessssnrecsssssssecsssssssssssssssesssssssssssssssssssass 41
11.2.2 Attribute deSCriPiONs ......cccveeeerercssnicssnicssanisssnnsssssnsssssssssssssssssssssasssssasssssassssses 42
11.2.3 <Transaction> element ........cccceeevveriiisnriissnncssnncsssncsssnessssncssssnessssnssssscsssssssssee 42
11.2.4 <INSert> elemeNt........ccovvereerrerccssencssnrcssencsssssssssssssssssssssssssssssssssssssssssssssssssssssssnss 43
11.2.5 <Update> element........cccerrreersueessnecsaensncsssecssnecsanes 44
11.2.6 <Delete> element .......ccocveeeeeverccssnrcssnrcssencssssssssssssssssssssssssssssssssssssssasssssasssssassssnes 46
11.3  RESPOMSE..uuecerueecreensnnnsaenssnesssnnssnssssesssassssasssssssasssssssssasssssssasssssssssasssssssasssssssssasssns 47
11.4  EXCEPLIONS ..cuvererrunrcrsnrcssnnrcssnersssssssssnssssssssssssssssanes 49
§ I IRTIN D5 €1 111 1] (OO 50
12 GetCapabilities OPeration........cceecevveecisercssnncssnisssancssssnesssssssssssssssssssssssssassssnes 53

il © OGC 2002 — All rights reserved



12.1
12.2
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.4
12.5

13
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.2
13.3.3
13.3.4
13.4
13.5
13.6
13.7
13.7.1
13.7.2
13.7.3
13.7.4
13.7.5
13.7.6

A.l
A2
A3
A4
AS

Annex B - Conformance tests (normative)
GLOSSARY
Bibliography

INtroduction .......cueeeiveicisnicnsnnicssnncssnnessnncssnsncssnsecsanns
ReqUEST ....cuuuueeriiiinnniinninnnicsisnnnicsssnsnsssssssssssssssssesssnnses
RESPONSE..ccneueiiiiiiitiiiisssnnnicisssnnnecsssnseccssssssnssssssencssnsans

Response schema...............

Capabilities document............ceeveeereecsnenseecsnecsnecsanenne
Service SECtiON....uueeiireeicseeessnecssnnecssnnecsssnncssseecssencnnes
Capabilities SeCtion ......c.ceeevveecrcnercssnrrcssnrncssnrecssseecsnne
FeatureTypeList SECtion ........ccceeveeecrnrcssnrcssnnrcssnnscsnnns

| D5 VTS 110 ) 1 RO

ooooooooooooooooooooooooooooooooooooooo

---------------------------------------

ooooooooooooooooooooooooooooooooooooooo

| D5 €1 111 1] (o3]S

Keyword-value pair encoding ........cccoceeeeecscsnnerecscnnnees
INtroduction .......ccueeeeceicsceicssnnicssnnccsnncssnnncssnsesssnsessanes
Request parameter rules........cccceceeeeccscsnnreccssnerecsssnnnes
Parameter ordering and case .......ccccceeeeuercrcnercscnnrcsenes
Parameter LiStS.......ccouveeevveeiisenissneccsnencsnecssnnecssnnncsnnes

Common request pArameters.......cceeeeeessresssresnns

Version parameter.........

Request parameter .........ceecceeecccccnneecsscnsencsssnssencssennes
Bounding DoX ....ueeicenivniicnissnnrecsssnsicssssnnsecssssssesssnane
Vendor-specific parameters .........ccceeeeeesvneccscneccscneecnes

Common parameters.......

ReESPONSE..cuueneiiiiiisnrricsinnnicssssnnnicsssnsnecsssssenssssssencssnsans
| D5 W 11 8 10) 1
OPerations........ccecceeccssercssssrcsssicsssressssrcssssssssssesssssssones
INtroduction .....ceeeicecivnenccsisnnnecsssnnsncssssnssecssssssnesssnnne
DescribeFeatureType operation...........ceeeeccercscnenenes

GetFeature & GetFeatureWithLock operation

-------------

ooooooooooooooooooooooooooooooooooooooo

LockFeature peration ...........ccoeeecssenccsencssnercscnnncsenns

Transaction operation..........ccceeeveeeccscnnns

ooooooooooooooooooooooooooooooooooooooo

GetCapabilities Operation............ceecceeeeceercscneecssnnecsnnns

ANNEX A — XML Schema definitions (Normative)
INtroduction .......cueeecceicicnncssneicssnncsssnncssnnessnsncssssecsanes
[0 LELORTS"TH) 113 10) 115 €Y
WES-DaSIC.XSA ceuerervnriissnricssnnicssnnissnnessnnncsssnnessssncsnsecnes

WES-transaction.Xsd.....ccceeeeeveeeeeneees

---------------------------------------

---------------------------------------

WES-capabilities.XSd......c.cceeeeerueesnecsuensnecseecanes

© OGC 2002 — All rights reserved

iii



i. Preface

One important achievement of the Open GIS Consortium (OGC) Web Mapping Test bed
(WMT1) initiative was the development of a large consensus around open web based
interface specifications. Such specifications allow software vendors to implement their
products using interoperable interfaces and provide end-users a larger pool of
interoperable web based tools for geodata access and related geoprocessing services.

During the OGC WMT]1 project, two web based draft specification documents were
developed:

1. OpenGIS® Web Map Service Implementation Specification [1]

2. OpenGIS® Geography Markup Language (GML) 2.0 Implementation
Specification

The first document specifies web interfaces based on a model supporting general request
and response rules using Hypertext Transfer Protocol (HTTP) and the eXtensible Markup
Language (XML). Web Map Server products have been developed as the result of the
adoption by OGC of the OpenGIS® Web Map Service Implementation Specification [1].
The interfaces defined in that specification include GetCapabilities, GetMap and
GetFeaturelnfo. The second document describes an encoding specification for geodata in
XML. The encoding described in that specification is intended to enable the transport
and storage of geographic information in XML including both properties and the
geometry of geographic features.

This document (OpenGIS® Web Feature Service Implementation Specification) takes the
next logical step and proposes interfaces for describing data manipulation operations on
geographic features using HTTP as the distributed computing platform. Data
manipulation operations include the ability to:

1. Create a new feature instance

2. Delete a feature instance

3. Update a feature instance

4. Get or Query features based on spatial and non-spatial constraints

A Web Feature Service (WFS) request consists of a description of query or data
transformation operations that are to be applied to one or more features. The request is
generated on the client and is posted to a web feature server using HTTP. The web
feature server then reads and (in a sense) executes the request.

v © OGC 2002 — All rights reserved



ii.  Submitting organizations

The following companies submitted this specification to the OGC as a Request for
Comment:

CubeWeér x Inc.

Edri ¢ Kei ghan

200 Rue Montcalm Suite R-13
Hul I, Quebec

Canada J8Y 3B5

ekei ghan@ubewer x. com

I nt er graph Corp.

Jonat han C ark

1881 Canmpus Commons Drive
Reston, VA 20191

US A

jrclark@ ntergraph. com

| ONI C Sof t war e

Serge Margoulies

128 Avenue de |' Cbservatoire

B- 4000 LI ECE

Bel gi um

Ser ge. Mar goul i es@ oni csoft. com

Laser-Scan Ltd.
Pet er Woodsf ord
101 Canbridgbe Science Park

M1 ton Road
Canbri dge CB4 OFY
U. K

pet erw@ sl . co. uk

ili. Submission contact points

All questions regarding this submission should be directed to the Editor or to the WWW
Mapping SIG chair:

Panagiotis A. Vretanos
CubeWerx, Inc.

200 Rue Montcalm, Suite R-13
Hull, Quebec J8Y 3B5 CANADA
+1 416 701 1985
pvretano@cubewerx.com

Allan Doyle (WWW Mapping SIG Chair)
International Interfaces, Inc.

948 Great Plain Ave. PMB-182
Needham, MA 02492 USA

+1 781 433 2695
adoyle@intl-interfaces.com

© OGC 2002 — All rights reserved \%


mailto:pvretano@cubewerx.com
mailto:adoyle@intl-interfaces.com

Additional contributors

Rob At ki nson (Soci al Change Online) rob@oci al change. net. au
Crai g Bruce (CubeWerx) csbruce@ubwerx.com

Jonat han Cark (Intergraph) jrclark@ntergraph.com

Adrian Cut hbert (SpotOn MOBILE) adri an@pot onnobile.com

Paul Daisey (U.S. Census) pdai sey@eo. census. gov

John Davi dson georef @rol s. com

John D. Evans (NASA) john. evans@sfc. nasa. gov

Ron Fresne ((Object FX) RonF@j ect FX. com

I gnaci o Guerrero (Intergraph) | CGuerrer@ngr.com

John Herring (Oracle Corp.) John.Herring@racl e.com

Sandra Johnson (Mapi nfo) Sandra_ Johnson@rmapi nf 0. com

Edri ¢ Kei ghan (CubeWerx) ekei ghan@ubewer x. com

Ron Lake (Gal dos Systens Inc.) rlake@al dosi nc.com

Jeff Lansing (Pol exis) jeff@olexis.com

Seb Lessware (Laser-Scan Ltd.) sebl @sl.co.uk

Mar wa Mabrouk (ESRI) nmabrouk@sri.com

Serge Margoulies (lonic) Serge.Margoulies@ onicsoft.com
Brian May (CubeWerx) brmay@ubewer x. com

Ri chard Martell (Galdos Systens Inc.) rmartell @al dosi nc. com
Al eksander Ml anovic (G ados Systens Inc.) amlanovi c@l adosi nc. com
Dimtri Mnie (lonic) dimtri.noni e@onicsoft.com

Paul Pil ki ngton (Laser-Scan Ltd.) paul pi @siva.com

Keith Ponmaki s (CubeWerx) ponmaki s@ubewer x. com

Christopher C. Pried (Polexis) ccp@olexis.com

Lou Reich (NASA) louis.i.reich@sfc.nasa.gov

Carl Reed (Open G'S Consortium creediii @i ndspring.com
Martin Schaefer (Cadcorp Ltd.) narti ns@adcorpdev. co. uk
Lacey T. Sharpe (Intergraph Corp.) |tsharpe@ngr.com

Raj R Singh (Syncline Inc.) rs@yncline.com

Bernard Snyers (lonic) Bernard. Snyers@ oni csoft.com

Dani el Specht (TEC) specht@ec.arny. ml

Janmes T. Stephens (Lockheed Martin) janes.t.stephens@ nto.com
d enn Stowe (CubeWerx) gstowe@ubwer x. com

Tom Strickland (Byers) tom strickl and@yers. com

Shui chi Taki no (Dawn Corp.) taki no@awn-corp.co.jp

Mlan Trninic (Galdos Systens Inc.) ntrnini c@al dosinc.com
John T. Vincent (Intergraph Corp.) jtvincen@ ntergraph.com
Pet er Woodsford (Laser-Scan Ltd.) peterw@sl.co.uk

Arliss Wiitesize (BAE Systens) Arliss.Witesi de@aesystens.com
Nam Yamashita (Dawn Corp.) yanmashita@awn-corp.co.jp

iv.  Revision history

0.0.0 Address RFC comments.

0.0.14 Reformat document in ISO format; Relate document to OGC abstract specification
(specifically Topic 12 / 19119); Include rules for property naming; Use XPath expressions
for referencing properties in complex attributes; More synchronization between WMS and
WEFS with respect to keyword-value pair encoding; Add annex for conformance testing.

0.0.13 Prepare document for RFC submission; include XML-Schema encoding of WFS interfaces;
align URL-encoding with BSM
0.0.12 Add complete list of contributors; align with latest GML 2.0 draft specification; add lock

controls and versioning.

Vi © OGC 2002 — All rights reserved


mailto:rob@socialchange.net.au
mailto:csbruce@cubwerx.com
mailto:jrclark@intergraph.com
mailto:adrian@spotonmobile.com
mailto:pdaisey@geo.census.gov
mailto:georef@erols.com
mailto:john.evans@gsfc.nasa.gov
mailto:RonF@ObjectFX.com
mailto:IGuerrer@ingr.com
mailto:John.Herring@oracle.com
mailto:Sandra_Johnson@mapinfo.com
mailto:ekeighan@cubewerx.com
mailto:rlake@galdosinc.com
mailto:jeff@polexis.com
mailto:sebl@lsl.co.uk
mailto:mmabrouk@esri.com
mailto:Serge.Margoulies@ionicsoft.com
mailto:bmay@cubewerx.com
mailto:rmartell@galdosinc.com
mailto:amilanovic@gladosinc.com
mailto:dimitri.monie@ionicsoft.com
mailto:paulpi@lsiva.com
mailto:pomakis@cubewerx.com
mailto:ccp@polexis.com
mailto:louis.i.reich@gsfc.nasa.gov
mailto:creediii@mindspring.com
mailto:martins@cadcorpdev.co.uk
mailto:ltsharpe@ingr.com
mailto:rs@syncline.com
mailto:Bernard.Snyers@ionicsoft.com
mailto:specht@tec.army.mil
mailto:james.t.stephens@lmco.com
mailto:gstowe@cubwerx.com
mailto:tom.strickland@byers.com
mailto:takino@dawn-corp.co.jp
mailto:mtrninic@galdosinc.com
mailto:jtvincen@intergraph.com
mailto:peterw@lsl.co.uk
mailto:Arliss.Whiteside@baesystems.com
mailto:yamashita@dawn-corp.co.jp

0.0.11
0.0.10
0.0.9
0.0.8
0.0.7
0.0.6
0.0.5
0.0.4

0.0.3
0.0.2

0.0.1

Correct typographical errors.

Server Featureld and Filter elements into their own specification documents.
Review U.S.Census revisions

Review Galdos revisions

Review LaserScan revisions

Remove "Small XML-Schema Description Language"

Define "Small XML-Schema Description Language"

Use GML2 with application defined schema using XML-Schema. Remove dependency on
featureType attribute.

Define GET request semantics.

Update <Featureld> element to include <Scope>. Make handle attribute #IMPLIED. Add
functions on properties and literals to <Filter>.

First version derived from the OpenGIS Transaction Encoding Specification [3] and the
Spatial Object Transfer Format (SOTF) [4] specification.

v. Changes to the OpenGIS Abstract Specification

No further revisions to the OGC Abstract Specification are required. The revisions
previously approved for Topic 12, "Service Architecture," including definitions of the
terms "operation", "interface" and "service" are relevant to and sufficient for this
specification. The essential operation of a web feature service, as a feature access and
management service, is described in section 8.3.3 of Topic 12.

vi. Future work

Further work is desirable in the next version on the following work items.

1.

2.

XLink traversal capabilities,

UML models,

Change the abstract specification to include complex features.
Develop specific conformance tests.

GML3 integration.

© OGC 2002 — All rights reserved vii



Foreword

Attention is drawn to the possibility that some of the elements of this standard may be the
subject of patent rights. Open GIS Consortium Inc. shall not be held responsible for
identifying any or all such patent rights. However, to date, no such rights have been
claimed or identified.

This version of the specification cancels and replaces all previous versions.
Normative annexes

Annexes A and B are normative.

viii © OGC 2002 — All rights reserved



Introduction

The OGC Web Map Service allows a client to overlay map images for display served
from multiple Web Map Services on the Internet. In a similar fashion, the OGC Web
Feature Service allows a client to retrieve geospatial data encoded in Geography Markup
Language (GML) from multiple Web Feature Services.

The requirements for a Web Feature Service are:
1. The interfaces must be defined in XML.
2. GML must be used to express features within the interface.
3. At aminimum a WFS must be able to present features using GML.

4. The predicate or filter language will be defined in XML and be derived from CQL
as defined in the OpenGIS Catalogue Interface Implementation Specification.

5. The datastore used to store geographic features should be opaque to client
applications and their only view of the data should be through the WFS interface.

6. The use of a subset of XPath expressions for referencing properties.

The purpose of this document is to describe the Web Feature Service interface, as
illustrated in figure 1.

Client

A

WES WES
Request Response

v

Web Feature Server (WFS)

Opaque Feature Store

Figure 1 — Web feature service

This document is derived from a large consensus among its contributors and takes its
roots from two independently proposed specifications titled OGC Transaction Encoding
Specification [3] and Spatial Object Transfer Format (SOTF) [4]. In addition a number

© OGC 2002 — All rights reserved ix



of concepts, common among all OGC services, are taken from the Web Map Service
Implementation Specification [1].

X © OGC 2002 — All rights reserved



OpenGIS® Specification 0OGC 02-058

Web Feature Service Implementation Specification

1 Scope

This document describes the OGC Web Feature Service (WFS) operations. The WFS
operations support INSERT, UPDATE, DELETE, QUERY and DISCOVERY operations
on geographic features using HTTP as the distributed computing platform.

In the context of this document, a transaction is a logical unit of work that is composed of
one or more data manipulation operations. Since the manner in which geographic
features are persistently stored is not addressed in this document, no transaction
semantics, such as atomic failure, are assumed to exist. It is the function of a web feature
service, in its interaction with the data storage system used to persistently store features,
to ensure that changes to data are consistent. However, the document also acknowledges
the fact that many systems do support standard concurrent transaction semantics and so
proposes optional operations that will allow a web feature service to take advantage of
such systems (e.g. relational database systems based on SQL).

Geographic features

This document adopts the same concept of a geographic feature as described in the OGC
Abstract Specification (http://www.opengis.org/techno/spec.htm) and interpreted in the
OpenGIS® Geographic Markup Language(GML) Implementation Specification [2]. That
is to say that the state of a geographic feature is described by a set of properties where
each property can be thought of as a {name, type, value} tuple. The name and type of
each feature property is determined by its type definition. Geographic features are those
that may have at least one property that is geometry-valued. This, of course, implies that
features can be defined with no geometric properties at all. The geometries of geographic
features are restricted to what OGC calls simple geometries. A simple geometry is one
for which coordinates are defined in two dimensions and the delineation of a curve is
subject to linear interpolation. The traditional 0, 1 and 2-dimensional geometries defined
in a 2-dimensional spatial reference system are represented by points, line strings and
polygons. In addition, the OGC geometry model allows for geometries that are
collections of other geometries - either homogeneous multi-point, multi-line string, and
multi-polygon collections or heterogeneous geometry collections. Finally, GML allows
features that have complex or aggregate non-geometric properties.

Processing requests

© OGC 2002 — All rights reserved 1



This section of the document outlines, in general terms, the protocol to be followed in
order to process web feature service requests. Processing requests would proceed as
follows:

1. A client application would request a capabilities document from the WFS. Such a
document contains a description of all the operations that the WFS supports and a
list of all feature types that it can service.

2. A client application (optionally) makes a request to a web feature service for the
definition of one or more of the feature types that the WFS can service.

3. Based on the definition of the feature type(s), the client application generates a
request as specified in this document.

4. The request is posted to a web server.
5. The WEFS is invoked to read and service the request.

6. When the WFS has completed processing the request, it will generate a status
report and hand it back to the client. In the event that an error has occurred, the
status report will indicate that fact.

Operations
To support transaction and query processing, the following operations are defined:
GetCapabilities

A web feature service must be able to describe its capabilities. Specifically, it must
indicate which feature types it can service and what operations are supported on each
feature type.

DescribeFeatureType

A web feature service must be able, upon request, to describe the structure of any
feature type it can service.

GetFeature

A web feature service must be able to service a request to retrieve feature instances.
In addition, the client should be able to specify which feature properties to fetch and
should be able to constrain the query spatially and non-spatially.

Transaction

A web feature service may be able to service transaction requests. A transaction
request is composed of operations that modify features; that is create, update, and
delete operations on geographic features.

LockFeature

2 © OGC 2002 — All rights reserved



A web feature service may be able to process a lock request on one or more instances
of a feature type for the duration of a transaction. This ensures that serializable
transactions are supported.

Based on the operation descriptions above, two classes of web feature services can be
defined:

Basic WFS

A basic WFS would implement the GetCapabilities, DescribeFeatureType and
GetFeature operations. This would be considered a READ-ONLY web feature
service.

Transaction WFS

A transaction web feature service would support all the operations of a basic web
feature service and in addition it would implement the Transaction operation.
Optionally, a transaction WFS could implement the LockFeature operation.

Figure 2 is a simplified protocol diagram illustrating the messages that might be passed
back and forth between a client application and a web feature service in order to process a
typical transaction request. The elements referenced in the diagram are defined in this
document.

CLIENT WES
«<GetCapabilities= Fequest
_____________________________ -
=<WES_Capabilites> documehnt
I o il 307 g T o s A
<Desc nbebeatureT y pe> tequest
_____________________________ -
«schewoa > docuioe ht
PPN iyt oty g ks i o O
«Trahsactioh> request
_____________________________ -
<WE5S_TransactiohFes pohsex docoiment
o - - e e e -—

© OGC 2002 — All rights reserved 3



Figure 2 — Protocol diagram

2 Conformance

Conformance with this specification shall be checked using all the relevant tests specified
in Annex D (normative). The framework, concepts, and methodology for testing, and the
criteria to be achieved to claim conformance are specified in ISO 19105: Geographic
information — Conformance and Testing.

3 Normative references

[1]  Bradner, Scott, "RFC 2119 Key words for use in RFCs to Indicate Requirement
Levels," March 1997, ftp://ftp.isi.edu/in-notes/rfc2119.txt .

[2] Cox, S., Cuthbert, A., Lake, R., and Martell, R. (eds.), "OpenGIS Implementation
Specification #02-009: OpenGIS® Geography Markup Language (GML)
Implementation Specification, version 2.1.1", April 2002

[3]  Vretanos, Panagiotis (ed.), "OpenGIS Implementation Specification #01-067:
Filter Encoding Implementation Specification", May 2001

[4]  Percivall, George, ed., “The OpenGIS Abstract Specification, Topic 12: OpenGIS
Service Architecture”, 2002

[5] Bray, Paoli, Sperberg-McQueen, eds., "Extensible Markup Language (XML) 1.0",
2nd edition, October 2000, W3C Recommendation,
http://www.w3.0rg/TR/2000/REC-xml.

[6] Beech, David, Maloney, Murry, Mendelson, Noah, Thompson, Harry S., “XML
Schema Part 1: Structures”, May 2001, W3C Recommendation,
http://www.w3c.org/TR/xmlschema-1.

[7]  Bray, Hollander, Layman, eds., “Namespaces In XML”, January 1999, W3C
Recommendation, http://www.w3.org/TR/2000/REC-xml-names.

[8]  Clark, James, DeRose, Steve, “XML Path Language (XPATH), Version 1.0”,
November 1999, W3C Recommendation, http://www.w3c.org/TR/XPath.

[9]  Fielding et. al., "Hypertext Transfer Protocol — HTTP/1.1," IETF RFC 2616, June
1999, http://www.ietf.org/rfc/rfc2616.txt.

[10] Berners-Lee, T., Fielding, N., and Masinter, L., "Uniform Resource Identifiers
(URI): Generic Syntax", IETF RFC 2396, http://www.ietf.org/rfc/rfc2396.txt.

4 © OGC 2002 — All rights reserved


http://www.w3.org/TR/2000/REC-xml
http://www.w3c.org/TR/xmlschema-1
http://www.w3.org/TR/2000/REC-xml-names
http://www.w3c.org/TR/xpath
http://www.ietf.org/rfc/rfc2396.txt

[7]  National Center for Supercomputing Applications, "The Common Gateway
Interface," http://hoohoo.ncsa.uiuc.edu/cgi/.

[9] Freed, N. and Borenstein N., "Multipurpose Internet Mail Extensions (MIME) Part
One: Format of Internet Message Bodies", IETF RFC 2045, November 1996,
http://www.ietf.org/rfc/rfc2045. txt.

[11] Internet Assigned Numbers Authority, http://www.isi.edu/in-
notes/iana/assignments/media-types/.

4 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

4.1
operation
specification of a transformation or query that an object may be called to execute [4]

4.2
interface
a named set of operations that characterize the behavior of an entity [4]

4.3
service
a distinct part of the functionality that is provided by an entity through interfaces [4]

4.4
service instance
an actual implementation of a service; service instance is synonymous with server

4.5
client
a software component that can invoke an operation from a server

4.6
request
an invocation by a client of an operation.

4.7
response
the result of an operation returned from a server to a client.

4.8

capabilities XML

service-level metadata describing the operations and content available at a service
instance

© OGC 2002 — All rights reserved 5


http://www.isi.edu/in-notes/iana/assignments/media-types/
http://www.isi.edu/in-notes/iana/assignments/media-types/

4.9
spatial reference system
as defined in ISO19111

4.10

opaque
not visible, accessible or meaningful to a client application

5 Conventions

5.1 Normative verbs

In the sections labeled as normative, the key words "must", "must not", "required",
"shall", "shall not", "should", "should not", "recommended", "may", and "optional"
in this document are to be interpreted as described in Internet RFC 2119 [1].

5.2 Abbreviated terms

CGlI Common Gateway Interface

DCP Distributed Computing Platform
DTD Document Type Definition

EPSG European Petroleum Survey Group
GIS Geographic Information System
GML Geography Markup Language
HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force
MIME Multipurpose Internet Mail Extensions
0GC Open GIS Consortium

OWS OGC Web Service

URL Uniform Resource Locator

WFS Web Feature Service

XML Extensible Markup Language

5.3 Use of examples

This specification makes extensive use of XML examples. They are meant to illustrate
the various aspects of a web feature service discussed in this specification. While every
effort has been made to ensure that the examples are well formed and valid, this goal was
sacrificed for the sake of clarity in many cases. For example, many examples are
formatted in a specific way to highlight a particular aspect that would render the example
invalid from the perspective of an XML validation tool. Further, most examples
reference fictitious servers and data.

Thus, this specification does not assert that any XML or keyword-value pair encoded
example, copied from this document, will necessarily execute correctly or validate using
a particular XML validation tool. Only sections marked as normative should be expected
to be well formed and valid XML or XML Schema documents.

6 © 0GC 2002 — All rights reserved



6 Basic service elements

6.1 Introduction

This section describes aspects of OGC Web Feature Service behavior that are
independent of particular operations or are common to several operations or interfaces.

6.2 Version numbering and negotiation

6.2.1 Version number form

The published specification version number contains three positive integers, separated by
decimal points, in the form "x.y.z". The numbers "y" and "z" will never exceed 99. Each
OWS specification is numbered independently.

6.2.2 Version changes

A particular specification's version number shall be changed with each revision. The
number shall increase monotonically and shall comprise no more than three integers
separated by decimal points, with the first integer being the most significant. There may
be gaps in the numerical sequence. Some numbers may denote experimental or interim
versions. Service instances and their clients need not support all defined versions, but
must obey the negotiation rules below.

6.2.3 Appearance in requests and in service metadata

The version number appears in at least two places: in the Capabilities XML describing a
service, and in the parameter list of client requests to that service. The version number
used in a client's request of a particular service instance must be equal to a version
number which that instance has declared it supports (except during negotiation as
described below). A service instance may support several versions whose values clients
may discover according to the negotiation rules.

6.2.4 Version number negotiation

An OWS Client may negotiate with a Service Instance to determine a mutually agreeable
specification version. Negotiation is performed using the GetCapabilities operation [sec.
12] according to the following rules.

All Capabilities XML must include a protocol version number. In response to a
GetCapabilities request containing a version number, an OGC Web Service must either
respond with output that conforms to that version of the specification, or negotiate a
mutually agreeable version if the requested version is not implemented on the server. If
no version number is specified in the request, the server must respond with the highest
version it understands and label the response accordingly.

Version number negotiation occurs as follows:

1. If the server implements the requested version number, the server must send that
version.

© OGC 2002 — All rights reserved 7



2. If the client request is for an unknown version greater than the lowest version that
the server understands, the server must send the highest version less than the
requested version.

3. [If the client request is for a version lower than any of those known to the server,
then the server must send the lowest version it knows.

4. 1If the client does not understand the new version number sent by the server, it
may either cease communicating with the server or send a new request with a
new version number that the client does understand, but which is less than that
sent by the server (if the server had responded with a lower version).

5. If the server had responded with a higher version (because the request was for a
version lower than any known to the server), and the client does not understand
the proposed higher version, then the client may send a new request with a
version number higher than that sent by the server.

The process is repeated until a mutually understood version is reached, or until the client
determines that it will not or cannot communicate with that particular server.

Example 1: Server understands versions 1, 2, 4, 5 and 8. Client understands versions 1,
3,4, 6,and 7. Client requests version 7. Server responds with version 5. Client requests
version 4. Server responds with version 4, which the client understands, and the
negotiation ends successfully.

Example 2: Server understands versions 4, 5 and 8. Client understands version 3. Client
requests version 3. Server responds with version 4. Client does not understand that
version or any higher version, so negotiation fails and client ceases communication with
that server.

6.3 General HTTP request rules

6.3.1 Introduction

At present, the only distributed computing platform (DCP) explicitly supported by OGC
Web Services is the World Wide Web itself, or more specifically, Internet hosts
implementing the Hypertext Transfer Protocol (HTTP)[9]. Thus the Online Resource of
each operation supported by a service instance is located by an HTTP Uniform Resource
Locator (URL). The URL may be different for each operation, or the same, at the
discretion of the service provider. Each URL must conform to the description in [9], but
is otherwise implementation-dependent; only the parameters comprising the service
request itself are mandated by the OGC Web Services specifications.

HTTP supports two request methods: GET and POST. One or both of these methods
may be defined for a particular OGC Web Service type and offered by a service instance.
The use of the Online Resource URL differs in each case.

6.3.2 HTTP GET

An Online Resource URL intended for HTTP GET requests, is, in fact, only a URL
prefix to which additional parameters must be appended in order to construct a valid

8 © 0GC 2002 — All rights reserved



Operation request. A URL prefix is defined as an opaque string including the protocol,
hostname, optional port number, path, a question mark '?', and, optionally, one or more
server-specific parameters ending in an ampersand '&'. The prefix uniquely identifies the
particular service instance. A client appends the necessary request parameters as
name/value pairs in the form "name=value&". The resulting URL must be valid
according to the HTTP Common Gateway Interface (CGI) standard [7], which mandates
the presence of '?' before the sequence of query parameters and the '&' between each
parameter. As with all CGI applications, the query URL is encoded [10] to protect
special characters.

The URL prefix must end in either a '?' (in the absence of additional server-specific
parameters) or a '&'. In practice, however, Clients should be prepared to add a necessary
trailing '?" or '&' before appending the Operation parameters defined in this specification
in order to construct a valid request URL.

Table 1 summarizes the components of an operation request URL.

Table 1 — A general OGC Web Service Request

URL Component Description

http://host[:port]/path? {name[=value]&} URL prefix of service operation. [ ] denotes 0 or 1
occurrence of an optional part; {} denotes 0 or more
occurrences. The prefix is entirely at the discretion of the
service provider.

name=value& One or more standard request parameter name/value pairs
defined by an OGC Web Service. The actual list of
required and optional parameters is mandated for each
operation by the appropriate OWS specification.

6.3.3 HTTP POST

An Online Resource URL intended for HTTP POST requests is a complete and valid
URL to which Clients transmit encoded requests in the body of the POST document. A
WFS must not require additional parameters to be appended to the URL in order to
construct a valid target for the Operation request.

6.4 General HTTP response rules

Upon receiving a valid request, the service must send a response corresponding exactly
to the request as detailed in the appropriate specification. Only in the case of Version
Negotiation (described above) may the server offer a differing result.

Upon receiving an invalid request, the service must issue a Service Exception as
described in Section 7.7.

NOTE: As a practical matter, in the WWW environment a client should be prepared to receive either a valid result, or
nothing, or any other result. This is because the client may itself have formed a non-conforming request that
inadvertently triggered a reply by something other than an OGC Web Service, because the Service itself may be non-
conforming.

© OGC 2002 — All rights reserved 9




Response objects must be accompanied by the appropriate Multipurpose Internet Mail
Extensions (MIME) type [9] for that object.

Response objects should be accompanied by other HTTP entity headers as appropriate
and to the extent possible. In particular, the Expires and Last-Modified headers provide
important information for caching; Content-Length may be used by clients to know when
data transmission is complete and to efficiently allocate space for results, and Content-
Encoding or Content-Transfer-Encoding may be necessary for proper interpretation of the
results.

6.5 Request encoding

This document defines two methods of encoding WFS requests. The first uses XML as
the encoding language. The second method uses keyword-value pairs to encode the
various parameters of a request. An example of a keyword value pair is:

" REQUEST=CGet Capabi | ities"

where "REQUEST" is the keyword and "GetCapabilities" is the value. In both cases, the
response to a request or exception reporting must be identical.

Table 2 correlates WFS operations and their encoding semantics as defined in this
specification.

Table 2 — Operation Request Encoding

Operation Request Encoding
GetCapabilities XML & KVP
DescribeFeatureType XML & KVP
GetFeature / GetFeatureWithLock XML & KVP
LockFeature XML & KVP
Transaction XML & limited KVP

KVP = keyword-value pair

This document mandates the use of GML for the XML encoding of the state of
geographic features. A complete description of this encoding can be found in document

[2].
6.6 Namespaces

Namespaces (17) are used to discriminate XML vocabularies from one another. For the
WES there are three normative namespace definitions, namely:

* (http://www.opengis.net/wfs) - for the WFS interface vocabulary

e (http://www.opengis.net/gml) - for the GML vocabulary

10 © 0GC 2002 — All rights reserved


http://www.opengis.net/wfs
http://www.opengis.net/gml

* (http://www.opengis.net/ogc) - for the OGC Filter vocabulary

A given WFS implementation will make use of one or more GML Application Schemas
and these schemas will use, in turn, one or more application namespaces (e.g.
http://www.someserver.com/myns). While many of the examples in this document use a
single namespace, multiple namespaces can be used, as shown section 11.2.6.

7 Common elements

7.1 Feature identifier

This document assumes that every feature instance that a particular WFS implementation
can operate upon is uniquely identifiable. That is to say, when a WFS implementation
reports a feature identifier for a feature instance, that feature identifier is unique to the
server and can be used to repeatedly reference the same feature instance (assuming it has
not been deleted). It is further assumed that a feature identifier is encoded as described in
the OpenGIS® Filter Encoding Implementation Specification [3]. A feature identifier can
be used wherever a feature reference is required. For reference purposes, the XML
Schema fragment that defines the feature identifier element is copied from the filter
encoding specification:

<xsd: el enent nane="Featurel d" type="ogc: FeatureldType"/>
<xsd: compl exType nanme="Feat urel dType">

<xsd:attribute nane="fid" type="xsd:anyURI " use="required"/>
</ xsd: conpl exType>

The purpose of the feature identifier is to make database operations possible.

7.1.1 Globally unique identifiers (Informative)

For the purposes of a web feature service, a locally unique identifier is sufficient.
However, there is a need within OGC web services to have unique identifiers for objects
of all kinds. The approach thus far has been to reference objects using independent scope
and feature-id components, where the scope it the URL of the server serving a feature
and the feature-id is the local identifier for the feature. This approach, however, may be
awkward to transport and use in other contexts, such as in a registry if one wanted to
create metadata for a single repository data instance (such as a satellite image).

The purpose of this section of the specification is to point out that a single globally-
unique string would be more convenient to use in multiple contexts, and that such a string
may be generated by a web feature service using some combination of the URL of the
service and the local identifier.

This string could be used as if it were fully opaque in many contexts, but it would be
more useful if it were actually a URL or URN which could be used to directly access the
object it identifies in the native format of the object. The encoding of the URL or URN
would be entirely implementation-specific. One note on the use of URNSs: not many
implementations will actually be able to resolve and fetch data objects; it may be mostly
only usable as a unique identifier string.

© OGC 2002 — All rights reserved 11


http://www.opengis.net/ogc

Using a URL or URN is helpful for applications that need only simple access to the raw
objects since no interface details need to be known. This mode of access/identification is
also helpful for integration with high-level XML technologies such as RDF or XSLT, and
even for debugging purposes.

7.2 Feature state

The definition of features served by a WFS is provided by a GML application schema.
Section 8 describes how a client can request an XML document containing the GML
application schema definition of one or more feature types served by a WFS. Such
application schema definitions shall conform to the OpenGIS Geography Markup
Language(GML) Implementation Specification, version 2.1.1 [2].

A client application uses the GML application schema definition of a feature type to refer
to feature instances of that feature type, and to refer to the names and types of all the
properties of those feature instances. The values of all properties of a feature instance
constitute the state of that feature instance. A client application references feature
instances by the name of their feature type and the names and values of feature
properties. A client application asks a transactional WEFS to alter the state of a feature
through insert, update, and delete operation requests.

7.3 Property names

A web feature service refers to feature property names defined in a GML application
schema. However, since the state of a feature must be expressed in GML and thus XML,
the property names used by a web feature service must also be valid element and attribute
names as described in the Extensible Markup Language (XML) 1.0 [5] specification. In
addition, property names may be namespace qualified as described in Namespaces in
XML [7] . The following definitions are taken from sections 2 & 3 of that document:

[4] NCName ::= (Letter | '_') (NCNaneChar)*

/* An XML Narme, minus the ":" */

[5] NCNameChar ::= Letter | Digit | "." | '-' ' _' | ConbiningChar | Extender
[6] @Name ::= (Prefix ':")? Local Part

[7] Prefix ::= NCName

[8] LocalPart ::= NCNane

The definitions of the components Letter, Digit, CombiningChar and Extender are
defined in annex B of [5].

Example
Examples of valid property names are:

Age, Temperature, KHz, myns:INWATERA 1M.WKB GEOM
Examples of invalid property names are:

+Domain, 123 SomeName

12 © OGC 2002 — All rights reserved



7.4 Property references

7.4.1 Introduction

As mentioned in the introduction, GML allows geographic features to have complex or
aggregate non-geometric properties. A problem thus arises about how such properties
should be referenced in the various places where property references are required (e.g.
query and filter expressions). A WFS must use XPath [8] expressions, as defined in this
document, for referencing the properties and sub-properties of a feature encoded as XML
elements or attributes.

7.4.2 XPath expressions

The XML Path Language [8] specification is a language for addressing parts of a XML
document, or in the case of this specification, for referencing feature properties referred
to by means of XML elements or attributes.

This specification does not require a WFS implementation to support the full XPath
language. In order to keep the implementation entry cost as low as possible, this
specification mandates that a WFS implementation must support the following subset of
the XPath language:

1. A WEFS implementation must support abbreviated relative location paths.

2. Relative location paths are composed of one or more steps separated by the path
separator ‘/’.

3. The first step of a relative location path may correspond to the root element of the
feature property being referenced or to the root element of the feature type with
the next step corresponding to the root element of the feature property being
referenced.

4. Each subsequent step in the path must be composed of the abbreviated form of
the child:: axis specifier and the name of the feature property encoded as the
principal node type of element. The abbreviated form of the child:: axis specifier
is to simply omit the specifier from the location step.

5. Each step in the path may optionally contain a predicate composed of the
predicate delimiters ‘[ and ‘]’ and a number indicating which child of the context
node is to be selected. This allows feature properties that may be repeated to be
specifically referenced.

6. The final step in a path may optionally be composed of the abbreviated form of
the attribute:: axis specifier, ‘@’, and the name of a feature property encoded as
the principal node type of attribute.

Example

To practically illustrate the use of XPath expressions for referencing the properties of a
complex feature (encoded as elements or attributes), consider the fictitious complex
feature Person defined by the following XML Schema document:

© OGC 2002 — All rights reserved 13



<?xm version="1.0" ?>
<schema
t ar get Nanespace="http://ww. soneser ver. coni myns"
xm ns: myns="http://ww. someserver. conl nmyns"
xm ns: gm =" http://ww. opengi s. net/gm"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns="http://ww. w3. org/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed"
versi on="1.0">

<i nport nanespace="http://ww. opengis.net/gnl"’
schemaLocation="../gm /2. 1/ feature. xsd"/>

<el ement name="Person" type="nyns: PersonType"
substitutionG oup="gm :_Feature"/>
<conpl exType nanme="PersonType">
<conpl exCont ent >
<ext ensi on base="gml : Abstract Feat ureType" >
<sequence>
<el ement name="Last Nane" nillable="true">
<si npl eType>
<restriction base="string">
<mexLengt h val ue="30"/>
</restriction>
</ si mpl eType>
</ el emrent >
<el ement nanme="FirstNanme" nillabl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="10"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement name="Age" type="integer" nillable="true"/>
<el ement name="Sex" type="string"/>
<el enent name="Spouse" >
<conpl exType>
<attribute nanme="sin" type="xsd:anyURl" use="required" />
</ conpl exType>
</ el ement >
<el ement nane="Location"
type="gm : Poi nt PropertyType"
nillable="true"/>
<el ement name="Address" type="nyns: AddressType" nillable="true"/>
<el ement name="Phone" type="xsd:string"
m nCccur s="0" maxCccur s="unbounded"/ >
</ sequence>
<attribute name="sin" type="xsd:anyURl " use="required"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nanme="AddressType" >
<sequence>
<el ement nanme="Street Name" nillabl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si nmpl eType>
</ el ement >
<el ement name="Street Nunber" nillable="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="10"/>
</restriction>
</ si mpl eType>
</ el ement >
<el ement name="City" nillable="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement name="Province" nillable="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>

© OGC 2002 — All rights reserved



</restriction>
</ si mpl eType>
</ el ement >
<el ement nane="Post al Code" nill abl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="15"/>
</restriction>
</ si mpl eType>
</ el ement >
<el enment name="Country" nill abl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si npl eType>
</ el ement >
</ sequence>
</ conpl exType>
</ schema>

Note that the property Address is a complex property of type AddressType. An example
instance of the feature Person might be:

<?xm version="1.0" ?>
<nyns: Person
sin="111222333"
xm ns: myns="http://ww. opengi s. net/ myns"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: x| i nk="http://ww. w3. org/ 1999/ xl i nk"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. opengi s. net/ nyns Person. xsd">

<nyns: Last Name>Smi t h</ nyns: Last Nanme>

<nmyns: Fi r st Name>Fr ed</ nyns: Fi r st Nane>

<nmyns: Age>35</ myns: Age>

<nmyns: Sex>Mal e</ nyns: Sex>

<nmyns: Spouse si n="444555666" />

<nyns: Locati on>
<gml : Poi nt ><gml : coor di nat es>15, 15</ gnl : coor di nat es></ gnl : Poi nt >

</ nyns: Locati on>

<nyns: Addr ess>
<nmyns: Street Name>Mai n St. </ myns: Street Name>
<nyns: Street Number >5</ nyns: St r eet Nunber >
<nmyns: G ty>SoneCi ty</nyns: G ty>
<myns: Provi nce>SonePr ovi nce</ nyns: Provi nce>
<nmyns: Post al Code>X1X 1X1</nyns: Post al Code>
<nmyns: Count r y>Canada</ nyns: Count ry>

</ nyns: Addr ess>

<nmyns: Phone>416- 123- 4567</ nyns: Phone>

<nmyns: Phone>416- 890- 1234</ nyns: Phone>

</ myns: Per son>

Using XPath [8] expressions, each property of a Person feature can be referenced as
follows (omitting the namespace qualifiers for clarities sake):

Last Nane

Fi r st Nane

Age

Sex

Sour ce

Locati on

Addr ess

Addr ess/ Street Nunber
Addr ess/ Street Nane
Address/City

Addr ess/ Provi nce
Addr ess/ Post al _Code
Addr ess/ Country
Phone[ 1]

Phone|[ 2]

Notice that in this instance, each relative location path begins with the root element of the
feature property being referenced. This simply corresponds to the name of the feature
property. Optionally, each feature property may be referenced with the relative location

© OGC 2002 — All rights reserved 15



path beginning with root element of the feature (i.e. the name of the feature type). Thus
the LastName property could be reference as Person/LastName, the City property could
be referenced as Person/Address/City and so on.

Each step of the path is composed of the abbreviated child:: axis specifier (i.e. the axis
specifier child:: is omitted) and the name of the specified property which is of node type
element.

The element Phone appears multiple times and the predicates /1] and /2] are used to
indicate the specific elements. The predicate //] is used to indicate the first occurrence
of the Phone element. The predicate /2] is used to indicate the second occurrence of the
Phone element.

In addition, the sin! attribute on the <Person> and <Spouse> elements can be referenced
using the following XPath [8] expressions:

Person/ @i n
Per son/ Spouse/ @i n

In these cases the final step of the path contains the abbreviated axis specifier attribute.:
(i.e. @) and the node type is attribute (i.e. sin in this case).

7.5 <Native> element

It is clear that an open interface can only support a certain common set of capabilities.
The <Native> element is intended to allow access to vendor specific capabilities of any
particular web feature server or datastore.

The <Native> element is defined by the following XML Schema fragment:

<xsd: el enent nane="Native" type="wfs:NativeType"/>
<xsd: conmpl exType nanme="Nati veType">
<xsd: any />
<xsd: attribute name="vendor|d" type="xsd:string" use="required"/>
<xsd: attribute name="saf eTol gnore" type="xsd: bool ean" use="required"/>
</ xsd: conpl exType>

The <Native> element simply contains the vendor specific command or operation.
The vendorld attribute is used to identify the vendor that recognizes the command or

operation enclosed by the <Native> element. The attribute is provided as a means of
allowing a web feature service to determine if it can deal with the command or not.

The safeTolgnore attribute is used to guide the actions of a web feature service when the
<Native> command or operation is not recognized. The safeTolgnore attribute has two
possible values True or False. The values have the following meanings:

safeTolgnore=False

A value of False indicates that the <Native> element cannot be ignored and the operation
that the element is associated with must fail if the web feature service cannot deal with it.

I SIN = Social Insurance Number

16 © OGC 2002 — All rights reserved



safeTolgnore=True

A value of True indicates that the <Native> element can be safely ignored.

Example

This example illustrates the use of the <Native> element to enable a special feature of a
SQL-based relational database. In this instance, the element indicates that this is an
Oracle command and that the command can be safely ignored.

<Native vendorld="Oacle" safeTol gnore="True">

ALTER SESSI ON ENABLE PARALLEL DM
</ Native>

7.6  Filter

A filter is used to define a set of feature instances that are to be operated upon. The
operating set can be comprised of one or more enumerated features or a set of features
defined by specifying spatial and non-spatial constraints on the geometric and scalar
properties of a feature type. Filter specifications shall be encoded as described in the
OGC Filter Encoding Implementation Specification [3].

7.7 Exception reporting

In the event that a web feature service encounters an error while processing a request or
receives an unrecognized request, it shall generate an XML document indicating that an
error has occurred. The format of the XML error response is specified by, and must
validate against, the exception response schema defined in section A.2.

A <ServiceExceptionReport> clement can contain one or more WFS processing
exceptions. The mandatory version attribute is used to indicate the version of the service
exception report schema. For this version of the specification, this value is fixed at 1.2.0.

Individual exception messages are contained within the <ServiceException> element.
The optional code attribute may be used to associate an exception code with the
accompanying message. The optional locator attribute may be used to indicate where an
exception was encountered in the request that generated the error. A number of elements
defined in this document include a handle attribute that can be used to associate a
mnemonic name with the element. If such a handle exists, its value may be reported
using the locator attribute of the <ServiceException> element. If the handle attribute is
not specified, then a web feature server implementation may attempt to locate the error
using other means such as line numbers, etc...

Example

The following is an example of an exception report. This exception indicates that the
first insert statement failed because of a missing closing XML tag in the request.

<?xm version="1.0" ?>
<Servi ceExcepti onReport
versi on="1.2.0"
xm ns="http://ww. opengi s. net/ ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="http://ww. opengi s. net/ogc ../w s/1.0.0/ OGC-exception.xsd">
<Servi ceExcepti on code="999" | ocator="|NSERT STMI 01">
parse error: missing closing tag for el ement VWKB_GEOM

© OGC 2002 — All rights reserved 17



</ Servi ceExcepti on>
</ Servi ceExcepti onReport >

It should be noted that this sample output validates against the exception report schema
presented above.

7.8 Common XML attributes

7.8.1 Version attribute

All XML encoded WFS requests include an attribute called version. The mandatory
version attribute is used to indicate to which version of the WFS specification the request
encoding conforms and is used in version negotiation as described in section 6.2.4. The
default value of the version attributed is set to 1.0.0, which corresponds to the version of
this document.

7.8.2 Service attribute

All XML encoded WFS requests include an attribute called service. The mandatory
service attribute is used to indicate which of the available service types, at a particular
service instance, is being invoked. When invoking a web feature service, the value of the
service attribute shall be WFS.

7.8.3 Handle attribute

The purpose of the handle attribute is to allow a client application to associate a
mnemonic name with a request for error handling purposes. If a handle is specified, and
an exception is encountered, a Web Feature Service may use the handle to identify the
offending element.

8 DescribeFeatureType operation

8.1 Introduction

The function of the DescribeFeatureType operation is to generate a schema description
of feature types serviced by a WFS implementation. The schema descriptions define how
a WFS implementation expects feature instances to be encoded on input and how feature
instances will be generated on output.

8.2 Request

A DescribeFeatureType element contains zero or more TypeName elements that
encode the names of feature types that are to be described. If the content of the
DescribeFeatureType element is empty, then that shall be interpreted as requesting a
description of all feature types that a WFS can service. The XML encoding of a
DescribeFeatureType request is defined by the following XML Schema fragment:

<xsd: el enent nane="Descri beFeat ureType" type="wfs: Descri beFeatureTypeType"/>
<xsd: conmpl exType nane="Descri beFeat ureTypeType" >
<xsd: sequence>
<xsd: el enent nane="TypeNane" type="xsd: QNane"

</ xsd: sequence>

18 © 0GC 2002 — All rights reserved



<xsd: attribute name="versi on"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute nanme="out put For mat "
type="xsd: string" use="optional" default="XM.SCHENA"/ >
</ xsd: conpl exType>

The outputFormat attribute, is used to indicate the schema description language that
should be used to describe feature type schemas. The only mandatory output format in
response to a DescribeFeatureType operation is XML Schema, denoted by the value
XMLSCHEMA for the outputFormat attribute. Other vendor specific formats are also
possible, but they must be advertised on the capabilities document [sec. 12].

As specified by GML [2], the feature schema definition is entirely at the discretion of the
particular WFS implementation that is describing its feature types. The only caveats are:

1. Feature geometry must be expressed using the GML geometry description.
(geometry.xsd).

2. Spatial Reference Systems must be expressed as defined in the OpenGIS®
Geography Markup Language (GML) Implementation Specification, version 2.1.1
[2].

3. The feature schema must be consistent with the OGC feature model. This means that
the feature schema defines properties of the feature. The GML interpretation of this
statement is that the elements nested below the root element of a feature type define
properties of that feature.

8.3 Response

In response to a DescribeFeatureType request, where the value of the outputFormat
attribute has been set to XMLSCHEMA, a WFS implementation must be able to present
an XML Schema [6] document that is a valid GML [2] application schema and defines
the schema of the feature types listed in the request. The document(s) presented by the
DescribeFeatureType request may be used to validate feature instances generated by the
WES in the form of feature collections on output or feature instances specified as input
for transaction operations.

Schema descriptions using other schema description languages, such as DTD, are also
possible as long as such capabilities are declared in the capabilities document [sec. 12].

8.3.1 Supporting multiple namespaces

An XML Schema[6] document can only describe elements that belong to a single
namespace. This means that a Web Feature Service cannot describe features from
multiple namespaces in a single XML Schema document. To overcome this limitation, a
WFS may generate an XML Schema document that is a “wrapper” schema that imports
the schemas of the features from the various namespaces in the request. For example,
consider the following request:

<?xm version="1.0" ?>
<Descri beFeat ureType
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/ wfs"
xm ns: nsO1="http://ww. server01l. com ns01"
xm ns: ns02="http://ww. server02. com ns02"

© OGC 2002 — All rights reserved 19



xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/wfs ../wfs/1.0.0/ WS-basic.xsd">
<TypeName>ns01: TREESA 1M/ TypeNanme>
<TypeName>ns02: ROADL_1M/ TypeNanme>
</ Descri beFeat ureType>

A WFS may generate the following response to this request:

<?xm version="1.0" ?>

<schema
xm ns="http://wwm. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed">

<i nport nanespace="http://ww. server0l. com ns01"
schemaLocati on="http://ww. myserver.com wWs. cgi ?
request =Descr i beFeat ur eType&anp; t ypeNane=ns01: TREESA 1M'/ >
<i nport nanespace="http://ww. server02. com ns02"
schemaLocati on="http://ww. yourserver.com wfs. cgi ?
request =Descr i beFeat ur eType&anp; t ypeNane=ns02: ROADL_1M'/ >

</ schema>

In this example, the WFS is using a DescribeFeatureType request to obtain the schemas
of the features in the various namespaces. This is simply an example, other methods of
obtaining the schemas may be implemented (for example: referencing static schema
documents).

8.4 Exceptions

In the event that a web feature service encounters an error servicing a
DescribeFeatureType request, it shall raise an exception as described Section 7.7.

8.5 Examples

Example 1

Consider geographic features of types TREESA IM and ROADL 1M that are defined in a
SQL database. The description of these feature types is reported by the database to be:

SQ.> descri be TREESA 1M

Name Nul I ? Type
VKB_GEOM NOT NULL LONG RAW
NUMBER( 10)
TREE_TYPE VARCHAR2( 80)
SQ.> descri be ROADL_1M
Nane Nul | ? Type
WKB_GEOM NOT NULL LONG RAW
DESI GNATI ON VARCHAR2( 30)
SURFACE_TYPE VARCHAR2( 30)
NLANES NUVBER( 2)

In response to the DescribeFeatureType request:

<?xm version="1.0" ?>
<Descri beFeat ur eType
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/wfs"
xm ns: myns="http://ww. nyserver.com nyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-basic. xsd">
<TypeName>nyns: TREESA 1M/ TypeNane>
<TypeName>nyns: ROADL_1Mk/ TypeNane>
</ Descri beFeat ureType>

20 © OGC 2002 — All rights reserved



a web feature service may generate the following XML Schema document:

<?xm version="1.0" ?>
<schema
t ar get Nanespace="http://ww. soneser ver. coni myns"
xm ns: myns="http://ww. soneserver. conf nmyns"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: gm ="http://ww. opengi s. net/gm "
el emrent For nDef aul t =" qual i fi ed" versi on="0.1">

<i nmport namespace="http://ww. opengi s. net/gm"'

schemaLocation="../gm/2.1/feature.xsd"/>
<l--
define gl obal elenents
-->
<el ement nanme="TREESA 1M
type="nyns: TREESA 1M Type"
substituti onG oup="gm : _Feature"/>
<el ement name="ROADL_1M'
type="nyns: ROADL_1M Type"
substitutionG oup="gm:_Feature"/>
<l--
define conpl ex types (classes)
-->

<conpl exType nane="TREESA 1M Type">
<conpl exCont ent >
<ext ensi on base="gml : Abstract Feat ureType" >
<sequence>
<el ement name="\WKB_GEOM
type="gnl : Pol ygonPropertyType" nillabl e="fal se"/>
<el ement name="ID"' nillable="true" m nQccurs="0">
<si npl eType>
<restriction base="integer">
<totalDigits val ue="10"/>
</restriction>
</ si npl eType>
</ el ement >
<el enent name="TREE_TYPE" nill abl e="true" m nCccurs="0">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="80"/>
</restriction>
</ si mpl eType>
</ el ement >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="ROADL_1M Type" >
<conpl exCont ent >
<ext ensi on base="gmnl : Abstract Feat ureType" >
<sequence>
<el ement name="\WKB_GEOM
type="gnl : Li neStringPropertyType"
nillable="fal se"/>
<el ement nane="DES|I GNATI ON' nillabl e="true" m nQccurs="0">
<si npl eType>
<restriction base="string">

<maxLengt h val ue="30"/>
</restriction>
</ si npl eType>
</ el ement >
<el enent nanme="SURFACE_TYPE" nill abl e="true" m nCccurs="0">
<si npl eType>
<restriction base="string">
<maxLength val ue="30"/>
</restriction>
</ si mpl eType>
</ el ement >
<el ement name="NLANES" nill abl e="true" m nCccurs="0">
<si npl eType>

© OGC 2002 — All rights reserved



<restriction base="integer">
<total Digits val ue="2"/>
</restriction>
</ si npl eType>
</ el ement >
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>
</ schema>

Using this schema description, a client could then express the state of a TREESA IM
feature instance and/or a ROADL IM feature instance as shown in the following
example:

<?xm version="1.0" ?>
<wf s: Feat ureCol | ecti on
xm ns="http://ww. soneserver. conif nyns"
xm ns: myns="http://ww. sonmeserver. conif nyns"
xm ns: wfs="http://ww. opengi s. net/wfs"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww. opengis.net/wis ../wfs/1.0.0/ WS-basic. xsd
http://ww. soneserver.conl nyns ex07. xsd">
<gnl : boundedBy>
<gnml : Box srsName="http://ww. opengi s. net/gm /srs/epsg. xm #4326" >
<gmnl : coordi nat es>-180. 0, - 90. 0 180. 0, 90. 0</ gnl : coor di nat es>
</ gm : Box>
</ gm : boundedBy>
<gnl : f eat ur eMenber >
<TREESA 1M~
<WKB_GEOW>
<gmnl : Pol ygon>
<gnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gnl : coordi nates decimal ="." cs="," ts=" ">-120.000000, 65. 588264
-120. 003571, 65. 590782 -120. 011292, 65. 590965 -120. 022491, 65. 595215 -
120. 031212, 65. 592880 -120. 019363, 65. 586121 -120. 030350, 65. 585365 -
120. 045082, 65. 581848 -120. 059540, 65. 584938 -120. 067284, 65. 590500 -
120. 067284, 65. 595436 -120. 067337, 65. 613441 -120. 067337, 65. 613777 -
120. 060997, 65. 606346 -120. 045517, 65. 605545 -120. 022675, 65. 599777 -
120. 003975, 65. 601036 -120. 000000, 65. 602081 - 120. 000000, 65. 602081 -
120. 000000, 65. 588264</ gnl : coor di nat es>
</ gm : Li near R ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ \KB_GEOW>
<| D>0000000002</ | D>
<TREE_TYPE>Mapl e</ TREE_TYPE>
</ TREESA 1M
</ gm : f eat ur eMenber >
<gnl : f eat ur eMenber >

<ROADL_1M>
<WKB_GEOW>
<gml : LineString srsName="http://ww. opengi s. net/gm /srs/epsg. xm #4326" >
<gml : coordi nates decimal ="." cs="," ts=" ">-59.478340, - 52. 226578 -

59. 484871, -52. 223564 -59. 488991, - 52. 198524 -59. 485958, - 52. 169559 -59. 480400, -
52. 152615 -59. 465576, - 52. 141491 -59. 462002, - 52. 136417 -59. 447968, -52. 127190 -
59. 422928, -52. 120701 -59. 411915, -52. 117844 -59. 397972, -52. 116440 -59. 371311, -
52.121300</ gl : coor di nat es>
</ gm : LineString>

</ W\KB_GEOM>

<DESI GNATI ON>HYW 401</ DESI GNATI ON>

<SURFACE_TYPE>ASPHAL T</ SURFACE_TYPE>

<NLANES>12</ NLANES>

</ ROADL_1M>
</ gm : f eat ur eMenber >

</ wf s: Feat ureCol | ecti on>

Example 2

This example describes a collection type, People, composed of feature instances of the
feature type Person, that includes a complex property Address.

22 © OGC 2002 — All rights reserved



In response to the DescribeFeatureType request:

<?xm version="1.0" ?>
<Descri beFeat ureType
versi on="1.0.0"
servi ce="WFS"
out put For mat =" XM_SCHEMA
xm ns="http://ww. opengi s. net/wf s"
xm ns: myns="http://ww. myserver.conl nmyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/ws ../wfs/1.0.0/ WS- basic. xsd">
<TypeName>nyns: Peopl e</ TypeNane>
</ Descri beFeat ureType>

a web feature service might generate an XML Schema document that looks like:

<?xm version="1.0" ?>
<xsd: scheman
tar get Namespace="htt p: // www. someser ver. com myns"
xm ns: nyns="http://ww. someserver. coni myns"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: xsd="http:// ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed" versi on="0.1">

<xsd:inmport namespace="http://ww. opengi s. net/gm"
schemaLocation="../gm /2. 1/ feature. xsd"/>

<xsd: el enent nane="Person"
type="nyns: PersonType"
substitutionG oup="gm :_Feature"/>

<xsd: conmpl exType nanme="PersonType">
<xsd: conmpl exCont ent >
<xsd: ext ensi on base="gnl : Abstract Feat ur eType" >
<xsd: sequence>
<xsd: el ement nane="Last Name" nillabl e="true">
<xsd: si npl eType>
<xsd:restriction base="string">
<xsd: maxLength val ue="30"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el ement >
<xsd: el ement name="FirstNanme" nillabl e="true">
<xsd: si npl eType>
<xsd:restriction base="string">
<xsd: maxLength val ue="10"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el ement >
<xsd: el ement nane="Age"
type="int eger"
nillable="true"/>
<xsd: el enent nane="Sex"
type="string"/>
<xsd: el ement nanme="Location"
type="gnl : Poi nt PropertyType"
nillable="true"/>
<xsd: el enent nane="Address"
type="nyns: Addr essType"
nillable="true"/>
</ xsd: sequence>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nane="AddressType">
<xsd: sequence>
<xsd: el ement nane="Street Nane" nillabl e="true">
<xsd: si mpl eType>
<xsd:restriction base="string">
<xsd: maxLengt h val ue="30"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el enent >
<xsd: el enent nane="Street Nunber" nillabl e="true">

© OGC 2002 — All rights reserved

23



<xsd: si mpl eType>
<xsd:restriction base="string">
<xsd: maxLength val ue="10"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el enent >
<xsd: el enent nane="City" nillable="true">
<xsd: si mpl eType>
<xsd:restriction base="string">
<xsd: maxLengt h val ue="30"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
<xsd: el ement nane="Province" nillable="true">
<xsd: si mpl eType>
<xsd:restriction base="string">
<xsd: maxLengt h val ue="30"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el enent >
<xsd: el ement nane="Post al Code" nillabl e="true">
<xsd: si npl eType>
<xsd:restriction base="string">
<xsd: maxLength val ue="15"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el ement >
<xsd: el ement nanme="Country" nillable="true">
<xsd: si mpl eType>
<xsd:restriction base="string">
<xsd: maxLengt h val ue="30"/>
</ xsd:restriction>
</ xsd: si nmpl eType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

A sample instance document that validates against this schema might be:

<?xm version="1.0" ?>
<wf s: Feat ureCol | ecti on
xm ns="http://ww. soreserver. coni myns"
xm ns: myns="http://ww. soneserver. conf nmyns"
xm ns: wfs="http://ww. opengi s. net/wfs"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wis ../wfs/1.0.0/ WS- basic. xsd
http://ww. someserver.com nmyns ex10. xsd">
<gnl : boundedBy>
<gm : Box>
<gm : coor d>
<gml : X>10</ gm : X>
<gm : Y>10</gm : Y>
</gm : coord>
<gmi : coord>
<gm : X>20</ gm : X>
<gm : Y>20</gm : Y>
</ gm : coord>
</ gm : Box>
</ gm : boundedBy>
<gnl : f eat ur eMenber >
<Per son>
<nmyns: Last Name>Smi t h</ myns: Last Nanme>
<nyns: Fi r st Name>Fr ed</ nyns: Fi r st Name>
<nmyns: Age>35</ myns: Age>
<nmyns: Sex>Mal e</ nyns: Sex>
<nmyns: Locati on>
<gml : Poi nt ><gmnl : coor di nat es>15, 15</ gn : coor di nat es></ gnl : Poi nt >
</ nyns: Locati on>
<nyns: Addr ess>
<nyns: Street Name>Mai n St. </ nyns: Street Nane>
<nmyns: Street Number >5</ nyns: St r eet Nunber >
<nmyns: G ty>SonmeCi ty</nyns: Cty>
<myns: Provi nce>SonePr ovi nce</ nyns: Provi nce>
<nmyns: Post al Code>X1X 1X1</nyns: Post al Code>
<nmyns: Count r y>Canada</ nyns: Count ry>
</ nyns: Addr ess>

24 © OGC 2002 — All rights reserved



</ Per son>
</ gm : f eat ur eMenber >
</ W s: Feat ureCol | ecti on>

9 GetFeature operation

9.1 Introduction

The GetFeature operation allows retrieval of features from a web feature service. A
GetFeature request is processed by a WFS and an XML document, containing the result
set, 1s returned to the client.

9.2 Request

The XML encoding of a GetFeature request is defined by the following XML Schema
fragment:

<xsd: el ement nane="Get Feature" type="wfs: Cet FeatureType"/>
<xsd: conmpl exType name="Get Feat ureType" >
<xsd: sequence>
<xsd: el enent ref="wfs: Query" nmaxCQccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="version"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute nane="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute name="out put For mat "
type="xsd: string" use="optional" defaul t="GW2"/>
</xsd:attribute>
<xsd: attribute name="nmaxFeat ures" type="xsd: positivelnteger"
use="optional "/ >
</ xsd: conpl exType>
<xsd: el enent nane="Query" type="ws: QueryType"/>
<xsd: conpl exType name="QueryType" >
<xsd: sequence>
<xsd: el enent ref="ogc: PropertyNanme" m nCQccurs="0" nmaxQccurs="unbounded"/>
<xsd: el enent ref="ogc:Filter" m nCccurs="0" maxCccurs="1"/>
</ xsd: sequence>
<xsd:attribute name="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute name="t ypeNane"
type="xsd: QNane" use="required"/>
<xsd: attribute name="feat ureVersion"
type="xsd: string" use="optional"/>
</ xsd: conpl exType>

The <GetFeature> element contains one or more <Query> elements, each of which in

turn contain the description of a query. The results of all queries contained in a
GetFeature request are concatenated to produce the result set.

The outputFormat attribute defines the format to use to generate the result set. The
default value is GML2 indicating that GML [2] shall be used. Vendor specific formats
(including non-XML and binary formats), declared in the capabilities document are also
possible.

The optional maxFeatures attribute can be used to limit the number of features that a
GetFeature request retrieves. Once the maxFeatures limit is reached, the result set is
truncated at that point.

Each individual query packaged in a GetFeature request is defined using the <Query>

element. The <Query> element defines which feature type to query, what properties to
retrieve and what constraints (spatial and non-spatial) to apply to those properties.

© OGC 2002 — All rights reserved 25



The typeName attribute is used to indicate the name of the feature type or class to be
queried.

The featureVersion attribute is included in order to accommodate systems that support
feature versioning. A value of ALL indicates that all versions of a feature should be
fetched. Otherwise, an integer, n, can be specified to return the n™ version of a feature.
The version numbers start at /, which is the oldest version. If a version value larger than
the largest version number is specified, then the latest version is returned. The default
action shall be for the query to return the latest version. Systems that do not support
versioning can ignore the parameter and return the only version that they have.

The <PropertyName> element is used to enumerate the feature properties that should be
selected during a query and whose values should be included in the response to a
GetFeature request. A client application can determine the properties of a feature by
making a DescribeFeatureType request before composing a GetFeature request. The
DescribeFeatureType operation [sec. 8] will generate a GML application schema
defining the schema of the feature type. The client can then select the properties to be
fetched. In addition, the client can determine which feature properties are mandatory and
must be fetched in order for the WFS to be able to generate an instance of the feature type
that will validate againt the generated GML application schema. In the event that a WFS
encounters a query that does not select all mandatory properties of a feature, the WFS
will internally augment the property name list to include all necessary property names. A
WES client must thus be prepared to deal with a situation where it receives more property
values than it requests.

If no <PropertyName> clements are specified, then all feature properties should be
fetched.

The <Filter> element can be used to define constraints on a query. Both spatial and/or
non-spatial constraints can be specified as described in the Filter Encoding Specification
[3]. If no <Filter> element is contained within the <Query> element, then the query is
unconstrained and all feature instances should be retrieved.

The <GetFeatureWithLock> element is functionally similar to the <GetFeature>
element, except that it indicates to a web feature service to attempt to lock the features
that are selected; presumably to update the features.

9.3 Response

The format of the response to a GetFeature request is controlled by the outputFormat
attribute. The default value for the outputFormat attribute shall be GML2. This will
indicate that a WFS must generate a GML document of the result set that conforms to the
OpenGIS® Geography Markup Language Implementation Specification, version 2.1.1
[2], and more specifically, the output must validate againt the GML application schema
generated by the DescribeFeatureType operation [sec. 8].

Any GML document generated by a WFS implementation, in response to a query where
the outputFormat is GML2, must reference an appropriate GML application schema
document so that the output can be validated. This can be accomplished using the
schemaLl.ocation attribute, as defined in [6]. This attribute provides hints as to the

26 © 0GC 2002 — All rights reserved



physical location of one or more schema documents which may be used for local
validation and schema-validity assessment. The schemaLocation attribute value
contains pairs of values. The first member of each pair is the namespace for which the
second member is the hint describing where to find to an appropriate schema document.
The physical location of the schema documents is specified using a URI [10].

The following XML fragment shows the use of the schemaLocation attribute on the root
element indicating the location of the an XML Schema document that can be used for

validation:

<?xm version="1.0" ?>

<wf s: Feat ureCol | ecti on
xm ns="http://ww. opengi s. net/ nyns"
xm ns: myns="http://ww. opengi s. net/ nyns"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: xsi =http://ww. w3. or g/ 2001/ XM_Schena- i nst ance
xsi : schemaLocati on="http://ww. opengi s. net/ myns

http://ww. sonmeserver.com wfs. cgi ?
request =Descr i beFeat ur eType&t ypename=TREESA_ 1M ROADL_1M > ...

In this instance, the schema document corresponding to the myns namespace is
dynamically generated by making a DescribeFeatureType request back to the server that
generated the output, requesting the schema. This DescribeFeatureType operation [sec.
8] requests the schema of the feature types TREESA 1M and ROADL 1M, both in the
myns namespace.

It is up to each WFS implementation to arrange that the GML output makes the
appropriate schemaLocation reference(s) such that the output can be validated.

For the <GetFeatureWithLock> request, a WFS must generate a result that includes the
lock identifier. The lock identifier is encoded using the lockld attribute that is defined on
the <wfs:FeatureCollection> element. The following XML fragment illustrates how to
include the lockld attribute in the response to the operation:

<wfs: Feat ureCol | ecti on | ockl d="00A01"...>

</wWf s: Feat ureCol | ecti on>

The ellipses are meant to represent all the other components included in the
GetFeatureWithLock response which are identical to the components included in the
GetFeature response.

9.4 Exceptions

In the event that a web feature service encounters an error servicing a GetFeature
request, it shall raise an exception as described in Section 7.7.

9.5 Examples

This section contains numerous examples of the GetFeature request. Some examples
include sample output.

Example 1

This example fetches a specific instance of the feature type INWATERA 1M identified by
the feature identifier "INWATERA 1M.1234".

© OGC 2002 — All rights reserved 27



<?xm version="1.0" ?>
<wf s: Get Feature
servi ce="WFS"
version="1.0.0"
out put For mat =" GVL2"
xm ns: myns="http://ww. soneserver. conf nmyns"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wis ../wfs/1.0.0/ WS-basic. xsd">
<wfs: Query typeName="nyns: | NVATERA_1M' >
<ogc: Filter>
<ogc: Featureld fid="I NWVATERA_1M 1234"/ >
</ogc:Filter>
</wfs: Query>
</ wfs: Get Feat ur e>

Example 2

This example fetches a subset of properties of the feature type INWATERA 1M. The
specific instance that is retrieved by the request is identified by the feature identifier
"INWATERA 1M.1013".

<?xm version="1.0" ?>
<wf s: Get Feature
servi ce="WFS"
versi on="1.0.0"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: myns="http://ww. soneserver. conl nyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-basic. xsd">
<wf s: Query typeName="nyns: | NMVATERA_1M' >
<ogc: PropertyNane>myns: WKB_GEOMWK/ ogc: Propert yNane>
<ogc: PropertyNane>nyns: Tl LE_| D</ ogc: Propert yNanme>
<ogc: PropertyNanme>myns: FAC | D</ ogc: Propert yNanme>
<ogc: Filter>
<ogc: Featureld fid="I NWVATERA_1M 1013"/ >
</ogc: Filter>
</wfs: Query>
</ wf s: Get Feat ur e>

Example 3

In this example, all the properties of feature type INWATERA IM are fetched for an
enumerated list of feature instances. The <Featureld> element is used to identify each
feature to be fetched.

<?xm version="1.0" ?>
<Get Feature
version="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/wf s"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: myns="http://ww. someserver. coni nyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-basic.xsd">
<Query typeNane="nyns: | N\VATERA_1M >
<ogc: Filter>
<ogc: Featureld fid="I NWVATERA_1M 1013"/ >
<ogc: Featureld fid="I NWVATERA_1M 1014"/ >
<ogc: Featureld fid="I NWATERA_1M 1015"/ >
</ogc: Filter>
</ Query>
</ Cet Feat ur e>

Example 4

This example is similar to the previous example except in this case only some of the
properties of an enumerated set of features are fetched. The <PropertyName> element
is used to list the properties to be retrieved.

28 © OGC 2002 — All rights reserved



<?xm version="1.0" ?>
<Get Feature
version="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: myns="http://ww. soneserver. conl nyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi:schemaLocati on="http://ww. opengi s. net/wfs ../wf s/1.0.0/ WS-basi c. xsd">
<Query typeName="nyns: | N\VATERA 1M >
<ogc: PropertyNanme>nmyns: WKB_CGEOMWK/ ogc: Pr opert yNane>
<ogc: PropertyNanme>nyns: Tl LE_| D</ ogc: Pr oper t yNanme>
<ogc: Filter>
<ogc: Featureld fid="I| NWVATERA_1M 1013"/ >
<ogc: Featureld fid="| NVATERA_1M 1014"/ >
<ogc: Featureld fid="I| NWVATERA_1M 1015"/ >
</ogc:Filter>
</ Query>
</ Get Feat ur e>

Example 5

Select all instances of the feature type INWATERA 1M to a maximum of 10000 features.

<?xm version="1.0" ?>
<Cet Feature
versi on="1.0.0"
servi ce="WFS"
maxFeat ur es="10000"
xm ns="http://ww. opengi s. net/wfs"
xm ns: myns="http://ww. soneserver. conf myns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/wfs ../wfs/1.0.0/ WS- basi c. xsd">
<Query typeNanme="nyns: | N\WVATERA 1M'/ >
</ CGet Feat ur e>

Example 6

The following unconstrained request fetches all the instances of an enumerated set of
feature types. Notice that the feature types are not all in the same namespace

<?xm version="1.0" ?>
<Get Feature
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/wfs"
xm ns: myns="http://ww. someserver. conl nmyns"
xm ns: yourns="http://deno. cubewer x. conf your ns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/ws ../ws/1.0.0/ WS- basi c. xsd">
<Query typeName="nyns: | NWVATERA_1M'/ >
<Query typeName="nyns: BUl LTUPA_1M'/ >
<Query typeName="yourns: ROADL_1M'/ >
</ Get Feat ur e>

Example 7

The following example selects the geometry and depth from the HYDROGRAPHY
feature for the area of the Grand Banks. The Grand Banks are bounded by the following
box: [-57.9118,46.2023,-46.6873,51.8145].

<?xm version="1.0" ?>
<Cet Feat ure
versi on="1.0.0"
servi ce="WFS"
handl e=" Quer y01"
xm ns="http://ww. opengi s. net/wf s"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: myns="http://ww. soneserver. conl nmyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. opengi s. net/wfs ../wfs/1.0.0/ WS-basic. xsd">
<Query typeNane="nyns: HYDROGRAPHY" >

© OGC 2002 — All rights reserved 29



<ogc: PropertyNane>nmyns: GEOTEMP</ ogc: Propert yNanme>
<ogc: PropertyNane>nmyns: DEPTH</ ogc: Pr oper t yName>
<ogc: Filter>
<ogc: Not >
<ogc: Di sj oi nt >
<ogc: PropertyNane>nmyns: GEOTEMP</ ogc: Propert yNanme>
<gnl : Box>
<gnl : coordi nat es>-57. 9118, 46. 2023 -46. 6873, 51. 8145</ gl : coor di nat es>
</ gm : Box>
</ ogc: Di sj oi nt >
</ ogc: Not >
</ogc:Filter>
</ Query>
</ Get Feat ur e>

The output from such a request might be:

<?xm version="1.0" ?>
<wf s: Feat ureCol | ecti on
xm ns="http://ww. someserver.conl nyns"
xm ns: wf s="http://wwm. opengi s. net/w s"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. someserver. conl myns HYDROGRAPHY. xsd
http://ww. opengis.net/wfs ../wfs/1. 0.0/ WS-basic.xsd">
<gmnl : boundedBy>
<gml : Box srsName="http://ww. opengi s. net/gm /srs/epsg. xm #4326" >
<gnl : coordi nat es>10, 10 20, 20</ gm : coor di nat es>
</ gm : Box>
</ gm : boundedBy>
<gnl : f eat ur eMenber >
<HYDROGRAPHY f i d=" HYDROGRAPHY. 450" >
<GEOCTEMP>
<gnl : Poi nt srsNane="http://ww. opengi s. net/gm /srs/epsg. xm #4326" >
<gmnl : coordi nat es>10, 10</ gnl : coor di nat es>
</ gm : Poi nt >
</ GEOTEMP>
<DEPTH>565</ DEPTH>
</ HYDROGRAPHY>
</ gm : f eat ureMenber >
<gnl : f eat ur eMenber >
<HYDROGRAPHY f i d=" HYDROGRAPHY. 450" >
<GEOCTEMP>
<gnl : Poi nt srsNane="http://ww. opengi s. net/gm /srs/epsg. xm #4326" >
<gmnl : coordi nat es>10, 11</ gl : coor di nat es>
</ gm : Poi nt >
</ GEOTEMP>
<DEPTH>566</ DEPTH>
</ HYDROGRAPHY>
</ gm : f eat ur eMenber >
<l —

... mor e HYDROGRAPHY i nst ances ...

-->
</wWfs: Feat ureCol | ecti on>

Example 8

This example describes two queries that fetch instances of ROADS and RAILS that lie
within a single region of interest.

<?xm version="1.0" ?>
<Cet Feature
versi on="1.0.0"
servi ce="WFS"
handl e="Exanpl e Query"
xm ns="http://ww. opengi s. net/w s"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: myns="http://ww. soneserver. conf myns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wis ../wfs/1.0.0/ WS- basi c. xsd">
<Query typeNanme="nyns: ROADS" >
<ogc: PropertyNane>nmyns: PATH</ ogc: Pr oper t yName>
<ogc: PropertyNane>myns: LANES</ ogc: Pr opert yName>

30 © OGC 2002 — All rights reserved



<ogc: PropertyNane>myns: SURFACETYPE</ ogc: Pr opert yNanme>
<ogc: Filter>
<ogc: Wt hi n>
<ogc: PropertyNane>nmyns: PATH</ ogc: Pr opert yNane>
<gnl : Box>
<gnl : coor di nat es>50, 40 100, 60</ gml : coor di nat es>
</ gm : Box>
</ ogc: Wt hi n>
</ogc: Filter>
</ Query>
<Query typeNanme="nyns: RAI LS">
<ogc: PropertyName>myns: TRACK</ ogc: Pr oper t yName>
<ogc: PropertyNane>myns: GAUGE</ ogc: Pr opert yName>
<ogc: Filter>
<ogc: Wt hi n>
<ogc: PropertyNanme>nyns: TRACK</ ogc: Pr opert yNane>
<gm : Box>
<gnl : coor di nat es>50, 40 100, 60</ gml : coor di nat es>
</ gm : Box>
</ ogc: Wt hi n>
</ogc: Filter>
</ Query>
</ Get Feat ur e>

The results of each query are concatenated to form the output feature collection.

<?xm version="1.0" ?>
<wf s: Feat ureCol | ecti on
xm ns="http://ww. someserver. coni myns"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-basic. xsd
http://ww. someserver. conm nyns ROADSRAI LS. xsd" >
<gnl : boundedBy>
<gml : Box srsName="http://ww. opengi s.net/gm /srs/epsg. xm #4326" >
<gnl : coordi nat es>0, 0 180, 360</ gm : coor di nat es>
</ gm : Box>
</ gm : boundedBy>
<gnl : f eat ur eMenber >
<ROADS fi d="ROADS. 100" >
<PATH>
<gml : LineString gid="1"
srsName="htt p://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gmnl : coordi nat es>10, 10 10, 11 10,12 10, 13</ gml : coor di nat es>
</ gm : LineString>
</ PATH>
<SURFACE_TYPE>ASPHAL T</ SURFACE_TYPE>
<NLANES>4</ NLANES>
</ ROADS>
</ gm : f eat ur eMenber >
<gnl : f eat ur eMenber >
<ROADS fi d="ROADS. 105" >
<PATH>
<gm : LineString gid="2"
srsName="htt p://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : coordi nat es>10, 10 10, 11 10, 12</gm : coordi nat es>
</ gm : LineString>
</ PATH>
<SURFACE_TYPE>GRAVEL</ SURFACE_TYPE>
<NLANES>2</ NLANES>
</ ROADS>
</ gm : f eat ur eMenber >
<l--
more ROADS features . ...
-->
<gnl : f eat ur eMenber >
<RAILS fid="RAILS. 119" >
<TRACK>
<gml : LineString gid="n"
srsName="htt p: //ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : coordi nat es>15, 10 16, 11 17, 12</gml : coor di nat es>
</ gm : LineString>
</ TRACK>
<GAUGE>24</ GAUGE>
</ RAI LS>
</ gm : f eat ur eMenber >
<l--

© OGC 2002 — All rights reserved

31



nmore RAILS features ...
-->
</ W s: Feat ureCol | ecti on>

Example 9

This example illustrates how complex properties of features can be referenced using
XPath expressions. Consider the feature type Person defined as:

<?xm version="1.0" ?>
<schema
t ar get Nanespace="htt p: // www. opengi s. net/ nyns"
xm ns: myns="http://ww. opengi s. net/ nyns"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: xsd="http: // ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://wwm. w3. or g/ 2001/ XM_Schema"
el ement For nDef aul t =" qual i fi ed"
versi on="1.0">

<i nport nanespace="http://ww. opengis. net/gnl"’
schemaLocation="../gm/2.1/feature.xsd"/>

<el ement name="Person" type="nyns: PersonType"
substitutionG oup="gm :_Feature"/>
<conpl exType nane="PersonType" >
<conpl exCont ent >
<ext ensi on base="gmnl : Abstract Feat ureType" >
<sequence>
<el ement name="Last Nane" nillable="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si mpl eType>
</ el ement >
<el ement name="FirstNanme" nillable="true">
<si npl eType>
<restriction base="string">
<maxLength val ue="10"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement nanme="Age" type="integer" nillable="true"/>
<el ement name="Sex" type="string"/>
<el enment name="Spouse" >
<conpl exType>
<attribute name="sin" type="xsd:anyURl" use="required" />
</ conpl exType>
</ el ement >
<el ement name="Locati on"
type="gm : Poi nt PropertyType"
nillable="true"/>
<el enment name="Address" type="nyns: AddressType" nillable="true"/>
</ sequence>
<attribute name="sin" type="xsd:anyURl" use="required"/>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

<conpl exType nane="Addr essType" >
<sequence>
<el ement name="Street Nane" nillabl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si mpl eType>
</ el ement >
<el ement name="Street Nunber" nillabl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="10"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement name="City" nillable="true">
<si npl eType>

32 © OGC 2002 — All rights reserved



<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement name="Province" nillable="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si npl eType>
</ el ement >
<el ement name="Post al Code" nill abl e="true">
<si npl eType>
<restriction base="string">
<maxLength val ue="15"/>
</restriction>
</ si mpl eType>
</ el ement >
<el ement name="Country" nillabl e="true">
<si npl eType>
<restriction base="string">
<maxLengt h val ue="30"/>
</restriction>
</ si mpl eType>
</ el ement >
</ sequence>
</ conpl exType>
</ schema>

The Address property is a complex property.

The following example fetches the last name of all the people who live on the 10000
block of "Main St." in the town of "SomeTown" who are female and make over $35,000
in salary. Note the use of XPath expressions in the predicate to reference complex
properties.

<?xm version="1.0" ?>
<Get Feature
versi on="1.0.0"
servi ce="WS"
xm ns="http://ww. opengi s. net/wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: myns="http://ww. soneserver. conf nmyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww. opengis.net/wis ../wfs/1.0.0/ WS-basic. xsd
http://ww. soneserver.conl nyns Person. xsd">
<Query typeNanme="Person">
<ogc: PropertyNane>myns: Person/ nyns: Last Name</ ogc: Propert yNanme>
<ogc: Filter>
<ogc: And>
<ogc: And>
<ogc: Propertyl sGreat er ThanOr Equal To>
<ogc: PropertyNane>nyns: Per son/ nyns: Addr ess/ nyns: St r eet Nunber </ ogc: Pr oper t yNanme>
<ogc: Li teral >10000</ ogc: Li teral >
</ ogc: Propertyl sG eat er ThanOr Equal To>
<ogc: Propertyl sLessThanOr Equal To>
<ogc: Propert yName>nmyns: Per son/ myns: Addr ess/ myns: St r eet Nunber </ ogc: Pr oper t yNanme>
<ogc: Li teral >10999</ ogc: Li teral >
</ ogc: Propertyl sLessThanOr Equal To>
</ ogc: And>
<ogc: And>
<ogc: Propertyl sEqual To>
<ogc: PropertyNane>nyns: Per son/ nyns: Addr ess/ nyns: St r eet Nane</ ogc: Pr opert yNane>
<ogc: Literal >Main St.</ogc: Literal >
</ ogc: Propertyl sequal To>
<ogc: Propertyl sEqual To>
<ogc: PropertyNanme>nyns: Per son/ nyns: Addr ess/ nyns: Ci t y</ ogc: Pr opert yNane>
<ogc: Li teral >SonmeTown</ ogc: Literal >
</ ogc: Propertyl sequal To>
<ogc: Propertyl sequal To>
<ogc: PropertyNane>nyns: Per son/ nyns: Sex</ ogc: Propert yNane>
<ogc: Li teral >Femal e</ ogc: Literal >
</ ogc: Propertyl sequal To>

© OGC 2002 — All rights reserved 33



<ogc: Propertyl sG eat er Than>
<ogc: PropertyNane>nmyns: Person/ nyns: Sal ary</ ogc: Propert yNanme>
<ogc: Li t eral >35000</ ogc: Li teral >
</ ogc: Propertyl sG eat er Than>
</ ogc: And>
</ ogc: And>
</ogc: Filter>
</ Query>
</ Get Feat ur e>

10 LockFeature operation

10.1 Introduction

Web connections are inherently stateless. As a consequence of this, the semantics of
serializable transactions are not preserved. To understand the issue, consider an update
operation.

The client fetches a feature instance. The feature is then modified on the client side, and
submitted back to the database via a Transaction request for update. Serializability is
lost since there is nothing to guarantee that while the feature was being modified on the
client side, another client did not come along and update that same feature in the
database.

One way to ensure serializability is to require that access to data be done in a mutually
exclusive manner; that is while one transaction accesses a data item, no other transaction
can modify the same data item. This can be accomplished by using locks that control
access to the data.

The purpose of the LockFeature operation is to expose a long term feature locking
mechanism to ensure consistency. The lock is considered long term because network
latency would make feature locks last relatively longer than native commercial database
locks.

The LockFeature operation is optional and does not need to be implemented for a WFS
implementation to conform to this specification. If a WFS implements the LockFeature
operation, this fact must be advertised in the capabilities document [sec. 12].

10.2 Request
10.2.1 Schema definition

The XML encoding of a LockFeature request is defined by the following XML Schema
fragment:

<xsd: el ement nanme="LockFeature" type="ws:LockFeatureType"/>
<xsd: conpl exType nanme="LockFeat ureType" >
<xsd: sequence>
<xsd: el enent nane="Lock" type="ws:LockType" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute nane="version"
type="xsd:string" use="required" fixed="1.0.0"/>
<xsd:attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute nanme="expiry"
type="xsd: posi tivel nteger" use="optional"/>
<xsd:attribute name="1ockAction"
type="wfs: Al | SomeType" use="optional"/>
</ xsd: conpl exType>

34 © OGC 2002 — All rights reserved



<xsd: conpl exType nanme="LockType" >
<xsd: sequence>
<xsd: el enment ref="ogc:Filter" m nCccurs="0" maxCccurs="1"/>
</ xsd: sequence>
<xsd:attribute name="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute nanme="typeNane"
type="xsd: QNane" use="required"/>
</ xsd: conpl exType>
The <LockFeature> element contains one or more <Lock> elements that define a

locking operation on feature instances of one feature type.

The expiry attribute is used to set a limit on how long a web feature service should hold a
lock on feature instances in the event that a transaction is never issued that will release
the lock. The expiry limit is specified in minutes. Once the specified number of minutes
have elapsed, a web feature service may release the lock if it exists. Any further
transactions issued against that lock using a lock identifier generated by the service will
fail. This specification does not constrain how long a lock should be held if the expiry
attribute is not specified. However, it would be prudent for a web feature service
implementation to include methods to detect and release locks that have been maintained
for a long period of time without any transactions being executed to release them.

The <Lock> element contains a single <Filter> element that is used to define the set of
feature instances of the specified feature type to be locked. Using the <Filter> element,
one or more feature instances can be enumerated using their identifiers; or a set of
features can be identified by specifying spatial and non-spatial constrains for the lock
operation. The <Filter> element is defined in the Filter Encoding Implementation
Specification [3].

The optional lockAction attribute is used to control how feature locks are acquired. A
lock action of ALL indicates that a web feature service should try to acquire a lock on all
requested feature instances. If all feature instances cannot be locked, then the operation
should fail, and no feature instances should remain locked. If the lock action is set to
SOME, then a web feature service shall attempt to lock as many of the requested feature
instances as it can. The default lock action shall be ALL. Section 10.2.2 presents a state
machine for the LockFeature operation.

10.2.2 State machine notation from UML

The approach to dynamic modeling used, is that described by the UML Reference
Manual. The main technique is the state machine view. A summary of the UML
notation for state diagrams is shown in Figure 4.

© OGC 2002 — All rights reserved 35



* 9

Event / Action Event / Action

Simple State

[

Event [guard condition] / Transition Sequential, Composite State

Action

o Initial State ‘
Event/ Action Event / Action

Concurrent, Composite State

Figure 4 — Summary of UML state diagram notation

10.2.3 State machine for WFS locking

This section defines the state machine for the Lock State for a server that provides the
Web Feature Service interface. The state diagram shows the allowed transitions between
the states. All other state transitions are disallowed and are consider errors if exhibited by
a server.

A physical server may support more than one lock. Each of the locks are independent
when viewed from the service defined by the WFS specification.

In the state model below, a transition is typically triggered by a request. Following the
messaging model, a WFS Request is paired with a WFS Response. Note that a request-
response pair cannot be started while it is active. The request may be cancelled by a
HTTP-level command.

36 © 0GC 2002 — All rights reserved



Lock
LockFeature Request /
Some lock requests failed &

All lock requests failed Lock action = All
/" LockFeature Response . /" LockFeature Response
@< Requesting

Lock

Some lock requests failed &
Lock action = Some
/" LockFeature Response

All lock requests succeeded
/ LockFeature Response

Transaction Request &
Error occurs, e.g., invalid lock
/ Transaction Response

Lock expires /

~®

Transaction Request
/ Set lock ID = invalid,
LockFeature Response

Processing complete,

Some features not modified, &
Release action = some

/ Set lock ID = valid,
Transaction Response

Processing
Transaction

Processing complete &
Release action = all
/ Transaction Response

Processing complete,

All features modified, &
Release action = some

/ Transaction Response

Figure 5 —State diagram for a WFS lock

10.3 Response

The XML encoding of the response to a LockFeature request is defined by the following

XML Schema fragment:

<xsd: el ement nane="WFS_LockFeat ur eResponse"
type="wf s: WFS_LockFeat ur eResponseType"/ >
<l -- RESPONSE TYPES -->
<xsd: conpl exType name="WFS_LockFeat ur eResponseType" >
<xsd: sequence>
<xsd: el ement ref="wfs:Lockld"/>
<xsd: el ement name="Feat uresLocked"
type="w s: Feat uresLockedType" m nQccurs="0"/>
<xsd: el enent nane="Feat ur esNot Locked"
type="w s: Feat ur esNot LockedType" m nQccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Feat ur esLockedType" >
<xsd: sequence nmaxQccur s="unbounded" >
<xsd: el ement ref="ogc: Featureld"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Feat ur esNot LockedType" >
<xsd: sequence maxCccur s="unbounded" >
<xsd: el ement ref="ogc: Featureld"/>

© OGC 2002 — All rights reserved 37



</ xsd: sequence>
</ xsd: conpl exType>

In response to a LockFeature request, a web feature service shall generate an XML
document. This document will contain a lock identifier that a client application can use
in subsequent WFS operations to operate upon the set of locked feature instances. The
response may also contain the optional elements <FeaturesLocked> and
<FeaturesNotLocked> depending on the value of the lockAction attribute.

If the lock action is specified as SOME, then the <WFS LockFeatureResponse>
element must contain the <FeaturesLocked> and <FeatureNotLocked> elements.. The
<FeaturesLocked> element shall list the feature identifiers of all the feature instances
that were locked by the LockFeature request. The <FeaturesNotLocked> element shall
contain a list of feature identifiers for the feature instances that could not be locked by the
web feature service (possibly because they were already locked by someone else).

No assumption is made about the format of the lock identifier. The only requirement is
that it can be expressed in the character set of the transaction request.

10.4 Exceptions

If a WFS does not implement the LockFeature operation then it should generate an
exception, indicating that the operation is not supported, if such a request is encountered.

In the event that a web feature service does support the LockFeature operation and
encounters an error servicing the request, it shall raise an exception as described in
Section 7.7.

10.5 Examples

Example 1

Lock a set of enumerated features. The WEFS is, in this case, directed to try and lock as
many features as it can.

Request:

<?xm version="1.0" ?>
<LockFeature
version="1.0.0"
servi ce="WFS"
| ockAct i on=" SOVE"
xm ns="http://ww. opengi s. net/w s"
xm ns: myns="http://ww. someserver. coni nyns"
xm ns: ogc="http://wm. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocation="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<Lock typeName="nyns: | NVATERA_1M' >
<ogc: Filter>
<ogc: Featureld fid="I NWATERA_1M 1013"/ >
<ogc: Featureld fid="I NWATERA_1M 1014"/ >
<ogc: Featureld fid="I NWVATERA_1M 1015"/ >
<ogc: Featureld fid="I NWVATERA_1M 1016"/ >
<ogc: Featureld fid="I| NWVATERA_1M 1017"/ >
</ogc: Filter>
</ Lock>
</ LockFeat ur e>

Sample response:

38 © 0GC 2002 — All rights reserved



<?xm version="1.0" ?>
<WFS_LockFeat ur eResponse
xm ns="http://ww. opengi s. net/wf s"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/WS-transaction. xsd">
<Lockl d>1</ Lockl d>
<Feat ur esLocked>
<ogc: Featureld fid="I| NVATERA_1M 1013"/ >
<ogc: Featureld fid="I NWVATERA_ 1M 1014"/ >
<ogc: Featureld fid="| NWVATERA_1M 1016"/ >
<ogc: Featureld fid="I| NWVATERA_1M 1017"/ >
</ Feat ur esLocked>
<Feat ur esNot Locked>
<ogc: Featureld fid="I| NVATERA_1M 1015"/ >
</ Feat ur esNot Locked>
</ WFS_LockFeat ur eResponse>

Example 2
Lock all the feature instances of type INWATERA 1M.

Request:

<?xm version="1.0" ?>
<LockFeat ure
version="1.0.0"
servi ce="WFS"
xm ns="http://ww. opengi s. net/wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: myns="http://ww. soneserver. conf myns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../ws/1.0.0/ WS-transacti on. xsd">
<Lock typeName="nyns: | NWVATERA_1M'/ >
</ LockFeat ur e>

Sample response:

<?xm version="1.0" ?>
<WFS_LockFeat ur eResponse
xm ns="http://ww. opengi s. net/wf s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<Lockl d>2</ Lockl d>
</ WFS_LockFeat ur eResponse>

Example 3

In this example a <Filter> expression using a spatial constraint is used to identify the set
of feature instances to be locked.

Request:

<?xm version="1.0" ?>
<LockFeat ure
version="1.0.0"
servi ce="WS"
xm ns="http://ww. opengi s. net/w s"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: myns="http://ww. soneserver. conl myns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/ws ../ws/1.0.0/ WS-transaction. xsd">
<Lock handl e="Lock1l" typeName="nmnyns: | NVATERA 1M >
<ogc: Filter>
<ogc: Wt hi n>
<ogc: PropertyNane>myns: WKB_GEOMWK/ ogc: Pr opert yNane>
<gnl : Pol ygon gi d="1"
srsName="http://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : out er Boundaryl s>

<gnl : Li near Ri ng>

<gml : coordinates>-95.7,38.1 -97.8,38.2 ...</gnl:coordinates>

</ gm : Li near Ri ng>

© OGC 2002 — All rights reserved 39



</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ ogc: Wt hi n>
</ogc: Filter>
</ Lock>
</ LockFeat ur e>

Sample response:

<?xm version="1.0" ?>
<WFS_LockFeat ur eResponse
xm ns="http://ww. opengi s. net/wfs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi: schemaLocati on="http://ww. opengi s. net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<Lockl d>A1014375BD</ Lockl d>
</ WFS_LockFeat ur eResponse>

Example 4

This example locks features of type BUILTUPA 1M and INWATERA 1M. The lock
labeled with the handle LOCK locks all the features inside the defined window. The
lock labeled with the handle LOCK?2 locks the features INWATERA 1M.1212,
INWATERA 1M.1213 and INWATERA 1M.10.

Request:

<LockFeature
versi on="1.0.0"
servi ce="WFS"
expi ry="4"
| ockAct i on=" SOVE"
xm ns="http://ww. opengi s. net/wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: nyns="http://ww. someserver. coni myns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../ws/1.0.0/ WS-transacti on. xsd">
<Lock handl e="LOCK1" typeName="nyns: BU LTUPA 1M >
<ogc: Filter>
<ogc: Wt hi n>
<ogc: PropertyName>BU LTUPA_ 1M WKB_GEOWK/ ogc: Pr opert yName>
<gmnl : Pol ygon gi d="1"
srsName="http://ww. opengi s. net/ gm / epsg. xm #4326" >
<gnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gm : coordi nates>-95.7,38.1 -97.8,38.2 ...</gnl:coordinates>
</ gm : Li near R ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ ogc: Wt hi n>
</ogc: Filter>
</ Lock>
<Lock handl e="LOCK2" typeNanme="nyns: | NVATERA 1M >
<ogc: Filter>
<ogc: Featureld fid="I NWVATERA_1M 1212"/ >
<ogc: Featureld fid="I NWATERA_1M 1213"/ >
<ogc: Featureld fid="I NWVATERA_1M 10"/ >
</ogc: Filter>
</ Lock>
</ LockFeat ur e>

Sample response:

<?xm version="1.0" ?>
<WFS_LockFeat ur eResponse
xm ns="http://ww. opengi s. net/wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../ws/1.0.0/ WS-transacti on. xsd">
<Lockl d>LOCK1A</ Lockl d>
<Feat ur esLocked>
<ogc: Featureld fid="BU LTUPA_1M 1" />
<ogc: Featureld fid="BU LTUPA_1M 10" />

40 © OGC 2002 — All rights reserved



<ogc: Featureld fid="BU LTUPA_1M 34" />
<ogc: Featureld fid="BU LTUPA_1M 786" />
<ogc: Featureld fid="BU LTUPA_1M 3" />
<ogc: Featureld fid="BU LTUPA_1M 13" />
<ogc: Featureld fid="BU LTUPA 1M 47563" />
<ogc: Featureld fid="I NWATERA_1M 1212" />
<ogc: Featureld fid="I NWATERA_1M 1213" />
<ogc: Featureld fid="I NWATERA_1M 10" />
</ Feat ur esLocked>
</ WFS_LockFeat ur eResponse>

11 Transaction operation

11.1 Introduction

The Transaction operation is used to describe data transformation operations that are to
be applied to web accessible feature instances. A web feature service may process a
Transaction operation directly or possibly translate it into the language of a target
datastore to which it is connected and then have the datastore execute the transaction.
When the transaction has been completed, a web feature service will generate an XML
response document indicating the completion status of the transaction.

The Transaction operation is optional and a WFS implementation does not need to
support it to conform to this specification. If the Transaction operation is supported then
this fact must be advertised on the capabilities document as describes in section 12.

11.2 Request
11.2.1 Schema definition

The XML encoding of a Transaction request is defined by the following XML Schema
fragment:

<xsd: el enent nane="Transacti on" type="ws: TransactionType"/>
<xsd: conmpl exType name="Transacti onType" >
<xsd: sequence>
<xsd: el ement ref="wfs:Lockld" m nQccurs="0"/>
<xsd: choi ce m nCccurs="0" maxCccurs="unbounded" >
<xsd: el enent ref="wfs:Insert"/>
<xsd: el enent ref="wfs: Update"/>
<xsd: el ement ref="wfs:Delete"/>
<xsd: el ement ref="wfs: Native"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attribute name="versi on"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd:attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd:attribute nanme="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute nane="rel easeActi on"
type="wfs: Al | SomeType" use="optional"/>
</ xsd: conpl exType>
<xsd: el ement nanme="Lockld" type="xsd:string"/>
<xsd: el enent nane="Insert" type="wfs:I|nsertEl ement Type"/>
<xsd: conmpl exType name="I|nsert El ement Type" >
<xsd: sequence>
<xsd: el enent ref="gm :_Feature" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: el enent nane="Update" type="w s: Updat eEl ement Type"/>
<xsd: conmpl exType nanme="Updat eEl enent Type" >
<xsd: sequence>
<xsd: el ement ref="ws:Property" maxCccurs="unbounded"/>
<xsd: el enent ref="ogc:Filter" m nCccurs="0" maxCccurs="1"/>

© OGC 2002 — All rights reserved 41



</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
<xsd: attribute name="typeNanme" type="xsd: QName" use="required"/>
</ xsd: conpl exType>
<xsd: el ement nane="Del ete" type="ws: Del et eEl ement Type"/>
<xsd: conpl exType nane="Del et eEl enent Type" >
<xsd: sequence>
<xsd: el enment ref="ogc:Filter" m nCccurs="1" maxCccurs="1"/>
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
<xsd: attribute nane="typeNanme" type="xsd: QName" use="required"/>
</ xsd: conpl exType>

<xsd: el ement name="Property" type="ws:PropertyType"/>
<xsd: conmpl exType name="PropertyType">
<xsd: sequence>
<xsd: el ement nanme="Nanme" type="xsd: QNanme"/ >
<xsd: el ement nanme="Val ue"/>
</ xsd: sequence>
</ xsd: conpl exType>

11.2.2 Attribute descriptions

As described in section 7.8, the handle attribute can be used to assign a mnemonic name
to the element with which it is associated. Its intended use, is to make error reporting
more meaningful for a client application. In the event that an error is encountered, the
handle attribute can be used by a web feature service to locate the error when generating
an exception report. In the event that no handle is specified, a web feature service may
attempt to report the location of the exception relative to the current Transaction request
using line numbers or some other convenient mechanism.

Assuming that a WFS implementation supports the optional LockFeature and/or
GetFeatureWithLock operations, the releaseAction attribute is used to control how
locked features are treated when a transaction request is completed. A value of ALL
indicates that the locks on all feature instances locked using the specified <LockId>
should be released when the transaction completes, regardless of whether or not a
particular feature instance in the locked set was actually operated upon. A value of
SOME indicates that only the locks on feature instances modified by the transaction
should be released. The other, unmodified, feature instances should remain locked using
the same <Lockld> so that subsequent transactions can operate on those feature
instances. In the event that the releaseAction is set to SOME, and an expiry period was
specified on the <LockFeature> or <GetFeatureWithLock> elements using the expiry
attribute, the expiry counter must be reset to zero after each transaction unless all feature
instances in the locked set have been operated upon. The default releaseAction value is
ALL.

For example, if a client application locks 20 feature instances and then submits a
transaction request that only operates on 10 of those locked feature instances, a
releaseAction of SOME would mean that the 10 remaining unaltered feature instances
should remain locked when the transaction terminates. Subsequent transaction operations
can then be submitted by the client application, using the same lock identifier to modify
the remaining 10 feature instances.

11.2.3 <Transaction> element

A <Transaction> element may contain zero or more <Insert>, <Update>, or <Delete>
elements that describe operations to create, modify or destroy feature instances. An
empty <Transaction> request is valid but not very useful.

42 © 0GC 2002 — All rights reserved



The optional <LockId> element is used to specify that the transaction will be applied to
previously locked set of feature instances. Section 10 presents a full description of a
feature locking mechanism. If the WFS does not support feature locking, then the
<LocklId> element can be ignored. If a WFS does support locking and an invalid lock
identifier is specified in the transaction, then the transaction shall fail and the web feature
service shall report the error as described in Section 7.7.

At the end of a transaction, the web feature service shall apply transaction semantics
appropriate to the particular system used to persistently store features. For example, if
the datastore is a SQL based RDBMS, then a commit will be executed at the end of the
transaction (or a rollback should the transaction fail). Any locks maintained by the web
feature service for the duration of the transaction shall be released according to the value
of the releaseAction attribute described above.

The <Native> element is defined in Section 7.5.

11.2.4 <Insert> element

The <Insert> element is used to create new feature instances. The initial state of a
feature to be created is expressed using GML and must validate relative to a GML
application schema generated by the DescribeFeatureType operation [sec. 8]. Multiple
<Insert> elements can be enclosed in a single Transaction request and multiple feature
instances can be created using a single <Insert> element.

In response to an <Insert> operation, a web feature service shall generate a list of newly
generated feature identifiers assigned to the new feature instances. The feature identifiers
must be presented in the order in which the <Insert> operations were encountered in the
Transaction request.

Example

The following transaction creates two instances of feature type INWATERA 1M.

<?xm version="1.0"7>
<wf s: Transacti on
version="1.0.0"
servi ce="WS"
xm ns="http://ww. someserver. coni nyns"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/wf s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://ww. soreserver. conl myns
http://ww. soneserver. conl wi s/ cwf s. cgi ?
request =descri bef eat ur et ype&anp; t ypenane=I NWVATERA_1M xsd
http://ww. opengis.net/wfs ../ws/1.0.0/WS-transaction. xsd">
<wfs: | nsert>
<| NWATERA 1M>
<WKB_GEOW>
srsName="htt p://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : out er Boundaryl s>
<gmnl : Li near Ri ng>
<gnl : coordi nat es>-98. 54, 24.26 ...</gm :coordi nat es>
</ gm : Li near Ri ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ WKB_GEOW>
<| D>150</ | D>
<F_CODE>ABCDE</ F_CCDE>
<HYC>152</ HYC>

© OGC 2002 — All rights reserved 43



<TI LE_I D>250</ TI LE_I D>
<FAC_I D>111</ FAC_| D>
</ | N\WATERA_1M>
<| N\WATERA_1M>
<WKB_GEOW>
srsName="htt p://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : out er Boundaryl s>
<gml : Li near Ri ng>
<gnl : coordi nat es>-99. 99, 22. 22 ... </gnm : coordi nat es>
</ gm : Li near R ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ WKB_GEOW>
<| D>111</ | D>
<F_CODE>FGHI J</ F_CCDE>
<HYC>222</ HYC>
<TI LE_I D>333</ TI LE_I D>
<FAC | D>444</ FAC_| D>
</ | N\WVATERA_1M>
</wfs:Insert>
</wfs: Transacti on>

The schema reference to INWATERA 1M.xsd is assumed to be created using the
DescribeFeatureType operation [sec. 8]. In this example, the document is statically
referenced, but could just as easily have been dynamically referenced.

11.2.5 <Update> element

The <Update> element describes one update operation that is to be applied to a feature
or set of features of a single feature type. Multiple <Update> operations can be
contained in a single Transaction request.

An <Update> element contains one or more <Property> elements that specify the name
and replacement value for a property that belongs to the feature type specified using the
mandatory typeName attribute. A <Property> element contains a <Name> element
that, in turn, contains the name of the feature property to be modified and an optional
<Value> element that contains the replacement value for the named feature property.
The omission of the <Value> element means that the property should be assigned a
NULL value. In the event that the property is not nillable, a WFS must raise an
exception indicating that NULL value is not allowed.

The scope of the <Update> element is constrained by using the <Filter> element. The
<Filter> element can be used to limit the scope of an update operation to an enumerated
set of features or a set of features defined using spatial and non-spatial constraints.

The full definition of the <Filter> element is described in the Filter Encoding
Implementation Specification [3].

Example

The following example updates the POPULATION property of the feature identified by
the feature identifier BUILTUPA 1M.1013.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. someserver. coni nyns"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/wfs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xxsi : schemaLocati on="http://ww. opengi s. net/ws ../ws/1. 0.0/ WS-transaction. xsd">

44 © OGC 2002 — All rights reserved



<wf s: Updat e typeNanme="BU LTUPA 1M >
<wf s: Property>
<wf s: Name>POPULATI ON</ wf s: Nane>
<wf s: Val ue>4070000</ Wf s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA_1M 10131"/>
</ogc: Filter>
</ wf s: Updat e>
</wfs: Transacti on>
Example

Update the POPULATION TYPE property of an enumerated set of features. In this
example, the features identified by feature identifiers:

BU LTUPA_1M 1013
BUI LTUPA_1M 34
BU LTUPA 1M 24256

have their POPULATION TYPE attribute set to the value "CITY".

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. somreserver. coni myns"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<wf s: Updat e typeNanme="BU LTUPA 1M >
<wf s: Property>
<wf s: Name>POPULATI ON_TYPE</ Wf s: Nanme>
<wf s: Val ue>Cl TY</ W s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA_1M 1013"/>
<ogc: Featureld fid="BU LTUPA_1M 34"/ >
<ogc: Featureld fid="BU LTUPA_ 1M 24256"/ >
</ogc: Filter>
</ wf s: Updat e>
</wfs: Transacti on>

Example

Update the NAME property of an enumerated set of features, and update the FAC ID
property of another set of features defined by constraining the value of the TILE ID
property to values greater than 1000.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
xm ns: myns="http://ww. someserver. coni nyns"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/w s"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi :schenmaLocation="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<wf s: Updat e typeName="nyns: BU LTUPA_1M' >
<wf s: Property>
<wf s: Name>nyns: NAVE</ wf s: Nane>
<wf s: Val ue>sonest ri ng</ wf s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA_1M 1013"/>
<ogc: Featureld fid="BU LTUPA_1M 34"/ >
<ogc: Featureld fid="BU LTUPA_1M 24256"/ >
</ogc: Filter>
</ wf s: Updat e>
<wf s: Updat e typeNanme="nyns: BU LTUPA_1M' >
<wf s: Property>
<wf s: Name>nyns: FAC_| D</ wf s: Nane>

© OGC 2002 — All rights reserved 45



<wf s: Val ue>100</ W s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Propertyl sG eat er Than>
<ogc: PropertyNanme>BU LTUPA 1M TI LE_I D</ ogc: Pr opert yNane>
<ogc: Li teral >1000</ ogc: Li teral >
</ ogc: Propertyl sG eat er Than>
</ogc: Filter>
</ wf s: Updat e>
</wfs: Transacti on>

Example

This example updates two feature classes, OCEANSA 1M and TREESA IM. All
features of OCEANSA 1M with a DEPTH greater than 2400m are updated and feature
TREESA 1M.1010 is also updated.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: myns="http://wwm. someserver. conl nyns"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schenmaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transacti on. xsd">
<wf s: Updat e typeNanme="nyns: OCEANSA_1M' >
<wf s: Property>
<wf s: Name>nyns: DEPTH</ wf s: Nanme>
<wf s: Val ue>2400</ wf s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Propertyl sG eat er Than>
<ogc: Propert yNanme>0OCEANSA 1M DEPTH</ ogc: Pr opert yNane>
<ogc: Li teral >2400</ ogc: Literal >
</ ogc: Propertyl sG eat er Than>
</ogc: Filter>
</ wf s: Updat e>
<wf s: Updat e typeName="nyns: TREESA 1M >
<wf s: Property>
<wf s: Name>nyns: TREETYPE</ wf s: Name>
<wf s: Val ue>CONl FEROUS</ Wf s: Val ue>
</wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="TREESA 1M 1010"/>
</ogc:Filter>
</ wf s: Updat e>
</wfs: Transacti on>

11.2.6 <Delete> element

The <Delete> element is used to indicate that one or more feature instances should be
deleted. The scope of a delete operation is constrained by using the <Filter> element as
described in the Filter Encoding Implementation Specification [3].

Example

Delete a single feature.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
xm ns="http://ww. somreserver. coni myns"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transaction. xsd">
<wf s: Del ete typeName="1NWATERA 1M >

46 © OGC 2002 — All rights reserved



<ogc: Filter>
<ogc: Featureld fid="I NWATERA_1M 1013"/ >
</ogc:Filter>
</wfs: Del et e>
</wfs: Transacti on>

Example

This examples deletes an enumerated set of feature instances.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WS"
xm ns: myns="http://ww. soneserver. conf nmyns"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wfs="http://ww. opengi s. net/ wfs"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s. net/ws ../wfs/1.0.0/ WS-transacti on. xsd">
<wf s: Del ete typeName="nyns: | NVATERA_1M' >
<ogc: Filter>
<ogc: Featureld fid="I NWVATERA_1M 1013"/ >
<ogc: Featureld fid="I| NWVATERA_1M 10"/ >
<ogc: Featureld fid="I NWVATERA_1M 13"/ >
<ogc: Featureld fid="I| NWVATERA_1M 140"/ >
<ogc: Featureld fid="I NWATERA_1M 5001"/ >
<ogc: Featureld fid="I NWATERA_1M 2001"/ >
</ogc: Filter>
</ wfs: Del et e>
</wfs: Transacti on>

Example

This examples deletes the set of feature instances of feature type INWATERA 1M that
lie inside a region defined by a polygon specified in the predicate. The <Filter> element
is used to constrain the scope of the operation, and GML is used to express the geometry
of the polygon.

<?xm version="1.0" ?>
<wf s: Transacti on
version="1.0.0"
servi ce="WS"
xm ns="http://ww. someserver. conif myns"
xm ns: Wi s="http://ww. opengi s. net/ wfs"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi :schemaLocati on="http://ww. opengi s. net/ws ../ws/1.0.0/ WS-transacti on. xsd">
<wf s: Del ete typeName="1 NWATERA 1M >
<ogc: Filter>
<ogc: Wt hi n>
<ogc: PropertyName>WKB_GEOVK/ ogc: Pr opert yNane>
<gmn : Pol ygon gi d="pp9"
srsName="http://ww. opengi s. net/ gm / srs/ epsg. xm #4326" >
<gnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gml : coordi nates>-95.7,38.1 -97.8,38.2 ...</gmn:coordi nat es>
</ gm : Li near R ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ ogc: Wt hi n>
</ogc: Filter>
</ wfs: Del et e>
</wfs: Transacti on>

11.3 Response

In response to a transaction request, a web feature service shall generate an XML
document indicating the termination status of the transaction. In addition, if the
transaction request includes <Imsert> operations, then the web feature service must
report the feature identifiers of all newly created features. In the event that the

© OGC 2002 — All rights reserved 47



transaction fails to execute, the web feature service shall also indicate this

response.

in the

The XML encoding of the WFS transaction response is defined by the following XML
Schema fragment:

<xsd: el enent nane="WFS_Tr ansact i onResponse"
type="wf s: WFS_Tr ansact i onResponseType"/>
<xsd: conmpl exType name="WFS_Tr ansact i onResponseType" >
<xsd: sequence>
<xsd: el ement nanme="|nsertResult"
type="wfs: | nsertResul t Type"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el ement nane="Transacti onResul t"
type="wfs: Transacti onResul t Type"/>
</ xsd: sequence>
<xsd:attribute name="version"
type="xsd:string" use="required" fixed="1.0.0"/>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="Transacti onResul t Type" >
<xsd: sequence>
<xsd: el enent nane="Status" type="wfs: StatusType"/>
<xsd: el ement nanme="Locator" type="xsd:string" m nQccurs="0"/>
<xsd: el enent nane="Message" type="xsd:string" m nCccurs="0"/>
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="1|nsert Resul t Type">
<xsd: sequence>
<xsd: el enent ref="ogc: Featurel d" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd:attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: conmpl exType nane="St at usType" >
<xsd: choi ce>
<xsd: el enent ref="ws: SUCCESS"/ >
<xsd: el ement ref="wfs: FAI LED"/ >
<xsd: el ement ref="wfs: PARTI AL"/ >
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: el enent nane="SUCCESS" type="wfs: EnptyType"/>
<xsd: el ement name="FAlI LED' type="wfs: EnptyType"/>
<xsd: el ement name="PARTI AL" type="wfs: EnptyType"/>

The <WFS_TransactionResponse> clement contains zero or more <InsertResult>
elements and a <TransactionResult> element.

The <InsertResult> element contains one or more feature identifiers of newly created
feature instances. One <InsertResult> element is reported per <Insert> element in the
request. The insert results are reported in the order in which the <Insert> operations
were contained in the <Transaction> element. Additionally, they can be correlated
using the handle attribute if it was specified.

The overall result of a transaction request is specified using the <TransactionResult>
element. The <TransactionResult> element must contain a <Status> element and may
contain <Locator> and <Message> elements.

The <Status> element is used to indicate the completion status of the transaction.

Transactions can terminate with a status of:

48

SUCCESS The transaction was successfully completed.

FAILED An exception was encountered while processing one or more

© OGC 2002 — All rights reserved




elements contained in a Transaction request.

PARTIAL The transaction partially succeeded and the data may be in an
inconsistent state. For systems that do not support atomic
transactions, this outcome is a distinct possibility.

In the event that a transaction request fails, the <Locator> element can be used to
indicate which part of the transaction failed. If the element at which the failure occured
is labeled using a handle attribute, then a web feature service may report its value to
locate the failure. Otherwise, a web feature service may try to identify the failure relative
to the beginning of the transaction request, possibly using line numbers or some other
convenient mechanism.

The <Message> element is used to report any error messages.
Example

Consider a transaction request (labeled "TXO01") that creates a number of new feature
instances. The feature instances are created using three <Insert> elements labeled
"STMT1", "STMT?2" and "STMT3". A typical response to such a request might be:

<?xm version="1.0" ?>
<wf s: Transacti onResponse
versi on="1.0.0"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transacti on. xsd">
<wf s: | nsertResult handl e="STMI1" >
<ogc: Featurel d fid="SOVEFEATURE. 4567"/ >
<ogc: Featurel d fid="SOVEFEATURE. 4568"/ >
<ogc: Featureld fid="SOVEFEATURE. 4569"/ >
</wfs:|nsertResult>
<wf s: | nsert Resul t handl e="STMI2" >
<ogc: Featurel d fid="FEATUREL. 4569"/>
</wfs:lnsertResult>
<wf s: |l nsertResult handl e=" STMI3" >
<ogc: Featureld fid="FEATURE2. 389345"/ >
</wfs:|nsertResult>
<wf s: Transacti onResul t handl e="TX01" >
<wf s: St at us>
<wf s: SUCCESS/ >
</ wfs: Status>
</wfs: Transacti onResul t >
</wfs: Transacti onResponse>

11.4 Exceptions

In the event that a web feature service encounters an error servicing a Transaction
request, it shall raise an exception as described in Section 7.7.

In the event that a web feature service encounters an error while processing a particular
element contained in a Transaction request, the web feature service shall queue the
result and report the failure in a <WFS_TransactionResponse> element [sec. 11.3].

Example

In this example, the second statement of a Transaction request has failed. The WFS
might generate a response such as:

<?xm version="1.0" ?>
<WFS_Transacti onResponse

© OGC 2002 — All rights reserved 49



versi on="1.0. 0"

xm ns: Wi s="http://ww. opengi s. net/ wfs"

xm ns: ogc="http://ww. opengi s. net/ogc"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocati on="http://ww. opengi s.net/wfs ../wfs/1.0.0/ WS-transacti on. xsd">

<Transacti onResult handl e="TX01">
<St at us><FAI LEDY ></ St at us>
<Locat or >STMr2</ Locat or >
<Message>ORA- 00942: table or view does not exist</Mssage>
</ Transacti onResul t >
</ WFS_Tr ansact i onResponse>

11.5 Examples

This example defines a complex transaction, labeled "Transaction 01", that performs
insert, update and delete operations. Some of the feature types include complex
properties and XPath expressions are used in the filter expressions to unambiguously
reference the desired properties. Comments contained in the example explain the various
operations.

<?xm version="1.0" ?>
<wf s: Transacti on
versi on="1.0.0"
servi ce="WFS"
handl e="Tr ansacti on 01"
xm ns="http://ww. someserver. conif myns"
xm ns: wfs="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schenmalLocati on="http://ww. someserver. coni myns
http://ww. someserver. com wf s/ cwwis. cgi ?
r equest =DESCRI BEFEATURETYPE&anp;
t ypename=ELEVP_1M ROADL_1M BUI LTUPA_1M
http://ww. opengis.net/wfs ../ws/1.0.0/ WS-transaction. xsd">

<l-- Create a new instance of feature type ELEVP_IM -->
<wfs: | nsert handl e="Statenment 1">
<ELEVP_1M>

<| D>167928</ | D>
<F_CODE>CA</ F_CCDE>
<ACC>2</ ACC>
<ELA>1</ ELA>
<ZV2>152</ ZV2>
<TI LE_| D>250</ TI LE_I D>
<END_| D>111</ END_I D>
<LOCATI ON>
<gnl : Poi nt gi d="e33"
srsName="http://ww. opengi s. net/ gm / srs/ epsg. xm #4326" >
<gnl : coor di nat es>- 98. 5485, 24. 2633</ gm : coor di nat es>
</ gm : Poi nt >
</ LOCATI ON>
</ ELEVP_1M>
</wfs:Insert>

<l-- Create a new instance of feature type ROADL_1M
whi ch has conpl ex properties SEGVENT and ROADTYPE. -->
<wf s: | nsert handl e=" Conpl exl| nsert">
<ROADL_1M>
<NAMVE>H ghway 401</ NAVE>
<SEGVENT>
<DESI GNATI ON>SEG_A41</ DESI GNATI ON>
<GEOVETRY>
<gnl : LineString gid="e3"
srsName="htt p: //ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gml : coordi nates>. .. </ gnl : coordi nat es>
</ gm : LineString>
</ GEOVETRY>
</ SEGVENT>
<ROADTYPE>
<SURFACE_TYPE>Asphal t </ SURFACE_TYPE>
<NLANES>12</ NLANES>

50 © OGC 2002 — All rights reserved



<GRADE>15</ GRADE>
</ ROADTYPE>
</ ROADL_1M>
</wfs:I|nsert>

<l-- Update the designation of a particular range of segnents
whi ch are now being collapsed into a single segnent. The
The filter uses an XPath expression to reference the
DESI GNATI ON property -->
<wf s: Updat e typeName="ROADL_1M >
<wf s: Property>
<wf s: Name>ROADL_1M SEGVENT/ DESI GNATI ON</ wf s: Nane>
<wf s: Val ue>SEG_A60</ W s: Val ue>
</wfs: Property>
<ogc: Filter>
<ogc: Propertyl sBet ween>
<ogc: Propert yName>ROADL_1M SEGVENT/ DESI GNATI ON</ ogc: Pr oper t yNanme>
<ogc: Lower Boundar y>
<ogc: Li teral >SEG_A60</ ogc: Li teral >
</ ogc: Lower Boundar y>
<ogc: Upper Boundar y>
<ogc: Li teral >SEG A69</ ogc: Li teral >
</ ogc: Upper Boundar y>
</ ogc: Propertyl sBet ween>
</ogc: Filter>
</ wf s: Updat e>

<l-- Create 2 feature instances of feature type BU LTUPA 1M -->
<wf s: | nsert handl e="Statement 2">
<BUI LTUPA_1M>
<PLACE!I D>4070</ PLACEI D>
<NAME>Tor ont o</ NAMVE>
<POPULATI ON>4000000</ POPULATI ON>
<BNDRY>
<gnl : Pol ygon gi d="g3"
srsName="htt p: //ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gmnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gnl : coordi nates>-95.7,38.1 -97.8,-38.2 ...</gmnl:coordinates>
</ gm : Li near Ri ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ BNDRY>
</ BU LTUPA_1M>
<BUI LTUPA_1M>
<PLACEI D>1725</ PLACEI D>
<NAME>Mont r eal </ NAMVE>
<POPULATI ON>2000000</ POPULATI ON>
<BNDRY>
<gm : Pol ygon gi d="e4"
srsName="http://ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gml : out er Boundaryl s>
<gmnl : Li near Ri ng>
<gm : coordi nates>-89.8,44.3 -89.9,44.4 ...</gn:coordi nates>
</ gm : Li near R ng>
</ gm : out er Boundar yl s>
</ gm : Pol ygon>
</ BNDRY>
</ BUI LTUPA_1M>
</wfs:Insert>

<l-- Update the NAME property of the feature instance BU LTUPA 1M 1210 -->
<wf s: Updat e typeNanme="BU LTUPA 1M >
<wf s: Property>
<wf s: Name>NAME</ wf s: Nane>
<wf s: Val ue>SMALLVI LLE</ Wf s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA_1M 1210"/ >
</ogc: Filter>
</ wf s: Updat e>

<l-- Update the geonetry of the feature BU LTUPA 1M 1725. -->
<wf s: Updat e typeNanme="BU LTUPA 1M >
<wf s: Property>
<wf s: Name>BNDRY</ wf s: Name>
<wf s: Val ue>
<gnl : Pol ygon gi d="g5"
srsName="htt p://ww. opengi s. net/gm / srs/ epsg. xm #4326" >

© OGC 2002 — All rights reserved 51



<gnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gnl : coordi nates>-89.8,44.3 -89.9,44.4 ...</gmn:coordi nat es>
</ gm : Li near R ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ W s: Val ue>
</ wfs: Property>
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA 1M 1725"/>
</ogc:Filter>
</ wf s: Updat e>

<!-- Delete the feature instance BU LTUPA 1M 1013. -->
<wf s: Del ete typeName="BU LTUPA_1M' >
<ogc: Filter>
<ogc: Featureld fid="BU LTUPA 1M 1013"/>
</ogc: Filter>
</wf s: Del et e>

<l-- Delete all instances of the feature type
BUI LTUPA 1M wher e:
1. the geonetry is INSIDE a pol ygonal w ndow
2. where the POPULATION i s between 100 and 2000 -->
<wf s: Del ete typeNanme="BU LTUPA 1M >
<ogc: Filter>
<ogc: And>
<ogc: Wt hi n>
<ogc: PropertyNane>BU LTUPA_ 1M BNDRY</ ogc: Propert yNanme>
<gnl : Pol ygon gi d="W NDOW
srsName="htt p: // ww. opengi s. net/gm / srs/ epsg. xm #4326" >
<gnl : out er Boundaryl s>
<gnl : Li near Ri ng>
<gnl : coordi nates>0,0 0,5 5,5 5,0 ...</gm : coordinat es>
</ gm : Li near Ri ng>
</ gm : out er Boundaryl s>
</ gm : Pol ygon>
</ ogc: Wt hi n>
<ogc: And>
<ogc: Propertyl sG eat er ThanOr Equal To>
<ogc: PropertyNane>BU LTUPA 1M POPULATI ON</ ogc: Propert yNane>
<ogc: Li teral >100</ ogc: Li teral >
</ ogc: Propertyl sG eat er ThanOr Equal To>
<ogc: Propertyl sLessThanOr Equal To>
<ogc: PropertyNane>BU LTUPA 1M POPULATI ON</ ogc: Propert yNanme>
<ogc: Li teral >2000</ ogc: Li teral >
</ ogc: Propertyl sLessThanOr Equal To>
</ ogc: And>
</ ogc: And>
</ogc:Filter>
</ wf s: Del et e>
</wfs: Transacti on>

In response to the successful completion of this request, a web feature service would
generate the following response document:

<?xm version="1.0" ?>
<wf s: Transact i onResponse
versi on="1.0.0"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
Xxsi : schemaLocation="http://ww. opengi s. net/ws ../ws/1. 0.0/ WS-transaction. xsd">
<wf s: I nsertResult handl e="Statenment 1">
<ogc: Featureld fid="ELEVP_1M 1001"/>
</wfs:|nsertResult>
<wf s: | nsert Resul t handl e=" Conpl exl nsert">
<ogc: Featureld fid="ROADL_1M 1553"/>
</wfs:lnsertResult>
<wf s: |l nsertResult handl e="Stat ement 2">
<ogc: Featureld fid="BU LTUPA_1M 509876"/ >
<ogc: Featureld fid="BU LTUPA_ 1M 509877"/>
</wfs:|nsertResul t>
<wf s: Transacti onResul t handl e="Transacti on 01">
<wfs: St at us>
<wf s: SUCCESS/ >
</wfs: Status>

52 © OGC 2002 — All rights reserved



</wfs: Transacti onResul t >
</ wfs: Transacti onResponse>

12 GetCapabilities operation

12.1 Introduction

A web feature service must have the ability to describe its capabilities. This section
defines an XML document that a web feature service must generate to define its
capabilities.

The capabilities document defined in this specification is closely modeled after the
capabilities document defined for map servers as defined in the Web Map Service
Implementation Specification [1].

12.2 Request

The <GetCapabilities> element is used to request a capabilities document from a web
feature service.

It is defined by the following XML Schema fragment:

<xsd: el enent nane="Get Capabilities" type="wls: Get CapabilitiesType"/>
<xsd: conmpl exType nane="Get CapabilitiesType">
<xsd: attribute name="version"
type="xsd: string" use="optional"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
</ xsd: conpl exType>
The service attribute is described in section 7.8. The version attribute, unlike the normal
case, is not mandatory since a client application may not have apriori knowledge about
what versions a server may support. The client and the server will need to apply the rules

of version negotiation as described in Section 6.2.4.
12.3 Response

12.3.1 Response schema

The schema of the response to a GetCapabilities request is normatively defined using
XML Schema in Annex A 4.

12.3.2 Capabilities document
The capabilities document is composed of four main sections:

1. Service section
The service section provides information about the service itself.

2. Capabilities section
The capabilities section specifies the list of requests that the WFS can handle.
Two classes of web feature services, based on the capabilities they support, are
defined in the Overview [see Section i].

© OGC 2002 — All rights reserved 53



3. FeatureType list
This section defines the list of feature types (and operations on each feature type)
that are available from a web feature service. Additional information, such as
SRS, about each feature type is also provided.

4. Filter capabilities section
The schema of the Filter Capabilities Section is defined in the Filter Encoding
Implementation Specification [3]. This is an optional section. If it exists, then the
WES should support the operations advertised therein. If the Filter Capabilities
Section is not defined, then the client should assume that the server only supports
the minimum default set of filter operators as defined in the Filter Encoding
Implementation Specification [3].

The version attribute specifies the specification revision to which this schema applies.
Its format is one, two or three integers separated by periods: "x", or "x.y", or "x.y.z", with
the most significant number appearing first. Future revisions are guaranteed to be
numbered in a monotonically increasing fashion, though gaps may appear in the

sequence.

The updateSequence attribute is a sequence number for managing propagation of the
contents of the capabilities document. For example, if a feature server adds some feature
types, it can increment the update sequence to inform catalog servers that their
previously cached versions are now stale. The format is a positive integer.

12.3.3 Service section

The <Service> element contains metadata for the feature service as a whole. The
following content can be specified for the <Service> element:

Table 3 — Service section elements

ELEMENT NAME IDESCRIPTION

Name A name the service provider assigns to the web feature service instance.

Title The <Title> is a human-readable title to briefly identify this server in
menus.

|Abstract The <Abstract> is a descriptive narrative for more information about the
Server.

Keyword The <Keyword> element contains short words to aid catalog searching.

OnlineResource The <OnlineResource> element defines the top-level HTTP URL of this

service. Typically the URL of a "home page" for the service.

Fees The <Fees> element contains a text block indicating any fees imposed by
the service provider for usage of the service or for data retrieved from the
WFS. The keyword NONE is reserved to mean no fees.

|AccessConstraints The <AccessConstraints> element constain a text block describing any
access constraints imposed by the service provider on the WFS or data
retrieved from that service. The keyword NONE is reserved to indicate no
access constraints are imposed.

54 © OGC 2002 — All rights reserved



12.3.4 Capabilities Section

The capabilities section is used to specifically define the list of WFS operations that a
particular WFS implements. A basic WFS would include the GetCapabilities,
DescribeFeatureType and the GetFeature operations. A transactional WFS would also
include the Transaction operation, possibly the LockFeature operation and/or the
GetFeatureWithLock operation.

The specific capabilities implemented by a WFS are denoted by the following elements:

Table 4 — Web feature service operations

ELEMENT NAME |[DESCRIPTION

GetCapabilities The <GetCapabilities> element is included to define the available distributed
computing platforms for this service.

DescribeFeatureType [The <DescribeFeatureType> element is used to define the available distributed
computing platforms for this service and indicate what schema description
languages can be used to describe the schema of a feature type when a client
requests such a description. XMLSCHEMA is the only mandatory language that
must be available. The SCHEMALANGUAGES entity can be redefined to
include vendor specific languages.

Transaction The <Transaction> element is included to define the available distributed
computing platforms for this service

GetFeature The <GetFeature> element is used to define the available distributed computing
platforms for this service and enumerate the formats available for expressing the
results of a query. The RESULTFORMATS entity defines the mandatory output
format of GML but can be redefined to include additional vendor specific formats.

LockFeature The <LockFeature> element is included to define the available distributed
computing platforms.

The only available distributed computing platform is HTTP, for which two request
methods are defined; GET and POST. The onlineResource attribute indicates the URL
prefix for HTTP GET requests (everything before the question mark and query string:
http://hostname[:port]/path/scriptname); for HTTP POST requests, onlineResource is the
complete URL.

The <VendorSpecificCapabilities> element can be defined to include vendor specific
extensions.

12.3.5 FeatureTypeList section

The purpose of the <FeatureTypeList> element is to contain a list of feature types that a
WES can service and define the transaction and query elements that are supported on
each feature type. The possible transaction and query elements are:

Table 5 — Transaction and Query Elements on Features

ELEMENT DESCRIPTION

NAME

Insert The <Insert> clement is used to indicate that the WFS is capable of creating new
instances of a feature type.

Update The <Update> element indicates that the WFS can change the existing state of a feature.

© OGC 2002 — All rights reserved 55



Delete The <Delete> element indicates that the WFS can delete or remove instances of a feature
type from the datastore.

Query The <Query> element indicates that the WFS is capable of executing a query on a
feature type.

Lock The <Lock> element indicates that the WFES is capable of locking instances of a feature
type.

Transaction and query elements can be specified globally for all feature types or locally
for each specific feature type contained in the <FeatureTypeList> element. Globally
specified transaction and query elements are inherited by every feature type contained in
the <FeatureTypeList> element and can be augmented by specifying local transaction
and query elements. For example, the <Query> element may be specified globally for
all feature types contained in the <FeatureTypeList>, but the <Update> element may
only be specified locally for a small number of feature types. If no transaction or query
elements are defined anywhere, then the default element <Query> will be implied for all
feature types contained in the <FeatureTypeList> element.

The following elements can be used to describe each feature type contained in a
<FeatureTypeList> element:

Table 6 — Elements to describe feature types

ELEMENT DESCRIPTION

[Name The namespace qualified name of the feature type. This element is
mandatory.

Title The <Title> is a human-readable title to briefly identify this feature type
in menus.

Abstract The <Abstract> is a descriptive narrative for more information about the
feature type.

Keyword The <Keyword> element contains short words to aid catalog searching.

SRS The <SRS> element is used to indicate which spatial reference system

should be used to express the state of a feature. The SRS may be indicated|
using either the Petrotechnical Open Software Corporation form
‘EPSG:<POSC Code>’ or the URL format defined in section 4.3.2 of
reference [2].

Operations The <Operations> element defines which are operations are supported on
a feature type. Any locally defined operations take precedence over any
globally defined operations.

LatLongBoundingBox The LatLongBoundingBox element is used to indicate the edges of an
enclosing rectangle in the SRS of the associated feature type. Its purpose is|
to facilitate geographic searches by indicating where instances of the
particular feature type exist. Since multiple LatLongBoundingBoxes can
be specified, a WFS can indicate where various clusters of data may exist.
This knowledge aids client applications by letting them know where they
should query in order to have a high probability of finding data.

MetadataURL A WFS may use zero or more <MetadataURL> elements to offer
detailed, standardized metadata about the data in a particular feature type.
The type attribute indicates the standard to which the metadata complies;
the format attribute indicates how the metadata is structured. Two types
are defined at present: "'TC211'=1SO TC211 19115; 'FGDC' = FGDC
CSDGM.

56 © OGC 2002 — All rights reserved



12.4 Exceptions

In the event that a web feature service encounters an error servicing a GetCapabilities
request, it shall raise an exception as described in Section 7.7.

12.5 Examples

This example shows what a capabilities document might look like for a basic web
feature service. To request a capabilities document, a client would issue the following
request:

<?xm version="1.0" ?>
<Cet Capabilities
servi ce="WS"
xm ns="http://ww. opengi s. net/w s"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi :schemaLocation="http://ww. opengi s. net/wfs ../wfs/1.0.0/WS-basic.xsd"/>

In response to such a request, a web feature service might generate a document that looks
like:

<?xm version="1.0" ?>
<WFS_Capabilities

versi on="1.0. 0"

xm ns="http://ww. opengi s. net/wfs"

xm ns: myns="http://ww. someserver. conl nmyns"
xm ns: ogc="http://ww. opengi s. net/ogc"

>

<l-- The SERVI CE section says something about who is providing the -->
<l-- service and where one can go to obtain nore informati on about -->
<l-- the service. o>
<Servi ce>

<Narme>CubeWer x WFS</ Nare>

<Titl e>CubeWerx Web Feature Service</Titl e>

<Abstract >\WWeb Feature Server maintained by CubeWerx I|nc.</Abstract>

<Onl i neResour ce>http: // www. sonmeserver. comf W s/ cwwf s. cgi ?</ Onl i neResour ce>
</ Servi ce>

<l-- The CAPABILITY section defines which WS operations this -->
<l-- service instance supports, what distributed conmputing platform -->
<!-- is supported for each service and what the entry point is for -->
<l-- each operation. -->
<Capabi lity>
<Request >
<Cet Capabilities>
<DCPType>
<HTTP>
<Get onlineResource="http://ww.sonmeserver.com wWs/cws. cgi ?"/>
</ HTTP>
</ DCPType>
<DCPType>
<HTTP>
<Post onlineResource="http://ww. someserver.com wfs/cwfs.cgi"/>
</ HTTP>
</ DCPType>
</ Get Capabi lities>
<Descri beFeat ur eType>
<SchemaDescri pti onLanguage>
<XMLSCHEMW >
</ SchermaDescri pti onLanguage>
<DCPType>
<HTTP>
<CGet onlineResource="http://ww. sonmeserver.con wfs/cw/fs.cgi?"/>
</ HTTP>
</ DCPType>
<DCPType>

© OGC 2002 — All rights reserved 57



<HTTP>
<Post onlineResource="http://ww. soneserver.conm wfs/cwws.cgi"/>
</ HTTP>
</ DCPType>
</ Descri beFeat ureType>
<Get Feat ur e>
<Resul t For mat >
<GW.2/ >
</ Resul t For mat >
<DCPType>
<HTTP>
<Get onlineResource="http://ww. sonmeserver.com wWs/cw™Ms. cgi ?"/>
</ HTTP>
</ DCPType>
<DCPType>
<HTTP>
<Post onlineResource="http://ww. someserver.com ws/cwMs.cgi"/>
</ HTTP>
</ DCPType>
</ Get Feat ur e>
<GCet Feat ureWt hLock>
<Resul t For mat >
<GW.2/ >
</ Resul t For mat >
<DCPType>
<HTTP>
<Get onlineResource="http://ww.sonmeserver.com wWs/cws. cgi ?"/>
</ HTTP>
</ DCPType>
<DCPType>
<HTTP>
<Post onlineResource="http://ww. soneserver.com wfs/cwfs.cgi"/>
</ HTTP>
</ DCPType>
</ Get Feat ur eWt hLock>
<Transacti on>
<DCPType>
<HTTP>
<Cet onlineResource="http://ww. sonmeserver.conm wf s/ cw/s.cgi ?"/>
</ HTTP>
</ DCPType>
<DCPType>
<HTTP>
<Post onlineResource="http://ww. soneserver.conm wfs/cwws.cgi"/>
</ HTTP>
</ DCPType>
</ Transacti on>
<LockFeat ur e>
<DCPType>
<HTTP>
<Cet onlineResource="http://ww. sonmeserver.con wf s/ cwMs.cgi?"/>
</ HTTP>
</ DCPType>
<DCPType>
<HTTP>
<Post onlineResource="http://ww. soneserver.com wfs/cwws.cgi"/>
</ HTTP>
</ DCPType>
</ LockFeat ur e>
</ Request >
</ Capabi lity>

<l-- The FEATURETYPELI ST section defines the list of feature types -->
<l-- that this service instance can operate upon as well as which -->
<l-- operations are supported on each feature type. -->

<Feat ur eTypelLi st >
<Qper ati ons>
<Query/ >
</ Oper ati ons>
<Feat ureType>
<Nane>nyns: BUl LTUPA_1M</ Nanme>
<SRS>EPSG: 4326</ SRS>
<Qper ati ons>
<Insert/>
<Updat e/ >
<Del et e/ >
</ Oper at i ons>
<Lat LongBoundi ngBox mni nx="-179.1296081543" mi ny="-53.167423248291"
maxx="178. 44325256348" maxy="70.992721557617"/ >

58 © OGC 2002 — All rights reserved



</ Feat ur eType>
<Feat ureType>
<Nane>myns: COASTL_1M</ Name>
<SRS>EPSG 4326</ SRS>
<Lat LongBoundi ngBox m nx="-179.99942016602" mni ny="-85.582763671875"
maxx="179. 9999" maxy="83.627418518066"/ >
</ Feat ur eType>
<Feat ur eType>
<Name>nyns: ELEVP_1M</ Nanme>
<SRS>EPSG 4326</ SRS>
<Qper ati ons>
<Insert/>
<Updat e/ >
<Del et e/ >
</ Oper ati ons>
<Lat LongBoundi ngBox mi nx="-179. 9984893715" mi ny="-89. 83837892767"
maxx="179. 99234007206" maxy="83. 520408603363"/ >
</ Feat ur eType>
<Feat ur eType>
<Nane>myns: OCEANSEA 1M/ Name>
<SRS>EPSG 4326</ SRS>
<Qper ati ons>
<l nsert/>
<Updat e/ >
<Del et e/ >
</ Oper ati ons>
<Lat LongBoundi ngBox m nx="-179.9999" mi ny="-85.582763671875"
maxx="179. 99996948242" maxy="89. 9999"/ >
</ Feat ur eType>
<Feat ur eType>
<Name>nyns: RAl LRDL_1M</ Name>
<SRS>EPSG 4326</ SRS>
<Qper ati ons>
<l nsert/>
<Updat e/ >
<Del ete/ >
</ Oper ati ons>
<Lat LongBoundi ngBox m nx="-165. 24467468262" mi ny="-53. 138427734375"
maxx="179. 60989379883" maxy="78.16796875"/ >
</ Feat ur eType>
<Feat ur eType>
<Narme>nyns: TREESA 1M</ Nanme>
<SRS>EPSG 4326</ SRS>
<Qper ati ons>
<l nsert/>
<Updat e/ >
<Del et e/ >
</ Oper ati ons>
<Lat LongBoundi ngBox mi nx="-139. 99757385254" mni ny="25.281270980835"
maxx="-52. 661720275879" maxy="66. 718765258789"/ >
</ Feat ur eType>

</ Feat ur eTypeli st >

<!-- The FILTER CAPABI LI TIES section defines the capabilities of the -->

<l-- filter supported by this feature instance. For exanple, in -->
<l-- this case all spatial operator are supported. Another, simpler -->
<l-- WS inplenmentation, may only support the BBOX operator. -->

<ogc: Filter_Capabilities>

<ogc: Spatial _Capabilities>
<ogc: Spati al _Operat ors>
<ogc: BBOX/ >
<ogc: Equal s/ >
<ogc: Di sjoi nt/>
<ogc: I ntersect/>
<ogc: Touches/ >
<ogc: Crosses/ >
<ogc: Cont ai ns/ >
<ogc: Overl aps/ >
</ ogc: Spati al _Operat ors>
</ ogc: Spati al _Capabilities>
<ogc: Scal ar _Capabi lities>
<ogc: Logi cal _Operators/>
<ogc: Conpari son_QOper at or s>
<ogc: Si mpl e_Conpari sons/ >
<ogc: Li ke/ >
<ogc: Bet ween/ >
<ogc: Nul | Check/ >
</ ogc: Conpari son_Oper at or s>
<ogc: Arithmeti c_QOperators>

© OGC 2002 — All rights reserved



<ogc: Sinmple_Arithmetic/>
<ogc: Functi ons>
<ogc: Functi on_Nanes>
<ogc: Functi on_Nane nArgs="1">M N</ ogc: Functi on_Nane>
<ogc: Functi on_Nane nArgs="1">MAX</ ogc: Functi on_Nane>
<ogc: Functi on_Nane nArgs="1">COUNT</ ogc: Functi on_Nane>
<ogc: Function_Nane nArgs="1">Dl STI NCT</ ogc: Functi on_Nane>
</ ogc: Funct i on_Nanes>
</ ogc: Functi ons>
</ ogc: Arithmeti c_Operators>
</ ogc: Scal ar _Capabilities>
</ogc: Filter_Capabilities>
</ WFS_Capabi lities>

13 Keyword-value pair encoding

13.1 Introduction

This section describes how to encode WFS operations using the standard CGI style of
keyword-value pairs. This means that parameters consist of name-value pairs in the form
of "name=value" and the pairs are separated by the "&" character. This form of encoding
is also known as URL-Encoding.

13.1.1 A note about the examples

In general, URL-encoding requires that certain characters, such as ‘&’, be escaped [10]
when they are not used in their intended manner. In this section, however, such
characters may not be escaped for the sake of clarity.

In addition, many of the examples in this section include a FILTER parameter whose
value is an XML encoded filter as specified in the Filter Encoding Implementation
Specification [3]. To be rigorously correct, these examples should include namespace
and schema location information in the root element <Filter>, such that the XML may be
validated. Thus the parameter:

FI LTER=<Fi | t er ><W t hi n><Pr oper t yNane>l NWVATERA_1M WKB_GEOVKPr oper t yNane>
<gmnl : Box><gml ><coor di nat es>10, 10 20, 20</ gml : coor di nat es></ gnl : Box>
</Wthin></Filter>

should more correctly be specified as:

FI LTER=<Fi | ter xm ns="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi:schemaLocati on="http://ww. opengi s. net/ ogc
../filter/1.0.0/filter.xsd
http://ww. opengi s. net/gm
..lgm /2. 1/ geonetry. xsd" >
<W't hi n><Pr opert yNarme>l NVATERA 1M WKB_GEOVWKPr opert yNane>
<gnl : Box><gm ><coor di nat es>10, 10 20, 20</ gnl : coor di nat es></ gml : Box>
</Wthin></Filter>

In order to not obfuscate the essential information, however, the namespace and schema
location attribute tags have been omitted from the examples in this section. In addition,

the schema locations shown are only example locations and the correct schema locations
would need to be substituted.

Finally, the values of the FILTER and other parameters are broken up over several lines
again for clarities sake. A FILTER parameter’s value, in practice, would be composed
of a single long string.

60 © OGC 2002 — All rights reserved



13.2 Request parameter rules

13.2.1 Parameter ordering and case

Parameter names shall not be case sensitive, but parameter values shall be case sensitive.
In this document, parameter names are typically shown in uppercase for typographical
clarity, not as a requirement.

Parameters in a request may be specified in any order.

An OGC Web Service must be prepared to encounter parameters that are not part of this
specification. In terms of producing results per this specification, an OGC Web Service
shall ignore such parameters.

13.2.2 Parameter lists

nn

Parameters consisting of lists shall use the comma (",") as the delimiter between items in
the list. In addition, multiple lists can be specified as the value of a parameter by
enclosing each list in parentheses; "(", ")".

Example 1

An example of a list of items.

paraneter=itendl,itenR,itenk

Example 2

An example of multiple lists of items assigned to a single parameter.
paraneter=(itenll,itenl2,itenl3)(itenl,iten2,iten3)

Parentheses may also be used to delimit multiple local filters when more than one feature
type is specified for the TYPENAME parameter. The following URL fragment shows
how this may be done:

typenane=FEATL1, FEAT2&f i I ter=(<Filter>... FEAT1 filter.</Filter>)(<Filter>...FEAT2
filter.</Filter>)

13.3 Common request parameters
13.3.1 Version parameter

The VERSION parameter specifies the protocol version number. The format of the
version number and version negotiation are described in Section 6.2.4.

13.3.2 Request parameter

The REQUEST parameter indicates which service operation is being invoked. The
value operation_name must be one of those offered by the OGC Web Service Instance.

13.3.3 Bounding box

The bounding box parameter, BBOX, is included in this specification for convenience as
a shorthand representation of the very common a bounding box filter which would be

© OGC 2002 — All rights reserved 61



expressed in much longer form using XML and the filter encoding described in [3]. A
BBOX applies to all feature types listed in the request.

The Bounding Box (BBOX) is a set of four comma-separated decimal, scientific notation,
or integer values (if integers are provided where floating point is needed, the decimal
point is assumed at the end of the number). These values specify the minimum X,
minimum Y, maximum X, and maximum Y ranges, in that order, expressed in units of
the SRS of the feature type(s) begin queried. The four bounding box values indicate the
outside edges of a rectangle, as in Figure 5; minimum X is the left edge, maximum X the
right, minimum Y the bottom, and maximum Y the top.

WMaximom™Y ——=

WMinmomY ——=

i (]

blinumom X BEOX Edge TMamimun X

Figure 5 [1 Bounding Box representation
A Bounding Box should not have zero area.

If a request contains an invalid Bounding Box (e.g., one whose minimum X is greater
than or equal to the maximum X, or whose minimum Y is greater than or equal to the
maximum Y) the server must throw an exception.

If a request contains a Bounding Box whose area does not overlap at all with the
LatLongBoundingBox(s) advertised in the Capabilities XML for the requested geodata
object, the server should return empty content (e.g. null feature set) for that element.
Any elements that are partly or entirely contained in the Bounding Box should be
returned in the appropriate format.

The SRS of the bounding box must be the same as the SRS of the feature type(s) in a
request. The SRS of a feature type is advertised by a WES in the capabilities document.
If more than one feature type is specified in a request, the feature types must all be in the
same SRS and the BBOX must be specified in the common SRS as well.

If the Bounding Box values are not defined for the given SRS (e.g., latitudes greater than
90 degrees in EPSG:4326), the server should return empty content for areas outside the
valid range of the SRS.

In the particular case of longitude, the following behavior applies regarding the anti-

meridian at 180 degrees of longitude. There is a legitimate desire for maps that span the
anti-meridian (for example, a map centered on the Pacific Ocean). If Xmin is the west-

62 © 0GC 2002 — All rights reserved



most longitude in degrees and Xmax is the east-most, then the following constraint
applies:

-180 <= Xmin < Xmax < 540
Example

Xmin,Xmax values and the corresponding scope of the bounding box:

-180,180 = Earth centered at Greenwich
0,360 = Earth with Greenwich at left edge
120,250 = Pacific Ocean

13.3.4 Vendor-specific parameters

Requests may allow for optional vendor-specific parameters (VSPs) that will enhance the
results of a request. Typically, these are used for private testing of non-standard
functionality prior to possible standardization. A generic client is not required or
expected to make use of these VSPs.

An OGC Web Service must produce a valid result even if VSPs are missing or
malformed (i.e., the Service shall supply a default value), or if VSPs are supplied that are
not known to the Service (i.e., the Service shall ignore unknown request parameters).

An OGC Web Service may choose not to advertise some or all of its VSPs. If VSPs are
included in the Capabilities XML, the VendorSpecificCapabilities element must be
redefined accordingly. Additional schema documents may be imported containing the
redefinition of the element.

Clients may read the vendor specific definition from the capabilities schemas and
formulate requests using any VSPs advertised therein.

Vendors should choose vendor-specific parameter names with care to avoid clashes with
standard parameters.

13.4 Common parameters

The following table describes parameters common to all WFS requests. Subsequent
tables may redefine some of the facets of one or more of the parameters in this table.

Table 7 — Common parameters for WES requests

URL Component 0O/M2 | DEFAULT Description
http:/server address/path/script | M URL prefix of web feature service
VERSION M3 1.0.0 Request version.

SERVICE M WES Service type.

20= Optional, M=Mandatory

3 VERSION is mandatory for all operations except the GetCapabilities operation.

© OGC 2002 — All rights reserved 63




REQUEST M Name of WFS request.
Additional parameters o As described in this section.
Vendor-specific parameters o Optional vendor specific parameters.

The mandatory VERSION parameter specifies the protocol version number and allows
for negotiation as described in Section 6.2.4.

The mandatory SERVICE parameter specifies which of the available service types at a
particular service instance is being invoked. The value WFS is used to indicate that the
Web Feature Service should be invoked.

The parameter REQUEST must also be included and it indicates which of the web
feature service operations to invoke. The possible values of the REQUEST parameters
are: DescribeFeatureType, LockFeature, Transaction, GetFeature, GetFeatureWithLock
or GetCapabilities.

Additional GET parameters, as described in this section, shall be expressed as name-
value pairs. Parameter names shall not be case sensitive. Parameter values shall be case
sensitive. Parameters in a request may be specified in any order.

A WEFS must be prepared to encounter parameters that are not part of the specification.
These are known as vendor-specific parameters. Vendor-specific parameters allow
vendors to specify additional parameters which will enhance the results of requests. A
WES must produce valid results even if the vendor-specific parameters are missing or
malformed. A WFS may declare vendor-specific parameters within its capabilities XML.
A WFS may choose to advertise some or all of its vendor specific parameters. Clients
may read the capabilities schema and formulate requests using any vendor-specific
parameters advertised therein.

13.5 Response

The response to any request encoded using keyword-value pair encoding shall be
identical to the responses generated for requests encoded in XML and described in earlier
sections of this document.

13.6 Exceptions

Exception reporting for requests encoded using keyword-value pairs shall be identical to
that generated by requests encoded using XML. Refer to Sections 7.7 and 11.4 for a
detailed discussion of exception reporting.

13.7 Operations

13.7.1 Introduction

This section describes how to formulate WFS requests using standard CGI style
keyword-value pair encoding. Heavy use is made of examples that illustrate the various
forms possible. In addition, for clarity, each parameter specification in the examples is
placed on a separate line.

64 © OGC 2002 — All rights reserved




13.7.2 DescribeFeatureType operation

13.7.2.1 Request

Table 8 — DescribeFeatureType encoding

URL Component O/M DEFAULT Description
REQUEST=DescribeFeatureType M Name of request.
TYPENAME (0] A comma separated list of feature

types to describe. If no value is
specified that is to be interpreted as
all feature types.

OUTPUTFORMAT (0] XMLSCHEMA | The output format to use to
describe the feature.
XMLSCHEMA must be supported.
Other output formats, such as DTD
are possible.

13.7.2.2 Examples

Example 1

The following example requests the schema description of the feature type TREESA 1M.

http://ww. soneserver.conl wfs. cgi?
SERVI CE=WFS&
VERSI| ON=1. 0. 0&
REQUEST=Descr i beFeat ur eType&
TYPENAME=TREESA_ 1M

Example 2

The following example requests the schema description of the feature types
INWATERA 1M and BUILTUPA_ 1M.

http://ww. someserver.com wfs. cgi ?
SERVI CE=WFS&
VERS| ON=1. 0. 0&
REQUEST=Descr i beFeat ur eType&
TYPENAME=TREESA 1M BUI LTUPA_ 1M

13.7.3 GetFeature & GetFeatureWithLock operation

13.7.3.1 Request

Table 9 — GetFeature & GetFeatureWithLock encoding

URL Component O/M | DEFAULT | Description

REQUEST=[GetFeature | M The name of the WFS request.
GetFeatureWithLock]

PROPERTYNAME o A list of properties may be specified for each

feature type that is being queried. Refer to
Section [13.2.2] on how to form lists of
parameters. A "*" character can be used to
indicate that all properties should be
retrieved. There is a 1:1 mapping between
each element in a FEATUREID or
TYPENAME list and the

© OGC 2002 — All rights reserved 65




PROPERTYNAME list. The absense of a
value also indicates that all properties should
be fetched.

FEATUREVERSION=[ALL | N]

If versioning is supported, the
FEATUREVERSION parameter directs the
WES on which feature version to fetch.. A
value of ALL indicates to fetch all versions
of a feature. An integer value fetches the Nth
version of a feature. No value indicates that
the latest version of the feature should be
fetched.

MAXFEATURES=N

A positive integer indicating the maximum
number of features that the WFS should
return in response to a query. If no value is
specified then all result instances should be
presented.

TYPENAME

(Optional if FEATUREID is
specified.)

A list of feature type names to query.

FEATUREID An enumerated list of feature instances to
(Mutually exclusive with fetch identified by their feature identifiers.
FILTER and BBOX)

FILTER A filter specification describes a set of

(Prerequisite: TYPENAME)

(Mutually exclusive with
FEATUREID and BBOX)

features to operate upon. The filter is defined
as specified in the Filter Encoding
Specification [3]. If the FILTER parameter
is used, one filter must be specified for each
feature type listed in the TYPENAME
parameter. Individual filters encoded in the
FILTER parameter are enclosed in
parentheses “(“ and “)”.

BBOX
(Prerequisite: TYPENAME)

(Mutually exclusive with
FEATUREID and FILTER.)

In lieu of a FEATUREID or FILTER, a client
may specify a bounding box as described in
Section 13.3.3.

13.7.3.2 Examples

Many of the examples in this section include a FILTER parameter whose value is an

XML encoded filter as specified in the Filter Encoding Implementation Specification [3].
To be rigorously correct, these examples should include namespace and schema location
information in the root element <Filter>, such that the XML may be validated. Thus the

parameter:

FI LTER=<Fi | t er ><W t hi n><Pr oper t yNane>l NWATERA_1M WKB_GEOVKPr oper t yNane>
<gml : Box><gml ><coor di nat es>10, 10 20, 20</ gnl : coor di nat es></ gnl : Box>

</Wthin></Filter>

should more correctly be:

FI LTER=<Fi | ter xm ns="http://ww. opengi s. net/ogc"
xm ns: gm =" http://ww. opengi s. net/gm "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="http://ww. opengi s. net/ ogc

66

.. /filter/1.0.0/filter.xsd
http://ww. opengi s. net/gm

© OGC 2002 — All rights reserved




..lgm /2. 1/ geonetry. xsd" >
<W 't hi n><Pr opert yNanme>l NVATERA 1M WKB_GEOVWKPr opert yNane>
<gnl : Box><gm ><coor di nat es>10, 10 20, 20</ gnl : coor di nat es></ gml : Box>
</Wthin></Filter>

For the sake of clarify, however, the namespace and schema location attribute tags have
been omitted from the examples in this section. In addition, the schema locations shown
are only example locations and the correct schema locations would need to be specified.

Finally, the value of the FILTER parameter is broken up over several lines again for
clarities sake. An actual FILTER parameter would have a single long string as its
argument.

Example 1

Query all properties of all instances of type INWATERA 1M.

http://ww. soneserver.com wfs.cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
TYPENAME=| NWATERA_1M

Example 2

Query some properties of all instances of type INWATERA 1M.

http://ww. someserver.com wfs. cgi &
SERVI CE=WFS&
VERS| ON=1. 0. 0&
REQUEST=Cet Feat ur e&
PROPERTYNAME=I NWATERA_1M WKB_CGEOM | NWATERA_1M TI LE_I D&
TYPENAMVE=| NWATERA_1M

Example 3

Query all properties of the feature instance identified by the feature identifier
"INWATERA 1M.1013".

http://ww. someserver.com wfs. cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
FEATUREI D=I NWVATERA_1M 1013

Example 4

Query some properties of the feature instance identified by the feature identifier
"INWATERA 1M.1013".

http://ww. someserver.com wfs. cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
PROPERTYNAME=I NWATERA 1M WKB_CGEOM | NWATERA_1M TI LE_I D&
FEATUREI D=I NWVATERA_1M 1013

Example 5

Query all properties of an enumerated set of feature instances of type INWATERA 1M.

http://ww. someserver.com ws. cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
FEATUREI D=1 NWATERA 1M 1013, | NVATERA 1M 1014, | NVATERA 1M 1015

© OGC 2002 — All rights reserved 67



Example 6

Query some properties of an enumerated set of feature instances of type
INWATERA 1M. In this example, the WKB_GEOM and TILE ID properties are
selected for each feature instance.

http://ww. soneserver.com wfs.cgi &
SERVI CE-WFS&
VERS| ON=1. 0. 0&
REQUEST=Cet Feat ur e&
PROPERTYNAME=( | N\VATERA 1M WKB_GEOM | NWATERA 1M TI LE_I D)
(1 NWATERA_1M VKB_GEOM | N\WATERA 1M TI LE_I D)
(1 NWATERA_ 1M WKB_GEOM | N\WATERA_1IM TI LE_| D) &
FEATUREI D=1 NWVATERA_1M 1013, | N\VATERA_1M 1014, | NVATERA_1M 1015

Example 7

Query all properties of a constrained set of feature instances of type INWATERA 1M.

http://ww. someserver.com wfs. cgi &

SERVI CE=WFS&

VERS| ON=1. 0. 0&

REQUEST=Cet Feat ur e&

TYPENAME=| NWATERA_1M&

FI LTER=<Fi | t er ><W t hi n><Pr oper t yNane>l NWATERA 1M WKB_GEOVKPr oper t yNane>
<gnl : Box><gm ><coor di nat es>10, 10 20, 20</ gnl : coor di nat es></ gml : Box>
</Wthin></Filter>

Example 8

Query some properties of a constrained set of features instances of type
INWATERA 1M.

http://ww. someserver.com wfs. cgi &

SERVI CE=WFS&

VERSI ON=1. 0. 0&

REQUEST=Cet Feat ur e&

PROPERTYNANME=] NWATERA_ 1M WKB_GEOM | NWATERA_1M TI LE_| D&

TYPENAME=| NVATERA _1M&

FI LTER=<Fi | t er ><W t hi n><Pr oper t yName>| NWATERA_1M WKB_GEOWPr oper t yName><gmn : Box>
<gnl : coor di nat es>10, 1020, 20</ g : coor di nat es></ gnl : Box></ Wt hi n></Fi | ter>

Example 9

Query all properties of a list of feature types.

http://ww. someserver.com wfs. cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
TYPENAME=| NWATERA 1M BUI LTUPA_1M

Example 10

Query some properties of a list of feature types. In this case, the attributes WKB GEOM
and TILE ID are fetched for the INWATERA 1M feature type and all the attributes of
feature type BUILTUPA 1M are fetched.

http://ww. soneserver.com wfs.cgi &
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
PROPERTY=( | N\VATERA_1M WKB_GEOM | NWATERA 1M TI LE_| D) (BU LTUPA_1M *) &
TYPENAME=] N\MATERA_1M BUI LTUPA_1M

Example 11

Query all properties of an enumerated set of feature instances.

http://ww. someserver.com wfs. cgi &

68 © OGC 2002 — All rights reserved



SERVI CE=WFS&

VERSI ON=1. 0. 0&

REQUEST=Cet Feat ur e&

FEATUREI D=l NWVATERA_1M 1013, BUI LTUP_1M 3456

Example 12

Query some properties of an enumerated set of feature instances. In this case, the
WKB_GEOM and TILE ID attributes are fetched for feature instance
"INWATERA 1M.1013". The attribute WKB_GEOM is fetched for feature instance
"BUILTUPA 1M.3456".

http://ww. soneserver.com wfs.cgi &
SERVI CE-WFS&
VERSI ON=1. 0. 0&
REQUEST=Cet Feat ur e&
PROPERTYNAME=] NVATERA 1M WKB_GEOM | NWATERA 1M TI LE_I D, BUI LTUPA_1M WKB_GEQOM &
FEATUREI D= N\VATERA_1M 1013, BUI LTUPA 1M 3456

Example 13

Query all properties of all feature instances of the feature type INWATERA 1M and
BUILTUPA 1M that lie within the specified box.

http://ww. someserver.com wfs. cgi &

SERVI CE=WFS&

VERS| ON=1. 0. 0&

REQUEST=Cet Feat ur e&

TYPENAME=| NWATERA_1M BUI LTUPA_1M&

FI LTER=(<Fi | t er ><W t hi n><Pr oper t yName>| NWVATERA_ 1M WKB_GEOM
<Pr opert yName><gm : Box><gml : coor di nat es>10, 10 20, 20</ gni : Box>
</gm : coordi nates></Wthin></Filter>)(<Filter><Wthi n><PropertyNanme>
BUI LTUPA 1M WKB_GEOWKPr oper t yNane><gnl : Box><gnl : coor di nat es>10, 10
20, 20</ gm : Box></ gm : coor di nates></ Wt hi n></Fi |l ter>)

Example 14

Query some properties of a constrained set of feature instances of types
INWATERA 1M and BUILTUPA_ 1M.

http://ww. SiriusCyberneticsCorp.comwfs.cgi&

SERVI CE=WFS&

VERSI ON=1. 0. 0&

REQUEST=Cet Feat ur e&

PROPERTYNAME=( | NVATERA 1M WKB_GEOM | NWATERA_1MTI LE | D) ( BUI LTUPA_1M WKB_CGEQOM &

TYPENAME=I N\WVATERA 1M BUI LTUPA_1M&

FI LTER=( <Fi | t er ><W t hi n><Pr oper t yName>| NWATERA 1M VWKB_GEOM | NWATERA 1M WKB_GEOM
<PropertyName><gn1 Box><gm : coor di nat es>10, 10 20, 20</ g : coor di nat es>
</gm :Box></Wthin></Filter>)(<Filter><Wt hi n><PropertyNarre>
| NWATERA 1M WKB_CGEOVKPr oper t yNane><gni : Box><gni : coor di nat es>10, 10
20, 20</ gm : coor di nat es></ gm : Box></ Wt hi n></ Fi | t er >)

13.7.4 LockFeature operation

13.7.4.1 Request

Table 10 — LockFeature encoding

URL Component O/M | DEFAULT Description
REQUEST=LockFeature M The name of the request.
TYPENAME M Names or one or more feature types whose

(Optional if FEATUREID is feature instances are to be locked.

specified.)

EXPIRY o The number of minutes the lock should persist
before being cleared. If no value is specified
then the lock should persist indefinitely.

© OGC 2002 — All rights reserved 69




LOCKACTION=[ALL | SOME] o Specify how the lock should be acquired.

ALL indicates to try to get all feature locks
otherwise fail. SOME indicates to try to get as
many feature locks as possible.

FEATUREID 0] An enumerated list of feature instance
(Mutually exclusive with identifiers indicating which feature instances
FILTER and BBOX.) to lock.

FILTER 0] An XML string encoded as described in [3]

- indicating which features to operate upon. If
(Prerequisite: TYPENAME) the FILT%R parameter is usedI? one ﬁllt)er must
(Mutually exclusive with be specified for each feature type listed in the
FEATUREID and BBOX.) TYPENAME parameter. Individual filters
encoded in the FILTER parameter are
enclosed in parentheses “(“ and “)”.

BBOX (@) In lieu of a FEATUREID or FILTER., a client
(Prerequisite: TYPENAME) rsneac};ii%e%f% % Poundmg box as described in
(Mutually exclusive with

FEATUREID and FILTER.)

13.7.4.2 Examples

Example 1

The following example locks all instances of feature type INWATERA 1M.

http://ww. someserver.com wfs. cgi ?
SERVI CE=WFS&
VERS| ON=1. 0. 0&
REQUEST=LockFeat ur e&
TYPENAME=| NWATERA_1M

Example 2

The following example locks the feature identified by "ROADL 1M.1013".

http://ww. someserver.conl wfs. cgi?
SERVI CE=WFS&
VERSI ON=1. 0. 0&
REQUEST=LockFeat ur e&
FEATUREI D=ROADL_1M 1013

Example 3

The following example locks all feature instances of feature type INWATERA 1M and
BUILTUPA 1M.

http://ww. sonmeserver.com wfs. cgi ?
SERVI CE=WFS&
VERS| ON=1. 0. 0&
REQUEST=LockFeat ur e&
TYPENAME=| NWATER_1M BUI LTUPA_1M

Example 4

The following example locks all features of feature type INWATERA 1M and
BUILTUPA 1M that lie INSIDE a user specified region of interest.

http://ww. someserver.com wfs. cgi ?
SERVI CE=WFS&
VERS| ON=1. 0. 0&
REQUEST=LockFeat ur e&
LOCKACTI ON=ALL&

70 © OGC 2002 — All rights reserved




TYPENAME=| N\VATER_1M BUI LTUPA_1M&

FI LTER=(<Fi | t er ><W t hi n><Pr oper t yName>WKB_GEQVK/ Pr oper t yNanme><gmnl : Box>
<gnl : coor di nat es>10, 10 20, 20</ gml : coor di nat es></ gn : Box></ Wt hi n>
</[Filter>)(<Filter><Wthi n><PropertyName>WKB_GEOVW/ Pr opertyNanme><gnl : Box>
<gnl : coordi nat es>10, 10 20, 20</ gnl : coor di nat es></ gnl : Box></ Wt hi n>
</[Filter>)

13.7.5 Transaction operation

The only supported operation of the transaction interface is the DELETE operation.
Expressing INSERT or UPDATE requests, which can be quite lengthy, is not convenient
using keyword-value pair encoding.

13.7.5.1 Request

Table 11 — Transaction encoding

URL Component O/M | DEFAULT Description
REQUEST=Transaction M The name of the WFS request.
OPERATION=Delete M Transaction operation to execute.

Currently only Delete is defined.
TYPENAME M A list of feature types upon which to
(Optional if FEATUREID is specified.) apply the operation.
RELEASEACTION=[ALL|SOME] o A value of ALL indicates that all
feature locks should be released when
a transaction terminates. A value of
SOME indicates that only those
records that are modified should be
released. The remaining locks are
maintained
FEATUREID O A list of feature identifiers upon which
(Mutually exclusive with FILTER and the specified operation shall be
applied.
BBOX)
Optional.
No default.
FILTER (0] A filter specification describes a set of
N features to operate upon. The format
(Prerequisite: TYPENAME) of the filter is defined in the Filter
(Mutually exclusive with FEATUREID Encoding Specification [3]. If the
and BBOX) FILTER parameter is used, one filter
must be specified for each feature
type listed in the TYPENAME
parameter. Individual filters encoded
in the FILTER parameter are enclosed
in parentheses "(" and ")".
BBOX (0] In lieu of a FEATUREID or FILTER,
c a client may specify a bounding box as
(Prerequisite: TYPENAME) described in Section 13.3.3.
(Mutually exclusive with FILTER and
FEATUREID)

13.7.5.2 Examples

Example 1

Delete the feature instance identified by "ROADL 1M.1013".

© OGC 2002 — All rights reserved 71




http://ww. soneserver.conlwfs.cgi?

SERVI CE=WFS&

VERSI| ON=1. 0. 0&
REQUEST=Tr ansacti on&
OPERATI ON=Del et e&
FEATUREI D=ROADL_1M 1013

Example 2

The following example deletes all features of type INWATERA 1M and
BUILTUPA 1M that lie INSIDE the specified box.

http://ww. soneserver.conl wis. cgi ?

SERVI CE=WFS&

VERSI ON=1. 0. 0&

REQUEST=Tr ansacti on&

OPERATI ON=Del et e&

TYPENAME=] N\VATER_1M BUI LTUPA_1M&

FI LTER=( <Fi | t er ><W t hi n><Pr oper t yNane>l NWATERA_1M WKB_GEOVWKPr oper t yNane><gni : Box>
<gmnl : coor di nat es>10, 10 20, 20</ gl : coor di nat es></ gl : Box></ Wt hi n>
</Filter>)(< Filter><Wthi n><PropertyName>BU LTUPA_ 1M WKB_GEOM
<Pr opert yName><gm : Box><gnl : coor di nat es>10, 10 20, 20</ gl : coor di nat es>
</ gm : Box></Wthin></Filter>)

Example 3

The following example is the same as Example 2, except that the BBOX parameter is
used to specify the spatial constraint on the Delete command.

http://ww. someserver.com wfs. cgi ?

SERVI CE=WFS&

VERSI ON=1. 0. 0&

REQUEST=Tr ansact i on&

OPERATI ON=Del et e&

TYPENAME=| NVATER_1M BUI LTUPA_1M&
BBOX=10, 10, 20, 20

13.7.6 GetCapabilities Operation

13.7.6.1 Request

Table 12 — GetCapabilities encoding

URL Component oM DEFAULT Description

REQUEST=GetCapabilities M Name of request.

13.7.6.2 Examples

Example 1

Request the capabilities document from a WEFS.

http://ww. someserver.com wfs. cgi ?

72

VERSI ON=1. 0. 0&

SERVI CE=WFS&
REQUEST=Get Capabi lities

© OGC 2002 — All rights reserved




ANNEX A — XML Schema definitions (Normative)

A.1 Introduction

This annex contains the normative XML Schema definitions of the WFS operations,
capabilities document, and exceptions.

Annex A.2 contains the XML Schema definition for exception messages generated by a
web feature service. All exception messages generated by a WFS must validate against
this schema.

Annex A.3 contains the XML Schema definition of the basic operations that a web
feature service must provide. The basic set of operations includes GetCapabilities,
DescribeFeatureType and GetFeature. A web feature service must implement this set of
operations.

Annex A.4 contains the XML Schema definitions of optional operations related to
transaction processing. The set of operations includes GetFeatureWithLock, LockFeature
and Transaction. A web feature service may implement some or all of these operations.

Annex A.5 contains the XML Schema definition of the capabilities document that a web
feature service must generate in response to a GetCapabilities request. The
GetCapabilities response of a web feature service must validate against this schema.
Further, if a web feature service implements vendor specific extensions, this schema in
Annex A.5 must be extended in the places indicated so that the vendor extensions can be
discovered by a client application wishing to do so.

A.2 OGC-exception.xsd

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema
t ar get Namespace="ht t p: / / ww. opengi s. net/ ogc"
xm ns: ogc="http://wm. opengi s. net/ ogc"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
el ement For nDef aul t =" qual i fi ed" >

<xsd: el ement nane="Ser vi ceExcepti onReport">
<xsd: annot ati on>
<xsd: docunent ati on>
The Servi ceExceptionReport el enent contains one
or nore ServiceException el enents that describe
a service exception
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="Servi ceException"
type="ogc: Servi ceExcepti onType"
<xsd: annot ati on>
<xsd: docunent ati on>
The Service exception element is used to describe
a service exception
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>

© OGC 2002 — All rights reserved 73



<xsd: attribute name="version" type="xsd:string" fixed="1.2.0"/>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conmpl exType nane="Servi ceExcepti onType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The Servi ceExceptionType type defines the ServiceException
elenent. The content of the elenment is an exception nessage
that the service wished to convey to the client application
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd:string">
<xsd:attribute name="code" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent ati on>
A service may associate a code with an exception
by using the code attribute
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute name="|ocator" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent ati on>
The locator attribute may be used by a service to
indicate to a client where in the client's request
an exception was encountered. |f the request included
a 'handle' attribute, this may be used to identify the
of f endi ng conponent of the request. Oherw se the
service may try to use other neans to |ocate the
exception such as line nunbers or byte offset fromthe
begi ning of the request, etc ...
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: schema>

A.3 WFS-basic.xsd

<?xm version="1.0"?>

<xsd: schemn
t ar get Nanespace="http://ww. opengi s. net/ wfs"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: xli nk="http://ww.w3. org/ 1999/ xl i nk"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
el ement For nDef aul t =" qual i fi ed" >

<I--
I ncl udes and I nports
-->
<xsd:inmport namespace="http://ww. opengi s. net/gm"
schemaLocation="../../gm/2.1/feature. xsd"/>
<xsd:inmport namespace="http://ww. opengi s. net/ogc"
schemaLocation="../../filter/1.0.0/filter.xsd"/>
<l--
REQUEST MESSAGES
-->

<xsd: el ement nanme="Get Capabilities" type="wfs: Get CapabilitiesType">
<xsd: annot ati on>
<xsd: docunent ati on>
The Get Capapbilities element is used to request that a Wb Feature
Service generate an XM. docunent describing the organization
providi ng the service, the WFS operations that the service
supports, a list of feature types that the service can operate
on and list of filtering capabilities that the service support.
Such an XML docurent is called a capabilities docunent.
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el enent nane="Descri beFeat ureType" type="wW s: Descri beFeatureTypeType">

74 © OGC 2002 — All rights reserved



<xsd: annot ati on>
<xsd: docunent ati on>
The Descri beFeatureType el ement is used to request that a Wb
Feature Service generate a docunent describing one or nore
feature types
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="Get Feature" type="wfs: CGet Feat ureType">
<xsd: annot ati on>
<xsd: docunent ati on>
The GetFeature elenment is used to request that a Web Feature
Service return feature instances of one or nore feature types
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >

<l--

RESPONSE MESSAGES

<xsd: el ement nane="Feat ureCol | ecti on"
type="wfs: Feat ureCol | ecti onType"
substitutionG oup="gm :_FeatureCollection">
<xsd: annot ati on>
<xsd: docunent ati on>
This elenment is a container for the response to a GetFeature
or GetFeatureWthLock (WFS-transaction.xsd) request.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<l--

COMMON ATTRI BUTES DOCUMENTATI ON

VERSI ON:
The version attribute is used to indicate to which version
of the Web Feature Service |Inplenmentation Specification a
request conformns.

SERVI CE:
The service attribute is used to indicate which service
shoul d process an operation. This attribute is particularly
useful in the case where a single server inplenents nultiple
services (e.g. WB, WS, WCS, etc ...)

HANDLE:
The purpose of the handle attribute is to allow a client app
to associate a mmenonic nane with a request for error handling
purposes. |If a "handle" is specified, and an exception occurs
a Web Feature Service may use the handle to identify the
of fendi ng el ement .

TYPENAME
The typeNane attribute is used to specify the name of the
feature type to be queried. The term"feature type" is a
termused by convention to refer to the container storing
feature instances. It does not nean type in the programmtic
sense. The typeNanme attribute should, instead, be thought
of as the feature name. -->

<l--
TYPES
-->

<!-- GETCAPABILITIES -->
<xsd: conpl exType nane="Get Capabiliti esType">
<xsd: annot ati on>
<xsd: docunent ati on>
This type defines the GetCapabilities operation. |In response
to a GetCapabilities request, a Wb Feature Service nust
generate a capabilities XM. docunent that validates agai nst
the schemas defined in WFS-capabilities.xsd
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:attribute name="version"
type="xsd: string" use="optional" fixed="1.0.0"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
</ xsd: conpl exType>
<! -- DESCRI BEFEATURETYPE - - >

© OGC 2002 — All rights reserved



<xsd: conpl exType nane="Descri beFeat ureTypeType">
<xsd: annot ati on>
<xsd: docunent ati on>
The Descri beFeatureType operation allows a client application
to request that a Wb Feature Service describe one or nore
feature types. A Wb Feature Service must be able to generate
feature descriptions as valid GW2 application schenmas

The schemas generated by the DescribeFeatureType operation can
be used by a client application to validate the output.

Feature instances within the WS interface nust be specified
using GW2. The schema of feature instances specified within
the WFS interface nust validate against the feature schenas
generated by the DescribeFeatureType request.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="TypeNane" type="xsd: QNane"
m nCccurs="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>
The TypeNane el ement is used to enunerate the feature types
to be described. |If no TypeNanme el ements are specified
then all features should be described
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="versi on"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd:attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute name="out put For mat"
type="xsd: string" use="optional" default="XM.SCHEMA" >
<xsd: annot ati on>
<xsd: docunent ati on>
The output Format attribute is used to specify what schema
description | anguage shoul d be used to describe features
The default val ue of XMLSCHEMA neans that the Wb Feature
Service nmust generate a GWL.2 application schema that can
be used to validate the GW.2 output of a GetFeature request
or feature instances specified in Transaction operations
</ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attri bute>
</ xsd: conpl exType>
<!-- GETFEATURE -->
<xsd: conpl exType nane="Get Feat ur eType" >
<xsd: annot ati on>
<xsd: docunent ati on>
A Cet Feature el ement contains one or nore Query el enents
that describe a query operation on one feature type. In
response to a GetFeature request, a Wb Feature Service
nmust be able to generate a GVML2 response that validates
using a schema generated by the Descri beFeatureType request.
A Wb Feature Service may support other possibly non- XM
(and even binary) output formats as long as those fornmats
are advertised in the capabilities docunent.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent ref="wfs: Query" nmaxCQccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="version"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd:attribute name="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute name="out put For mat "
type="xsd: string" use="optional" defaul t="GW2">
<xsd: annot ati on>
<xsd: docunent ati on>
The output Format attribute is used to specify the output
format that the Web Feature Service should generate in
response to a GetFeature or GetFeatureWthLock el enent.
The default value of GW2 indicates that the output is an
XML docunent that confornms to the Geography Markup Language

© OGC 2002 — All rights reserved



(GW) I nplenentation Specification V2.0

Ot her val ues may be used to specify other formats as |ong
as those values are advertised in the capabilities docunent.
For exanple, the value WKB may be used to indicate that a
Wel | Known Binary format be used to encode the output.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
<xsd: attribute name="nmaxFeat ures" type="xsd: positivelnteger"
use="optional ">
<xsd: annot ati on>
<xsd: docunent ati on>
The maxFeatures attribute is used to specify the maxi mum
nunber of features that a GetFeature operation should
generate (regardl ess of the actual nunber of query hits).
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
<xsd: el ement nane="Query" type="ws: QueryType">
<xsd: annot ati on>
<xsd: docunent ati on>
The Query elenment is used to describe a single query.
One or nmore Query elenents can be specified inside a
Get Feature el ement so that nultiple queries can be
executed in one request. The output fromthe various
queries are conmbined in a wWs: FeatureCol | ecti on el enent
to formthe response to the request.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: conpl exType nane="QueryType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The Query elenment is of type QueryType
</ xsd: docurnent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent ref="ogc: PropertyNanme" m nCccurs="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>
The PropertyNanme el ement is used to specify one or nore
properties of a feature whose values are to be retrieved
by a Web Feature Service

While a Wb Feature Service should endeavour to satisfy
the exact request specified, in sone instance this may
not be possible. Specifically, a Wb Feature Service
nmust generate a valid GWL.2 response to a Query operation
The schenma used to generate the output may include

properties that are mandatory. |In order that the output
val i dates, these mandatory properties must be specified
inthe request. |f they are not, a Wb Feature Service

may add them automatically to the Query before processing
it. Thus a client application should, in general, be
prepared to receive nore properties than it requested

O course, using the DescribeFeatureType request, a client
application can determ ne which properties are mandatory
and request themin the first place
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement ref="ogc:Filter" m nQccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on>
The Filter element is used to define spatial and/or non-spatia
constraints on query. Spatial constrains use GW2 to specify
the constraining geonetry. A full description of the Filter
el enent can be found in the Filter Encoding | nplenentation
Speci fication
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute nane="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute nane="typeNane"

© OGC 2002 — All rights reserved

77



type="xsd: QNane" use="required"/>
<xsd: attribute name="feat ureVersion"
type="xsd: string" use="optional ">
<xsd: annot ati on>
<xsd: docunent ati on>
For systems that inplenment versioning, the featureVersion
attribute is used to specify which version of a particul ar
feature instance is to be retrieved. A value of ALL neans
that all versions should be retrieved. An integer val ue
"i', means that the ith version should be retrieve if it
exi sts or the nost recent version otherw se
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attribute>
</ xsd: conpl exType>
<!-- RESPONSE TYPE -->
<xsd: conpl exType nane="Feat ureCol | ecti onType" >
<xsd: annot ati on>
<xsd: docunent ati on>
This type defines a container for the response to a
Get Feature or GetFeatureWthLock request. |[If the
request is GetFeatureWthLock, the lockld attribute
must be popul ated. The lockld attribute can otherw se
be safely ignored
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="gnl : Abstract Feat ureCol | ecti onType" >
<xsd: attribute nanme="| ockld" type="xsd:string" use="optional">
<xsd: annot ati on>
<xsd: docunent ati on>
The value of the lockld attribute is an identifier
that a Wb Feature Service generates and which a
client application can use in subsequent operations
(such as a Transaction request) to reference the set
of | ocked features
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd:attri bute>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: schema>

A.4 WFS-transaction.xsd

<?xm version="1.0"7?>

<xsd: schem
t ar get Nanespace="http://ww:. opengi s. net/ wfs"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: wf s="http://ww. opengi s. net/ wfs"
el enent For nDef aul t =" qual i fi ed">

<l--
I ncludes and I nports
-->
<xsd: i ncl ude schenalLocati on="WFS-basic. xsd"/>
<xsd:inmport nanmespace="http://wwmv. opengis.net/gm"
schemaLocation="../../gm/2.1/feature. xsd"/>
<xsd:inport namespace="http://ww. opengi s. net/ogc"
schemaLocation="../../filter/1.0.0/filter.xsd"/>
<l--
REQUEST MESSAGES
-->

<xsd: el enent nane="Get Feat ureWthLock" type="w s: Get Feat ureWt hLockType" >
<xsd: annot ati on>
<xsd: docunent ati on>
This is the root element for the GetFeatureWthLock request.
The Get FeatureWthLock operation performs identically to a
Cet Feature request except that the Get FeatureWthLock request
locks all the feature instances in the result set and returns
a lock identifier to a client application in the response
</ xsd: docunent ati on>
</ xsd: annot ati on>

78 © OGC 2002 — All rights reserved



</ xsd: el enent >
<xsd: el enent nane="LockFeature" type="w s:LockFeat ureType">
<xsd: annot ati on>
<xsd: docunent ati on>
This is the root element for a LockFeature request.
The LockFeature request can be used to | ock one or
nmore feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement nane="Transacti on" type="ws: Transacti onType">
<xsd: annot ati on>
<xsd: docunent ati on>
This is the root element for a Transaction request.
A transaction request allows insert, update and
del ete operations to be perforned to create, change
or renove feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<l--
RESPONSE MESSAGES

<xsd: el enent nane="WFS_LockFeat ur eResponse"
type="wfs: WFS_LockFeat ur eResponseType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The WFS_LockFeat ur eResponse el ement contains a report
about the conpletion status of a LockFeature request.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el enent nane="WFS_Transacti onResponse"
type="wfs: WFS_Tr ansact i onResponseType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The WFS_Transacti onResponse el enent contains a report
about the conpletion status of a Transaction operation
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >

<l--
COVMON ATTRI BUTE DOCUNMENTATI ON
EXPI RY:
The expiry attribute value is specified in mnutes. |t
i ndi cates how |l ong a Web Feature Service should wait to
receive a request fromthe client application that |ocked
the feature instances. |If the specified time el apses and
no request has been received by a Wb Feature Service that
references the |ockld given to the client application, then
the | ocks nmmintained by the Wb Feature Service shall be
rel eased and the | ockld that references the | ocked features
shall now be invalid. |If the expiry attribute is not specified
then the feature instances shall be |l ocked indefinitely and the
intervention of an admi nistrator may be required to rel ease
the locks. -->
<l--
TYPES

<!-- GETFEATUREW THLOCK - - >
<xsd: conpl exType nanme="Get Feat ureWt hLockType" >
<xsd: annot ati on>
<xsd: docunent ati on>
A Get Feat ureWthLock request operates identically to a
Cet Feature request expect that it attenpts to lock the
feature instances in the result set and includes a |ock
identifier inits response to a client. A lock identifier
is an identifier generated by a Wb Feature Service that
a client application can use, in subsequent operations
to reference the | ocked set of feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent ref="wfs: Query" nmaxCQccurs="unbounded"/>
</ xsd: sequence>

© OGC 2002 — All rights reserved

79



<xsd: attribute name="versi on"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd: attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd:attribute name="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute nanme="expiry"
type="xsd: positivel nteger" use="optional"/>
<xsd: attribute name="out put For mat "
type="xsd: string" use="optional" defaul t="GW2"/>
<xsd: attribute name="nmaxFeat ures"
type="xsd: posi tivel nteger" use="optional"/>
</ xsd: conpl exType>
<!-- LOCKFEATURE -->
<xsd: compl exType nanme="LockFeat ureType" >
<xsd: annot ati on>
<xsd: docunent ati on>
This type defines the LockFeature operation. The LockFeature
el enent contains one or nore Lock el ements that define
whi ch features of a particular type should be |ocked. A |ock
identifier (lockld) is returned to the client application which
can be used by subsequent operations to reference the | ocked
features.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="Lock" type="wfs:LockType" maxQccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent ati on>
The lock elenment is used to indicate which feature
i nstances of particular type are to be |ocked
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="version"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd:attribute name="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute nanme="expiry"
type="xsd: positivel nteger" use="optional"/>
<xsd: attribute nanme="I| ockAction"
type="wfs: Al | SoneType" use="optional ">
<xsd: annot ati on>
<xsd: docunent ati on>
The | ockAction attribute is used to indicate what
a Web Feature Service should do when it encounters
a feature instance that has already been | ocked by
anot her client application

Val id values are ALL or SOVE

ALL neans that the Wb Feature Service nust acquire

| ocks on all the requested feature instances. |If it
cannot acquire those | ocks then the request shoul d
fail. In this instance, all |ocks acquired by the

operation should be rel eased

SOME neans that the Web Feature Service should | ock
as many of the requested features as it can
</ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: conpl exType>
<xsd: conpl exType nanme="LockType">
<xsd: annot ati on>
<xsd: docunent ati on>
This type defines the Lock el ement. The Lock el enent
defines a | ocking operation on feature instances of
a single type. An OGC Filter is used to constrain the
scope of the operation. Features to be |ocked can be
identified individually by using their feature identifier
or they can be | ocked by satisfying the spatial and
non-spatial constraints defined in the filter
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enment ref="ogc:Filter" m nCccurs="0" maxCccurs="1"/>
</ xsd: sequence>

© OGC 2002 — All rights reserved



<xsd: attribute nane="handl e"
type="xsd: string" use="optional"/>
<xsd: attribute nanme="typeNane"
type="xsd: QNane" use="required"/>
</ xsd: conpl exType>
<l-- TRANSACTION -->
<xsd: conpl exType name="Transacti onType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The TranactionType defines the Transacti on operation. A
Transaction el enent contains one or nore Insert, Update
Del ete and Native elenents that allow a client application
to create, nodify or renove feature instances fromthe
feature repository that a Wb Feature Service controls
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent ref="wfs:Lockld" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
In order for a client application to operate upon | ocked
feature instances, the Transaction request nust include
the Lockld elenent. The content of this el ement nust be
the lock identifier the client application obtained from
a previous GetFeatureWthLock or LockFeature operation

If the correct lock identifier is specified the Wb
Feature Service knows that the client application may
operate upon the | ocked feature instances

No Lockld el ement needs to be specified to operate upon
unl ocked features
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: choi ce m nCccurs="0" maxCccur s="unbounded" >
<xsd: el enent ref="wfs:Insert"/>
<xsd: el enent ref="ws: Update"/>
<xsd: el enment ref="wfs:Delete"/>
<xsd: el ement ref="wfs: Native"/>
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attribute name="version"
type="xsd: string" use="required" fixed="1.0.0"/>
<xsd: attribute nane="service"
type="xsd: string" use="required" fixed="WS"/>
<xsd: attribute nane="handl e"
type="xsd: string" use="optional"/>
<xsd:attribute nane="rel easeActi on"
type="wfs: Al | SoneType" use="optional ">
<xsd: annot ati on>
<xsd: docunent at i on>
The rel easeAction attribute is used to control how a Wb
Feature service rel eases | ocks on feature instances after
a Transaction request has been processed

Val id values are ALL or SOVE

A value of ALL neans that the Web Feature Service shoul d
rel ease the locks of all feature instances |ocked with the
specified | ockld, regardless or whether or not the features
were actually nodified

A val ue of SOME neans that the Web Feature Service will

only release the | ocks held on feature instances that

were actually operated upon by the transaction. The |ockld
that the client application obtained shall remain valid and

the other, unnodified, feature instances shall remain |ocked

If the expiry attribute was specified in the original operation
that | ocked the feature instances, then the expiry counter

will be reset to give the client application that same anount
of time to post subsequent transactions agai nst the | ocked
features.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
</ xsd: conpl exType>
<xsd: el enent nane="Lockld" type="xsd:string">
<xsd: annot ati on>

© OGC 2002 — All rights reserved

81



<xsd: docunent ati on>
The Lockld el enent contains the value of the lock identifier

obtained by a client application froma previous Get FeatureWthLock

or LockFeature request.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="Insert" type="wfs:I|nsertEl ement Type">
<xsd: annot ati on>
<xsd: docunent at i on>
The Insert element is used to indicate that the Wb Feature
Service should create a new instance of a feature type. The
feature instance is specified using GWL2 and one or nore
feature instances to be created can be contai ned inside the
I nsert el ement.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: conmpl exType nanme="I|nsert El ement Type" >
<xsd: sequence>
<xsd: el enent ref="gm :_Feature" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: el enent nane="Update" type="w s: Updat eEl enent Type" >
<xsd: annot ati on>
<xsd: docunent ati on>
One or nore existing feature instances can be changed by
using the Update elenment. Changing a feature instance
means that the current val ue of one or nore properties of
the feature are replaced with new values. The Update
el enent contains one or nore Property elenents. A
Property el enent contains the name or a feature property
who's value is to be changed and the repl acement val ue
for that property.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: conpl exType name="Updat eEl emrent Type" >
<xsd: sequence>
<xsd: el enent ref="wfs:Property" maxCccurs="unbounded" />
<xsd: el ement ref="ogc:Filter" m nQccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on>
The Filter elenent is used to constrain the scope
of the update operation to those features identified
by the filter. Feature instances can be specified
explicitly and individually using the identifier of
each feature instance OR a set of features to be
operated on can be identified by specifying spatia
and non-spatial constraints in the filter
If no filter is specified, then the update operation
applies to all feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="handl e" type="xsd:string" use="optional"/>
<xsd: attribute nane="typeNanme" type="xsd: QName" use="required"/>
</ xsd: conpl exType>
<xsd: el enent nane="Del ete" type="w s: Del et eEl enent Type" >
<xsd: annot ati on>
<xsd: docunent ati on>
The Delete elenment is used to indicate that one or nore
feature instances should be renpved fromthe feature
repository.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: conmpl exType nane="Del et eEl enent Type" >
<xsd: sequence>
<xsd: el ement ref="ogc:Filter" m nQccurs="1" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on>
The Filter elenent is used to constrain the scope
of the delete operation to those features identified
by the filter. Feature instances can be specified
explicitly and individually using the identifier of
each feature instance OR a set of features to be

82 © OGC 2002 — All rights reserved



operated on can be identified by specifying spatia
and non-spatial constraints in the filter
If no filter is specified then an exception shoul d
be raised since it is unlikely that a client application
intends to delete all feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
<xsd: attribute nane="typeNanme" type="xsd: QName" use="required"/>
</ xsd: conpl exType>
<xsd: el enent nane="Native" type="wfs:NativeType">
<xsd: annot ati on>
<xsd: docunent ati on>
Many times, a Web Feature Service interacts with a repository
that may have special vendor specific capabilities. The native
el enent allows vendor specific comrmand to be passed to the
repository via the Wb Feature Service
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: conpl exType nanme="NativeType">
<xsd: attribute nanme="vendor|d" type="xsd:string" use="required">
<xsd: annot ati on>
<xsd: docunent ati on>
The vendorld attribute is used to specify the name of
vendor who's vendor specific command the client
application wi shes to execute
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: attribute>
<xsd: attribute name="saf eTol gnore" type="xsd: bool ean" use="required">
<xsd: annot ati on>
<xsd: docunent ati on>
In the event that a Wb Feature Service does not recogni ze
the vendorld or does not recognize the vendor specific command,
the safeTolgnore attribute is used to indicate whether the
exception can be safely ignored. A value of TRUE nmeans that
the Web Feature Service may ignore the conmand. A val ue of
FALSE neans that a Web Feature Service cannot ignore the
command and an exception should be raised if a problemis
encount er ed
</ xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attribute>
</ xsd: conpl exType>

<!-- define structure to specify a property value -->
<xsd: el ement nanme="Property" type="wfs:PropertyType">
<xsd: annot ati on>
<xsd: docunent ati on>
The Property elenent is used to specify the new
value of a feature property inside an Update el enent.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: conmpl exType nanme="PropertyType">
<xsd: sequence>
<xsd: el ement nanme="Nanme" type="xsd:string">
<xsd: annot ati on>
<xsd: docunent ati on>
The Nane el ement contains the nane of a feature property
to be updated
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="Val ue" mi nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
The Val ue el enent contains the replacenent value for the
named property.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
<!-- RESPONSE TYPES -->
<xsd: conmpl exType name="WFS_LockFeat ur eResponseType" >

© OGC 2002 — All rights reserved

83



<xsd: annot ati on>
<xsd: docunent ati on>
The WFS_LockFeat ur eResponseType is used to define an
el enent to contains the response to a LockFeature
operation.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement ref="wfs: Lockld">
<xsd: annot ati on>
<xsd: docunent at i on>
The WFS_LockFeat ur eResponse includes a Lockld el ement
that contains a lock identifier. The lock identifier
can be used by a client, in subsequent operations, to
operate upon the | ocked feature instances
</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="Feat uresLocked"
type="wfs: Feat ur esLockedType" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
The LockFeature or Cet FeatureWthLock operations
identify and attenpt to lock a set of feature
i nstances that satisfy the constraints specified
inthe request. |In the event that the | ockAction
attribute (on the LockFeature or GetFeatureWthLock
el enents) is set to SOVE, a Wb Feature Service will
attenpt to |lock as many of the feature instances from
the result set as possible

The FeaturesLocked el ement contains list of ogc:Featureld
el enents enunerating the feature instances that a WS
actual |y nanaged to | ock.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement nane="Feat ur esNot Locked"
type="wf s: Feat ur esNot LockedType" mi nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
In contrast to the FeaturesLocked el enent, the
Feat ur esNot Locked el ement contains a |ist of
ogc: Filter elements identifying feature instances
that a WS did not manage to | ock because they were
al ready | ocked by another process
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Feat uresLockedType" >
<xsd: sequence maxCccur s="unbounded" >
<xsd: el ement ref="o0gc: Featureld"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType nane="Feat ur esNot LockedType" >
<xsd: sequence maxCccur s="unbounded" >
<xsd: el ement ref="ogc: Featureld"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType name="WFS_Tr ansact i onResponseType" >
<xsd: annot ati on>
<xsd: docunent ati on>
The WFS_Transacti onResponseType defines the format of
the XML docunment that a Web Feature Service generates
in response to a Transaction request. The response
includes the conpletion status of the transaction
and the feature identifiers of any newmy created
feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement name="|nsertResult"
type="wfs: | nsertResul t Type"
m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>
The InsertResult elenent contains a list of ogc:Featureld

84 © OGC 2002 — All rights reserved



elenents that identify any newly created feature instances
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el ement nanme="Transacti onResult"
type="wfs: Transacti onResul t Type" >
<xsd: annot ati on>
<xsd: docunent ati on>
The TransactionResult el ement contains a Status el ement
indicating the conpletion status of a transaction. In
the event that the transaction fails, additional elenment
may be included to help |ocate which part of the transaction
failed and why.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="versi on"
type="xsd: string" use="required" fixed="1.0.0"/>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="Transacti onResul t Type" >
<xsd: sequence>
<xsd: el enent nane="Status" type="wfs: StatusType">
<xsd: annot ati on>
<xsd: docunent ati on>
The Status el enment contains an el enent indicating the
conpl etion status of a transaction. The SUCCESS el ement
is used to indicate successful conpletion. The FAILED
elenent is used to indicate that an exception was
encount er ed
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
<xsd: el enent nane="Locator" type="xsd:string" mi nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
In the event that an exception was encountered while
processing a transaction, a Wb Feature Service my
use the Locator elenent to try and identify the part
of the transaction that failed. |If the elenent(s)
contained in a Transaction el ement included a handle
attribute, then a Wb Feature Service may report the
handl e to identify the offending el enent.
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="Message" type="xsd:string" m nCccurs="0">
<xsd: annot ati on>
<xsd: docunent ati on>
The Message el ement may contain an exception report
generated by a Wb Feature Service when an exception
is encountered
</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: conmpl exType name="1|nsert Resul t Type">
<xsd: sequence>
<xsd: el enent ref="ogc: Featureld" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd: attribute name="handl e" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
<xsd: conmpl exType nane="St at usType" >
<xsd: choi ce>
<xsd: el ement ref="ws: SUCCESS"/ >
<xsd: el enent ref="wfs: FAl LED"'/ >
<xsd: el ement ref="wfs: PARTI AL"/ >
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: el enent nane="SUCCESS" type="wfs: EnptyType"/>
<xsd: el enent nane="FAlI LED' type="wWfs: EnptyType"/>
<xsd: el enent nane="PARTI AL" type="wfs: EnptyType"/>
<l-- MSC TYPES -->
<xsd: conpl exType nanme="EmptyType"/>
<xsd: si npl eType name="Al | SoneType" >
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="ALL"/>

© OGC 2002 — All rights reserved 85



<xsd: enunerati on val ue="SOVE"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

A.5 WFS-capabilities.xsd

<?xm version="1.0" ?>

<xsd: schema
tar get Namespace="http: // ww. opengi s. net/ wfs"
xm ns: wf s="http://ww. opengi s. net/ wfs"
xm ns: gm ="http://ww. opengi s. net/gm "
xm ns: ogc="http://ww. opengi s. net/ogc"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
el enent For nDef aul t =" qual i fi ed">

<!-- Comments in this docunment may inpose additional constraints
beyond those codified in the schema syntax. A conformant
Web Feature Server nust provide Capabilities XM that
(1) validates against this schemn
(2) does not violate the constraints stated in
comments herein. -->

<l--

I mports ...

<xsd:inmport namespace="http://ww. opengi s. net/ogc"
schemaLocation="../../filter/1.0.0/filterCapabilities.xsd" />

<l--

d obal elenents and attributes

-->

<l-- A descriptive narrative for nore

informati on about this server. -->
<xsd: el enent nane="Abstract" type="xsd:string"/>
<l-- Elenents containing text blocks indicating what

fees or access constraints are inmposed by the

service provider on the service or data retrieved

fromthe server. The reserved keyword " NONE"

i ndi cates no constraint exists. -->
<xsd: el enent nane="AccessConstraints" type="xsd:string"/>
<xsd: el ement nanme="Fees" type="xsd:string"/>
<l-- Short words to help catal og searching

Currently, no controlled vocabul ary has

been defined. -->
<xsd: el enent nane="Keywords" type="xsd:string"/>
<l-- The top-level HTTP URL of this service

Typically the URL of a "home page" for

the service. See also the onlineResource

attributes of <DCPType> children, bel ow

Currently, no non-HTTP platforns have been

specified. -->
<xsd: el enent nane="Onl i neResource"/>
<xsd: el ement nane="SRS" type="xsd:string"/>
<!-- A human-readable title to briefly identify

this server in nenus. -->
<xsd: el enent nane="Title" type="xsd:string"/>
<xsd: el ement nane="Query" type="wWs:EmptyType"/>
<xsd: el ement name="Insert" type="wfs: EnptyType"/>
<xsd: el enent nane="Update" type="ws: EmptyType"/>
<xsd: el enent nane="Del ete" type="wWs: EnmptyType"/>
<xsd: el enent nane="Lock" type="wfs: Enpt yType"/ >
<!-- REDEFINE THI S ELEMENT AS NEEDED IN YOUR XM. -->
<xsd: el ement nanme="Vendor Speci fi cCapabilities" type="xsd:string"/>
<l--

Root el emrent

-->

<l-- The parent element of the Capabilities docunment includes as

children a Service elenent with general information about the
server, a Capability element with specific infornmation about

the kinds of functionality offered by the server, a FeatureTypeli st
el ement defining the list of all feature types available from

this server and a FeatureCapabilities el enent describing the

filter capabilities of the server. -->

86 © OGC 2002 — All rights reserved



<xsd: el enent nane="WFS_Capabilities" type="wfs: WS_CapabilitiesType"/>

<l--

Types

<xsd: conpl exType name="WFS_CapabilitiesType">
<xsd: sequence>
<l-- The Service elenment provides nmetadata for
the service as a whole. -->
<xsd: el enent nane="Servi ce" type="wfs: ServiceType"/>

<l-- A Capability lists available request
types, how exceptions may be reported, and
whet her any vendor-specific capabilities

are defined. It also lists all the
feature types available fromthis feature
server. -->

<xsd: el ement nane="Capability" type="wfs: CapabilityType"/>
<xsd: el enent nane="Feat ureTypelLi st" type="wfs: FeatureTypeli st Type"/>
<xsd: el ement ref="ogc:Filter_Capabilities" />

</ xsd: sequence>

<l-- The version attribute specifies the specification revision
to which this schema applies. |Its format is one,t two or three
i ntegers separated by periods: "x", or "x.y", or "x.y.z"
with the nmost significant nunber appearing first. Future
revisions are guaranteed to be nunbered in nonotonically
i ncreasi ng fashion, though gaps may appear in the sequence. -->
<xsd:attribute name="version"
type="xsd: string" fixed="1.0.0"/>

<l-- The updat eSequence attribute is a sequence nunber for
managi ng propagation of the contents of this docunent.
For example, if a Feature Server adds sonme data feature
types it can increment the update sequence to inform
catal og servers that their previously cached versions
are now stale. The format is a positive integer. -->
<xsd: attribute name="updat eSequence"
type="xsd: nonNegati vel nteger" defaul t="0"/>
</ xsd: conpl exType>

<xsd: compl exType nane="Servi ceType">
<xsd: sequence>
<xsd: el enent nane="Nane" type="xsd:string"/>
<xsd: el enment ref="wfs: Title"/>
<xsd: el enent ref="wfs: Abstract” m nCccurs="0"/>
<xsd: el enent ref="ws: Keywords" m nCccurs="0"/>
<xsd: el enent ref="wfs: OnlineResource"/>
<xsd: el ement ref="wfs:Fees" m nQccurs="0"/>
<xsd: el ement ref="wfs: AccessConstraints" m nQccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="CapabilityType">
<xsd: sequence>
<xsd: el enent nane="Request" type="wfs: Request Type"/>

<l-- The optional Vendor SpecificCapabilities elenent lists any
capabilities unique to a particular server. Because the
information is not known a priori, it cannot be constrained

by this particular schema docunent. A vendor-specific schema
fragment must be supplied at the start of the XM. capabilities
docunent, after the reference to the general WS _Capabilities
schema. -->
<xsd: el enent ref="ws: Vendor Speci ficCapabilities" m nCccurs="0"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType nane="Feat ur eTypeLi st Type" >
<xsd: sequence>
<xsd: el ement nane="Qperati ons"
type="wfs: QperationsType" m nQccurs="0"/>
<xsd: el enent nane="Feat ureType"
type="wf s: Feat ur eTypeType" nmaxQccur s="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Avail abl e WFS-defined request types are listed here. At
| east one of the values is required, but nore than one
may be given. -->

<xsd: compl exType nane="Request Type">

© OGC 2002 — All rights reserved

87



88

<xsd: choi ce maxCccur s="unbounded" >
<xsd: el ement nane="Get Capabilities"”
type="wfs: Get CapabilitiesType"/>
<xsd: el ement nane="Descri beFeat ureType"
type="wfs: Descri beFeat ur eTypeType"/ >
<xsd: el enent nane="Transaction"
type="wfs: Transacti onType"/>
<xsd: el enent nane="Get Feat ure"
type="wf s: Get Feat ureTypeType"/ >
<xsd: el ement nanme="Get Feat ureWt hLock"
type="wfs: Get Feat ur eTypeType"/ >
<xsd: el ement nane="LockFeat ure"
type="wf s: LockFeat ureTypeType"/ >
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Get Capabiliti esType">
<xsd: sequence>
<xsd: el enent nane="DCPType"
type="wf s: DCPTypeType" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="Descri beFeat ureTypeType" >
<xsd: sequence>
<xsd: el enent nane="SchenmaDescri pti onLanguage"
type="wf s: SchemaDescri pti onLanguageType"/ >
<xsd: el enent nane="DCPType"
type="wf s: DCPTypeType" nmaxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="Transacti onType" >
<xsd: sequence>
<xsd: el ement nanme="DCPType"
type="wf s: DCPTypeType" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="GCet Feat ur eTypeType" >
<xsd: sequence>
<xsd: el ement nanme="Resul t For mat"
type="wf s: Resul t For mat Type"/>
<xsd: el enent nane="DCPType"
type="wf s: DCPTypeType" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="LockFeat ureTypeType" >
<xsd: sequence>
<xsd: el enent nane="DCPType"
type="wf s: DCPTypeType" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Available Distributed Conputing Platforms (DCPs) are
listed here. At present, only HTTP is defined. -->
<xsd: conmpl exType nane="DCPTypeType" >
<xsd: sequence>
<xsd: el ement name="HTTP" type="wfs: HTTPType"/>
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Alist of feature types available from
this server. The followi ng table
speci fies the nunber and source of the
various elenments that are available for
describing a feature type

el ement nunber conment s
Narre 1 this is the Nane of the feature type
Title 0/1 an optional Meaningful title for the

feature type (e.g. "Ontario Roads"
for ROADL_1M)

Abstract 0/1 optional; no Default
Keywor ds 0/1 optional; no Default
SRS 1 the SRS that shoul d be used

when specifying the state of
the feature

© OGC 2002 — All rights reserved



Qper ati ons 0/1 a list of avail able operations for
the feature type

Lat LongBoundi ngBox 1+ boundi ng box(s) of data

Met adat aURL 0/ 1+ optional; no default
-->
<xsd: conmpl exType nanme="Feat ureTypeType" >
<xsd: sequence>
<xsd: el ement nanme="Nanme" type="xsd: QNanme"/>
<xsd: el ement ref="wfs: Title" m nCccurs="0"/>
<xsd: el ement ref="wfs: Abstract" m nCccurs="0"/>
<xsd: el ement ref="wfs: Keywords" m nCccurs="0"/>
<xsd: el enent ref="wfs: SRS"/>
<xsd: el ement nane="Qperati ons"
type="wf s: Operati onsType" m nCccurs="0"/>
<xsd: el enent nane="Lat LongBoundi ngBox"
type="w s: Lat LongBoundi ngBoxType"
m nCccurs="0" maxCccur s="unbounded"/ >
<xsd: el ement nane="Met adat aURL"
type="wfs: Met adat aURLType"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conmpl exType nanme="Get Type" >
<xsd:attribute name="onlineResource" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l-- Avail abl e HTTP request nethods. -->
<xsd: conmpl exType nanme="HTTPType" >
<xsd: choi ce maxQccur s="unbounded" >
<l-- HITP request nmethods. The onlineResourc attribute
indicates the URL prefix for HTTP GET requests
(everything before the question mark and query string
http://hostname[: port]/path/scriptnane); for HITP POST
requests, onlineResource is the conplete URL. -->
<xsd: el ement nane="Get" type="wfs: CGet Type"/>
<xsd: el enent nane="Post" type="w s: Post Type"/>
</ xsd: choi ce>
</ xsd: conpl exType>

<l-- The Lat LongBoundi ngBox el ement is used to indicate the edges of
an enclosing rectangle in the SRS of the associated feature type
Its purpose is to facilitate geographic searches by indicating
where instances of the particular feature type exist. Since nultiple
Lat LongBoundi ngBoxes can be specified, a WS can indicate where
various clusters of data may exist. This know edge aids client
applications by letting them know where they should query in order
to have a high probability of finding data. -->
<xsd: conmpl exType nanme="Lat LongBoundi ngBoxType" >
<xsd:attribute name="m nx" type="xsd:string" use="required"/>
<xsd:attribute name="m ny" type="xsd:string" use="required"/>
<xsd:attribute name="maxx" type="xsd:string" use="required"/>
<xsd:attribute name="maxy" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<l-- A Wb Feature Server MAY use zero or nore MetadataURL
elements to offer detailed, standardi zed netadata about
the data underneath a particular feature type. The type
attribute indicates the standard to which the netadata
conplies; the format attribute indicates how the nmetadata is
structured. Two types are defined at present:
'TC211' = 1 SO TC211 19115
'"FGDC = FGC CSDGM - - >
<xsd: conpl exType nanme="Met adat aURLType" >
<xsd: si nmpl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd: attribute nanme="type" use="required">
<xsd: si mpl eType>
<xsd:restriction base="xsd: NMTOKEN" >
<xsd: enunerati on val ue="TC211"/>
<xsd: enunerati on val ue="FGDC'/ >
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd:attribute>
<xsd:attribute name="format" use="required">
<xsd: si mpl eType>
<xsd:restriction base="xsd: NMTOKEN" >

© OGC 2002 — All rights reserved 89



<xsd: enuneration val ue="XW"/>
<xsd: enunerati on val ue="SGW"/ >
<xsd: enuneration val ue="TXT"/>
</xsd:restriction>
</ xsd: si nmpl eType>
</ xsd:attribute>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
<xsd: conmpl exType nanme="Operati onsType" >
<xsd: choi ce maxQccur s="unbounded" >
<xsd: el ement ref="wfs:Insert"/>
<xsd: el enent ref="wfs: Update"/>
<xsd: el enent ref="wfs:Delete"/>
<xsd: el ement ref="ws: Query"/>
<xsd: el ement ref="ws:Lock"/>
</ xsd: choi ce>
</ xsd: conpl exType>
<xsd: conmpl exType nane="Post Type" >
<xsd: attribute nane="onli neResource" type="xsd:string" use="required"/>
</ xsd: conpl exType>

<I-- The Resul t For mat Type type defines the output formats that the
web feature server can generate. The mandatory format "GW2"
must al ways be available. |ndividual servers can define
additional elements representing other output formats. -->
<xsd: el ement name="GW.2" type="ws: EnptyType"/>
<xsd: conpl exType nanme="Resul t For mat Type" >
<xsd: sequence maxCccur s="unbounded" >
<xsd: el ement ref="wfs: GWL2"/>
</ xsd: sequence>
</ xsd: conpl exType>

<I-- The SchermaDescri pti onLanguageType type defines the schema | anguages
that a feature server is capable of using to describe the schema
of a feature. |Individual servers can define additional elenents
representing other schema | anguages but XMLSCHEMA nust al ways
be defined. -->
<xsd: el enent nane=" XMLSCHEMA" type="wfs: EnptyType"/>
<xsd: conmpl exType nanme="SchemaDescri pti onLanguageType">
<xsd: sequence maxCccur s="unbounded" >
<xsd: el ement ref="wfs: XML.SCHEMA"/ >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: compl exType nanme="EnptyType" />
</ xsd: schema>

90 © OGC 2002 — All rights reserved



Annex B - Conformance tests (normative)

Specific conformance tests for Web Feature Services have not yet been determined and
will be added in a future revision of this specification.

At the moment, a WFS implementation must satisfy the following system characteristics
to be minimally conformant with this specification:

1.

The GetCapabilities, DescribeFeatureType and GetFeature operations must be
supported.

The Extensible Markup Language (XML) document returned in response to a
GetCapabilities request must be valid against the XML Schema definition in
Annex A.4. Such validation may be performed using commonly available XML
validating tools.

In response to a GetFeature operation, the WFS must be able to generate GML [2]
as one of its output formats.

The Extensible Markup Language (XML) document returned in response to a
GetFeature request must validate against the schema generated in response to a
DescribeFeatureType request. ~ Such validation may be performed using
commonly available XML validating tools.

All clauses in the normative sections of this specification that use the keywords
"must", "must not", "required", "shall", and "shall not" have been satisfied.

© OGC 2002 — All rights reserved 91



GLOSSARY

XML File
An XML file can be an actual operating system file or any valid XML stream.

2-PHASE COMMIT
A 2-phase commit protocol ensures that execution of data transactions are synchronized,
either all committed or all rolled back to each of the distributed databases.

DTD
Document Type Definition; a description of the schema of an XML document.

XML-Schema

A schema description language, similar to DTD, based on XML itself. Like a DTD it can
be used to describe the schema of an XML document, but it is flexible enough to be able
to describe other structures as well. Unlike a DTD, XML-Schema include type
information. XML-Schema is defined at http://www.w3c.org/TR/xmlschema-1/.

XPath

An XPath expression is a path expression, similar to the path expressions used to identify
operating system files, that is used to reference elements in an XML document. XPath
expressions are defined at http://www.w3c.org/TR/Xpath/.

92 © OGC 2002 — All rights reserved


http://www.w3c.org/TR/xmlschema-1/
http://www.w3c.org/TR/Xpath/

[11]

[12]

[13]

[14]

[15]

Bibliography

de La Beaujardicre, Jeff (ed.), “OpenGIS Implementation Specification #01-047r2:
Web Map Service Implementation Specification”, June 2001

Vretanos, Panagiotis, “OpenGIS Discussion Paper: Transaction Encoding
Specification Version 0.0.5”, March 2000

Arctur, D., Pilkington, P., Cuthbert, A., “Spatial Object Transfer Format (SOTF):
Initial High-Level Design, Version 1.2”, Laser-Scan Inc., November 1999

Rumbach, James, et al., “Unified Modeling Language Reference Manual”, 1999

Murata, St. Laurent, Kohn, “XML Media Types, January 2001,
http://www.ietf.org/rfc/rfc3023.txt

© OGC 2002 — All rights reserved 93



	Scope
	Conformance
	Normative references
	Terms and definitions
	Conventions
	Normative verbs
	Abbreviated terms
	Use of examples

	Basic service elements
	Introduction
	Version numbering and negotiation
	Version number form
	Version changes
	Appearance in requests and in service metadata
	Version number negotiation

	General HTTP request rules
	Introduction
	HTTP GET
	HTTP POST

	General HTTP response rules
	Request encoding
	Namespaces

	Common elements
	Feature identifier
	Globally unique identifiers (Informative)

	Feature state
	Property names
	Property references
	Introduction
	XPath expressions

	<Native> element
	Filter
	Exception reporting
	Common XML attributes
	Version attribute
	Service attribute
	Handle attribute


	DescribeFeatureType operation
	Introduction
	Request
	Response
	Supporting multiple namespaces

	Exceptions
	Examples

	GetFeature operation
	Introduction
	Request
	Response
	Exceptions
	Examples

	LockFeature operation
	Introduction
	Request
	Schema definition
	State machine notation from UML
	State machine for WFS locking

	Response
	Exceptions
	Examples

	Transaction operation
	Introduction
	Request
	Schema definition
	Attribute descriptions
	<Transaction> element
	<Insert> element
	<Update> element
	<Delete> element

	Response
	Exceptions
	Examples

	GetCapabilities operation
	Introduction
	Request
	Response
	Response schema
	Capabilities document
	Service section
	Capabilities Section
	FeatureTypeList section

	Exceptions
	Examples

	Keyword-value pair encoding
	Introduction
	A note about the examples

	Request parameter rules
	Parameter ordering and case
	Parameter lists

	Common request parameters
	Version parameter
	Request parameter
	Bounding box
	Vendor-specific parameters

	Common parameters
	Response
	Exceptions
	Operations
	Introduction
	DescribeFeatureType operation
	Request
	Examples

	GetFeature & GetFeatureWithLock operation
	Request
	Examples

	LockFeature operation
	Request
	Examples

	Transaction operation
	Request
	Examples

	GetCapabilities Operation
	Request
	Examples




