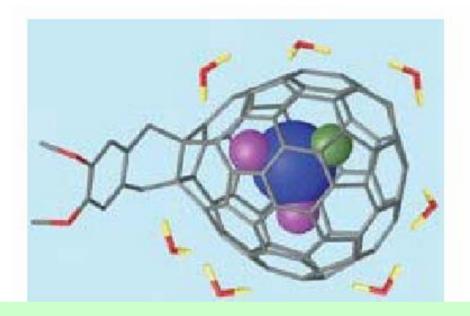

Nanomaterials: Occupational Health and Safety Issues

Claude Ostiguy, IRSST

Tri-National Workshop on Standards for Nanotechnology
National Research Council of Canada
7 February 2007


Fullerenes

- C_{28} to $> C_{100}$
- Hollow sphere
- \mathbf{C}_{60} is the best known
- Insoluble
- No interaction
- Very compressible
- Resumes its shape

A modified fullerene

Made soluble by surface changes

Made chemically active by adducts

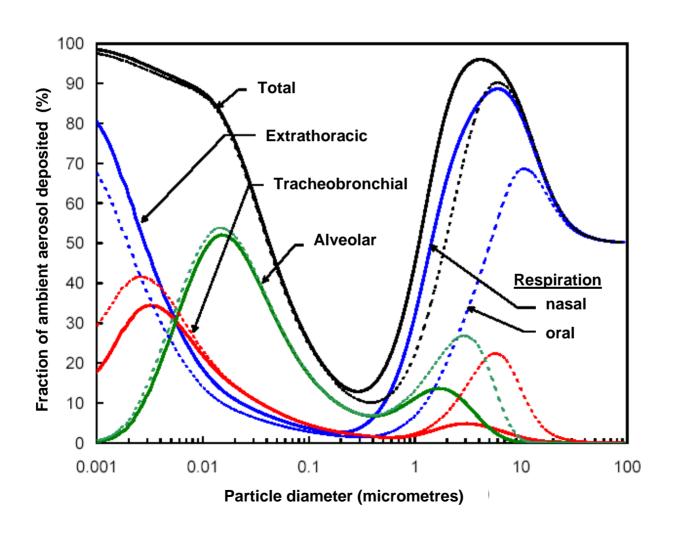
Incorporation of another product

Interaction with the surrounding solvent

Very great variability in chemical, physical and biological behavior

Do nanoparticles represent a health risk?

$$\Rightarrow$$
 Risk = toxicity x exposure


Question of solubility

- Two potential situations:
 - Nanoparticles are **Soluble** into biological fluids
 - Toxicity related to the chemical composition only
 - **Toxicity normally well documented**
 - No difference between nano and microparticles deposited at the same biological site
 - Nanoparticles are insoluble into biological fluids
 - * Subject of our concern in health risk evaluation

Pulmonary deposition of nanoparticles and ultrafine particles

Elimination from the respiratory system

- Extrathoracic level:
 - Normal mechanisms
 - Olfactory nerve towards the brain
- Tracheobronchial level
 - Effective mucociliary elevator
- Alveolar level
 - Macrophages not very effective if < 1 micrometre
 - Macrophages: problems with fibres > 20 micrometres
 - Interstitial and alveolar epithelium translocation → movement towards the blood and lymph nodes

Insoluble inorganic nanoparticles

- Digestive absorption (Au):
 - Absorption of nanoparticles by the intestine
 - Passage into the blood
 - Distribution: brain, lungs, heart, kidneys, intestine, stomach, liver and spleen
 - Absorption efficiency inversely proportional to the dimension of the particles
 - Significant accumulation (Au) at tumor sites

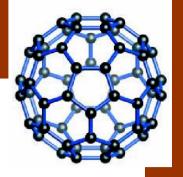
Inhalation (TiO₂)

- Comparison of fine particles (250 nm) and agglomerated nanoparticles (20 nm) with the same final dimensions
 - Similar pulmonary deposition
 - 20 nm are found in the lymph nodes
 - Slower pulmonary clearance → Greater pulmonary retention for nanoparticles
 - Greater translocation for nanoparticles
 - Greater pulmonary inflammation
- * Effects correlated with the specific surface area and not the mass
- * Effects related to surface composition and properties

Fullerenes

C₆₀ alone is documented

- Intraperitoneal administration
 - Detection in the liver, blood, spleen
 - Decreases enzymatic liver activity (glutathion)
 - Kidney disorders
 - Crosses the placental barrier and is distributed throughout the yolk sac and the embryo
- Oral administration
 - 98 % in feces, 2% in urine
- Skin application
 - No effect on DNA and no cancer
- No pulmonary study


Chemically modified fullerenes

- Intravenous administration
 - Distribution in tissues: detection in the liver
 (73-80%), lungs (5%), kidneys (3%), spleen, heart, brain
 - Lack of a renal clearance mechanism and nephropathy
 - Body, thymus and heart weigh loss
 - Spleen weigh increase
 - Intrauterine malformations and mortality
- Intraperitoneal administration
 - Kidney disorders C₆₀ polyalkylsulfonates
 - Polyhydroxylated fullerenes have shown an antioxydant potential in the lungs
 - Hydroxylated and carboxylated functions dicrease the toxicity
- No pulmonary study

Chemically modified fullerenes

 Depending on the functional groups, toxicity varies

From very toxic to Benific

Singlewalled carbon nanotubes

Pulmonary toxicity

- Lung inflammation
- No effect on macrophages for very short fibers
- Bronchial pulmonary interstitial granulomas causing pneumonia and fibrosis
- Potential pulmonary toxicity related to oxidative stress increase in inflammation biomarkers
- 10 to 25X> inflammation than silica specific surface area

Cell

- Nanotube can cross the cellular membranes and be found in the nucleus - irritation
- Skin and eyes (rats and humans)
 - No allergy or irritation on skin or eyes

Multiwalled carbon nanotubes

- Pulmonary toxicity: Intratracheal instillation
 - 80% still in the lungs after 60 days
 - Phagocytosis efficiency is length dependent

Cell

- Nanotube can cross the cellular membranes and be found in the nucleus – irritation
- Decrease in cell viability

Insoluble organic nanoparticles

- Interest in drug transport and targeting
 - Very selective therapy
 - Crosses the hematoencephalic barrier
 - Very promising tests

* Large variety in products but few toxicity studies on healthy organs

Conclusion on toxicity

 Exposure to engineered nanoparticles is likely to cause adverse health effects

 Surface area, surface activity (composition, Redox capacity...) and particle number should be better predictors of potential hazard than mass.

Conclusion on toxicity (cont.)

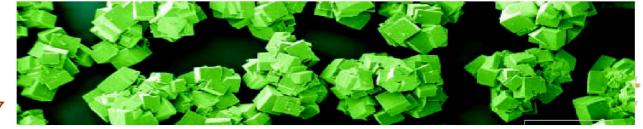
- Actual research results suggest that if the nanotubes are:
 - Longer than 20 micrometers and
 - In sufficient amount

Then, we could expect the same kind of effects as biopersistent mineral fibers

- Fibrosis
- Cancer
- Pleura modifications
- Mesothelioma

Workers' exposure potential

- During laboratory development
- During production:
 - Leaks from the reactor (high T, colloids, attrition)
 - Product recovery
 - Post-production processing
 - Packaging, storage, shipping
 - Equipment maintenance
 - Spills...
- Use and subsequent conversion:
 - Diversity of risks related to specific applications


Most production and conversion processes have a potential for worker exposure

Current knowledge on the exposure of Québec workers

NRC Workshop, 7 February 2007

Other risks and aspects of prevention

Nanoparticles offer a large surface area

 nanoscale combustible material could present a higher risk than coarser material with a similar mass concentration given its increased particle surface area and potentially unique properties due to the nanoscale

Explosion risks :

Large and often reactive surfaces

Fire risks :

Nanometric metals and great chemical reactivity

Storage:

Environmental conditions: humidity, temperature, chemical compatibility

Occupational Exposure Control

Rule number 1:

 Installations, processes, equipment, activities and workstations must receive particular attention

RIGHT FROM THE DESIGN STAGE

- THREE main categories of means of control:
 - Engineering techniques
 - Administrative means
 - Personal protective equipment

Recommended precautionary measures in the workplace

- Unless the toxicity of the product has been established, consider very toxic and minimize the exposure
- Apply existing exposure control techniques
- When possible, implement a risk management program
- Implement good work practices
- Consider implementation of an exposure assessment program
- Consider implementation of a health surveillance program

For more information

 Two knowledge reviews are available on the IRSST web site (available in English)

www.irsst.qc.ca

- R-469: Health effects
- R-470: Risks and prevention measures

Research team

- Claude Ostiguy, chemist, project leader, IRSST
- Brigitte Soucy, toxicologist, IRSST
- Catherine Woods, graduate student, U. of Montréal
- Gilles Lapointe, toxicologist, CSST
- Luc Ménard, industrial hygienist, CSST
- Yves Cloutier, aerosols engineer, IRSST
- Mylène Trottier, physician, PROXIMEDUC
- Michel Boutin, chemist, IRSST
- Monty Antoun, librarian, CSST
- Christian Normand, nanomaterials engineer, NANOQUÉBEC
- Charles-Anica Endo, ethicist, NANOQUÉBEC

Questions ?

