CNRC·NRC

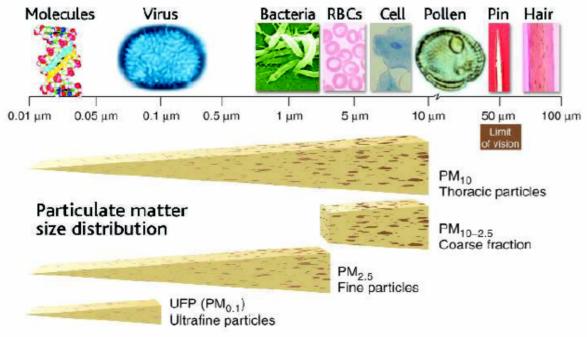
Institut de recherche en biotechnologie

Biotechnology Research Institute Tri-National Workshop on Standards for Nanotechnology NRC- Institute for National Measurement Standards February 7th, 2007 Ottawa, Ontario

Ecotoxicology of Nanoparticles: Issues and Approaches

Presented by Geoffrey Sunahara, Ph.D. Applied Ecotoxicology Group Biotechnology Research Institute Montreal, PQ, Canada

Geoffrey.Sunahara@nrc.gc.ca


Outline of presentation

- Nanoparticles and the Environment
- Ecotoxicological Risk Assessment:
 - > Approaches and measurement tools
 - > Use of standardized toxicity test methods
- Ecotoxicology of NPs using single species toxicity tests
- Bioaccumulation of single NPs and mixtures
- Issues and Priorities
- Recommendations and Closing remarks

Nanotechnology and Nano(eco)toxicology

 Nanotechnology uses matter sized "at dimensions of roughly 1 to 100 nanometers." (US- National Nanotechnology Initiative)

- Nano(eco)toxicology: Hazardous effects of Engineered NPs on ecological receptors
- Bioavailable NPs
- Nanotoxicity ∞ Size, shape, surface area, etc.

Sources of exposure to ultrafine particles and nanoparticles

Table 1. UFPs/NPs (< 100 nm), natural and anthropogenic sources.</th>

	Anthropogenic				
Natural	Unintentional	Intentional (NPs)			
Gas-to-particle conversions Forest fires Volcanoes (hot lava) Viruses Biogenic magnetite: magnetotactic bacteria protoctists, mollusks, arthropods, fish, birds	Internal combustion engines Power plants Incinerators Jet engines Metal fumes (smelting, welding, etc.) Polymer fumes	Controlled size and shape, designed for functionality Metals, semiconductors, metal oxides, carbon, polymers Nanospheres, -wires, -needles, -tubes, -shells, -rings, -platelets			
human brain, meteorite (?) Ferritin (12.5 nm) Microparticles (< 100 nm; activated cells)	Other fumes Heated surfaces Frying, broiling, grilling Electric motors	Untreated, coated (nanotechnology applied to many products: cosmetics, medical, fabrics, electronics, optics, displays, etc.)			

• Oberdörster et al. (2005)

** Emerging area of toxicology and ecotoxicology **

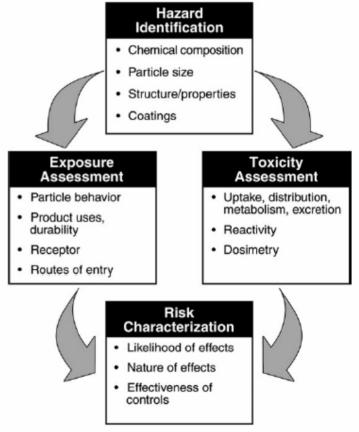
There are more than 300 nanoproducts already on the market

Nanotechnology applications in the environmental sector

- New production methods that are more environmentally friendly and consume less resources
- New, environmentally friendly materials
- More efficient methods for the production and consumption of energy
- New methods for the preparation of water, soil decontamination, and new environmental sensors.

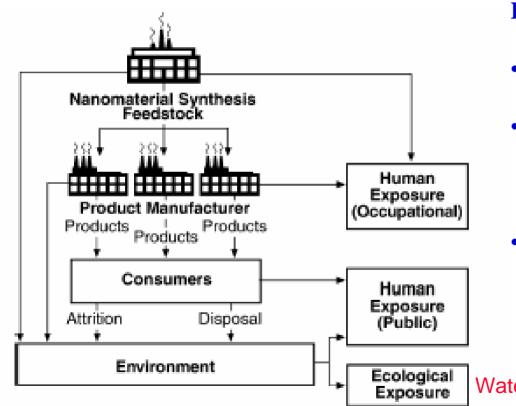
Nanotechnology and Nano(eco)toxicology

- Need quantitative data on ecotoxicology of NPs (dose-response relationships).
- Ecotoxicological risk assessments should account for:


- toxic effects of the NP on an ecological receptor

- the probability of exposure of that NP to ecological receptor,

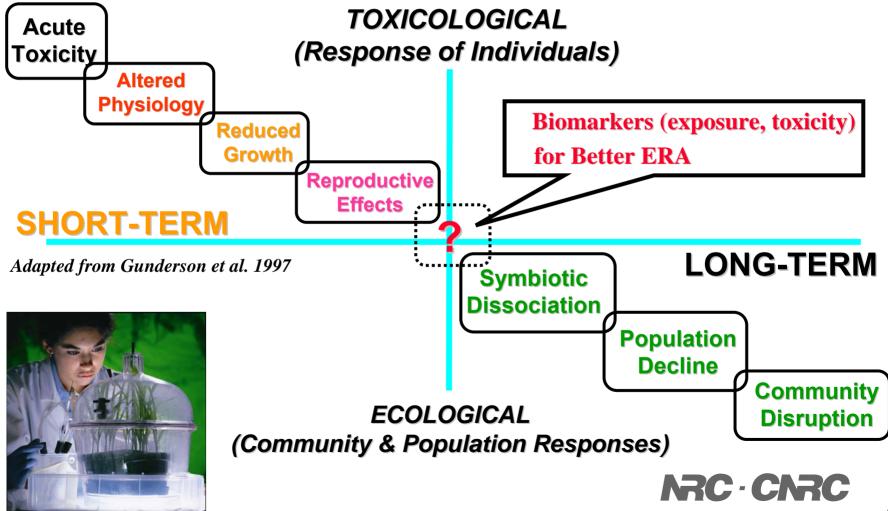
- and possible release of NP into the environment.


Ecotox Risk *∞* **Toxicity x Exposure**

- Need for standardized methods

Nano(eco)toxicology and Life Cycle Impact Assessment

- LCIA Environmental concerns (e.g., ISO 14042):
- *Direct Effects*: Toxic effects on ecological receptors.
- *Indirect Effects*: Bioaccumulation and biomagnification of NPs in the food chain. Other impacts (eutrophication, GHG).
- Contamination of water and soil from release and improper disposal of NPs and related products


Water, Soil, and Air

NRC · CNRC

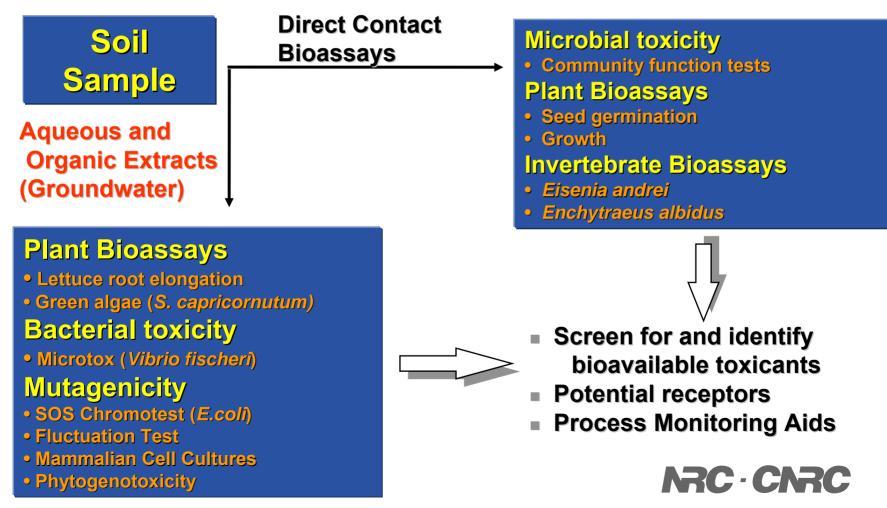
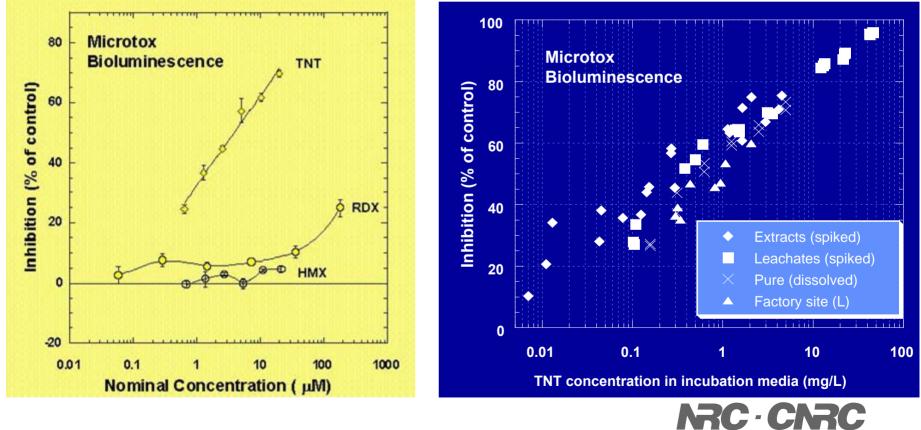
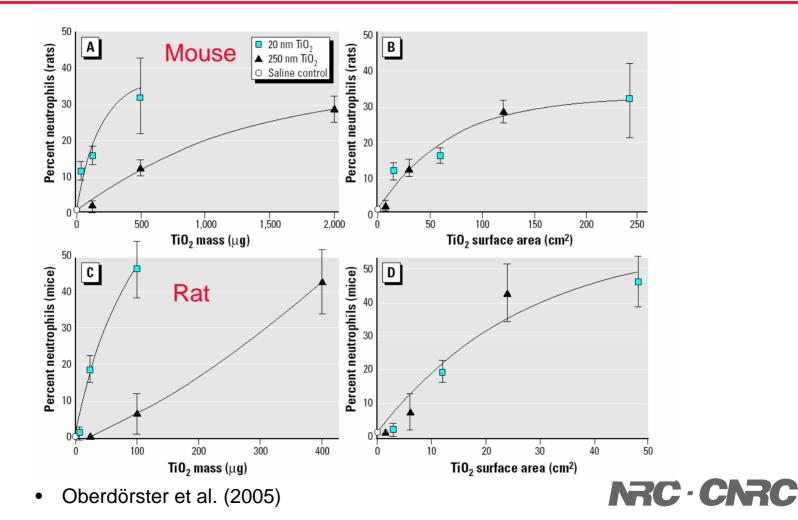

8

FIG. 5. Potential for release and exposure to nanoscale substances. Tsuji et al. 2005

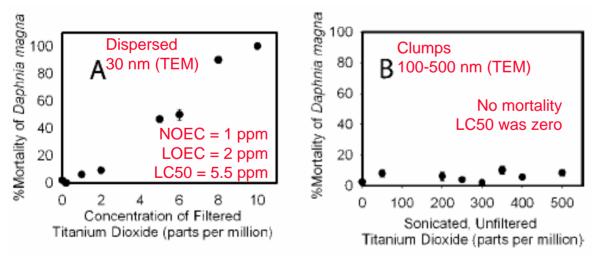
Establishing a Chain of Ecotoxicological Evidence for Potential Toxicity and Bioaccumulation


Ecotoxicological Hazard Assessment- Screening for Bioavailable Toxicants using Ecotoxicity Tests


From Laboratory to Field: Toxicity to <u>Vibrio fischeri</u> using field soils having mixed contaminants

Pure Compounds

Soil leachates and extracts from a contaminated site

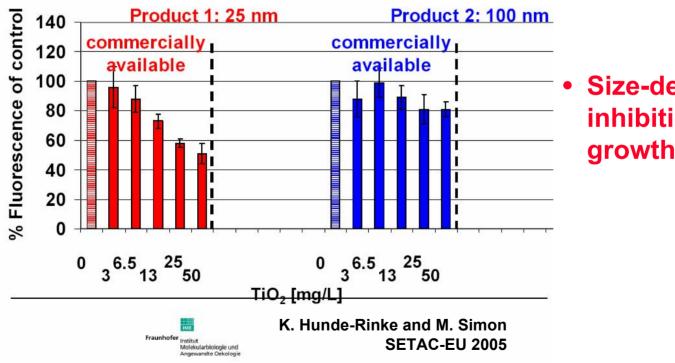


Dose-metric: Mass vs. Surface area Effect of TiO_2 particle size on toxicity

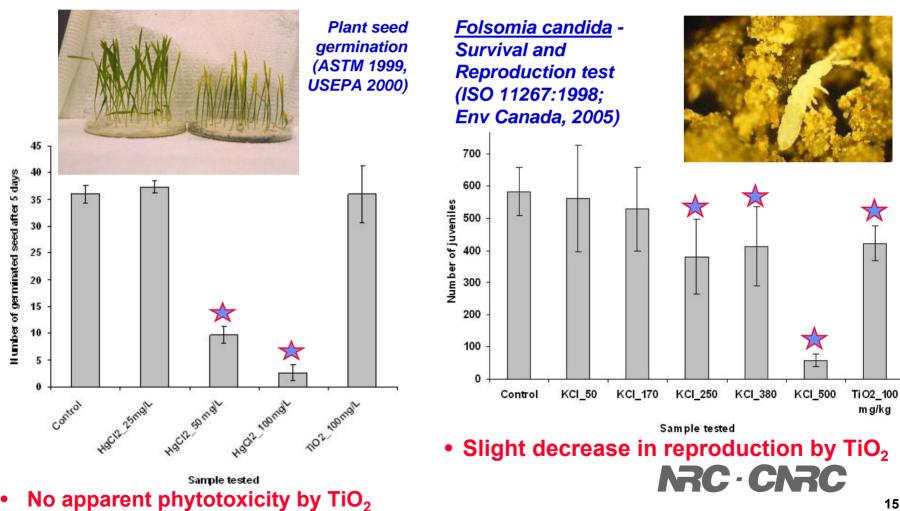
Sample preparation influences TiO₂ toxicity: 48-h <u>Daphnia magna</u> lethality test (USEPA Method 2024) (Lovern and Klaper, 2006)

- Freshwater Daphnia spp.,
- Filter-feeder, food chain
- 48-h acute mortality test (USEPA Method 2024)
- Titanium dioxide in deionized water + THF
- Passed through 0.22 µm nylaflo filter
- Concentrations: UV spectroscopy (325-350 nm)

•Lovern and Klaper (2006) ETC 25: 1132-1137

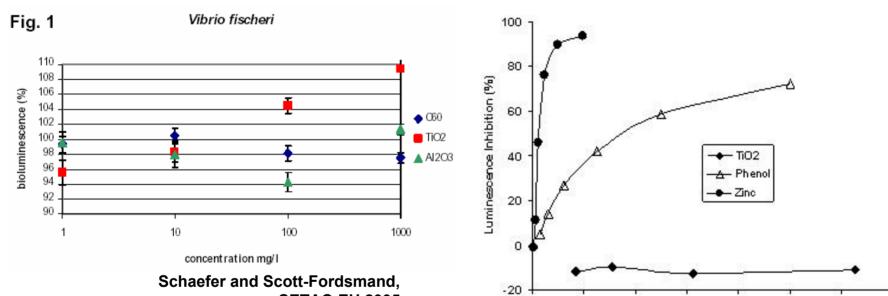


Uptake in Daphnia, Stone 2006


Titanium Dioxide (25 nm vs 100 nm) inhibits algal growth (OECD 201)

Results: Growth inhibition test with algae (I)

Size-dependent inhibition of algal growth by TiO₂


Effect of TiO₂ on plants using terrestrial toxicity tests (unpublished data)

*Effect of TiO*₂ on Microtox test (Vibrio fischeri) (ISO 11348)

0

10

SETAC-EU 2005

- NPs dispersed in water using sonication (15 min)
- No significant effects by TiO₂ (<100 nm) on <u>V. Fischeri</u>

• TiO2 - sonicated 15 min

30

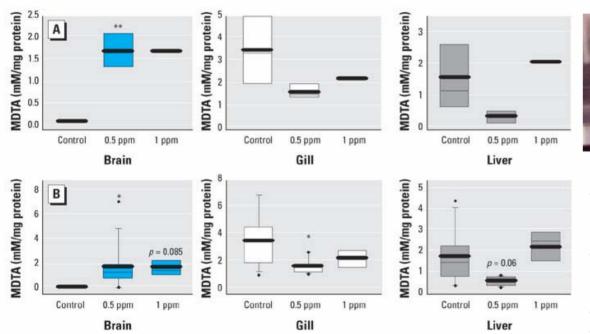
Size to be confirmed

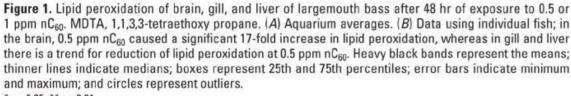
20

No effect of TiO₂ on Microtox test

Concentration tested (mg/L)

40




50

60

70

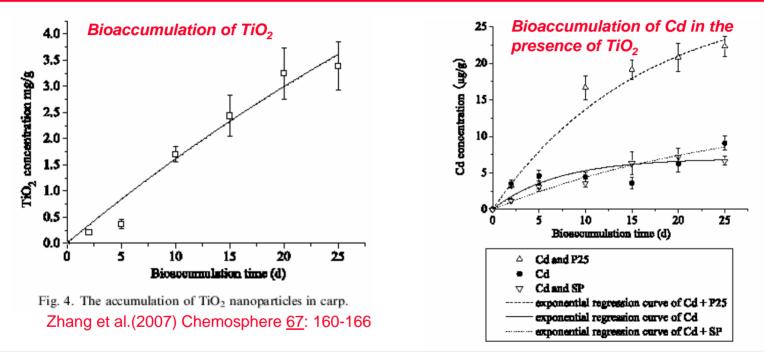
Effect of nC60 on Largemouth Bass

*p < 0.05. **p < 0.01.

Eva Oberdörster, EHP 112 (July 2004)

• Micropterus salmoides

- exposed to 0.5 ppm or 1 ppm of uncoated nC60 (4 nm) for 48 hr.


THF – vehicle (Rotovap); filtered nC60

nC60 exposure caused:

- slightly ↓ BW
- ↑ lipid peroxidation in brains at 0.5 ppm
- no clear DRC
- slight ↓ GSH in gills
- ↑ water clarity, possibly due to bactericidal activity.

Bioaccumulation of NPs in fish: Environmental co-contaminants - Mixtures

	Exposed media	Skin and scale	Muscle	Gills	Viscera	Whole body
Cd	Cd	4.11	0.31	33.6	213	64.4
	Cd and SP	5.41	1.72	58.3	364	88.9
	Cd and TiO ₂	11.1	3.49	152	1679	606
TiO2 ^a	Cd and TiO ₂	17.0	9.00	74.0	1065	325

BCFs for Cd and TiO2 in different parts and whole body of carp at the 20th day

^a The initial TiO₂ concentration 10 mg/l was used to calculate BCF for TiO₂.

What is the metric for bioaccumulation? Form?

Nano(eco)toxicological Risk Assessment: Issues and Priorities

Ecotoxicological Hazard Assessment:

- Novel Toxicity? Ecological receptors?
- Ecotoxicological effects (acute, chronic)?
- Measurement endpoints? Dose?
- Related to which physico-chemical properties?
- Physico-chemical form after bioaccumulation?

Exposure Assessment:

- Environmental stability (persistency)?
- Rapid Mobility?
- Chemical and physical form in the environment?
- Exposure dose-metric? (Tissue residues?)

- Standardized
 ecotoxicity test
 protocols?
- Reference nanotoxicants?
- Adequate?
- Dose-metric?
- Environmental Dosemetric for NPs?
- Reference nanomaterials?
- Adequate?

Closing remarks

<u>In summary,</u>

• Environmental health hazards related to NP exposure in air, water, and soil will challenge traditional ecotoxicological approaches.

We should consider using.....


- Multi-disciplinary approach (toxicologists, material scientists, and engineers)
- Integrated and holistic approach (LCIA) that links physico-chemical characteristics of NPs, effects in biological hierarchy, and environmental relevance.

Thank you

- BRI-Applied Ecotoxicology Group
- Collaborators at the Biotechnology Research Institute (BRI)

