The Small Force Metrology Laboratory at the National Institute of Standards and Technology

Jon R. Pratt, National Institute of Standards and Technology Gaithersburg, MD 20899

Tri-National Workshop on Standards for Nanotechnology 2/7/07

NIST

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Background

Evolution of SI traceable force at NIST

- SFML traceably measures microforces using a balance and transfer artifacts achieving nN resolution
- Molecular and atomic forces are one million times smaller

<u>Forces</u> Classical mass artifact

<u>Microforce</u> <u>Competence</u> <u>establishes SFML in</u> <u>FYO4</u> shift from deadweight paradigm by linking force to quantum invariants in electrical units

calibrated artifacts vs intrinsic forces

Intrinsic force competence starting FY06

Shift from calibrating artifacts to "calibrating" atomic and molecular interactions

Apply SI traceable electrical and optical forces directly to instruments

Small forces in perspective

Background

SFML Calibration

How do we calibrate a force?

• F=ma is a good start for a *deadweight* standard

Х

F=

Mass artifacts link to Kg

Gravitational acceleration linked to sec and meter

SFML calibration

Deadweights for small force

 $F = mg \sim 10^{-5} N$

- Deadweight force realization is simple, accurate, and reliable down to 10⁻⁵ N
- Accuracy: parts in 10⁴
- Many sensors (even some "nano") can be calibrated by suspending wires of known mass
- Limited by uncertainty in mass as we go smaller

Calibrated indentation forces

 Deadweights used to calibrate standard force sensor

Traceable micro to millinewtons from NIST wire deadweight loader and modified Hysitron force cell

- Standard sensor used to calibrated indenter force
 - Discrepancies at low loads on order of few percent up to tens of percent depending on instrument

SFML calibration

Smaller forces for AFM

 Realize forces below 10⁻⁵ N through the electrical units as in Watt and Volt balances

Electrostatic Force =
$$\frac{1}{2} \frac{dC}{dz} (Voltage^2)$$

- Disseminate through a calibrated "primary standard" force balance known as an EFB
 - Range: 10 nN 1 mN
 - Accuracy: parts in 10⁴
 - Resolution: < 1 nN

What is the EFB?

- Compares unknown loads to an SI force derived from length, voltage, and capacitance
 - Diminutive cousin of the electronic Kg experiment!

Electrostatic Force =
$$\frac{1}{2} \frac{dC}{dz} (Voltage^2)$$

Calibrated AFM forces

- Most AFM systems use optical lever arms
- Calibrate spring constant (k) and optical lever sensitivity
- Accuracy is difficult to achieve...

Measuring Spring Constants

A word about precision:

Crappy

1-2 parts in 10 if you do everything right

Goals: InvOLS (nm/Volt) k (pN/nm) Crappy or better

Methods for determining k Thermal noise spectra Added mass Geometry and modulus Nanoindentation

To date, no approaches have had traceability

comparisons difficult

EFB as instrumented indenter

• Calibrated cantilever reference springs can be used as AFM sensing elements or as reference standards for cantilever on cantilever calibrations

NIST reference cantilever array

 Nominal stiffness values are determined from measurements of resonance frequency, geometry, bulk value of density, and beam bending theory using

 $k = 9.585 Lbt \rho f_{vac}^{2}$

 Absolute values are checked for quality control using NIST EFB in micro-cantilever stiffness calibrator mode

Inter-comparison

- CMARS has proven well matched to EFB calibration
 - Size is convenient
 - Marks are clear and easy to hit
 - Access is a little difficult because of package
- Discrepancies exist between NPL published values and NIST EFB values
 - Undercut at cantilever base may be source of discrepancy

EFB as force calibrator

• Use EFB as instrumented indenter and calibrate *force sensors,* just as at macroscale

Force sensor calibration

- EFB instrumented indentation scheme measures absolute force and displacement required to move the balance suspension and any other spring in series with it
- Strain based sensors can be calibrated both as stiffness and force artifacts using the EFB instrumented indentation scheme, e.g., F vs d or F vs ohms
- New NIST sensor is being developed with piezoresistive strain element for force and or stiffness calibration (0.2 N/m to 12 N/m)

Future SI traceable picoforce realizations

$$F_E = \frac{1}{2} \frac{dC}{dz} \left(Voltage^2 \right)$$

Laser with optical power P_0

- Need modestly accurate voltage, capacitance, and displacement metrology
- IF the geometry and field is well defined

- Photon momentum (6 pN/mW)
 - Need only modestly accurate optical power and reflectance metrology
 - IF heating and boiling off of molecules doesn't completely swamp the effect!

$$F_{p} = \frac{P_{0}}{c} (1+R) \cos(\phi)$$

Intrinsic forces?

Prototype intrinsic forces from nature

Break a gold nanocontact

Pull a biotin molecule from a streptavidin binding site

1-2 nN

Break a single atomic bond

- Highest force, most difficult experiment
- Quantum conductance at break is a plus!

100-200 pN

Rupture a binding site

• Rate dependent

35 & 65 pN *Change DNA* structure

0.2-65 pN *Stretch DNA* elastically

Summary

Summary

- Small force measurement is a useful tool for nanomechanical characterization
- Small force metrology laboratory supports researchers in government, academia, and industry to calibrate small force measurements
 - SRM's are under development
 - We have calibrated instrumented indentation and AFM equipment
- Intrinsic standards may someday provide ready access to SI traceability for pN to nN measurements