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Worth remembering:

“Although this Guide provides a framework for assessing uncertainty, it cannot
substitute for critical thinking, intellectual honesty, and professional skill. The
evaluation of uncertainty is neither a routine task nor a purely mathematical one;
it depends on detailed knowledge of the nature of the measurand and of the mea-
surement. The quality and utility of the uncertainty quoted for the result of a
measurement therefore ultimately depend on the understanding, critical analysis,
and integrity of those who contribute to the assignment of its value.”

“Guide to the Expression of Uncertainty in Measurement”, 1993, 1st Edition (International
Organization for Standardization, Switzerland), §3.4.8.
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1 Introduction

The Guide to the expression of uncertainty in measurement [2], herein referred to simply as the Guide,
is finding wide application in the measurement science community. The methods laid out in the Guide
are applicable to many measurement scenarios, however, for successful application of its rules, very specfic
measurement cases must be considered one at at time. The details of the measurement are reflected in the
uncertainty evaluation, so there will be a unique measurement uncertainty associated with each particular
measurement depending on the lab and its practices.

A close correspondance between the model equation and the measurement is paramount to successful eval-
uation of the measurement uncertainty, and moreover to formulate the approach to the evaluation. In a
companion paper [1] we describe in detail gauge block calibration by optical interferometry at NRC. This
paper begins with the model equations developed there, and evaluates the uncertainty for the measurement
of gauge blocks using the NRC system.

2 The Expression of Uncertainty

The uncertainty evaluation presented in this document follows internationally accepted general rules for the
evaluation and expression of uncertainties as laid out in the Guide. The Guide contains detailed definitions
of the statistical concepts and terminology, general equations for standard and expanded uncertainties, as
well as recommendations for dealing with special uncertainty cases. Every attempt is made to reference the
relevant section of the Guide where appropriate.

2.1 Combined Standard Uncertainty

The combined standard uncertainty uc(d) is an estimate of the standard deviation of the distribution of
possible values (or probability distribution) of the deviation from nominal length of the gauge block d, here
measured by interferometry. The combined standard uncertainty, as its name implies, is a quadrature sum
of the uncertainties u(xi) of all of the influence factors xi, each weighted by a sensitivity coefficient [§5.1.2
Guide]:

u2
c(d) =

N∑
i=1

c2
i u

2(xi) +
N∑

i=1

N∑
j=1

[
1
2
c2
ij + ci · cijj

]
u2(xi)u2(xj) (1)

where u(xi) are the standard uncertainties attributed to the influence quantities xi, and where the sensitivity
coefficients

ci =
∂d

∂xi
, cij =

∂2d

∂xi∂xj
, cijj =

∂3d

∂xi∂x2
j

(2)

are the partial derivatives of the model equation.

It is convenient to think of equation (1) as consisting of two parts: variance terms containing u2(xi), and
higher order terms containing u2(xi)u2(xj). In modelling thermal effects in dimensional metrology, the
higher order terms always make a significant, if not dominant contribution to the uncertainties. In the
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subject area of dimensional metrology, the higher order terms should be evaluated with the variance terms
as a matter of course, not as a footnote or appendix.

2.1.1 Nominal Length

The nominal length L is used for convenience in the calculation of length dependent coefficients. Referring
to equation (1) in Ref. [1], the difference arising in the calculation of these small corrections as a result of
substituting L in place of the measured length � is negligible.

2.1.2 Type A and Type B Uncertainty Evaluations

In the Guide, there is considerable concern about distinguishing between Type A and Type B uncertainty
evaluations. Simply put: Type A evaluations imply statistical evaluation of data collected from repeated
measurements. The standard deviation is evaluated from the data and used as the standard uncertainty.
Type B uncertainty evaluations are those for which repeated measurements cannot simply isolate the influ-
ence, and the uncertainty must be obtained by some other method based on the experience and expertise of
the metrologist. The reader is referred to the Guide [§4.2, §4.3] for more background.

Here, almost all of the evaluations are Type B. In some cases, repeated measurements are taken in order to
isolate an influence parameter. Such repeated measurements can greatly support the arguments made for a
Type B evaluation of a parameter; they do not necessarily imply that the evaluation of the uncertainty is
Type A.

The rectangular distribution crops up frequently in Type B evaluations, and it is used in several instances in
this document. As explained in §4.4.5 of the Guide (also see Figure 2, p. 17 Guide), if data to estimate the
uncertainty distribution of an influence parameter is limited, often an adequate and useful approximation
is to assume an upper +a and lower −a bound for a range of equally probable values. The standard
uncertainty (§4.3.7 Guide) is then given by a/

√
3. Similarly, a reading from a digital read-out of resolution

b has a standard uncertainty of b/
√
12 [§F.2.2.1 Guide]; the digital reading is considered to be a rectangular

distribution bounded by +a = +b/2 and −a = −b/2.

2.1.3 End Effects and Length Dependence

Gauge block uncertainties can be grouped into those due to length dependent effects and those that are due
to end effects. Generally, gauge blocks within a set are all made to the same high quality of end surface finish
and geometry. So a set can be assigned a single value to characterize end effects, plus another coefficient
to characterize the uncertainty changes with the nominal length. For this reason, the uncertainties are
collected into two groups: end effects and length dependent effects. End effects are those arising solely from
the quality of the active optical surfaces of the gauge block and their interaction with the measurement
system, and by definition are independent of the length of the gauge block. For example, wringing is an
end effect. Conversely, length dependent effect arise from the bulk properties of the gauge block and the
surrounding medium (e.g. air), and by definition are independent of the end effects. Thermal dilatation is
an obvious example of a length dependent influence.
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2.2 Expanded Uncertainty

It is desirable to express uncertainties so that for most of the measurements the measured value is within
the uncertainty range of the true value. The expanded uncertainty [§6.2 Guide]

U = kuc(d), (3)

is defined as the combined standard uncertainty multiplied by a coverage factor k. The value of the coverage
factor is chosen depending on the approximate level of confidence that would facilitate the interpretation
of the uncertainty. Most measurements are expressed with a value of k between 2 and 3. NRC has chosen
to express the expanded uncertainty for k = 2, corresponding to a confidence level of approximately 95%
[§6.2.2 Guide]. Multiplying by a coverage factor does not add any new information; it is a convention. The
emphasis of this document is on the calculation of the combined standard uncertainty.

It is important that the reader distinguish between the standard uncertainty u, which is the k = 1 or 1σ value,
and the expanded uncertainty U = ku, where k > 1. In the following sections, uncertainties with various k
values will be adjusted to the 1σ (k = 1) level in order to work with standard uncertainties throughout the
evaluation.

3 The Model Equations

For a sophisticated measurement such as interferometry of a gauge block, it is expedient to arrange the model
equation such that the influence parameters are as isolated as possible, yet still reflect the relative influences
on other parameters for the sake of evaluating correlations. The techniques suggested by the Guide can then
be applied, in turn, to each of the influences. The following model equations, with the influence parameters,
are identified in an order that is convenient for presenting the uncertainty evaluation. The reader may find
it helpful to consult Table 1, which summarizes the uncertainty components described in the remainder of
the paper.

From the companion document, the measured deviation from nominal length of the gauge block is:

d = l − L

d = lfit − L + lt + lw + lA + lΩ + ln + lG + lφ (4)

where

• The best-fit solution for gauge block length, based on the method of exact fractions for q wavelengths
of light, can be expressed as

lfit =
1
q

q∑
i=1

(κi + Fi)
λi

2
. (5)

Influence parameters impacting the length solution are the measured interference fringe fractions Fi,
and the vacuum wavelengths λi with uncertainties u(Fi) and uc(λi) respectively.

• L is the nominal gauge block length; it is assumed that u(L) = 0.

• The gauge temperature correction is
lt = θαL. (6)
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This correction arises from the gauge block temperature offset θ = 20− tg, where tg is the gauge block
temperature in degrees Celcius and 20◦C is the ISO standard reference temperature for dimensional
measurements [3]. The thermal dilatation coefficient for the gauge material α is provided by the gauge
manufacturer in units of ppm/K.1 Uncertainties associated with this correction include those associated
with gauge temperature offset uc(θ) and the thermal dilatation coefficient u(α).

• lw is the length attributed to the thickness of the wringing film. The expectation value of this correction
is zero 〈lw〉 = 0, since the length of the gauge block is defined to include one wringing film [4], however
the uncertainty associated with the variation in the wringing film u(w) is non-zero.

• The correction for wavefront errors as a result of imperfect interferometer optics is lA, with uncertainty
u(lA). The expectation value of this correction is zero 〈lA〉 = 0, but its uncertainty is non-zero.

• The obliquity correction

lΩ = ΩL

=
(

a2

16f2 +
x2

2f2

)
L (7)

is a length correction accounting for the shift in phase resulting from the optical design and alignment
properties inherent in the NRC interferometer. Its uncertainty is uc(lΩ), which is dependent on colli-
mator lens focal length f , aperture diameter a and lateral offset x, each with associated uncertainties
u(f), u(a) and u(x) respectively.

• The refractive index correction is
ln = (n − 1)L, (8)

where n is the refractive index of air evaluated using a modified version of the Edlén equation. The
combined standard uncertainty attributed to the refractive index correction uc(ln) includes standard
uncertainty components associated with: the empirical fit of the Edlén model u(E); the ambient air
density factors of temperature uc(t) presssure uc(p), water vapour content or relative humidity uc(R),
CO2 content u(CO2); and the vacuum wavelength u(ln,λ) of the light.

• The gauge block geometry correction lG accounts for non-flatness and non-parallelism of the gauge
block. The uncertainty associated with this correction is u(lG).

• The phase change correction

lφ =
1

n − 1

(
lp −

n∑
i=1

li

)
(9)

is an end effect correction accounting for the difference in the apparent optical length to the mechanical
length. Its uncertainty is u(lφ).

1ppm: parts per million = 1 × 10−6
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Vacuum 1σ
Source Colour Wavelength Uncertainty

λv [nm] uc(λv) [ppm·λ]

He-Ne Laser red 632.991 162 0.01

red 644.024 80 0.03
114Cd Lamp green 508.723 79 0.03

blue 480.125 21 0.03
violet 467.945 81 0.03

Table 2: Optical sources and their uncertainties.

4 Uncertainty Evaluations

Applying (1) to (4) yields the combined standard uncertainty in d in terms of the measured quantities and
corrections:

u2
c(d) = c2

lfit
u2

c(lfit) + c2
ltu

2(lt) + c2
lwu2(lw) + c2

lAu2
c(lA)

+c2
lΩu2

c(lΩ) + c2
lnu2

c(ln) + c2
lGu2(lG) + c2

lφ
u2(lφ) (10)

where each contribution is described in detail below.

Definition of the variables used in the evaluation of the standard uncertainties and the values of the uncer-
tainty components are catalogued in Table 1. This section provides a discussion of each case individually. It
is noted that the tabulated uncertainties relate to sensors sometimes by themselves, but more often inherent
in systems specific to the NRC gauge block interferometer. The calibration of these systems and associated
uncertainties cannot necessarily be applied to other measurement systems other than the NRC gauge block
interferometer.

4.1 Length Evaluation Based on the Method of Exact Fractions

4.1.1 Source Vacuum Wavelengths

The light sources used in the gauge block length measurements, and their combined standard uncertainties
are listed in Table 2. Calibration of the laser vacuum wavelength is done in-house against the NRC primary
standard He-Ne laser stabilized by saturated absorption in 127I2 [5]. The calibration uncertainty of the laser
is 1.3 fm (1 MHz) or 0.002 ppm·λ; the one year drift of the laser frequency is on average 13 fm (5 MHz) or
0.01 ppm·λ. The combined standard uncertainty in the laser vacuum wavelength is therefore

uc(λ) =
√
(0.002 ppm·λ)2 + (0.01 ppm·λ)2

= 0.01 ppm·λ. (11)

The electrodeless cadmium lamp operates in accordance with the 1963 CIPM La Définition du Mètre [6].
The uncertainty of 0.07 ppm·λ assigned in the CIPM documentation is assumed to be at the 99% confidence
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level, corresponding to a coverage factor of k = 2.58 [§4.3.4 Guide], so

uc(λ) =
0.07 ppm·λ

2.58
= 0.03 ppm·λ. (12)

4.1.2 Fringe Fraction Measurement

NRC’s length evaluation based on equation (72) is performed by a regression-style computer program (see
Appendix A). The gauge length evaluation begins with the measurement of the fractional fringe order at
each of q = 5 wavelengths. The computer program determines the best fit of the integral interference orders
κi corresponding to their measured fractions Fi and known λi. The solution for the gauge length averaged
over the q wavelengths used to make the measurement is:

lfit =
q∑

i=1

(
κi + Fi

q

)
λi

2
. (13)

Following equation (1) for evaluating the uncertainty,

u2
c(lfit) = c2

κi
u2(κi) + c2

Fi
u2(Fi) + c2

λi
u2(λi), (14)

where
cκi

=
∂lfit

∂κi
, cFi

=
∂lfit

∂Fi
, cλi

=
∂lfit

∂λi
. (15)

Table 3 displays the sensitivity coefficients for the variance and cross terms, following the procedure outlined
above. Matching the sensitivity coefficients with the uncertainties and including the summation notation

Variance Terms Cross Terms

ci =
∂lfit

∂xi

cij =
∂2lfit

∂xi∂xj

cijj =
∂3lfit

∂xi∂2xj

xi xj = κi Fi λi κi Fi λi

κi

λi

2q
0 0

1
2q

0 0 0

Fi

λi

2q
0 0

1
2q

0 0 0

λi

κi + Fi

2q
1
2q

1
2q

0 0 0 0

Table 3: Sensitivity coefficients for evaluated length.
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yields the following contributions to the combined uncertainty:

u2
c(lfit) =

q∑
i=1

(
λi

2q

)2

u2(κi)

+
q∑

i=1

(
λi

2q

)2

u2(Fi)

+
q∑

i=1

(
κi + Fi

2q

)2

u2(λi)

+
q∑

i=1

(
1
2q

)2

u2(κi) u2(λi)

+
q∑

i=1

(
1
2q

)2

u2(Fi) u2(λi).

(16)

Considering that κi represents an integral count of interference orders for the gauge length, and that it
is assumed that the order sorting algorithm has chosen the correct length solution, then u(κi) ≡ 0. An
incorrect value of κi would constitute a blunder [§3.4.7 Guide]. Contributions from cross terms are found to
be negligibly small; terms making significant contributions are

u2
c(lfit) =

q∑
i=1

(
λi

2q

)2

u2(Fi) +
q∑

i=1

(
κi + Fi

2q

)2

u2(λi). (17)

The standard uncertainty in reading a fringe fraction has been determined experimentally (Type A) to be 0.01
fringe, taken from 5 readings of a fringe fraction. This value is representative of all fraction measurements,
and is independent of wavelength. Uncertainty contributions attributed to the vacuum wavelengths of light
are listed in Table 2. For convenience, the second term in (17) can be re-written using (72) so that

κi + Fi

2q
=

L

qλi
.

Thus for the q = 5 wavelengths used in the NRC gauge block calibration and referring to Table 2,

u2
c(lfit) =

5∑
i=1

(
λi

2 · 5
)2

(0.01 fringe)2 +
5∑

i=1

(
L

5λi

)2

u2(λi)

= (0.633 nm)2 + (0.644 nm)2 + (0.509 nm)2 + (0.480 nm)2 + (0.468 nm)2

+(0.002L)2 + (0.006L)2 + (0.006L)2 + (0.006L)2 + (0.006L)2

= (1.2 nm)2 + (0.012L nm)2 , (18)

for L in millimetres.

4.2 Uncertainty Attributed to Thermal Effects

Recall from (6) that the temperature correction is

lt = θαL. (19)

Table 4 lists the sensitivity coefficients for the variance and cross terms. Matching the sensitivity coefficients
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Variance Terms Cross Terms

ci =
∂lt

∂xi

cij =
∂2lt

∂xi∂xj
cijj =

∂3lt
∂xi∂2xj

xi xj = L α θ L α θ

L αθ 0 θ α 0 0 0

α Lθ θ 0 L 0 0 0

θ αL α L 0 0 0 0

Table 4: Sensitivity coefficients for thermal effects.

with the uncertainties yields the following contributions to the combined uncertainty:

u2
c(lt) = (αθ)2 u2(L)

+ (Lθ)2 u2(α)

+ (αL)2 u2(θ)

+ θ2 u2(L) u2(α)

+ α2 u2(L) u2(θ)

+ L2 u2(α) u2(θ).

(20)

Terms making significant contributions are considered in detail below.

4.2.1 Uncertainty in the Gauge Block Temperature Measurement

To evaluate the uncertainty component in (20) attributed to the measurement of gauge block temperature
(αL)2u2(θ), the combined uncertainty in the gauge temperature measurement is used, where uc(θ) = uc(tg)
includes two components: the combined standard uncertainty attributed to temperature measurement using
the thermistors at NRC uc(t) (this includes components for traceable calibration, reading capability, and drift
between calibrations, as described below) and the standard uncertainty attributed to possible temperature
gradients within the gauge block u(θgrad). Expressing u2(θ) as a combined uncertainty consisting of a
quadrature sum:

(αL)2u2(θ) = (αL)2u2
c(θ)

= (αL)2
(
u2

c(t) + u2(θgrad)
)
. (21)

The evaluation is for the case of a steel gauge block, where α = 11.5 ppm/K and L is in millimetres.

The combined standard uncertainty attributed to temperature measurement based on thermistor calibration
and performance is (see §4.5.4 below)

uc(t) =
√
(2.5 mK)2 + (0.1 mK)2 + (3 mK)2

= 4 mK, (22)

therefore the contribution to the combined uncertainty in the deviation from nominal length is

uc(t)αL = (0.004 K)(11.5 × 10−6/K)L
= 0.046L nm. (23)
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The thermal stability of the NRC laboratory and our experience characterizing the temperature drift proper-
ties within the interferometer enclosure are such that the contribution to the uncertainty reflecting potential
temperature gradients in the gauge is 5 mK or

u(θgrad)αL = (0.005 K)(11.5 × 10−6/K)L
= 0.058L nm. (24)

4.2.2 Uncertainty in the Thermal Dilatation Coefficient

The standard uncertainty in the thermal dilatation coefficient u(α) is taken to be 10% of the manufacturers
stated value, with a rectangular distribution, as a conservative bound. The gauge temperature value is
estimated and recorded for each gauge block; θ is usually not more than 50 mK. For the sake of this example,
assume the gauge temperature was measured to be 19.950◦C, therefore the component of equation (20)
representing the length dependent variance contribution attributed to the thermal dilatation coefficient for
a steel gauge block is

u(α)θL =
10% · 11.5 × 10−6/K√

3
(0.050 K)L

= 0.033L nm, (25)

for L in millimetres. In the evaluation of the uncertainty for an entire set of gauge blocks, NRC chooses to
select the largest value of θ observed during the measurements of the set since the deviation from 20◦C is
small and quite consistent throughout the set. A more rigorous treatment would evaluate the uncertainty
for each gauge block of the set individually, in which case the value of θ measured for each individual gauge
block would be used here.

4.2.3 Higher Order Uncertainty Terms in the Thermal Dilatation and Temperature Measure-
ment

The term in equation (20) making a significant contribution to the combined uncertainty in the length
measurement is L2u2(α)u2(θ), where the uncertainty in the gauge temperature measurement u2(θ) is a
combined uncertainty as described above. Substituting values:

u(α)uc(θ)L = (0.66 × 10−6/K)
√
(4 mK)2 + (5 mK)2L

= 0.004L nm. (26)

4.3 Wringing Film

The variation in measurement results due to the wringing film has been evaluated experimentally by repeated
measurement of an L = 2.5 mm tungsten carbide gauge block both with single-wring and re-wringing
measurements. The 1σ standard deviation attributed to wringing effects is u(w) = 6 nm. This is an end
effect uncertainty. The sensitivity coefficient is

clw =
∂d

∂lw
= 1. (27)
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4.4 Interferometer Optics

4.4.1 Wavefront Errors

The optical components comprising the interferometer were custom made by the optical shop at NRC to
meet superior quality standards specifically for this interferometric application. Also, the optical flats used as
platens in the NRC gauge block interferometer are of superior flatness (better than λ/20). The optical quality
of the interferometer is such that correction to gauge block length due to wavefront distortion effects is not
warranted, however the uncertainty attributed to non-ideal optics and wavefront abberations is determined
by performing a length measurement on an optical flat without a gauge block. Instead, a wire that has
been bent to represent the outline of a gauge block is laid on the optical flat, so that fringe measurements
taken on this gauge-block outline are really just on the optical flat. Worst-case observations in repeated
testing excercises for a value which is typically zero are about 5 nm. This value represents a bounded region,
therefore the standard uncertainty associated with this end effect is u(lA) = 5/

√
3 = 3 nm. The sensitivity

coefficient is
clA =

∂d

∂lA
= 1. (28)

4.4.2 Obliquity

The obliquity correction, described in more detail in [1] is:

lΩ =
(

a2

16f2 +
x2

2f2

)
L (29)

where a is the fibre diameter, f is the focal length of the collimator lens, and x is the lateral offset distance
of the collimator aperture from the optic axis of the instrument.

Following the x ≡ 0 design characteristic of the Twyman-Green interferometer, the expectation value 〈x〉 = 0,
so the obliquity correction to the length measurement includes only the first term in (29). Even though the
second term in (29) is zero, the non-zero uncertainty attributed to this alignment shows up in the higher
order uncertainty components.

Uncertainty Attributed to Source Size The combined standard uncertainty is calculated by applying
(1) to (29):

u2
c,1(lΩ) =

(
aL

8f2

)2
u2(a) +

(−a2L

8f3

)2
u2(f). (30)

Substituting values for the fibre diameter a = 600 µm with u(a) = 5 µm, and for the lens focal length
f = 463 mm, u(f) = 0.15 mm, the contribution of the variance terms to the combined standard uncertainty
in length is

uc,1(lΩ) = 0.002L. (31)

The second term in (30) involving u2(f) is negligible.
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Higher Order Uncertainty Terms Attributed to Alignment To evaluate the sensitivity coefficients
for the higher order terms, it is more convenient to re-write the obliquity correction in the form of

lΩ =
L

2f2

(
x2 +

a2

8

)
, (32)

and to use a table format in the book-keeping of the terms.

Using the partial derivatives given in Table 5, the following coefficients are evaluated:

c2
xx =

(
L

f2

)2

, (33)

c2
aa =

(
L

8f2

)2

, (34)

1
2
c2
ff + cf · cfff = −15

64
· a4L2

f8 , (35)

1
2
c2
xf + cx · cxff =

8x2L2

f6 , (36)

1
2
c2
fx + cf · cfxx =

2a2L2

8f6 , (37)

1
2
c2
af + ca · caff =

a2L2

8f6 , (38)

1
2
c2
fa + cf · cfaa =

a2L2

16f6 . (39)

The uncertainty in the lateral alignment of the optical fibre end and exit aperture to the optic axis of the
interferometer is u(x) = 0.05 mm. Values for the other quantities are as mentioned above. Performing the
multiplications, all of the cross terms are either very small or zero, with the exception of the term i = j = x.
The length dependent uncertainty is therefore

u2
c,2(lΩ) =

1
2
c2
xxu4(x)

uc,2(lΩ) =

√
1
2

(
L

f2

)
u2(x)

= 0.008L. (40)

4.5 Refractive Index of Air

Gauge blocks are measured in a laboratory under ambient conditions; however, the metre is defined in terms
of the distance that light travels in a vacuum. The refractive index of air n alters the wavelength according
to λv = nλair. In most laboratories, as well as at NRC, the refractive index is determined by measuring
the properties affecting the density of the air, and then calculating the index using a modified version of the
Edlén equation [7, 8].
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4.5.1 The Modified Edlén Equation

The modified Edlén equation used in NRC gauge block interferometer measurements is [1]:

(n − 1) × 108 =
(
8342.54 +

2406147
130 − γ2 +

15998
38.9 − γ2

)( p

96095.43

)

×
(
1 + 10−8(0.601 − 0.00972t)p

1 + 0.0036610t

)
−R(8.753 + 0.036588t2)(0.037345 − 0.000401γ2), (41)

where p represents air pressure in Pascal units, t represents temperature in degrees Celcius, R represents
relative humidity in percent, and γ = 1/λ is the vacuum wavenumber in µm−1 units. The uncertainty
attributed to the empirical determination of the numerical coefficients in this equation is 1× 10−8 at the 1σ
level of confidence [8].

4.5.2 Combined Standard Uncertainty and Sensitivity Coefficients

The combined standard uncertainty uc(ln) in the length correction ln = (n − 1)L is determined by applying
(1) to ln, considering (n − 1) as expressed in (41), so that

u2
c(ln) =

(
∂ln
∂p

)2
u2

c(p) +
(

∂ln
∂t

)2
u2

c(t) +(
∂ln
∂R

)2
u2

c(R) +
(

∂ln
∂λ

)2
u2

c(λ). (42)

The sensitivity coefficients are evaluated by first performing the partial derivatives of (42) using (41):

∂ln
∂R

= − (8.753 + 0.036588t2
) (

0.037345 − 0.000401γ2)× 10−8L (43)

∂ln
∂p

=
10−8

96095.43(1 + 0.0036610t)

(
8342.54 +

2406147
130 − γ2 +

15998
38.9 − γ2

)
× (1 + 2 · 10−8p(0.601 − 0.00972t)

)
L (44)

∂ln
∂t

=
−10−8

96095.43(1 + 0.0036610t)2

(
8342.54 +

2406147
130 − γ2 +

15998
38.9 − γ2

)
× [0.00972(1 + 0.003661t)p2 · 10−8L

+0.003661p
(
1 + 10−8p(0.601 − 0.00972t)

)]
L (45)

∂ln
∂λ

= −10−8γ2
[(

2406147γ
(130 − γ2)2

+
15998γ

(38.9 − γ2)2

)

× 2p
96095.43(1 + 0.003661t)

(1 + 10−8p(0.601 − 0.00972t))L

+2Rγ · 0.000401 (8.753 + 0.036588t2
)
]L. (46)

Routine environmental conditions in the NRC laboratory are used in the numerical evaluation of the partial
derivatives; they are: t = 20◦C, λ = 0.633 µm, p = 101325 Pa, and R = 44%. Substitution yields the
following values for the sensitivity coefficients:

∂ln
∂R

∣∣∣∣
t,λ

= −8.5 × 10−9L/%, (47)
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∂ln
∂p

∣∣∣∣
t,λ

= 2.7 × 10−9L/Pa, (48)

∂ln
∂t

∣∣∣∣
t,λ,p,R

= −9.5 × 10−7L/K, (49)

∂ln
∂λ

∣∣∣∣
t,λ,p,R

= −1.2 × 10−5L/µm. (50)

4.5.3 Evaluation of Water Vapour Partial Pressure

The Edlén equation originally considered the vapour partial pressure of water ρ explicitly, rather than in
terms of the relative humidity R. The vapour partial pressure is related by definition to the saturation
vapour pressure ρs and the relative humidity

R ≡ ρ

ρs
× 100. (51)

NRC calculates ρs from a quadratic function of temperature fitted through saturation pressure values span-
ning room temperature, using the 1984 NBS/NRC Steam Tables [9] so that:

ρ = R(8.753 + 0.036588t2), (52)

where ρ is in Pascal units, R is in percent and t is in degrees Celcius. The relative uncertainty attributed to
equation (52) itself, based on the vapour partial pressure, is approximately one part in 103. It is known that
a change in relative humidity of −1% corresponds to a change in refractive index of 1 × 108 [10], and the
uncertainty attributed to the empirical fit of the Edlén equation itself is also 1 × 108 (see above), therefore
the impact on the uncertainty evaluation resulting from the application of equation (52) to the refractive
index of air is deemed negligible.

4.5.4 Measured Parameters Influencing the Refractive Index of Air

The combined uncertainty attributed to the influence of measuring air temperature, pressure and relative
humidity all similarly include the following three uncertainty components:

• accuracy and calibration of the sensor,

• sensor reading capability, and

• drift of the sensor between calibrations.

Each sensor type is discussed below according to these criteria. The combined standard uncertainty of the
sensor then has the form:

u2
c(x) = u2(xcal) + u2(xread) + u2(xdrift). (53)

Length dependent uncertainties assume L in millimetres.
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Air Temperature The combined standard uncertainty in the NRC thermometry calibration of the bead-
in-glass thermistors used in the gauge block interferometer is 2.5 mK. Multiplying by the sensitivity coefficient
of (49):

u(tcal) = (0.002 5 K)(−9.5 × 10−7L/K)
= −0.002L nm. (54)

The digital resolution of the thermistor reading is 0.4 mK, therefore the uncertainty associated with the
device reading capability is

u(tread) =
0.000 4 K√

12
(−9.5 × 10−7L/K)

= −0.000 1L nm. (55)

Drift within the time interval between calibrations is about 3 mK, assumed rectangularly distributed, there-
fore

u(tdrift) =
0.003 K√

3
(−9.5 × 10−7L/K)

= −0.002L nm. (56)

Air Pressure The standard uncertainty in the NRC pressure calibration is 0.05% of the pressure reading.
Pressure readings are in the neighborhood of 100 kPa, therefore the 1σ uncertainty in the device calibration is
50 Pa. Multiplying by the sensitivity coefficient 2.7×10−9L/Pa from (48), the length dependent uncertainty
becomes

u(pcal) = (50 Pa)(2.7 × 10−9L/Pa)
= 0.135L nm. (57)

The device reading capability is 13 Pa on a digital meter, therefore

u(pread) =
13 Pa√

12
(2.7 × 10−9L/Pa)

= 0.011L nm. (58)

The standard uncertainty attributed to the average 1-year drift between calibrations is 54 Pa, therefore

u(pdrift) = (54 Pa)(2.7 × 10−9L/Pa)
= 0.146L nm. (59)

Humidity The accuracy quoted by the manufacturer of the humidity sensor is 2% in the range for which it
is operated, which is assumed to be rectangularly distributed. Using the sensitivity coefficient −8.5×10−9/%
from (47), the contribution to the combined uncertainty in the length measurement is then

u(Rcal) =
2%√
3
(−8.5 × 10−9)L/%

= −0.010L nm. (60)

The device reading capability is 0.1% on a digital meter, therefore

u(Rread) =
0.1%√
12

(−8.5 × 10−9)L/%

= −0.001L nm. (61)
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The uncertainty attributed to the 1-year average drift between calibrations is 1% or

u(Rdrift) = (1%)(−8.5 × 10−9)L/%
= −0.009L nm. (62)

4.5.5 Vacuum Wavelength

The combined uncertainty attributed to the vacuum wavelength through its contribution to the refractive
index of air is very small. Using values from Table 2 and equation (50),

uc(ln,λ) = (0.01 × 10−6 · 0.633 µm)(−1.2 × 10−5L/µm) (63)

which is negligible.

4.5.6 CO2 Content

In the revised version of the Edlén equation [8], Birch and Downs assumed an average value of 450 ppm for
the CO2 content of air and assumed a 1σ uncertainty of 57 ppm. No further corrections are made as to the
actual content of CO2 present in the labaoratory at NRC in our application of the modified Edlén equation.
It is assumed that the uncertainty attributed to the CO2 content is incorporated in the uncertainty in the
Edlén equation.

4.6 Gauge Block Departure from Flatness and Parallelism

At NRC, lG is assumed to be zero since the technique of optical interferometry demands superior quality
gauge blocks. To evaluate the uncertainty resulting from slight deviations in gauge geometry by either
imperfect flatness or parallelism of the measuring faces, the geometry causing the most pronounced variation
in central length is considered. Referring to Figure 1, non-parallelism has a larger impact on the central
length measurement than a deviation in flatness of similar magnitude. Furthermore, for the same magnitude
departure from parallelism the effect will be more pronounced in the crosswise direction than in the lengthwise
direction. The worst case scenario of deviation from crosswise parallelism is selected for estimating the
uncertainty due to poor gauge block geometry.

Our ability to point to the centre of a rectangular gauge block is typically 1/20th of the 9 mm width. The 2σ
uncertainty in pointing to the centre of the gauging surface is then 0.5 mm. The uncertainty in the length
is taken as the wedge height difference between the measured length at the reference point and the length
at the maximum offset point due to poor pointing, as demonstrated in the inset of Figure 1. Using similar
triangles, the resultant central length difference for a 50 nm deviation in parallelism2 along the crosswise
direction of the gauge is

tan ε =
50 nm
9 mm

=
y

0.5 mm
(64)

and therefore
u(lG) � 2 nm (65)

2International Standard ISO 3650-1978(E) [4] gives the maximum permitted deviation from flatness for the 00 grade gauge
block as 50 nm for blocks of nominal length up to and including 150 mm. Only high grade gauge blocks can be calibrated by
interferometry — most of these gauges have flatness and parallelism deviations less than 50 nm. In cases of larger deviations
in geometry, the uncertainty is evaluated separately for the individual gauge.
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non-flatness

0.5 mm

0.5 mmy
y

reference point

e

e

50 nm

non-parallel

9 mm

Figure 1: Effect of non-flatness and non-parallelism on the measure-
ment of the central length of a gauge block. In the ideal case, a
larger variation is observed in trying to target the reference point on
a non-parallel rather than non-flat gauge block. The variable y in the
inset represents the uncertainty in the central length measurement at-
tributed to non-parallelism.

at 1σ. The sensitivity coefficient

clG =
∂d

∂lG
= 1. (66)

4.7 Phase-Change Correction

The phase-change correction is an experimentally measured end effect that is evaluated for each set of gauge
blocks of like material and surface finish by the method of pack experiments. A pack (or stack) experiment,
consists of measuring four short gauge blocks individually, then wringing them into a pack and measuring the
pack the same way the individual gauge blocks were measured. The difference in the measured length of the
pack and the sum of the measured lengths of the four gauge blocks gives the length difference attributed to
reflection effects for the gauges nested in the pack. Expressed mathematically, this phase change correction
is

lφ =
1

m − 1

(
lp −

m∑
i=1

li

)
(67)

where lp represents the measured length of the pack, and li the measured lengths of the m individual gauges
making up the pack (see [1] for detail).

The evaluation of the phase-change correction by the method of a pack experiment is a measure of the
differences in like-measurements. Because it is a relative measurement, the perfectly correlated uncertainty
components will sum to zero in the addition of the combined standard uncertainty components for the
pack experiment (see Appendix B for detail). The uncertainty components remaining will be those that
are characterized by stochastic processes. These include most end-effects and individual instrument reading
uncertainties.

The combined standard uncertainty attributed to the phase-change correction is therefore the sum of the
uncorrelated components of the length measurement. Applying equation (1) for evaluating the uncertainty
to equation (78), the uncertainty in the phase change correction is then:

u2
c(lφ) =

1
(m − 1)2

u2(lp) +
1

(m − 1)2

m∑
i=1

u2(li)
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=
1

(m − 1)2

m+1∑
i=1

u2
uc(li), (68)

where the sum over m + 1 gauge blocks includes each of the m constituent gauges and the pack, and u2
uc(l)

are the uncorrelated uncertainty components (marked with a double dagger in Table 1). Gauge blocks
used in the pack experiments are short, so the length dependent uncorrelated uncertainties are small. The
components making significant contributions are the end effect uncertainties:

u2
c(lφ) � (m + 1)

(m − 1)2
[
u2

c(Fi) + u2(lw) + u2(lA) + u2(lG)
]
. (69)

For four gauge blocks used in the pack experiment, and substituting values for the uncertainties from Table 1,

u2
c(lφ) =

5
9
[
(1.2 nm)2 + (6 nm)2 + (3 nm)2 + (2 nm)2

]
uc(lφ) = 6 nm. (70)

The uncertainty attributed to differences in surface roughness between the platen and gauge block surfaces
is not separately accounted for. Effects stemming from differences in the reflection properties of materials,
such as the surface roughness, are considered to be integrated in the result of the pack experiments.

5 Conclusion

The expanded uncertainty in the deviation from nominal length for a single measurement of a gauge block has
been evaluated. Standard uncertainty components are summarized in Table 1. Performing the quadrature
sum of length and end effects separately, the expanded uncertainty is

U = 2
√
9.32 + 0.222L2 nm (71)

for L in millimetres. One must bear in mind the uncertainty in the uncertainties, and not attach too
many significant digits to the final expression. The expanded uncertainty U represents a confidence level
of approximately 95% that the measured value is within ±U of the value of the measurand. The expanded
uncertainty is obtained by multiplying the standard uncertainty uc of the length measurements (assumed to
be normally distributed) by a coverage factor k = 2.

Equation (71) above gives the value for the estimated expanded uncertainty. Some clients prefer the simpler
linear approximation U = 19 + 0.28L nm, determined by the equation of a straight line y = a + bL joining
the points represented by L = 0 mm and L = 100 mm. The linear approximation must be specified for
a restricted range of nominal length for which it is valid. For short gauge blocks this range is 0–100 mm.
The linear approximation will have a negligible difference from the quadrature sum in the case that bL is
small compared to a, or conversly if a is small compared to bL. The latter is more likely the case for shop-
floor calibrations where temperature effects dominate the uncertainty evaluation. The largest difference
between the linear approximation and the quadrature sum will be for the case where a and bL are of
comparable magnitudes. This is the case of lowest-uncertainty calibrations performed at national labs,
where the systems have been optimized specifically to reduce the largest components of uncertianty. In
our example, the maximum difference between the linear approximation and the quadrature sum occurs for
L = 37 mm, where Ulinear = 29 nm and Uquad = 25 nm. Note that the linear approximation always gives a
more conservative (i.e., larger) value than the quadrature sum.
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A Evaluation of Length From Fringe Fraction Measurements

As discussed in [1], gauge block length is determined by measuring the fractional difference in the interference
pattern formed on the top of the gauge block and the one formed on the top surface of the optical flat. The
calculation deducing the gauge length from these fraction measurements is based on the traditional method
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of exact fractions [11, 12] which exploits the fact that a given length l can be represented by a unique set of
interference orders mi for wavelengths λi:

l = m1
λ1

2
= m2

λ2

2
= . . . = mi

λi

2
, (72)

where mi are real numbers consisting of an integer portion κi and a fractional portion Fi.

NRC’s length evaluation based on equation (72) is performed by a regression-style computer program. The
measurement begins by measuring fringe fractions Fi for each of the five wavelengths λi listed in Table 2. At
NRC, the measured fractions are corrected for the refractive index of air n so that they represent fractions
that would have been measured in vacuum. Vacuum wavelengths are used in the fitting routine. The
computer program steps through test lengths for the deviation from nominal length, probing the value of
the residual δ =

∑
i(Fi − F̂i) summed over all the wavelengths used in the measurement, where Fi is the

measured fraction, and F̂i the calculated fraction based on the test length. The criterion for choosing a
solution is the minimum residual sum δ.

The solution for the deviation from nominal length corresponding to the best fit has the form of:

dfit =
1
q

q∑
i=1

[
(κi + Fi)

λi

2
− L + (n − 1)L

]
. (73)

The algorithm returns a value for dfit,i having unique values of κi and Fi for each of the λi. Because of the
noise in the experimental measurement, the values dfit,i differ slightly. Equation (73) expresses the average
of the dfit,i over the q wavelengths applied in the measurement. Written another way:

dfit =
q∑

i=1

(
κi + Fi

q

)
λi

2
− L + (n − 1)L. (74)

The subtraction of the nominal length L and the refractive index correction (n − 1)L are taken out of the
summation in order to simplify the calculations. In this document, the deviation from nominal length is

dfit = lfit − L, (75)

which leads to equation (5). For purposes of simplifying the uncertainty evaluation, the deviation from
nominal length will be written in this form. The refractive index correction is treated separately. Particular
details concerning the evaluation of lfit based on NRC’s application of the method of exact fractions will be
ignored. Differences arising in the uncertainty as a result of this simplification are deemed negligible.

B Correlated Components in the Pack Experiment

To demonstrate the zero sum of the correlated uncertainty components in the pack experiment, let us
consider that the combined standard uncertainty in the length measurement uc(l) is made up of correlated
and independent components of uncertainty. These two aspects of the uncertainty are represented by their
respective quadrature sums:

u2
c(l) = u2(l0) + u2(l′), (76)

where u(l0) represents the quadrature sum of the correlated uncertainties and u(l′) that of the uncorrelated
components. For simplicity, the superscript notation will be dropped, and we turn our interest to the quadra-
ture sum of the correlated uncertainty components u(li) for gauge i having measured length li. Typically
the correlated uncertainties are length dependent, and their sum takes on the simple form of

u(li) = βLi, (77)
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where β is a constant.

It is useful here to write the phase change correction in the following form:

lφ =
1

m − 1

m+1∑
k=1

sklk. sk =

{
+1 if k = 1

−1 otherwise
(78)

The general expression for the combined standard uncertainty in the pack experiment including correlated
uncertainty components is [§5.2.2 Guide]

u2
c(lφ) =

N∑
i=1

(
∂lφ
∂li

)2

u2(li) + 2
N−1∑
i=1

N∑
j=i+1

(
∂lφ
∂li

)(
∂lφ
∂lj

)
u(li)u(lj)r(li, lj). (79)

The combined uncertainty is a sum over the N influence parameters, where the correlation coefficient r(li, lj)
is unity for correlated components and zero for the uncorrelated components. As we are considering only the
correlated uncertainties in the repeated length measurement for the phase-change correction, the correlation
coefficient is unity. The number of parameters in the sum of (79) for the pack experiment is N = m + 1.
Substituting (77) and (78) into (79):

u2
c(lφ) =

m+1∑
i=1

(
si

m − 1

)2

(βLi)2 + 2
m∑

i=1

m+1∑
j=i+1

sisj

(m − 1)2
(βLi)(βLj). (80)

Separating out terms involving i = 1, which as expressed in (78) is the index representing the pack,

u2
c(lφ)

(m − 1)2

β2 = L2
p +

m+1∑
i=2

L2
i + 2

1∑
i=1

m+1∑
j=i+1

s1sjLpLj + 2
m∑

i=2

m+1∑
j=i+1

sisjLiLj . (81)

Further combining terms, use is made of equation (78) and the conditions of sk, as well as the expression of
the pack nominal length as the sum of the nominal lengths of the constituent gauges:

Lp =
m∑

k=1

Lk, (82)

and also

L2
p =

m∑
k=1

L2
k + 2

m−1∑
k=1

m∑
q=k+1

LkLq. (83)

The sum of correlated components then becomes:

u2
c(lφ)

(m − 1)2

β2 = L2
p +

m∑
k=1

L2
k + 2

m∑
q=1

(−1)LpLq + 2
m−1∑
k=1

m∑
q=k+1

(+1)LkLq

= L2
p − 2L2

p +
m∑

k=1

L2
k + 2

m−1∑
k=1

m∑
q=k+1

LkLq

= L2
p − 2L2

p + L2
p

= 0.

The sum of the perfectly correlated components of the combined standard uncertainty associated with the
pack experiment is exactly zero.


