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Abstract

Artificial neural networks (ANN) are employed for high-frequency Canada/U.S. dollar exchange
rate forecasting. ANN outperform random walk and linear models in a number of recursive out-
of-sample forecasts. The inclusion of a microstructure variable, order flow, substantially improves
the predictive power of both the linear and non-linear models. Two criteria are applied to evaluate
model performance: root-mean squared error (RMSE) and the ability to predict the direction of
exchange rate moves. ANN is consistently better in RMSE than random walk and linear models
for the various out-of-sample set sizes. Moreover, ANN performs better than other models in
terms of percentage of correctly predicted exchange rate changes (PERC). The empirical results
suggest that optimal ANN architecture is superior to random walk and any linear competing
model for high-frequency exchange rate forecasting.

JEL classification: C45, F31
Bank classification: Exchange rates

Résumé

Les réseaux de neurones artificiels sont employés pour la prévision du taux de change Canada/
États-Unis à fréquence élevée. Ils produisent généralement de meilleures prévisions hors
échantillon récursives qu’une marche aléatoire ou un modèle linéaire. L’addition d’une variable
microstructurelle (le flux des transactions) entraîne une nette amélioration de la capacité de
prévision des modèles tant linéaires que non linéaires. Les auteurs font appel à deux critères pour
évaluer le rendement d’un modèle : la racine carrée de l’erreur quadratique moyenne (REQM) et
la capacité de prévoir le sens des variations du taux de change. La REQM est systématiquement
moins élevée dans le cas des prévisions produites par les réseaux de neurones artificiels que pour
celles issues d’une marche aléatoire ou de modèles linéaires, peu importe le nombre
d’observations hors échantillon. De plus, les réseaux de neurones artificiels permettent de prédire
correctement le sens d’un plus grand pourcentage des variations du taux de change. Selon les
résultats empiriques, l’architecture optimale de ces réseaux fournit de meilleures prévisions du
taux de change à fréquence élevée qu’une marche aléatoire ou tout autre modèle linéaire.

Classification JEL : C45, F31
Classification de la Banque : Taux de change
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1. Introduction

Understanding exchange rate movements has long been an extremely challenging and important

task. Efforts to deepen our understanding of exchange rate movements have taken a number of

tacks. Initially, efforts centred on developing low-frequency fundamentally based empirical

models. More recently, efforts have aimed to develop more microeconomically based models of

the foreign exchange market. Throughout, model building has aimed to provide good exchange

rate forecasts and improve our understanding of exchange rate movements. The models can

sometimes help to pinpoint where the gaps in our knowledge lie, and suggest new avenues of

research. The exchange rate forecasting model developed in this study serves all of the above

purposes.

Various models aimed at explaining exchange rate fluctuations have been proposed. Meese

and Rogoff (1983) found that a simple random walk model performed no worse than a range of

competing representative time-series and structural exchange rate models. Out-of-sample fore-

casting power in those models was surprisingly low for various forecasting horizons (from 1 to 12

months).

Subsequent attempts to determine exchange rates shed little light on the problem. Baillie

and McMahon (1989) pointed out that exchange rates are not linearly predictable. Similarly,

Hsieh (1989) observed that exchange rate changes may be non-linearly dependent. However,

Meese and Rose (1991) examined macroeconomic exchange rate models and found that the poor

explanatory power of the models cannot be attributed to non-linearities. Meese and Rose (1990)

used a non-parametric estimator to handle non-linearities, but this provided no significant

improvement in monthly exchange rate explanation.

Each of the above-mentioned approaches tries to explain exchange rate movements with

macroeconomic variables such as interest rates, money supplies, inflation rates, and trade bal-

ances. Lyons and Evans (1999) incorporated a variable reflecting the microeconomics of asset

pricing into a model of the exchange rate.1 They introduced a new variable, order flow, as the

proximate determinant of the exchange rate (using daily data over a four-month period), and were

able to significantly improve on existing macroeconomic models. More precisely, they managed

to capture about 60 per cent of the daily exchange rate changes using a linear model.

1. His research looks at how market structure (or the trading process) has an impact on the price of the
asset.
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Plasmans, Verkooijen, and Daniels (1998) and Verkooijen (1996) used macroeconomic

models and artificial neural networks (ANN), a very powerful tool for detecting non-linear

patterns, to test whether the underlying relationship is non-linear. They could not produce satis-

factory monthly forecasts. On the contrary, Zhang and Hu (1998) modelled the exchange rate as

depending non-linearly on its past values, and their model outperformed simple linear models, but

they never compared it to a random walk. Hu et al. (1999) showed (using daily and weekly data)

that ANNs are a more robust forecasting method than a random walk model. Hence, the applica-

tion of ANNs to short-term currency behaviour was successful in numerous cases and the results

suggest that ANN models may offer some advantages when frequent short-term forecasts are

required (Evans 1997, Jamal and Sundar 1997, Kuan and Liu 1995).2

This paper examines whether introducing a market microstructure variable (that is, order

flow) into a set of daily observations of macroeconomic variables (interest rate, crude oil price)

together with an ANN technique can explain Canada/U.S. dollar exchange rate movements better

than linear and random walk models. Two statistics are used to compare models: root-mean

squared error (RMSE) and the percentage of correctly predicted exchange rate changes (PERC).

Empirical findings are in favour of the ANN model, which yields a very robust out-of-sample

forecasting improvement in RMSE and PERC.

Section 2 describes the competing theoretical models. Section 3 introduces the ANN

method and its applications to the foreign exchange (FX) market. Section 4 describes the data and

the method used to assess the predictive performance of the models. Section 5 describes the

empirical results of the models. Section 6 concludes the paper and recommends further research.

2. Models of Exchange Rate Determination

There are two broad theories of exchange rate modelling: traditional macroeconomic models and

the more recently developed market microstructure models. Macroeconomic models estimate

exchange rates at monthly or lower frequency. They usually have the following form:

∆rpfxt = φ (Mt) + εt, t=1,..,N.

where∆rpfxt is the change in the logarithm of the real exchange rate over the month or some

lower frequency of observations, and Mt is a vector of typical macroeconomic variables such as

the difference between home and foreign nominal interest rates, the long-run expected inflation

2. In this context, ANNs focus on daily or less-than-monthly frequency, while typical macroeconomic
models are at a monthly or quarterly frequency.
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differential, and relative real growth rates.3 This paper uses a variation of the model developed by

Amano and van Norden (1995):

∆rpfxt = ϕ (rpfxt, comt, enet, intdifft) + δt, t=1,..,N.

where rpfxt is the real Canada/U.S. exchange rate deflated by GDP deflators, comt is the logarithm

of the non-energy commodity price index (deflated by the U.S. GDP deflator), enet is the

logarithm of the energy commodity price index (deflated by the U.S. GDP deflator), and intdifft

represents the nominal 90-day commercial paper interest rate differential (Canada–U.S.).

Macroeconomic models provide no role for any “market microstructure” effects to enter

directly into the estimated equation, and thus they are incorporated through the error termδt.
4

These models assume that markets are efficient in the sense that information is widely available to

all market participants and that all relevant and ascertainable information is already reflected in

exchange rates. In other words, in this view, exchange rate changes are not informed by micro-

structure variables. However, typical macroeconomic models perform poorly. Moreover, empiri-

cal evidence from Lyons and Evans (1999), Yao (1997), Covrig and Melvin (1998), and this paper

suggests that a microstructure variable order flow contains information relevant to exchange rate

determination.

For the spot FX trader, what matters is not the data on any of the macroeconomic funda-

mentals, but information about demand for currencies extracted from purchases and sales orders,

or order flow. It is presumed that certain FX traders observe trades that are not observable to all

the other traders and, in turn, the market efficiency assumption is violated at least in the very short

term.5

Microstructure models rely directly on information regarding the order flow. Non-dealer

market participants (corporations, mutual and pension funds, etc.) analyze all the publicly availa-

ble information, including macroeconomic fundamentals, and then decide on orders. Having

observed order flow (which thus reflects information about macroeconomic fundamentals), deal-

ers set their price.

3. See Meese and Rogoff (1983).
4. Microstructure literature examines the elements of the security trading process: the arrival and

dissemination of information; the generation and arrival of orders; and the market architecture, which
determines how orders are transformed into trades. Prices are discovered in the marketplace by the
interaction of market design and participant behaviour.

5. It may be that, without these market microstructure frictions, markets would be efficient, but trading
frictions impede the instantaneous embodiment of all information into prices.
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The market microstructure approach assumes the following relationship between the

exchange rate and the driving variables:

∆rpfxt = ψ (∆xt, ∆It, Nt) + χt, t=1,..,N.

where ∆xt represents order flow,∆It a change in net dealer positions, and Nt any other

microeconomic variable. Order flow can be positive (net dollar purchases), or negative (net dollar

sales).6 Macroeconomic effects are incorporated into error termχt. A positive relationship

between the exchange rate and order flow is expected, since informational asymmetries gradually

affect the price until it reaches equilibrium. Figure 2.1 illustrates the explanatory power of an

aggregate order flow (the data cover the period from January 1990 to June 2000 at a daily

frequency).

As the solid line indicates, the Canadian dollar has depreciated throughout most of the

sample. The relationship between the exchange rate and order flow is quite clear as a positive

6. Order flow is explained in Section 4.

Figure 2.1 Aggregate (cumulative) order flow and log Canada/U.S. real exchange rate.
Note: All values are normalized to [-1,1].
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correlation between cumulative purchases of U.S. dollars and the depreciation. However, it would

be inappropriate to assume that order flow contains all the information that is relevant for

exchange rates.

This paper combines macroeconomic and microstructure approaches into a single high-

frequency data model. More specifically, it embodies modified models from Amano and van Nor-

den (1995, 1998) and Lyons and Evans (1999):

∆rpfxt = Ψ (∆intdiff t-j, ∆oilt-j, aggoft-j) + ηt, j={1, 7}; t=1,..,N.

where∆intdiff t is the change in the differential between the Canadian and U.S. nominal 90-day

commercial paper rates,∆oilt is the daily change in the logarithm of the crude oil price, and

aggregate order flow is denoted by aggoft. In Section 4, aggoft is disaggregated and individual

order flows are considered.

ANNs are employed to estimate a non-linear relationship between exchange rate move-

ments and these variables.

3. ANNs

3.1 Definition and structure

ANNs represent a general class of non-linear models that has been successfully applied to a

variety of problems such as medical diagnostics, product selection, system control, pattern

recognition, functional synthesis, and forecasting (e.g., econometrics), as well as exchange rate

forecasting.

ANNs are composed of simple computational elements or nodes (Lippmann 1987). Figure

3.1 provides the simplest node, which sums N weighted inputs and conveys the outcome further.

The node is characterized by an internal threshold or offsetθ and by its type of specified non-

linearity. Figure 3.1 illustrates three common types of non-linearities used in ANNs: hard limiters,

threshold logic elements, and sigmoid. More complex nodes might even include integration or

other mathematical operations.
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Neural network models differ in topology, node characteristics, and training or learning

rules. These rules fix the initial set of weights and indicate how weights should be altered and

adjusted during use to improve performance.

There are several ways to structure the neural networks. Typically, the elements are

arranged in groups or layers. Fewer layers limit these networks when modelling a functional rep-

resentation of data, a typical econometrics problem.

Figure 3.1 Computational element or node with N inputs and one output (weighted sum of
inputs). Three representative examples of non-linearities are shown below.
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However, the development of learning algorithms has made it feasible for multi-layered

networks. They are ideal for functional form determination and they are normally structured as

three-layered networks (Figure 3.2).

The three layers are as follows:

• Input layer: The neural network receives its data in the input layer. The number of nodes (i.e.,

neurons) in this layer depends on the number of inputs to a model and each input requires one

neuron. For example, in functional synthesis (this paper’s scope of study), inputs are exoge-

nous variables—that is, observations of interest.

• Hidden layer: The hidden layer lies between the input and output layers; there can be many

hidden layers. They are analogous to the brain’s interneurons, a place where the hidden corre-

lations of the input and output data are captured. This allows the network to learn, adjust, and

generalize from the previously learned facts (i.e., data sets) to the new input. As each input-

output set is presented to the network, the internal mapping is recorded in the hidden layer.

Unlike any other classical statistical methodology, this gives the system intuitive predictability

and intelligence. The number of hidden layers is determined by a trade-off between network

intuitive ability and efficiency. A priori, the optimal number of hidden layers is not clear. With

too many hidden layers, an overcorrecting problem arises: a network is “overtrained” or

Figure 3.2 A three-layered ANN architecture
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INPUT 1

INPUT 4
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“overfitted,” which prevents it from learning a general solution. On the other hand, too few

layers will inhibit the learning of the input-output pattern. Typically, the number of hidden

layers and nodes inside the network is determined through experimentation, and this paper

follows that technique.

• Output layer: Having been trained, the network responds to new input by producing an output

that represents a forecast. During training, the network collects the in-sample output values in

the output layer.

Various attempts at exchange rate forecasting with ANNs are reported in Verkooijen

(1996) and Plasmans, Verkooijen, and Daniels (1998), who estimated structural macroeconomic

exchange rate models. In contrast, Hu et al. (1999), Zhang and Hu (1998), Kaashoek and van Dijk

(1999), Kuan and Liu (1995), and Jamal and Sundar (1997) modelled the exchange rate solely as

a function of its past lags. Evans (1997) forecasted the UK/DM exchange rate based on the

exchange rates of several other currencies.

3.2 Learning and adapting

Neural networks develop an inner structure to solve problems. Through the training process,

connection weights rearrange their values and reveal a data pattern. Thus, the fundamental feature

of neural networks is that they are trained, not programmed.

A neural network learns with each new datum (an input-output combination) introduced

into it during training. Every processing element responds to its input, adjusting its behaviour. The

network calculates the output in accordance with the elements’ transfer function. The only way to

adjust to the correct response is to modify the values of the input connections. The network learns

by adjusting the input weights. The equation that explains this change is called the learning law.

There are two different learning modes: supervised and unsupervised.

The supervised learning mode presents input-output data combinations to the network.

Consequently, the connection weights, initially randomly distributed, adjust their values to pro-

duce output that is as close as possible to the actual output. With each subsequent cycle the error

between the desired and the actual output will be lower. Eventually, the result is a minimized error

between the network and actual output, as well as the internal network structure, which represents

the general input-output dependence. In a one-layered network, it is easy to control each individ-

ual neuron and observe the input-output pattern. In multi-layered neural networks, supervised

learning becomes difficult. It is harder to monitor and correct neurons in hidden layers. Super-

vised learning is frequently used for network decision, memorization, and generalization prob-

lems.
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The unsupervised learning mode is independent of the external influences to adjust

weights. There are no concrete data to correct the neural networks’ pattern identification. There-

fore, the unsupervised learning mode looks for the trend in inputs and adapts to the network func-

tion.

3.3 Backpropagation ANN

The backpropagation ANN, applied for this research, is probably the most commonly used neural

network type. It is characterized by hidden layers and the generalized Delta rule for learning: If

there is a difference between the actual and the desired output pattern during training, then the

connection weights have to be readjusted to minimize the difference (Van Eyden 1996).

Mathematically, the processing elements are modified so that they can monitor their own output.

Afterwards, the actual output is compared to the model’s output (I0). The error value (E) is

computed for the input pattern (X) as the difference between the actual output (y) and I0:

After E has been calculated, the Delta rule is applied giving the change in weights, as fol-

lows:

where: X = input

W = weight

β = the constant that measures the speed of the convergence of the weight vector

At least three layers are required: input, hidden, and output. The hidden layer is very

important, since it enables the ANN to extract patterns and to generalize. Even though a hidden

layer should be large, one must be careful not to deprive the network of its generalizing ability

when the network starts memorizing, rather than deducing. On the other hand, a hidden layer that

is too small could reduce the accuracy of recall. The connections are only feedforwarded between

the adjacent layers. For the transfer function, the backpropagation ANN employs the sigmoid

function (mentioned above).

The learning algorithm that controls backpropagation follows a number of steps:

1) Initialization: Initialize connection weights and neurons to small random values.

2) Data introduction: Introduce the continuous data set of inputs and actual outputs to the

E I y= −0

W W
E X

Xnew old− = ⋅ ⋅β
2
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backpropagation network.

3) Calculation of outputs: Calculate the outputs, and adjust the connection weights several times

applying the current network error.

4) Adjustments: Adjust the activation thresholds and weights of the neurons in the hidden layer

according to the Delta rule.

5) Repeat steps (2) to (4) to converge to the minimum error.

4. Model Specification

4.1 Data description

The order flow data were obtained from the Bank of Canada’s unique Daily Foreign Exchange

Volume Report, which is coordinated by the Bank and organized through the Canadian Foreign

Exchange Committee (CFEC). Details about the trading flows (in Canadian dollars) for six major

Canadian commercial banks are categorized by the type of trade (spot, forward, and futures) and

transaction type (i.e., with regard to trading partner). Because this paper focuses on a short-term

exchange rate forecast, spot transactions are of interest. In a spot transaction, a currency is traded

for immediate delivery and payment is made within two business days of the contract entry date.

Spot transactions vary, as follows:

• Commercial client transactions (CC) include all transactions with resident and non-resident
non-financial customers.

• Canadian-domiciled investment transactions (CD) include all transactions with non-dealer
financial institutions located in Canada.

• Foreign institution transactions (FD) include all transactions with foreign financial institu-
tions, such as FX dealers.

• Interbank transactions (IB) include transactions with other chartered banks, credit unions,
investment dealers, and trust companies in the interbank market.

Because it was unavailable prior to 1994, CD transactions are excluded as an explanatory

variable in this work. However, according to D’Souza (2000), this variable is not statistically sig-

nificant in exchange rate forecasting and it is not considered to be a major part of aggregate order

flow.

Individual order flows (CC, FD, IB) are measured as the difference between the number of

currency purchases (buyer-initiated trades) and sales (seller-initiated trades). Aggregate order

flow (aggof) is the sum of individual order flows.
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As noted earlier, the other variables of interest are the crude oil closing price (in U.S. dol-

lars) deflated by the U.S. consumer price index (CPI) (∆oil) and the change in the difference

between nominal 90-day commercial paper rates in Canada and the United States (∆intdiff).

The dependent variable data set comprises the logarithm of real Canada/U.S. exchange

rate daily changes (∆rpfx) between January 1990 and June 2000: a total of 2,230 observations.

The real exchange rate was calculated from the nominal exchange rate and CPI for the United

States and Canada.

All variables are considered in first-difference terms, because the daily (weekly) change

(positive or negative) prediction is of interest. Two models are considered:

ANN Model 1: ∆rpfxt = f (∆intdiff t-j, ∆oilt-j, aggoft-j) + εt, j={1, 7}; t=1,..,N.

ANN Model 2: ∆rpfxt = g (∆intdiff t-j, ∆oilt-j, CCt-j, IBt-j, FDt-j) + νt, j={1, 7}; t=1,..,N.

For the purpose of ANN modelling, all data were normalized to the [-1,1] interval using

the following equation:

where: xi = normalized value of the input or the output value

Xi = original input or output value

Xi,min = minimum original input or output value

Xi,max = maximum original input or output value

hi = upper bound of the normalizing interval (in this case 1)

li = lower bound of the normalizing interval (in this case -1)

i=1,..,N

The ANN models were developed based on data sets of four variables (model 1) and six

variables (model 2) using 2,230 observations. The model was used to forecast the daily change of

the Canada/U.S. real exchange rate one day and one week into the future.

xi

Xi Xi min,–

Xi max, X– i min,
------------------------------------- hi l i–( ) l i+=
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The networks trained and tested were the three-layer and four-layer backpropagation

ANNs with the non-linear sigmoid and tan-sigmoid neuron activation functions in hidden layers.

The number of input neurons was three for model 1 and five for model 2, while the number of hid-

den neurons varied between three and five for both of the models. The last layer had one linear

output neuron.

The results depend strongly on the ANN architecture. More specifically, the number of

hidden layers, number of neurons in the hidden layer, type of activation function, and training

algorithm are principal determinants of a good prediction model. To avoid overtraining, the ANN

was trained with anearly stoppingtechnique, where the available data set was divided into three

subsets: a training set (used for gradient calculation and weights and biases updating); a validation

set (when the validation error starts increasing, the training is stopped); and a testing set (used to

compare real and model output, or different models).

The network development followed several steps:

• Step 1: Setting of the number of hidden layers, neurons, training algorithm (resilient back-

propagation in our case), initial connection weights, and neuron biases and the activation

function for each neuron.

• Step 2: Network training and validation. Sixty per cent of the time, series introduced to the

ANN and the connection weights and biases values were determined within the network. The

next 30 per cent was used for validation.

• Step 3: Estimation of the predicted output. The input values for the last 10 per cent of the

observations were then used by the trained ANN to generate output, i.e., exchange rate fore-

casts.

• Step 4: Evaluation of the forecast performance of the ANN, and comparison of it to other

models.

• Step 5: Steps 1–4 were repeated if the error goal was not reached.

The network training and testing was performed using the software package Matlab, v.

5.2.0, Neural Networks Toolbox, The MathWorks, Inc. (1998).

4.2 Assessment of forecast performance

In line with the Meese and Rogoff (1983) evaluation criterion, recursive estimation (or rolling

regressions) will be used to evaluate the models’ predictive performance. The initial estimation

starts with the first 90 per cent (chronologically) of the sampleN, or, for instance,mobservations.

That comprises training and validation sets for the ANN. The remaining 10 per cent is a testing
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(forecasting) set of initial sizek; having estimated the model,k forecasts are generated.

Subsequent (k-1) steps involve increasing the estimation sample (so that m increases) and

shrinking the testing set (so that k decreases) by one period. In each subsequent step, (k-s)

forecasts are estimated (s=1,...k-1). Finally, k sets of network responses (of size 1,..,k) can be

compared to actual observations and other models.

This paper considers whether the ANN model can outperform linear and random walk

models in terms of RMSE and the percentage of correctly predicted directions of exchange rate

changes. For most of this paper, RMSE is defined as follows:

whereNk denotes the size of the out-of-sample testing set (Nk=1,...,k), is the model

forecast at time (k+m-t), and∆rpfxk+m-t is the actual exchange rate change. The ratio of data allo-

cated to training, validation, and testing was maintained at 6:3:1 throughout the recursive experi-

ment.
In addition to RMSE, the percentage of correctly predicted signs (PERC) of the forecasted

variable∆rpfxt is considered; this is the total number of correctly forecasted positive and negative

movements, defined as:

PERC(Nk) = (number of positive correct responses + number of negative correct responses)/Nk

5. Empirical Results

This section assesses the forecasting performance of a range of exchange rate models. Generally,

the random walk model performs better than any traditional linear macroeconomic model that

excludes microstructure variables; therefore, it can be viewed as the benchmark model. The

following models are considered first:

Random walk model (RW):
rpfxt =α0 + rpfxt-j + γt, j={1, 7}; t=1,..,N.

Linear model 1:
∆rpfxt =γ0+γ1∆intdiff t-j + γ2 ∆oilt-j +γ3 aggoft-j + εt, j={1, 7}; t=1,..,N.

RMSENk

1
Nk
------ ∆rpf xk m t–+ ∆rpf xk m t–+–( )

2

t 0=

Nk 1–

∑
1
2
---

=

)

∆rpf xk m t–+

)
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Linear model 2:
∆rpfxt = β0+β1∆intdiff t-j + β2 ∆oilt-j + β3CCt-j +β4IBt-j +β5FDt-j + νt, j={1, 7}; t=1,..,N.

Table 5.1 presents linear regression estimation results for these models based on the first

2,005 observations (initial estimation set). The impact of interest rate change is more significant

for lower frequency models (j=7), while the estimator of oil price change is more significant for

one-day-ahead forecasting, Also, order flows are more important for higher frequency forecast-

ing. Even though it is very small, as expected, the R2 increased when individual order flows were

taken into account.7

Table 5.1 Estimation Results For Linear Models

Estimates (standard
error)

Model

Linear Model
1 (j=1)

LinearModel
1 (j=7)

Linear Model
2 (j=1)

Linear Model
2 (j=7)

γ0 (exp 10-5) 8.09
(2.93e-05)

36.53
(7.08e-05)

β0 (exp 10-5) 8.72
(2.95e-05)

36.35
(7.15e-05)

∆intdiff t-j (exp 10-4) -1.13
(0.00025)

 -6.76
(0.00026)

-1.89
(0.00025)

 -6.63
(0.00026)

∆oilt-j -0.0090
(0.0065)

-0.003
(0.0073)

-0.0087
(0.0065)

-0.003
(0.0073)

 aggoft-j (exp 10-7) -1.35
(8.96e-08)

-3.74
(2.16e-07)

CCt-j (exp 10-7) 1.33
(1.28e-07)

 -4.55
(3.11e-07)

IBt-j (exp 10-7) -1.015
(1.69e-07)

-2.66
(4.07e-07)

FDt-j (exp 10-7) -3.86
(8.98e-08)

-3.78
(2.16e-07)

R2 0.0021 0.005 0.0049  0.0055

7. This paper uses daily data over a ten-year period (as opposed to the four-month span used by Lyons
and Evans 1999); therefore, the linear “microstructure” model’s R2 is significantly lower.
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Two non-linear models, as described in Section 4 (ANN models 1 and 2), were estimated

by feedforward backpropagation ANN. Figure 5.1 shows the errors related to the training set, the

validation set, and the testing set. As expected, all three errors decline during the learning process.

Overtraining was prevented by stopping the training process when the validation set error started

to increase.

Full sample estimation of 2,230 observations was used to compare the ANN and linear

model’s performance. Figure 5.2 shows that the linear model forecasts in a linear fashion (for an

arbitrary 90-day period), whereas the ANN forecasts more in keeping with the pattern of actual

exchange rate changes.

Figure 5.1 ANN errors: training, validation, and testing
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After the initial estimation of the models in the first 2,005 observations, a set of out-of-

sample forecasts was used to generate RMSEs. Each recursive re-estimation added 10 observa-

tions, so that 18 RMSEs were calculated on out-of-sample data sets ranging in size from 225 to 55

observations. This led to the selection of an ANN model 1 and ANN model 2 for one-day-ahead

(j=1) and for one-week-ahead (j=7) forecasts of exchange rate changes, which were compared to

linear models 1 and 2 and the random walk model.

Figure 5.2 Linear and ANN model exchange rate forecasts. Actual values are denoted by
circles.
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Figures 5.3, 5.4, 5.5, and 5.6 show that the ANN can produce promising short-run fore-

casts, since the RMSE for the ANN model for a given forecasting horizon is equal to or below

both of the competing models.

Figure 5.3 RMSE for ANN model 1, linear model 1, and random walk (j=1)

Figure 5.4 RMSE for ANN model 2, linear model 2, and random walk (j=1)
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Figure 5.5 RMSE for ANN model 1, linear model 1, and random walk (j=7)

Figure 5.6 RMSE for ANN model 2, linear model 2, and random walk(j=7)
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Tables 5.2 (for j=1) and 5.3 (for j=7) list the RMSE statistics illustrated in these figures.

Table 5.2 RMSE (exp 10-3) for ANN, linear, and random walk models (j=1)

Sample size Model

Random
Walk
(j=1)

Linear
Model 1

(j=1)

ANN
Model 1

(j=1)

Linear
Model 2

(j=1)

ANN
Model 2

(j=1)

225 1.4321 1.4364 1.4270 1.4331 1.4216

215 1.4168 1.4201 1.4121 1.4155 1.4060

205 1.4232 1.4272 1.4163 1.4218 1.4119

195 1.4216 1.4240 1.4143 1.4188 1.4114

185 1.3962 1.4020 1.3871 1.3969 1.3892

175 1.3702 1.3782 1.3580 1.3717 1.3631

165 1.3482 1.3564 1.3353 1.3475 1.3428

155 1.3368 1.3442 1.3237 1.3362 1.3322

145 1.3381 1.3464 1.3238 1.3388 1.3337

135 1.3639 1.3708 1.3496 1.3622 1.3622

125 1.3696 1.3773 1.3540 1.3691 1.3671

115 1.3926 1.4026 1.3739 1.3933 1.3903

105 1.3057 1.3109 1.2963 1.3008 1.2907

95 1.3335 1.3380 1.3230 1.3256 1.3133

85 1.3652 1.3673 1.3515 1.3578 1.3508

75 1.3308 1.3353 1.3163 1.3243 1.3198

65 1.3851 1.3882 1.3738 1.3761 1.3743

55 1.4168 1.4202 1.4070 1.4156 1.4155
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Table 5.3 RMSE (exp 10-2) for ANN, linear, and random walk models (j=7)

The experiments show that the ANN model forecasts one-day and seven-day-ahead

exchange rate changes better than the linear and random walk models. Nevertheless, the primary

indicator of good forecasting power is not necessarily RMSE, but the percentage of correctly fore-

casted directions of real exchange rate fluctuations. In this case, the estimation involves very small

values (exp 10-3) that might result in small RMSEs. In turn, the presence of small RMSEs is not a

guarantee that the prediction is accurate, and caution is required when interpreting the estimation

results.

Sample size Model

Random
Walk
(j=7)

Linear
Model 1

(j=7)

ANN
Model 1

(j=7)

Linear
Model 2

(j=7)

ANN
Model 2

(j=7)

225 0.3457  0.3461 0.3458 0.346 0.3448

215 0.3467  0.3474 0.3461 0.3473 0.3462

205 0.3504 0.3516 0.35 0.3515 0.3502

195 0.3431 0.3435 0.3427 0.3437 0.3428

185 0.3358 0.3367 0.335 0.3368 0.3358

175 0.3371 0.3381 0.3364 0.3382 0.3365

165 0.3333 0.3336 0.3328 0.3338 0.3331

155 0.3377 0.3381 0.337 0.3382 0.3373

145 0.3286 0.3308 0.3253 0.3307 0.3278

135 0.3374 0.3396 0.3338 0.3396 0.3366

125 0.3441 0.3461 0.3408 0.3462 0.3438

115 0.3554 0.3576 0.3518 0.3577 0.3553

105 0.3328 0.3351 0.33 0.3349 0.3326

95 0.3384 0.3404 0.3355 0.3404 0.3384

85 0.3523 0.3544 0.3491 0.3544 0.3521

75 0.3657 0.3682 0.3619 0.3683 0.3656

65 0.3768 0.3787 0.3743 0.3790 0.3764

55 0.3882 0.3894 0.3878 0.3895 0.3868
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As noted above, the percentage of correctly forecasted exchange rate direction changes or

good hits (PERC) is also considered. Recursive regression for horizons between 5 and 225 obser-

vations (step 5) reveals the superiority of the ANN model.8 ANN model 1 (2) correctly predicted,

on average, 60.14 per cent (61.81 per cent) of the direction of daily exchange rate movements,

while linear model 1 (2) correctly predicted 57.18 per cent (58.75 per cent) of such changes, and

the random walk model predicted 54.88 per cent. One-week-ahead forecasts yield worse results

for ANN model 1 and linear model 1 against random walk for j=7, but ANN model 2 has the best

results. Also, the predictive power of both non-random walk models is lower. Table 5.4 compares

all the models used in terms of the second comparison criterion.

8. Step 5 is used instead of step 10 to impose a more demanding setting for ANN models.

Table 5.4 The average percentages of correctly predicted signs for linear models 1 and 2
(LM 1 and LM 2), ANN models 1 and 2 (ANN 1 and ANN 2), and the random walk model.

One-day (j=1) and one-week (j=7) forecasts are considered.

AVERAGE
PERC (%)

Model

Random
Walk

LM 1 ANN 1 LM 2 ANN 2

j=1 54.88 57.18 60.14 58.75 61.81

j=7 56.26 54.9 56.15 55.28 58.04
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Figure 5.7 illustrates the one-day results summarized in Table 5.4. The results show that

the ANN models dominate in predicting the direction of exchange rate changes one day ahead.

Next, out-of-sample, one-step-ahead forecasts are considered. More precisely, ANN

model 1 (2) is initially estimated for the first 2,006 observations. The forecast errors for the

remaining 225 observations (a testing set) are calculated by extending the estimation set by one

and recalculating the forecast errors until the whole testing set is exhausted. This differs from the

preceding forecast experiment in that the earlier experiment did not re-estimate the model up to t-

1 to forecast the exchange rate at t. RMSEs and PERCs for the one-day-ahead forecasts are listed

in Table 5.5. The striking result here is that ANN 2 correctly predicts almost 72 per cent of the

directions of future exchange rate changes, while the random walk model stays at about a 55 per

cent accuracy.

Figure 5.7 Example: recursive estimation PERC comparison for ANN model 2, linear
model 2, and random walk model (1-day forecast)
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To determine the percentage of correctly predicted changes (or good hits) that relates to

positive changes, the following statistic was constructed for the initial testing sample size

(k=225):

PERC(POS) = (number of positive correct responses/number of sample positive movements)

Similarly, for negative good hits another statistic was calculated:

PERC(NEG) = (number of negative correct responses/number of sample negative movements)

The term “positive changes” refers to values above the mean of estimation sample

changes, while “negative changes” are values below the mean value. This corrects for the fact that

there is a significantly greater number of positive changes in this sample. Taking zero as a mean

value would affect the reliability of the criterion, since there were mostly positive changes in the

sample.

Table 5.5 PERC and RMSE (exp 10-3) statistics for the recursive estimation over the whole
testing set (k=225). ANN models 1 and 2 (ANN 1 and ANN 2) and the random walk (RW)

model for one-day-ahead (j=1) forecasts are considered.

Model

RW ANN 1 ANN 2

PERC (%): 54.88 67.56 71.56

RMSE: 1.4321 1.4155 1.3988
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According to Table 5.6, the ANN models forecast positive and negative changes roughly

equally well. In comparison, failing to correct for the positive mean change would lead to the

erroneous conclusion that the model predicts positive changes much better than negative changes.

6. Conclusions and Further Research

This paper combines two new approaches—artificial neural networks and market

microstructure—to exchange rate determination to explain very short-run exchange rate

fluctuations. A variable from the field of microstructure, order flow (aggregate and its

components), is included in a set of macroeconomic variables (interest rate and crude oil price) to

explain Canada/U.S. dollar exchange rate movements.

The results show that the ANN model never performs worse than the linear model, and

always better than the random walk model. This result is not surprising, since ANN is able to

model any non-linear as well as linear functional dependencies. Thus, appropriately selected

ANN models dominated linear models and produced better out-of-sample forecasts.

Table 5.6 PERC(POS) and PERC(NEG) for ANN models 1 and 2 (ANN 1 and ANN 2). One-
day (j=1) and one-week (j=7) forecasts are considered (k=225). Percentages without

normalization are in parentheses.

Model

ANN 1 ANN 2

PERC(POS)
(%):

j=1 42.98
(89.43)

38.02
(80.49)

j=7 57.02
(98.39)

53.04
(98.39)

PERC(NEG)
(%):

j=1 48.08
(2.05)

67.31
(36.27)

j=7 41.44
(0.99)

56.36
(2.97)
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Two criteria are applied to evaluate model performance: RMSE and the ability to correctly

predict the direction of the exchange rate movements. The ANN is consistently better in terms of

RMSE than random walk and linear models for the various out-of-sample experiments. Moreover,

ANN performs on average at least 3 per cent better than other models in its percentage of cor-

rectly predicted signs. This is true for both of the forecasting horizons. As expected, more accu-

rate forecasts are generated for the shorter forecasting window, but they are still superior to the

random walk model. Recursive one-step-ahead forecasts lead to a considerable improvement in

PERC compared to the random walk and linear models.

The results indicate that both macroeconomic and microeconomic variables are useful to

forecast high-frequency exchange rate changes. The inclusion of other microeconomic and macr-

oeconomic variables could improve these findings. Further, including only significant lags of

independent variables could give more accurate forecasts. The significance of each lag should be

tested by ANN models. As well, more complete, longer time series and even higher-frequency

data might be fruitful. The power of this approach can be tested on other currencies. Finally, the

ANN developed for this research can be modified in terms of ANN type, topology, and learning

rule. Connecting (on an adequate basis) the ANN with the statistical techniques, genetic algo-

rithms (Goldberg 1989), fuzzy logic (Cox 1992), and expert systems (Watkins 1993) is a research

direction where high payoffs can be expected.
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