Risk Premium and Optimum Asset Allocation

Richard Guay
Executive Vice-President
Risk Management and Depositors' Accounts Management

September 2003

Presentation Overview

. Risk premium estimate:
. Historical excess yields

- Prospective approaches:
. Breakdown of returns
- Implicit risk premium: EBO model
- Risk and return on assets and surplus:
- Asset optimization
- Surplus optimization
. Globalization and population aging

Caisse de dépôt et placement du Québec

Historical Real Returns

1900-2000 (Dimson, Narch and Staunton) - Percentages

Geometric Return

Country	Stocks	Bonds	Excess return	Stnd. deviation Excess return	Inflation
South Africa	6.9	1.4	5.7	19.7	4.8
Germany	4.4	-2.2	6.7	28.4	5.1^{*}
Australia	7.5	1.1	6.3	18.9	4.1
Belgium	2.6	-0.4	3.1	20.7	5.5
Canada	6.4	1.8	4.5	17.8	3.1
Denmark	4.6	2.6	2.0	16.9	4.1
Spain	3.7	1.3	2.3	20.3	6.1
United States	6.7	1.6	5.0	20.0	3.2
France	3.9	-1.0	4.9	21.6	7.9
Ireland	4.8	1.4	3.2	17.4	4.5
Italy	2.7	-2.2	5.0	30.0	9.1
Japan	4.6	-1.6	6.2	33.2	7.6
Netherlands	5.8	1.1	4.7	21.4	3.0
United Kingdom	5.8	1.2	4.4	16.7	4.1
Sweden	7.6	2.4	5.2	22.1	3.7
Switzerland	5.3	2.8	2.7	17.9	2.2
World equiweighted		4.5			
World weighed		4.6	14.5		

* For Germany, years 1922-23 are excluded.

Historical Real Returns
 Tfime Fiorizon: 1802-2001 (Stegel, 2002, United States) - Percentages

Holding period	Stocks		Bonds		\% Stocks > Bonds	Risk	
	Min.	Max.	Min.	Max.		Stocks	Bonds
1 year	-38.6	66.6	-21.9	35.1	61	18.1	8.6
2 years	-31.6	41.0	-15.9	24.7	65	13.0	6.4
5 years	-11.0	26.7	-10.1	17.7	71	7.5	5.2
10 years	-4.1	16.9	-5.4	12.4	80	4.3	4.0
20 years	1.0	12.6	-3.1	8.8	92	2.9	3.1
30 years	2.6	10.6	-2.0	7.4	99	1.5	2.6

Historical Real Returns
 1956-2002

	Canada		United States	
	S\&P/TSX	Bonds *	S\&P 500	Bonds **
$1956-2002$				
Geometric return	15.5	3.6	5.8	2.6
Standard deviation		8.8	14.9	8.7
Excess return	0.8		3.1	

* Canada : Long-term SC bond holder indices (1956-1979) and long-term Canada SC (1980-2002).
** United States: Interest rates on federal long-term bonds adjusted for the period (1956-1972) and Lehman Brothers Long Term US Treasury (1973-2002).

Prospective Approach 1: Breakdown of Return In real terms

- Actual return on stocks: $R R S_{t}=\operatorname{Div} Y_{t}+R C G_{t}$

Where: $\operatorname{Div} Y_{t}$: dividend yield
$R C G_{t}$ real capital gains return

- $\quad R G C_{t} \approx g_{P / E, t}+g_{R E, t}$

Where: $g_{P / E, t}$: growth in price/earnings multiple $g_{R E, t}:$ actual earnings growth

	Example 1		Example 2	
	Year 0	Year 1	Year 0	Year 1
P/E	10.0	10.0	10.0	11.0
E	1.0	1.1	1.0	1.0
P	10.0	11.0	10.0	11.0
gP/E,t		0\%		10\%
$\mathrm{gre}_{\text {R,t }}$		10\%		0\%
$\mathrm{RCG}_{\mathrm{t}}=\mathrm{gr/E,t}+\mathrm{g}_{\mathrm{RE,t}}$		10\%		10\%

Breakdown of Stock Market Returns

Canadian and Amerioan 1956-2002- Percentages

S\&P/TSX		S\&P 500
	Annual average	Annual average
	4.5	5.8
	3.2	3.4
	1.2	2.3
	-0.6	0.5
ratio	- 1.8	1.9

| Total actual return | $\mathbf{4 . 5}$ | | $\mathbf{5 . 8}$ | |
| :--- | ---: | ---: | :--- | :--- | :--- |
| Dividend yield | 3.2 | | 3.4 | |
| Capital gain | 1.2 | | 2.3 | |
| Breakdown of capital gain | | | | |
| Actual earnings growth | -0.6 | | 0.5 | |
| Changes in price/earnings ratio | 1.8 | | 1.9 | |

Caisse de dépôt et placement du Québec

Prospective Approach 1: Breakdown of Return Real Growth Lag in United States (I900-2001)

- Real growth lag:
- GDP: 3.3\% (1.9\% per capita)
- Earnings (stock market indexes): 1.5\%
- Dividends (stock market indexes): 1.1\%
- Has there been a structural change in business distribution policies?
- Replacing dividends with cash through share redemptions in the United States:
. 4% of earnings in 1972 versus 42\% in 2000
- In 2000, \$172 B for dividends versus \$194 B for redemptions
- In 2000, positive net redemptions

Prospective Approach 1: Breakdown of Return Wiat real growih?

Why has earnings growth lagged behind that of GDP?

- Transfer of wealth to employees and managers?
- Earnings of businesses not included in stock market indexes?
. Problem with calculation of indexes?
- Discontinuity in earnings and dividends: replacement of value stocks with growth stocks
Choice: real GDP growth (consensus forecast) in order to forecast real earnings growth

Dividend yield: 1.8 Real earnings growth:* Changes in P/E ratio:

. Real stock returns:
4.4
" Real bond yields:** 3.1

- Risk premium: 1.3
* Real economic growth and anticipated real earnings growth (estimated by Consensus Economics)
** Rate of return on SC real return bond index

Prospective Approach 1: Breakdown of Return

Prospective Risk Premium in Genadea

Prospective Approach 2: Implicit Risk Premium

- Implicit risk premium:

$$
v_{t}=p_{t}=\sum_{s=1}^{\infty} \frac{F M_{t+s}}{(1+k)^{t+s}}
$$

- Example:

$$
\begin{aligned}
& \mathrm{P}_{2003}=1000 \\
& \mathrm{FM}=80 \text { (perpetuity) } \\
& \mathrm{K}=8 \% \\
& \quad \mathrm{YTM}_{2003}=5 \% \\
& \quad \text { Premium }=8 \%-5 \%=3 \%
\end{aligned}
$$

EdwardS; Bell and Ohlson (EBO) Model

- EBO model:

$$
v_{t}=b v_{t}+\sum_{s=1}^{\infty} \frac{e_{t+s}-k_{t} \times b v_{t+s-1}}{\left(1+k_{t}\right)^{t+s}}
$$

Where $v_{t}=\quad$ intrinsic value of index at time t

$b v_{t}=$	book value of equity at time t	
e_{t+s}	$=$	\quad earnings projections at time $t+s$
k_{t}	$=$	implicit yield

EBO Model

Example: Implifit Premitum - August 2003

	MSCI Canada	MS of price	MSCI United States	\% of price
Index price	919.6	931.1		
$E P S_{t+1}$	55.5	50.6		
$E P S_{t+2}$	63.1	57.1		
$E P S_{t+3}$	68.5	62.2		
g long term (nomical EPS)	4.7%	4.9%		
$b v_{t}$	461.8	50.2%	312.9	33.6%
$\boldsymbol{k}_{\boldsymbol{t}}$	$\mathbf{7 . 8 \%}$		$\mathbf{7 . 5 \%}$	
YTM $_{t}{ }^{*}$	4.9%	4.5%		
Premium $_{\boldsymbol{t}}$	3.0%		3.0%	

EPS= Earnings per share
*Rate of return at maturity on 10-year government bonds

Comparison of Approaches 1 and 2

Ristr Premium in Canadal

Approach 1: Breakdown of return
. Prospective risk premium =1.3

- Redemption correction \approx 0.5^{*}
1,8
Approach 2: Implicit risk premium (EBO)
. Prospective risk premium (12-month MA)= 3.5
- Optimism bias correction (-10\%) \approx $-0.7$2.8
Conclusion: Approach 2 adopted
*See Liang and Sharpe (1999), "Share repurchases and employee stock options and their implications for expected returns".

Projected Stock Market Returns
 EBO Approach in August 2003 - corrected for opitimism bias

Percentage	Implicit premium $(12$-month MA)	Projected local return	Interest rate differential	Projected covered return
Country	(1)	(2)	(3)	$(4)=(2)+(3)$
Canada	2.8	7.7	0.0	7.7
United States	3.2	7.7	0.4	8.1
United Kingdom	2.2	7.0	0.0	7.0
Germany	4.6	8.8	0.7	9.5
Haly	3.2	7.5	0.7	8.2
France	4.1	8.3	0.7	9.0
Japan	5.1	6.5	3.4	9.9
Australia	2.5	8.0	-0.6	7.4
Netherlands	5.0	9.2	0.7	9.9
Sweden	3.8	8.5	0.2	8.6
EAFE				8.8

Return and Risk Projection by Asset Class August 2003

Percentage	Projected return	Projected risk
Short-term securities	3.3	1.0
Bonds	4.6	6.5
Canadian stocks	7.7	16.7
U.S. stocks	8.1	17.8
Foreign stocks	8.8	19.9
Quebec global	9.7	19.8
Shareholdings and infrastructures	9.0	23.4
Private placements	12.0	31.5
Real property	9.0	13.1
Alternative placements	7.3	10.0

Risk of Non-Iraditional Asset Classes

- Shareholdings and infrastructures: historical volatility of S\&P/TSX, adjusted for:
- sectors
. non-diversification and
- size
- Private placements: historical volatility adjusted for:
. size: S\&P600
- sectors: technologies, health and telecommunications
- leverage: buyouts
- lack of liquidity

Risk of Non-Iraditional Asset CJasses

- Real property: estimated volatility after correction for:
- smoothing of yield series and
- leverage (40\%)
- Alternative placements: volatility estimated after correction for:
- smoothing of yield series and
- operating risk

วəqənò np 							
1．61	で9	LOG	$\mathcal{G}^{\prime} \varepsilon$	$0^{\circ} \varepsilon$	$G^{\prime} \mathrm{Z}$	カ0	әэนәләџ！ด
$(\downarrow \bullet$ ）	$\varepsilon^{\prime} G$	（l｀G）	L＇も	$0 \cdot 8$	で8	ガ8	غع
L＇Gレ	G゙レ	9．98	で8	0 ロレ	LOL	$8 \cdot 8$	Ө！！uenb łS \downarrow
＊＊słuәшәэe．d 	Kıradod ןеәу	＊słuәuәэe｜d әұеハ！лd	$\begin{gathered} \text { syગ0łs } \\ \text { u6!əJo」 } \\ \text { ع00乙 ‘0\& } \end{gathered}$	syoołs＇S＇ ol s．eəK 0 レ	syools ue！peuej	spu	

Estimated Return and Risk of Optimum Portfolios Asset Optimization

| Percentage | Optimal Portfolios | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | 6\% Risk | 8\% Risk | 10\% Risk | Maximum
 Return |
| \% in variable income
 securities | 41 | 54 | 64 | 75 |
| Assets | | | | |
| Return on assets | 6.1 | 6.8 | 7.4 | 8.0 |
| Asset risk | 6.0 | 8.0 | 10.0 | 13.0 |
| Sharpe ratio | 0.47 | 0.44 | 0.41 | 0.36 |
| Surplus* | 0.64 | 1.31 | 1.91 | 2.52 |
| Surplus yield | 8.9 | 9.5 | 11.1 | 13.9 |
| Surplus risk | | | | |

*Liabilities are represented by the long-term SC index, YTM $=5.5 \%$ and $D M=12$.

Probabilities Related to Certain Return Thresholds

Asset Optimization

Percentage	Optimum Portfolios			
	6\% Risk	8\% Risk	10\% Risk	Maximum Return
\% in variable income securities	41	54	64	75
One-year horizon				
Greater than 10\%	26	35	40	44
Less than 4\%	36	36	37	38
Less than 0\%	15	20	23	27
Five-year horizon				
Greater than 10\%	8	19	28	37
Less than 4\%	21	22	22	24
Less than 0\%	1	3	5	8

Probabilities Related to Certain Thresholds

Asseyflability ratio (surpi(us) - Asset opitmization

| Percentage | Optimum Portfolios | | | |
| :--- | ---: | :---: | ---: | ---: | ---: |
| | 6\% Risk | 8\% Risk | 10\% Risk | Maximum
 Return |
| \% in variable income
 securities | 41 | 54 | 64 | 75 |
| One-year horizon | 15 | 18 | 23 | 29 |
| Ratio greater than 1.1 | 12 | 12 | 14 | 18 |
| Ratio less than 0.9 | | | | |
| Five-year horizon | 20 | 27 | 34 | 41 |
| Ratio greater than 1.2 | 25 | 22 | 21 | 23 |
| Ratio less than 0.9 | | | | |

Asset Optimization Versus Surplus Optimization

Percentage Optimum Portfolios

Asset optimization				
\% in variable income securities	41	54	64	75
Asset risk	6.0	8.0	10.0	13.0
Return on suprlus	0.64	1.31	1.91	2.52
Surplus risk	8.9	9.5	11.1	13.9
Surplus optimization	50	55	68	75
\% in variable income securities	8.7	9.4	11.2	13.0
Asset risk	1.44	1.64	2.12	2.52
Return on suprlus	8.9	9.5	11.1	13.9
Surplus risk				

Integration of Financial Markets

- International diversification easier:
- Lower risk premium than in the past
- Risk premium parity across liquid markets (arbitrage for same risk level)
. Sectoral premiums versus country premiums?

Impact of Aging Population on Expected Return on Financial Assets

- Negative factors:
- Lower GDP and earnings growth
. Sale of risky assets:
. Risk reduction
- Consumption
. Highly attenuating factors:
- Uncertainty over life expectancy: wealth at death
- Rising age of retirement
- In an inflationary environment, stocks perform better than bonds
- Immigration/emigration
. Emerging countries: global manufacturing

Conclusion

- Anticipated share premium is in the order of 3%.
- Increase variable income securities from 0\% to 50\%:
. approximate 2% increase in return,
. surplus risk reaches 9.5%.
- Non-traditional assets (real property, private placements and hedge funds) appear more promising than stocks, but introduce a significant "manager's choice" risk
- Aging population: negative impact on yields attenuated by economic and demographic factors

Annexes

Caisse de dépôt et placement du Québec

Composition of Optimum Portfolios for Various Risk Levels

Percentage	Optimum Portfolios			
	6\% Risk	8\% Risk	10% Risk	Maximum Return
Short-term securities	5.8	0.0	0.0	0.0
Bonds	52.8	45.5	36.1	25.0
Fixed income securities	$\mathbf{5 9}$	46	$\mathbf{3 6}$	$\mathbf{2 5}$
Canadian stocks	12.3	14.7	11.9	15.0
U.S. and foreign stocks	4.4	4.0	7.9	20.0
Quebec global	0.0	10.0	10.0	10.0
Shareholdings and infrastructures	0.0	1.4	4.5	10.0
Private placements	4.7	4.4	9.5	10.0
Real property	10.0	10.0	10.0	10.0
Alternative placements	10.0	10.0	10.0	0.0
Variable income securities	$\mathbf{4 1}$	$\mathbf{5 4}$	$\mathbf{6 4}$	$\mathbf{7 5}$

Composition of Optimum Portfolios for Various Risk Levels

Asset optimization

Percentage	Optimum Portfolios			
Surplus risk of	8.9	9.5	11.1	13.9
Short-term securities	0.0	0.0	0.0	0.0
Bonds	49.9	44.7	32.0	25.0
Fixed income securities	$\mathbf{5 0}$	$\mathbf{4 5}$	$\mathbf{3 2}$	$\mathbf{2 5}$
Canadian stocks	0.0	0.0	0.0	15.0
U.S. and foreign stocks	5.2	8.7	18.0	20.0
Quebec global	10.0	10.0	10.0	10.0
Shareholdings and infrastructures	4.9	6.5	10.0	10.0
Private placements	10.0	10.0	10.0	10.0
Real property	10.0	10.0	10.0	10.0
Alternative placements	10.0	10.0	10.0	0.0
Variable income securities	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 8}$	$\mathbf{7 5}$

Optimization Constraints

Percentage	Lower thresholds	Upper thresholds
Short-term securities	0	20
Bonds	25	70
Canadian stocks	0	40
U.S. and foreign stocks	0	30
Quebec global	0	10
Shareholdings and infrastructures	0	10
Private placements	0	10
Real property	0	10
Alternative placements	0	10

Correlation Matrix

Percentage	Bonds	Canadian stocks	U.S. stocks	Foreign stocks	Quebec global	Shareholdings \& infr.	Private placements	Real property
Canadian stocks	0.1	1.0						
U.S. stocks	0.5	0.6	1.0					
Foreign stocks	0.2	0.7	0.7	1.0				
Quebec global	0.6	0.7	0.9	0.9	1.0			
Shareholdings and infrastructures	0.3	0.7	0.6	0.6	0.6	1.0		
Private placements	0.1	0.8	1.0	0.8	0.9	0.7	1.0	
Real property	(0.6)	(0.1)	(0.1)	0.2	(0.1)	0.0	0.1	1.0
Alternative placements	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.0

Caisse de dépôt et placement du Québec

