OCACT Stochastic Model

Version 2004.1

Office of the Chief Actuary U.S. Social Security Administration March 24, 2006

Social Security Financial Analysis

 Annual Trustees Report: OCACT projects principal factors which affect the financial status of the OASDI program (75-year projection)

 Board of Trustees of the Federal Old-Age and Survivors Insurance (OASI) and Disability Insurance (DI) Trust Funds

Deterministic Model

• 3 sets of assumptions

- Alt 1: low cost (more optimistic)
- Alt 2: intermediate
- Alt 3: high cost (more pessimistic)
- Sensitivities
- No indication of probabilities associated with each alternative

Stochastic Model

- Assigns random variation for key assumptions
- Provides a probability distribution of possible outcomes around the intermediate case
- In the absence of random variation, the value of each input variable equals its value under the intermediate assumptions

Programmers / Program Flow

Demographic Equations

- Total Fertility Rate
- Rate of Mortality Improvement (42)
- Legal Immigration
- Legal Emigration
- Net Other Immigration

Economic Equations

- Unemployment Rate
- Inflation Rate
- Real Interest Rate
- Growth Rate in the Real Average Wage

Disability Equations

• Disability Incidence Rate (2)

• Disability Recovery Rate (2)

Source Code Outline

do runNum = 1, totalRuns

- do year = TR_YEAR, lastProjYear
 - call AssumptionsSubroutine(year)
 - call PopulationSubroutine(year)
 - call EconomicSubroutine(year)
 - call InsuredSubroutine(year)
 - call DIBSubroutine(year)
 - call OASIBSubroutine(year)
 - call AwardsSubroutine(year)
 - call CostSubroutine(year)
 - call SummaryResultsSubroutine(year, runNum)
- end do

end do

Runtime Log

Time (in	Name of	Checkpoint		
seconds)	Transition	Transition		
4.67	Initialization	1==> 2		
0.00	start simulation	2==> 3		
0.57	assumptions subroutine	3==> 4		
0.50	population subroutine	4==> 5		
0.19	economic subroutine	5==> 6		
0.03	insured subroutine	6==> 7		
0.69	dib subroutine	7==> 8		
0.99	oasib subroutine	8==> 9		
255.68	<pre>awards subroutine</pre>	9==>10		
0.54	cost subroutine	10==>11		
0.08	summary results subroutine	11==>12		
0.05	status report	12==>13		
0.00	restart year loop	13==> 3		
0.00	end simulation	13==>14		
0.22	wrapup	14==>15		
264.20	Total time of simulation:			
10	Total number of runs:			
76	Number of years per run:			
2004 to 2079	Years simulated:			
26.42	pproximate average time per run:	2		

Interesting Facts

- First appearance: 2003 Trustees Report
- Model updated each year
- Compiled using Compaq Visual Fortran 6.1.A
 - -20 source code files
 - Approx. 26,000 lines of code
 - Over 160 data files
- Requires 425 MB of RAM
- Approx. 34 hours to run 5,000 simulations

Examples of Equations

Fertility Equation Development

• Data Sources

- National Center for Health Statistics
- U.S. Census Bureau
- Historical Period 1917 2002
- Age-specific birth rates for women, 14 49
- Total Fertility Rate = sum of age-specific birth rates in a given year.

Fertility Equation Development U.S. Total Fertility Rate, 1917-2002

Calendar Year

Fertility Equation Specification

 $F_{t} = F_{t}^{TR} + 1.99f_{t-1} - 1.51f_{t-2} + 0.91f_{t-3} - 0.42f_{t-4} + \varepsilon_{t} - 0.67\varepsilon_{t-1}$

- F_t =Total Fertility Rate
- Regression performed with EViews software
- Modified ARMA(4,1)
 - Centered on 2004 Trustees Report Intermediate Assumption (TR04II)
 - TFR bounded below by 0.5 and above by 3.4

Fertility Equation Fit U.S. Total Fertility Rate, 1917-2002

Calendar Year

U.S. Total Fertility Rate Probability Distribution, 2004 - 2078

Mortality Equation Development

Data Sources

- National Center for Health Statistics
- U.S. Census Bureau
- Centers for Medicare & Medicaid Services
- Historical Period 1900 2000
- Central death rates for 42 age-sex groups

Mortality Equation Specification

$$MR_{k,t} = MR_{k,t}^{TR} + \phi_k mr_{k,t-1} + \varepsilon_{k,t}$$

- $MR_{k,t}$ =Rate of decrease in central death rate
- Modified AR(1)
- Random error among 42 age-sex groups correlated using Cholesky decomposition

Cholesky Decomposition

- Use fitted equations to compute residuals
- Compute variance-covariance matrix of residuals, V
- Perform Cholesky decomposition, **V** = **LL'**
- Generate a vector of independent standard normal random variables, \vec{x}
- Multiply lower triangular matrix by vector, $\mathbf{L}\vec{x} = \vec{\varepsilon}$

Mortality Equation Results

Mortality Equation Results

Economic Equations

- Unemployment Rate, CPI and Real Interest Rate estimated using Vector Autoregression (VAR) with 2 lags.
 - Unemployment rates expressed as log-odds ratios.
 - Percent change in CPI transformed into logs with lower bound of -3%.

Economic Equations Specification

• The 3-Variable VAR

 $U_{t} = U_{t}^{TR} + 0.96u_{t-1} - 0.30u_{t-2} + 0.40i_{t-1} - 0.08i_{t-2} + 0.75r_{t-1} + 0.61r_{t-2} + \varepsilon_{1t}$

 $I_{t} = I_{t}^{TR} - 0.77u_{t-1} + 0.72u_{t-2} + 0.60i_{t-1} + 0.30i_{t-2}$ $-4.85r_{t-1} + 1.80r_{t-2} + \varepsilon_{2t}$

 $R_{t} = R_{t}^{TR} + 0.06u_{t-1} - 0.05u_{t-2} + 0.03i_{t-1} - 0.03i_{t-2} + 1.23r_{t-1} - 0.32r_{t-2} + \varepsilon_{3t}$

Cholesky Decomposition

 $\mathbf{L}\vec{x} = \vec{\varepsilon}$

 $\begin{bmatrix} 0.113 & 0 & 0 \\ -0.050 & 0.139 & 0 \\ 0.001 & -0.007 & 0.010 \end{bmatrix} \begin{bmatrix} 0.854 \\ -0.041 \\ 2.285 \end{bmatrix} = \begin{bmatrix} 0.097 \\ -0.049 \\ 0.024 \end{bmatrix}$

Unemployment Rate Equation Results

Unemployment Rate, Probability Distribution, 2004 - 2078

Unemployment Rate Equation Results

Unemployment Rate, Probability Distribution, 2004 - 2078

CPI Equation Results

CPI Equation Results

Inflation (% change in CPI), Probability Distribution, 2004 - 2078

Real Interest Rate Equation Results

Real Interest Rate, Probability Distribution, 2004 - 2078

Real Interest Rate Equation Results

Real Interest Rate, Probability Distribution, 2004 - 2078

Principal Measures of Financial Status

Cost Estimates

Projection methods are based on techniques used in OCACT's deterministic model

- Insured population (including disability insured)
- Number of DI and OASI beneficiaries
- Average award benefit
- Average in-current-pay benefit

This allows us to determine the year-by-year scheduled benefits, the largest component of the cost of the OASDI program

Year-by-Year Trust Fund Operations

• Income

- Tax contributions
- Taxation of benefits
- Interest income

• Outgo

- Scheduled benefits
- Administrative expenses
- Railroad interchange

EOY Assets = BOY Assets + Income - Outgo

Annual Values

For a given trust fund path, in each year we may compute:

- Income rate
- Cost rate
- Annual balance
- Trust fund ratio

Summarized Values

- For each trust fund path, we may compute the following values:
- Summarized income rate
- Summarized cost rate
- Actuarial balance
- Open-group unfunded obligation
- Exhaustion year

Results for OASDI Based on 2004 Trustees Report

	Deterministic Model			Percentiles from Stochastic Model				
	TR04 II (Alt 2)	TR04 I (Alt 1)	TR04 III (Alt 3)	50 th	10 th	90 th	2.5 th	97.5 th
Actuarial Balance	-1.89	0.41	-4.96	-1.98	-3.25	-0.85	-4.02	-0.33
Summarized Income Rate (percent of payroll)	13.84	13.72	13.98	13.84	13.69	13.99	13.62	14.08
Summarized Cost Rate (percent of payroll)	15.73	13.30	18.94	15.83	14.65	17.15	14.08	17.96
Open Group Unfunded Obligation (1/1/04 trillions PV \$)	3.7	-1.1	10.3	4.0	1.5	7.1	0.4	9.2
Exhaustion Year	2042	-	2031	2042	2035	2056	2032	2071

Annual Cost Rates

Trust Fund Ratios

Histogram of Actuarial Balances

Cumulative Frequency Distribution

Improvements to the Stochastic Model

- Additional stochastic variables
- Using alternative equations
- Introducing structural variation in the longrange central tendencies of variables

- Could model additional variables, for example:
- labor force participation rate
- productivity
- marriage rates

Interplay between variables: three economic variables are correlated and are estimated using a vector autoregressive model. The interaction of other variables could also be considered.

- For example, each run would vary the value of the ultimate assumption (such as the average total fertility rate over the last 50 year of the projection period) around an amount equal to the Trustees assumption.
- Add variation to the parameter values.

Further Information

Check our website:

http://www.ssa.gov/OACT/stochastic/index.html

Actuarial Study on our Stochastic Model: http://www.ssa.gov/OACT/NOTES/as117/as117.pdf

Technical questions: Tony Cheng 410-966-5732 Michael Miller 410-965-7776