Optimal Asset Allocation

Richard Guay
Executive Vice-President
Risk Management and Depositors" Accounts Management
May 2, 2003

Caisse de dépôt et placement

Presentation Overview

- Risk premium estimate
. Historical excess returns
- Prospective approach 1: Breakdown of returns
- Prospective approach 2: Implicit risk premium
- Asset allocation
- Return and risk of generic portfolios
- Constrained optimizations
- Sensitivity analysis

Different Approaches to Estimating the Risk Premium

. Historical excess returns

- Approach 1: Breakdown of returns
- Approach 2: Implicit risk premium

Objective: Optimal asset allocation

Historical Returns

1900-2000 (Dimson, Narci and Staunton) - Percentages

Geometric Return

Country	Equities	Bonds	Excess Return	Standard Deviation	Inflation
South Africa	12.0	6.3	5.7	19.7	4.8
Germany	9.7	2.8	6.7	28.4	5,1*
Australia	11.9	5.2	6.3	18.9	4.1
Belgium	8.2	5.1	3.1	20.7	5.5
Canada	9.7	5.0	4.5	17.8	3.1
Denmark	8.9	6.8	2.0	16.9	4.1
Spain	10.0	7.5	2.3	20.3	6.1
United States	10.1	4.8	5.0	20.0	3.2
France	12.1	6.8	4.9	21.6	7.9
Ireland	9.5	6.0	3.2	17.4	4.5
Italy	12.0	6.7	5.0	30.0	9.1
Japan	12.5	5.9	6.2	33.2	7.6
Netherlands	9.0	4.1	4.7	21.4	3.0
United Kingdom	10.1	5.4	4.4	16.7	4.1
Sweden	11.6	6.2	5.2	22.1	3.7
Switzerland	7.6	5.1	2.7	17.9	2.2
World average			4.5		
World weighted average			4.6	14.5	

[^0]Caisse de dépôt et placement du Québec

Actual Historical Returns

1951-2000 (Dimson, Narsit and Staunton, 2002) - Percentages

Geometric Return

Actual Historical Returns

Importance of the horizon: 1802-2001 (Stegel, 2002, United States) - Percentages

Holding Period	Equities		Bonds		\% Equities > Bonds	Risk	
	Min.	Max.	Min.	Max.		Equities	Bonds
1 year	-38.6	66.6	-21.9	35.1	61	18.1	8.6
2 years	-31.6	41.0	-15.9	24.7	65	13.0	6.4
5 years	-11.0	26.7	-10.1	17.7	71	7.5	5.2
10 years	-4.1	16.9	-5.4	12.4	80	4.3	4.0
20 years	1.0	12.6	-3.1	8.8	92	2.9	3.1
30 years	2.6	10.6	-2.0	7.4	99	1.5	2.6

Actual Historical Returns

1956-2002: Impaet of years 2001 and 2002- Percentages

Canada

United States

S\&P/TSX Bonds* Treasury Bills S\&P 500 Bonds** Treasury Bills

$1956-2002$						
Geometric return	4.5	3.6	2.5	5.8	2.6	1.6
Standard deviation	15.8	8.8	1.5	14.9	8.7	0.9
Excess return		0.8	1.9		3.1	4.2
$1956-2000$		1.8	2.7		4.6	5.4
Excess return						

[^1]- Tremendous volatility of historical excess annual returns
- Imprecise historical data
- Significant confidence intervals
. Historical results versus prospective risk premium
- Significant difference depending on whether looking at 2000 or 2002

Prospective Approach 1: Breakdown of return Actual

Actual equities return: $R R A_{t}=R$ Div $_{t}+R G C_{t}$
Where: R div $_{t}$ dividend yield $R G C_{t}:$ actual capital gains real return

- $\quad R G C_{t} \approx g_{C / B, t}+g_{R B, t}$

Where: $g_{C / B, t}$. growth in multiple price/earnings
$g_{R B, t}$ actual growth in earnings
Example 1
Year $0 \quad$ Year 1

C/B	10	10		10	10.20
$R B$	1	1.02		1	1
$g_{C / B, t}$			0%		2%
$g_{R B, t}$		2%		0%	
$R G C_{t}=g_{C / B, t}+g_{R B, t}$			2%	2%	

Breakdown of Dividend Yield

Canadians and Amerioans in 1956-2000 - Percentages

	S\&P/TSX		S\&P500			
	Annual Average	Contribution		Annual Average	Contribution	
Total actual yield	5.4			7.1		
Dividend yield	3.3	61		3.5	50	
Capital gain	2.1	39		3.5	50	
Capital gain breakdown						
Actual growth in earnings	1.5		1.9			
Changes in the price/earnings ratio	0.5		1.6			

Breakdown of Stock Market Yield

Canadians and Americans in 1956-2002 - Percentages

	S\&P/TSX		S\&P 500	
	Annual Average	Contribution	Annual Average	Contribution
Total actual yield	4.5		5.8	
Dividend yield	3.2	72	3.4	59
Capital gain	1.2	28	2.3	41
Capital gain breakdown				
Actual growth in earnings	-0.6		0.5	
Changes in price/earnings ratio	tio 1.8		1.9	

Prospective Approach 1: Breakdown of Return Whiat reai growith?

- Lag in real growth in the United States
- GDP: 3.3\% (1.9\% per capita)
- Earnings: 1.5\%
- Dividends: 1.1\%
- Why?
- Transfer of wealth to employees and managers?
- Problem with the calculation of indices?
- Discontinuity in earnings and dividends: replacing of value securities by growth stock
- Choice: real economic growth

Prospective Approach 1: Breakdown of Return

Prospective ristr premium

- Has there been a structural change in business distribution policies?
- Replacing dividends by cash through the buy back of equity
- United States
- 3.59% of earnings in 1972 versus 41.8% in 2000
- In 2000, \$172 B for dividends versus \$194 B for buybacks

Prospective Approach 2: Implicit Risk Premium

- Approach taken: implicit risk premium
. Constraint: intrinsic value (v) = price (p)
- Intrinsic value = discounting cash flows (CF)
- Unknown: discount rate (k)
- Risk premium $=k_{t}-$ YTM $_{t}$

Where YTM $_{t}$: yield to maturity

- Example: $\quad v_{t}=p_{t}=\sum_{s=1}^{\infty} \frac{F M_{t+s}}{(1+k)^{t+s}}$

$$
\begin{aligned}
& \mathrm{P}_{2003}=1000 \\
& \mathrm{FM}=80 \text { (perpetuity) } \\
& \quad \mathrm{K}=8 \% \\
& \quad \mathrm{YTM}_{2003}=5 \% \\
& \quad \text { Premium }=8 \%-5 \%=3 \%
\end{aligned}
$$

. Different valuation models

- Discounting dividends (Gordon)
- Discounting cash flows (MA)
- Sum of the book value of equity + discounting of future economic value added (EBO)
- EBO model: evaluation model based on available inputs
- Book value of equity
- Earnings projections
- Potential problem: biased projections

EBO Model

$$
v_{t}=b v_{t}+\sum_{s=1}^{\infty} \frac{e_{t+s}-k_{t} \times b v_{t+s-1}}{\left(1+k_{t}\right)^{t+s}}
$$

Where $v_{t} \quad=$ intrinsic value of the index at time t

$$
\begin{array}{ll}
b v_{t} \quad=\text { book value of equity at time } t \\
e_{t+s} \quad=\text { earnings projections at time } t+s \\
k_{t}=Y T M_{t}+P r
\end{array}
$$

Note:
"Abnormal" earnings or economic value added $=e_{t+s}-k_{t} \times b v_{t+s-1}$

EBO Model

Example: Implicit premium - Jenuary 2003

	Canada	as \% of Price	United States	as \% of Price
Price of index	848.2		858.3	
EPS $_{t+1}$	44.3	5.2%	44.0	5.1%
EPS $_{t+2}$	57.3	6.8%	51.3	6.0%
EPS $_{t+3}$	67.1	7.9%	59.1	6.9%
$\mathrm{~g} \mathrm{(long} \mathrm{term)}$	2.0%		2.0%	
bv $_{t}$	527.5	62.2%	320.9	37.4%
k_{t}	8.2%		7.6%	
YTM $_{\mathrm{t}}$	5.0%		4.1%	
Premium $_{\mathrm{t}}$	3.2%		3.6%	

Comparing Approaches 1 and 2

Risis premium in Canada

Comparing approaches 1 and 2 Ristr premium in Canada today

- Minimum threshold
- Approach 1: Breakdown of return
. Prospective risk premium = 1.3\%
- Buyback correction $\approx+0.5 \%$
. Maximum threshold
- Approach 2: Implicit risk premium
- Projected risk premium = 3\%
- Optimism bias correction $\approx-1 \%$
- Conclusion: 2\% prospective premium
- Impact on the allocation of assets in a reference portfolio

Projecting Stock Exchange Returns

EBO approach

Implicit Premium	Projected Local	Interest Rate
$(12$ month MA)	Return	Differential

Projected Hedged Return

	(1)	(2)	(3)	$(4)=(2)+(3)$
Canada	3.0%	8.0%	0.0%	8.0%
United States	2.9%	6.6%	1.3%	7.9%
United Kindgom	2.0%	6.1%	0.8%	6.9%
Germany	3.8%	7.7%	1.0%	8.8%
Italy	2.8%	6.9%	1.0%	7.9%
France	3.4%	7.3%	1.0%	8.4%
Japan	4.5%	5.3%	4.2%	9.5%
Australia	2.4%	7.4%	-0.1%	7.3%
Netherlands	4.2%	8.2%	1.0%	9.2%
Sweden	3.5%	7.9%	0.5%	8.4%
EAFE				8.3%

Projected

Return

	Return	Risk
Short-term securities	3.6%	1.0%
Bonds	4.8%	6.6%
Canadian equities	8.0%	16.4%
American equities	7.9%	16.9%
Foreign equities	8.3%	19.1%
Real estate	8.5%	13.4%

The correlation matrix is presented in Annex A.

Caisse de dépôt et placement du Québec

Composition of Generic Reference Portiolios

Asset Category	Portfolio 1	Portfolio 2	Portfolio 3
Short-term securities	2.0%	2.0%	2.0%
Bonds	48.0%	38.0%	28.0%
Fixed income securities	50.0%	40.0%	30.0%
Canadian equities	15.0%	17.0%	19.0%
American equities	14.0%	17.0%	20.0%
Foreign equities	14.0%	17.0%	20.0%
Real estate	7.0%	9.0%	11.0%
Variable income securities	50.0%	60.0%	70.0%

Return and Risk of Generic Portfolios

	Portfolio 1	Portfolio 2	Portfolio 3
Total return	6.4%	6.8%	7.1%
Risk	8.2%	9.1%	10.1%
Sharpe Ratio	$\mathbf{0 . 3 5}$	$\mathbf{0 . 3 5}$	$\mathbf{0 . 3 5}$

Optimization Constraints

	Lower Thresholds	Upper Thresholds
Short-term securities	0.0%	20.0%
Bonds	25.0%	50.0%
Canadian equities	15.0%	40.0%
American and foreign equities	0.0%	30.0%
Real estate	0.0%	15.0%

Composition of Optimal Portfolios for Different Risk Levels

	Minimum Risk	6% Risk	8% Risk	10% Risk	Maximum Return
Short-Term Securities	20.0%	8.3%	0.0%	0.0%	0.0%
Bonds	50.0%	50.0%	41.7%	25.0%	25.0%
Fixed Income Securities	$\mathbf{7 0 . 0 \%}$	$\mathbf{5 8 . 3 \%}$	$\mathbf{4 1 . 7 \%}$	$\mathbf{2 5 . 0 \%}$	$\mathbf{2 5 . 0 \%}$
Canadian equities	15.0%	21.7%	28.2%	32.6%	30.0%
American and foreign equities	0.0%	5.0%	15.1%	27.4%	30.0%
Real Property	15.0%	15.0%	15.0%	15.0%	15.0%
Variable Income Securities	$\mathbf{3 0 . 0 \%}$	$\mathbf{4 1 . 7 \%}$	$\mathbf{5 8 . 3 \%}$	$\mathbf{7 5 . 0 \%}$	$\mathbf{7 5 . 0 \%}$
	100.0%	100.0%	$\mathbf{1 0 0 . 0 \%}$	100.0%	100.0%

Projected Return and Risk for Optimal Portfolios

	Optimal Portfolios				
	Minimum Risk	6% Risk	8% Risk	10% Risk	Maximum Return
Total Return	5.6%	6.1%	6.8%	7.4%	7.7%
Risk					
		6.6%	8.0%	10.0%	11.3%
Sharpe Ratio	0.44	0.42	0.40	0.38	0.36

Probabilities Related to Certain Return Thresholds

Optimal Portfolios

Minimum Risk $\quad 6 \%$ Risk	8\% Risk	10\% Risk	Maximum Return

One Year Horizon					
More than 10\%	17\%	26\%	34\%	39\%	40\%
Less than 4\%	36\%	36\%	37\%	37\%	38\%
Less than 0\%	11\%	15\%	20\%	23\%	25\%
Five Year Horizon					
More than 10\%	2\%	7\%	18\%	27\%	29\%
Less than 4\%	22\%	22\%	22\%	23\%	24\%
Less than 0\%	1\%	1\%	3\%	5\%	6\%
Ten Year Horizon					
More than 10\%	1\%	2\%	10\%	19\%	22\%
Less than 4\%	13\%	13\%	14\%	15\%	16\%
Less than 0\%	1\%	1\%	1\%	1\%	2\%

Composition of optimal porifolios for an 8% rish level

	Optimal Portfolios		
Short-term securities	EBO Scenario -1\%	EBO Scenario	EBO Scenario +1\%
Bonds	0.0%	0.0%	0.0%
Canadian equities	42.2%	41.7%	41.4%
American and foreign equities	27.1%	28.2%	28.8%
Real estate	15.8%	15.1%	14.8%
Projected return	15.0%	15.0%	15.0%
Risk	6.2%	6.7%	7.3%

Annex A - Correlation Matrix

Ten-year horizon - Anmual

	Short-Term Securities	Bonds	Canadian Equities	American Equities	Foreign Equities	Quebec World	Real Estate
Short-Term Securities	1.00						
Bonds	0.25	1.00					
Canadian Equities	-0.06	0.10	1.00				
American Equities	0.12	0.48	0.59	1.00			
Foreign Equities	-0.03	0.22	0.68	0.70	1.00		
Quebec World	0.07	0.60	0.62	0.93	0.85	1.00	
Real Estate	0.23	-0.32	0.20	0.02	0.30	0.04	1.00

[^0]: * For Germany, years 1922-23 are excluded.

[^1]: * Canada: Long-term SC bondholder indices (1956-1979) and long-term Canada SC (1980-2002)
 ** United States: Rate of interest on federal long-term liabilities adjusted for the duration (1956-1972) and Lehman Brothers Long Term US Treasury (1973-2002)

