Pension Plan Management: Assumptions for a New Century

March 17, 2000

Research and Economics Leo_de_Bever@OTPP.COM 416-730-5375

Ontario Teachers' Pension Plan Board

Overview

- Demographic Trends
- Economic Assumptions
- Surplus and Asset Mix
- Financial Markets
- Surplus Risk Management
- Real Retirement Income and Fiscal Policy

Teachers' Assumptions

- Demographic Trends
 - Slow Rise In Active Membership
- Economic Assumptions
 - 3% Real North-American Growth, 2% Inflation
 - 3.5% Real Risk Free Return, 2% Equity-Bond Spread
- Surplus and Asset Mix
 - Real Assets, Stocks Best Fit With Liabilities
- Financial Markets
 - Risk of Surplus Loss Very High Near Term
- Surplus Risk Management
 - Benefit and Surplus Policy Key To Risk Control
- Real Retirement Income and Fiscal Policy
 - Real Value of Pensions May Not Be as High As Assumed Board

Demographics

- Population Growth 1% or Less
 - Affects GDP More Than GDP/Capita
- Employment/Population: Conflicting Trends
 - Aging Population Healthier Population
 - » Falling Unemployment
 - » Falling Participation Rates
 - » Higher Participation in Part-Time Employment
 - Is Retirement Economically Feasible for All
 - » Real Value of Retirement Income
 - Relative Price Shift?
 - Real Private Cost of Medical Care

Employment Projection by Strategic Projection

Growth rate from 2000 to 2021: 1.4%

Teachers' Fund is Aging

<u>In 1990</u>:

Actives: 138,000

Pensioners: 37,700

Pensioners In

Their 50s: 18%

+ 6,200

+ 30,300

<u>In 1999</u>:

Actives: 144,200

Pensioners: 68,000 ←

Pensioners In Their 50s: 32%

% of Liability Due to Retirees Is Rising

Contributions/Liabilities Falling

Contribution Risk Rising

Increase In Teachers' Contribution Rate For A 1% Investment Shortfall

Implications of Aging

- Active, Retired Member Interests Can Diverge
 - If Expected Return on Assets Is High
 - » High Volatility, Lower Average Cost of Pensions
 - If Expected Return on Assets Is Mediocre
 - » High Volatility, High Average Cost of Pensions
- Very High Demand for Teachers
 - May Induce Structural Change In Education

Economic Assumptions

Near Term:

- 2000: ~ 4% Real Growth + 2.5% Inflation
- 2001: ~ 3% Real Growth + 2.5% Inflation
- Medium Term
 - 2002-2005: ~ 2% + 2% Inflation
- Next Cycle
 - 2006-2015: ~ 4% + 2% Inflation
- Very Long Term
 - Beyond 2015: ~3% + 2% Inflation

Economic Assumptions (2)

- Labour Productivity and Real Wages: 2-2.5%
 - 1% -1.5% Capital Deepening
 - » Drop in Cost Of Capital Equipment
 - Up to 1% From Technological Change
 - » Innovation
 - » More Efficient Sourcing of Inputs
 - » Lower Materials Intensity
- Employment Growth: Trending Down to 1%
 - Population Growth (Slowly falling)
 - Lower Unemployment (Limited)
 - Labour Participation Rate (Stable?)

Economic Assumptions (3)

Real Interest Rates

- Should Be Slightly Above Economic Potential
- 3.5% May be Too Low.
 (N.B.: Bond Yield Current Inflation Not Reliable)

Savings Rate

- Correlated with Inflation and Unemployment
- Positively Correlated With Equity Performance
 - » 1% of US Consumption Linked to Wealth
- Link to Demographics Ambiguous
 - » Current Rate Far too Low
 - » Aversion to Fiscal Tax Expenditure Just Poor Accounting

Typical Teacher

- > Started in 2000, Will Work For 30 Years
 - Average Salary \$50,000
- Will Be Retired For 30 Years
 - Abstracting from Demographic Uncertainty
- Gets \$25,000/yr From Plan in 2000 Dollars
 - CPP Pays The Balance
- What Contribution Rate Will Fund Pension?

Real Returns & Contribution Rates

Real	Contributio	n Re	quired to Earn 50% Pension	
Return	% of Salary (Real Wage Constant)			
0%	50%	=	50% / (1+0.00) ³⁰	
1%	37%	=	50% / (1+0.01) ³⁰	
2%	28%	=	50% / (1+0.02)30	
3%	21%	=	50% / (1+0.03) ³⁰	
4%	16%	=	50% / (1+0.04)30	
5%	12%	=	50% / (1+0.05)30	
6%	9%	=	50% / (1+0.06)30	

Need 0.5% More Than 4% to Cover Real Wage Gains

Real Pension Promise 2000-2099

Matching Up is Hard To Do No Perfect Fit Between Assets and Liabilities

- Stable Real Return
 - Assets Hard To Find
 - Returns Usually Less Than 4.5%
- High Real Duration: Sensitivity to Change in Real Rates
 - > 1% Change in Liabilities Changes Value by 15%-20%
 - > Only Real Return Bonds Come Close
- Low Risk: Probability of Loss
 - > Stocks: High Average Returns, High Risk Of ST Loss
 - Real Rate Bonds: Modest Avg Returns, Low Risk of ST Loss
- Correlation: Tendency to Move Up and Down Together
 - Assets Should Have High Correlation with Liabilities
 - Two Assets Ideally Have Low or Negative Correlation

Policy Surplus Risk And Return

Annual Surplus Loss As % Of Assets

Annual Surplus Risk And Return

Surplus Growth = Asset Growth - Liability Growth

Another Better Than Top Quartile Year

Why Are We Worried?

- Disconnect Between Economy and Markets
 - Corporate Earnings Are Only Growing at the Rate of Economic Growth of around 5%
 - Earnings Forecasts Assume Growth of 15%
 - Long, Low Inflation Cycle Has Reduced Perceived Need for Equity Risk Premium
- Liquidity for U.S. Stock Purchases
 - Sources Drying Up
- Implication Of Drop In U.S. Market
 - All Markets Will Drop in Short Run
 - Non-U.S. Should Recover Faster

Weight of Largest 10 Largest Stocks

Stock Market Value as % of GDP

Stock Market Value As % of GDP

Stock Market Value as % of GDP

1924 1931 1938 1945 1952 1959 1966 1973 1980 1987 1994

US Profits as a Share of GDP

Forecasts Assume 5% Nominal GDP Growth

Lower Discount Rate For Earnings

- Higher Productivity Raises Earnings Growth
 - Real Rates Will Be Higher as Well
- GDP Stability Reduces Equity Risk Premium
 - Evidence: 1-2 Reduction in Equity Premium
 If Stable Inflation Is Permanent
- Dow 36000: Equity Risk Premium Is Zero
 - Implies Stock Return Equals Bond Return
 - P/Es Of 100 "Reasonable"
 - Very High Stock Sensitivity to Interest Rates
 - But....If Returns Are same, Why Hold Stocks?

U.S. Market Valuation as % of GDP

1924 1931 1938 1945 1952 1959 1966 1973 1980 1987 1994

US Market Cap / GDP Scenarios

Forecasts Assume 5% Nominal GDP Growth

Controlling Contribution Risk

- Investment Policy (Board)
 - > Choosing Assets That Resemble The Liabilities
 - > Earning Return > Actuarial Assumption
- Benefit Policy (Partners)
 - > Lower Contribution Or Improve Benefits Gradually
- Surplus Policy (Partners)
 - > Maintain A Surplus Cushion

Zero Surplus Policy

Risk=Size Of Largest Outstanding Loan Over Ten-Year Horizon In Billions

Probability Of No Loan = 89% Average Size Of Loan = \$0.1B

Risk=Size Of Largest Outstanding Loan Over Ten-Year Horizon In Billions

Probability Of No Loan = 23%

Average Size Of Loan = \$1.3E

Positive Surplus Policy

Risk = Size Of Largest Outstanding Loan
Over Ten-Year Horizon

Probability Of No Loan = 57% Average Size Of Loan = \$0.5B

Risk = Size Of Largest Outstanding Loan
Over Ten-Year Horizon

Probability Of No Loan = 98%

Average Size Of Loan = \$0.1B

Surplus Cuts Contribution Risk

The Goal Is Surplus

- Cover Pensions Indexed To Inflation
 - > Assets > Liabilities

Get To Surplus Position

- Reduce Contribution Rates
 - > Return On Assets > Growth In Liabilities

Produce Surplus Growth

- Limit Risk Of Contribution Rate Hikes
 - ➤ Match Volatility Of Assets, Liabilities

Limit Surplus Risk

Correlation Makes Risks Non-Separable

Risks Cannot Be Measured or Managed One at A Time

- Reducing One Risk May Increase Surplus Risk
- Risks Must Ideally Be Viewed From Fund Level

Adding Two Risks Of Losing \$100

$$Risk_A = Risk_B = $100$$

$$Risk_A + Risk_B = \sqrt{Risk_A^2 + Risk_B^2 + 2x Correlation_{AB}} x Risk_A x Risk_B$$

200 Correlation = 1:

- -"Perfectly Correlated"
- -Go Up, Down Together
- -Risks Are Additive

140

Correlation = 0

- -"Uncorrelated"
- Moves Not Related
- Risks Less Than Additive

0

Correlation = -1

- "Perfectly Negatively Correlated"
- Moves Are Opposites
- Risks Cancel

$$\sqrt{(100^2 + 100^2 + 2x_1^2 \times 100 \times 100)} = 200$$

$$\sqrt{(100^2 + 100^2 + 0)} = 140$$

$$\sqrt{(100^2+100^2-2x(-1)x\ 100x100)=0}$$

Example:

\$300 Microsoft Stock

\$300 Microsoft Stock

\$350 TSE Stock

\$350 Commodities

\$500 RRBs

\$500 Fund Liabilities