EPS 2/TS/17 December 2003 Transportation Systems Division Air Pollution Prevention Directorate Environment Canada

Environmental Protection Series Locomotive Emissions Monitoring Program 2002

Environment Canada Environnement Canada

RAC

Environmental Protection Series

Sample Number

EPS	3 /	HA /	1
Environmental Protection Series	Category	Area	Report Number with the qualifer EPS 3/HA

Categories

- 1 Regulations/Guidelines/Codes of Practice
- 2 Problem Assessment and Control Options
- 3 Research and Technology
- 4 Literature Reviews
- 5 Surveys
- 6 Social, Economic and Environmental Impact Assessments
- 7 Surveillance
- 8 Policy Proposals and Statements
- 9 Manual

Subjects

- AG Agriculture
- AN Anaerobic Technolog
- AP Airborne Pollutants
- AT Aquatic Toxicity
- BT Biotechnology
- CC Commercial Chemicals
- CE Consumers and the Environment
- CI Chemical Industries
- FA Federal Activities
- FP Food Processing
- HA Hazardous Wastes
- IC Inorganic Chemicals
- MA Marine Pollutants
- MM Mining and Ore Processing
- NR Northern and Rural Regions
- PF Paper and Fibres
- PG Power Generation
- PN Petroleum and Natural Gas
- RA Refrigeration and Air Conditioning
- RM Reference Methods
- SF Surface Finishing
- SP Oil and Chemical Spills
- SRM Standard Reference Methods
- TS Transportation Systems
- TX Textiles
- UP Urban Pollution
- WP Wood Protection/Preservation

Locomotive Emissions Monitoring Program 2002

National Library of Canada cataloguing in publication data

Locomotive Emissions Monitoring Program 2002

(Environmental protections series: EPS 2/TS/17) Text in English and French on inverted pages. Title on added t.p.: Programme de surveillance des émissions des locomotives 2002. "RAC, The Railway Association of Canada"

ISBN 0-662-36167-9 Catalogue Number EN49-1/2-17 © Railway Association of Canada/Environment Canada 2004

- 1. Locomotives Environmental aspects Canada Periodicals.
- 2. Air Pollution Canada Measurement Periodicals.
- 3. Environmental monitoring Canada Periodicals.
- I. Canada, Environment Canada.
- II. Railway Association of Canada.
- III. Series: Information report (Canada. Environment Canada); EPS 2/TS/17.
- IV. Title

T885.5N5L62 2004

385'.36'0971

Readers' Comments

Comments on the contents of this report may be addressed to:

Transportation Systems Branch Air Pollution Prevention Directorate Environment Canada Otawa, Ontario K1A OH3

Review Notice

This report has been reviewed by members of the Transportation Systems Branch, Environment Canada, and approved for publication. Approval does not necessarily signify that the contents reflect the views and policies of Environment Canada. Mention of trade names or commercial products does not constitute recommendation or endorsement for use.

This report has been prepared by the Railway Association of Canada in partnership with Environment Canada for the Transportation System Branch, Air Pollution Prevention Directorate, Environment Canada.

2002

This report contains the Railway Association of Canada's (RAC) Locomotive Emissions Monitoring (LEM) filing for 2002 under the terms of the Memorandum of Understanding (MOU) between Environment Canada and the RAC, signed in 1995 and covering the period 1990–2005.

Data is collected by the RAC for this LEM through a questionnaire sent annually to each railway according to a RAC LEM Protocol. The LEM data reported by the RAC include locomotive inventory, annual traffic volumes and annual diesel fuel consumption for mainline, branch line, yard switching and passenger service. Included in this document are the annual emissions of oxides of nitrogen, carbon dioxide, hydrocarbons, oxides of sulphur, particulate matter, and carbon monoxide. The report also details measures being undertaken to reduce fuel consumption and emissions.

The railways also calculate and report on their fuel consumption and emissions in three designated Tropospheric Ozone Management Areas (TOMA): the Lower Fraser Valley in British Columbia, the Windsor–Quebec City Corridor, and the Saint John area in New Brunswick. The data for winter and summer operations is also segregated.

Litres of fuel per 1000 revenue tonne-kilometers (RTK) increased to 6.08 in 2002 from 5.96 in 2001 and are down from 7.83 in 1990, a decrease of 22.3 percent. Canada's freight railways handled 320.7 billion RTK of traffic in 2002 compared to 321.7 billion RTK in 2001 and consumed slightly more fuel. Overall rail fuel consumption increased to 2,051 million litres (L) in 2002 from 2,017 million L in 2001. Traffic growth, measured in gross tonne-kilometers (GTK), has increased an average of 2.2 percent per year since 1990. This is significantly higher than the 1.2 percent predicted when the MOU was originally signed in 1995.

Intermodal carloads increased from 637,443 in 2001 to 690,933 in 2002, an increase of 8.4 percent from 2001. Intermodal tonnage increased from 22.59 million tonnes in 2001 to 26.14 million tonnes in 2002, an increase of 15.7 percent from 2001. Overall intermodal tonnage has grown 104.3 percent since 1990 and container on freight car (COFC) tonnage has increased 175.3 percent since 1990. The growth of COFC in intermodal traffic is the result of the success of Canadian railways in developing strategic partnerships with shippers and trucking companies for the transportation of goods.

Intercity passenger traffic increased to 4.22 million passengers in 2002 from 4.11 million passengers in 2001, an increase of 2.7 percent. Intercity train efficiency, expressed as the average passenger kilometers per train kilometer, has increased by 10.7 percent since 1990. Commuter rail traffic increased from 47.97 million passengers in 2001 to 49.25 million passengers in 2002, also an increase of 2.7 percent and up from 4,022 million passengers in 1990, an increase of 20.1 percent. Since 1997 commuter rail passengers have increased by 20.1 percent. Overall intercity and commuter rail fuel consumption increased by 2.9 percent from 2001.

The Emissions Factor (EF) for the oxides of nitrogen (NO_x) for freight locomotives that was introduced in 2001 was used again in 2002. The RAC calculates the EF annually to ensure the values being used in the calculations accurately reflect the emissions profile of the current fleet of locomotives. Canadian railways will continue to purchase locomotives meeting U.S EPA emissions compliance requirements, and will continue to upgrade locomotives, at overhaul, to U.S. EPA Tier 0; hence, the EF of the locomotive fleet is expected to decrease.

Kilotonnes of NO_x per 1000 RTK are 17.1 percent lower than in 1990, decreasing from 0.43 in 1990 to 0.36 in 2002 despite an increase of 28.2 percent in RTK. Total rail NO_x emissions in 2002 for the rail sector, calculated using the new factor, were 120.21 kilotonnes (kt), slightly above the value of 118.36 kt reported in 2001, and are above the voluntary cap of 115 kt. Similarly, CO_2 emissions, measured as kilotonnes per 1000 RTK, have decreased 23.2 percent since 1990 from 21.21 in 1990 to 16.30 in 2002. Total carbon dioxide emissions for the rail sector were 5,548 kt in 2002, up from 5,462 kt in 2001. CO_2 emissions have declined by 7.4 percent since the peak year 1997, and by 0.6 percent since 1990.

Canada's railways continue to invest in new locomotives, lower weight aluminum freight cars and high capacity freight cars. They have also introduced automatic stop/start devices and low idle settings on locomotives. Operational advantages such as the co-production agreement between CN and CP in the Fraser canyon also reduce fuel consumption.

In conclusion, Canada's railways have reduced fuel consumption by 0.5 percent since 1990 while increasing RTK by 28.2 percent, demonstrating a steady improvement in the area of fuel efficiency and reducing atmospheric emissions per unit of tonnage hauled.

Glossary of Terms

Terminology of Diesel Locomotive Emissions and Related Technology **Duty Cycle**: The duty cycle for a locomotive refers to the percentage of time the locomotive is operated at different power settings. Locomotives have eight power settings or "notches" plus low idle, idle and dynamic braking settings.

Dynamic Braking: A term characterizing a train-operating mode in which the traction motors of a locomotive are controlled to function as generators and, hence, retard the motion of the train. Dynamic braking requires an application of engine power equivalent to Notch 1 or 2 throttle setting. Dynamic braking reduces fuel consumption and, hence, exhaust emissions by eliminating braking under power (to keep the train stretched out).

Emissions Factors: The emissions factors of a locomotive are the average mass of a product which is emitted in the combustion of a specified amount of fuel. They are calculations based on data from test measurements of specific emissions, its operational duty cycle and the specific fuel consumption of its engine. In this report the units are grams of a specific pollutant per litre of diesel fuel consumed (g/L).

Gross Tonne-Kilometers (GTK): refer to the product of the tonnes carried and the distance traveled; the tonnes carried are the total weight of the train including both loaded and empty cars but excluding the contribution of the weight of the locomotives pulling the train.

Intermodal Service: The movement of trailers or containers by rail and at least one other mode of transportation. Import and export containers generally are shipped via marine and rail. Domestic intermodal service usually involves truck and rail. It includes both container on flat car (COFC) and trailer on flat car (TOFC) movements.

Locomotive Prime Mover: The medium-speed diesel engine provides the predominant motive power for locomotives in operation on Canadian railways. It has found its niche as a result of its fuel efficiency, ruggedness, reliability and installation flexibility. Combustion takes place in a diesel engine by compressing air and then injecting diesel fuel near top dead centre where auto-ignition occurs (compression ignition). Low-idle and Engine Shut-down Options: Outfitting locomotive engines with a low-idle option and, when in standby use, outfitting them with mechanisms for automatic engine shutdown and restart (to avoid water coolant freezing) leads to reduced overall locomotive fuel consumption and emissions.

Products of Combustion: The products of combustion include carbon dioxide, water vapour, partially combusted fuel (hydrocarbons and particulate matter), carbon monoxide, and the oxides of nitrogen and sulphur. The high temperatures typical of combustion in the cylinder of a diesel engine cause oxygen and nitrogen from the intake air to combine as oxides of nitrogen (NO_x) . NO_x is an invisible, toxic gas and a precursor to low level ozone development and can form fine aerosol particles of salts that contribute to acidic precipitation (commonly known as acid rain, snow or fog). If the combustion temperature is decreased to reduce NO_x , the amount of non-combusted fuel that may be emitted as particulate matter (PM) or gaseous hydrocarbons (HC) tends to increase. HC reacts with NO_x and other pollutants to form ground-level ozone (smog). Pollutants referred to in this report are:

CO (Carbon Monoxide): This toxic gas is a by-product of the combustion of fossil fuels. Relative to other prime movers, it is low in diesel engines.

 CO_2 (Carbon Dioxide): This gas is by far the largest byproduct of combustion emitted from engines and is the principal greenhouse gas which, because of its accumulation in the atmosphere, is considered to be the principal contributor to global warming. CO_2 and water vapour are normal by-products of the combustion of fossil fuels. One way to reduce CO_2 emissions is to reduce fuel consumption.

HC (Hydrocarbons): These are the result of incomplete combustion of diesel fuel and small amounts of lubricating oil that are not oxidized during the combustion process. HC emissions result from partial combustion caused by short combustion time and low combustion temperatures, which can occur during excessive idling at low power levels.

 $\rm NO_x$ (Oxides of Nitrogen): These are the products of nitrogen and oxygen that result from high combustion temperature. $\rm NO_x$ reacts with hydrocarbons in the air to form low level ozone in the presence of sunlight. The $\rm NO_x$ emission level can be lowered by reducing combustion temperatures; one way is to retard injection timing and another is exhaust gas recirculation, both of which could result in higher fuel consumption and lower total power from the engine.

PM (Particulate Matter): This is residue of combustion consisting of soot, unburned fuel, the oxides of sulphur and lubricating oil. Increasing the combustion temperatures and duration can lower PM. Technologies that control NO_x, such as retarding injection timing, usually result in higher PM emissions. Conversely, technologies that control PM often result in increased NO_x emissions.

 ${\rm SO}_{\rm X}$ (Oxides of Sulphur): These are the result of burning diesel fuels that contain sulphur compounds. These emissions can be reduced by using diesel fuel with lower sulphur content.

RAC LEM Protocol: refers to the collection of financial and statistical data from RAC members and the RAC database where this data is systematically stored for various RAC applications. Data from the RAC's database that is used in this report includes revenue tonne kilometres, gross tonne kilometres, Intermodal tonnes, passenger traffic statistics, fuel consumption and locomotive inventory. Much of this data is also reported by the Class 1's in their "Annual Report" and "Financial and Related Data" submissions to Transport Canada.

Revenue Tonne-Kilometers (RTK): refer to the product of the tonnes of goods carried and the distance traveled; the tonnes of goods carried refer to the total weight of the goods in the cars of the train handled over the distance moved and excludes the tonne-kilometers involved in the movement of railway materials.

Abbreviations Used in this Report

AAR	Association of American Railroads
CCME	Canada Committee of the Ministers of the Environment
CN	Canadian National Railways
COFC	Container on Flat Car
СР	Canadian Pacific Railway
CO ₂	Carbon Dioxide
CO	Carbon Monoxide
CAC	Criteria Air Contaminants
DB	Dynamic Brake
EF	Emissions Factor
EC	Environment Canada
GE	General Electric Transportation
GM/EMD	General Motors - Electromotive Division
g	Gram
g/GTK	Grams per gross tonne-kilometers
g/L	Grams per litre
g/RTK	Grams per net tonne-kilometers
GTK	Gross tonne-Kilometers
HP	Horsepower
hr	Hour
HC	Hydrocarbons
kt	Kilotonnes
kg/1000 RTK	Kilograms per 1000 revenue tonne-kilometers
L	Litre
L/hr	Litres/hour
LEM	Locomotive Emissions Monitoring
MOU	Memorandum of Understanding
MLW	Montreal Locomotive Works
N1, N2	Notch 1, Notch 2
NO _x	Oxides of Nitrogen
SO _x	Oxides of Sulphur
PM	Particulate Matter
ppm	parts per million
lb	Pounds
RAC	Railway Association of Canada
RTK	Revenue Tonne-Kilometers
SwRI	Southwest Research Institute
TOFC	Trailer on Flat Car
TOMA	Tropospheric Ozone Management Areas
U.S. EPA	United States Environmental Protection Agency
VIA	Via Rail Canada

Table of Contents

i ii iv	Glo	cutive Summary ssary of Terms evations Used in this Report	List 4 8	t of Tal Tal
2	1	Introduction	8	Ta
3 3 5 6	2	Traffic and Fuel Consumption Data2.1Traffic2.2Intermodal Service2.3Rail Passenger	10 11 13	Tal Tal Tal
6 7 7		2.3.1 Intercity Rail 2.3.2 Commuter Rail 2.4 Freight Fuel Consumption	16 17	Tal Tal
8 8 9 9 12 13	3	Locomotive Emissions 3.1 Introduction 3.2 Canadian Locomotive Fleet 3.3 Emissions 3.3.1 Oxides of Nitrogen (NO _x) 3.3.2 Carbon Dioxide (CO ₂) 3.4 Locomotive Duty Cycle	List 3 3 5 6	Fiq Fiq Fiq
13 14 14 14 14 14	4	 3.4 Locomotive Duty Cycle Emissions Reduction Initiatives 4.1 Fleet Renewal 4.2 Co-production 4.3 Government Programs 4.4 Train Handling 	6 7 7 7 9 9	Fig Fig Fig Fig Fig Fig Fig
14 15 15 15		 4.5 Rail Lubrication 4.6 Freight Car Productivity Improvement 4.7 Low Idle Application 4.8 Automatic Stop/Start Systems 	12 12 Apr	Fiq Fiq
15 16	5 6	Diesel Fuel Properties Fuel Consumption in the Tropospheric Ozone Management Areas (TOMA)	11	Ap Me En of
16 16 18	7	6.1 Data Derivation6.2 Seasonal DataSummary and Conclusions	IV	Ap Cai 20
	-		V	Ap Ca To
			VI	Ap Ra

Tables ble 1 Traffic and Fuel Consumption

		····· - · · · · · · · · · · · · · · · ·
8	Table 2	New Locomotives Introduced into the
		Canadian Fleet
8	Table 3	NO _x Emissions Reduction for
		Line-Haul Locomotives
10	Table 4a	Locomotive Emissions, 1990 – 1995
11	Table 4b	Locomotive Emissions, 1996 – 2002
13	Table 5	Duty Cycle by Locomotive Service
		(Percent of Time)
16	Table 6	TOMA Percent of Total Fuel Consumption
17	Table 7	Tropospheric Ozone Management Areas –
		Traffic, Fuel and Emissions Data, 2002
List	of Figures	
3	Figure 1	Freight Traffic
3	Figure 2	Freight Carloads by Commodity Group,
	-	2002

Figure 3	Intermodal Traffic
----------	--------------------

- gure 4 Intercity Rail Passengers
- gure 5 Intercity Rail Passenger Efficiency
- **Commuter Rail Passengers** gure 6
- gure 7 Total Freight Fuel Consumption
- gure 8 Freight Fuel per 1,000 RTK
- NO_x Emissions gure 9
- gure 10 NO_x Emissions per 1,000 RTK
- gure 11 Carbon Dioxide Emissions
- CO2 Emissions per 1,000 RTK gure 12

dicies

pendix A

emorandum of Understanding between vironment Canada and the Railway Association Canada

ppendix B-1

nadian Locomotive Fleet Mainline and Branchline, 02

opendix B-2

nadian Locomotive Fleet Switching and Yard and tals, 2002

pendix C

ilway Lines Included in Troposhperic Ozone Management Areas (TOMAs)

1 Introduction

Attached as Appendix A are the terms of the Memorandum of Understanding (MOU) between Environment Canada (EC) and the Railway Association of Canada (RAC) with respect to control of emissions produced by locomotives. Data are collected by the RAC for this Locomotive Emissions Monitoring (LEM) report through a questionnaire sent annually to each railway according to a RAC LEM Protocol. The MOU requires the RAC to submit an annual LEM report to EC. The LEM report is to include calendar year data on all rail traffic, diesel fuel consumption and locomotive exhaust emissions including the oxides of nitrogen (NOx), carbon dioxide, hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM) and the oxides of sulphur (SO_x). Of particular interest are emissions of oxides of nitrogen (NO_x) vis-àvis the voluntary cap of 115 kt per year targeted in the MOU.

Separate sections of the report highlight traffic, locomotive emissions, and carbon dioxide (CO_2) . Also included is a section on initiatives to reduce fuel consumption, and consequently, CO_2 emissions, a greenhouse gas. There is also a section reporting on traffic, fuel consumption and emissions in three designated Tropospheric Ozone Management Areas (TOMA): the Lower Fraser Valley in British Columbia, the Windsor–Quebec City Corridor, and the Saint John area in New Brunswick.

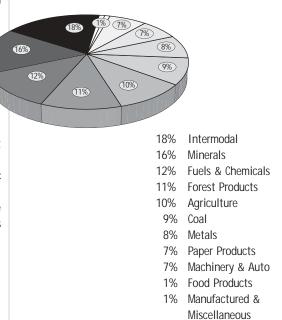
The MOU expires in 2005 and the RAC is negotiating a new MOU with both Environment Canada and Transport Canada regarding locomotive emissions.

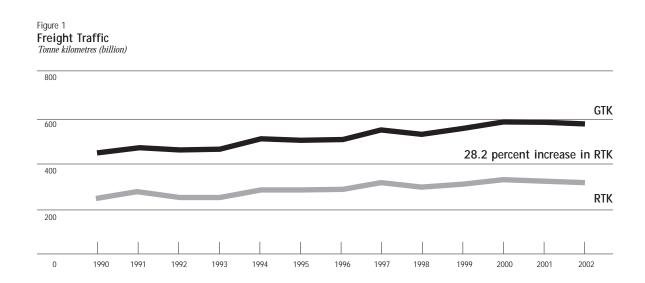
Starting with the 2001 issue, 1990 was selected as the base year for historical data. Statistics dating from 1975 can be found in earlier (LEM) reports⁽¹⁾. The significance of this change reflects the relevance of the Kyoto protocol which also specifies 1990 as the base year for emissions comparisons.

Metric units are used in this report. Gross ton-miles and net ton-miles referred to in earlier reports have been replaced by gross tonne-kilometers (GTK) and revenue tonne-kilometers (RTK).

 ¹⁹⁹⁵ LEM – EPS 2/TS/10 – November 1997;
 1996 and 1997 LEM – EPS 2/TS/11 – May 1999;
 1998 LEM – EPS 2/TS/13 – October 2000;
 1999 and 2000 LEM – EPS 2/TS/15 – April 2002

2 Traffic and Fuel Consumption Data


2.1 Traffic


As shown in Table 1, there has been overall growth in freight traffic since 1990, although since 2000 there has been a slight decline in traffic by 0.5 percent. GTK increased from 454.94 billion in 1990 to 582.06 billion in 2002, a 27.9 percent increase in freight traffic. Similarly, RTK increased from 250.13 billion in 1990 to 320.69 billion in 2002, a 28.2 percent increase. These data are shown in Figure 1.

Annual growth in traffic since 1990 has been approximately 2.2 percent per year. This is significantly higher than the annual 1.2 percent increase in GTK and 1.5 percent increase in RTK predicted in 1995 when the MOU was signed. Traffic growth is expected to follow North American economic activity.

Canadian rail freight commodity carloads for 2002 are shown in Figure 2. Of note, is the 18 percent of carloads for intermodal traffic. Figure 2

Freight Carloads by Commodity Group – 2002 Originatesd carloads by commodity grouping

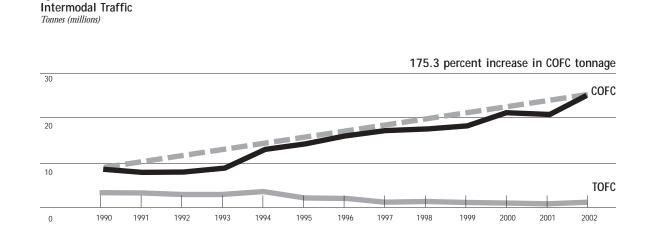
LOCOMOTIVE EMISSIONS MONITORING PROGRAM Reporting Year 2002

Table 1 Traffic and Fuel Consumption

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Freight Traffic Gross tonne-kilometers Billion GTK	454.9	476.2	462.2	466.8	521.8	505.7	505.9	544.1	529.7	554.8	586.6	583.2	582.1
Revenue tonne-kilometers Billion RTK	250.1	262.4	252.5	257.8	288.9	282.4	283.9	304.2	297.0	302.0	322.4	321.7	320.7
Ratio of RTK/GTK	0.550	0.550	0.546	0.552	0.554	0.559	0.561	0.559	0.561	0.544	0.550	0.552	0.551
Fuel Consumption Data Freight Service million litres	1,823	1,878	1,824	1,813	1,934	1,937	1,872	2,031	1,881	1,800	1,836	1,823	1,870
Yard Switching Service million litres	120	120	121	124	137	140	136	113	118	87	87	89	74
Work Train Service million litres	16	13	15	12	12	10	7	6	7	5	4	5	6
Total Freight Operations million litres	1,958	2,012	1,960	1,948	2,083	2,087	2,014	2,150	2,007	1,892	1,927	1,918	1,950
Passenger Fuel million litres	103	72	64	69	60	56	59	61	59	58	61	99	101
Total Fuel – All Operations million litres	2,061	2,084	2,024	2,017	2,143	2,143	2,073	2,211	2,066	1,950	1,988	2,017	2,051
Litres per 1,000 GTK Total Freight	4.3039	4.2193	4.2404	4.1744	3.9919	4.1272	3.9810	3.9513	3.7884	3.4101	3.2853	3.2888	3.3499
Litres per 1,000 RTK Total Freight	7.8281	7.6667	7.7635	7.5559	7.2111	7.3892	7.0945	7.0618	6.7584	6.2657	5.9774	5.9613	6.0804

2.2 Intermodal Service

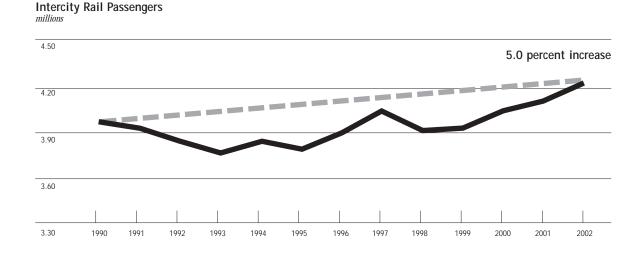
Figure 3


Intermodal activity continues to grow rapidly. Growth in domestic intermodal service is an indication that Canadian railways have been effective in partnering with shippers and the trucking industry to affect a modal shift in the transportation of goods. Each domestic carload replaces approximately 2.8 trucks⁽²⁾ from Canadian highways. As shown in Figure 2, intermodal carloads represent 18 percent of total rail carloads by commodity.

Canadian Intermodal carloads increased from 637,443 in 2001 to 690,933 in 2002, an increase of 8.4 percent.

Intermodal tonnage increased from 22.59 million tonnes in 2001 to 26.14 million tonnes in 2002, an increase of 15.7 percent from 2001. The growth in overall intermodal tonnage has been 104.3 percent since 1990.

Container on flat car (COFC) traffic increased 15.7 percent – from 21.59 million tonnes in 2001 to 24.97 million tonnes in 2002. Since 1990 the increase in COFC traffic was 175.3 percent. Trailer on flat car (TOFC) traffic increased slightly from 1.00 million tonnes in 2001 to 1.17 million tonnes in 2002. Intermodal tonnage growth since 1990 is shown in Figure 3.


(2) AAR/RAC

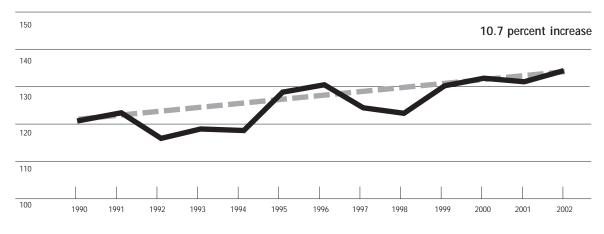

2.3 Rail Passengers 2.3.1 Intercity Rail

Figure 4

The number of intercity rail passengers in 2002 was 4.22 million, up from 4.11 million in 2001, an increase of 2.7 percent. The growth in intercity rail passengers since 1990 is 5.0 percent and is shown in Figure 4. Fuel consumption is 1.3 percent lower in 2002 compared to 2001. Intercity train efficiency can be expressed as the average passenger kilometers per train kilometer. As shown in Figure 5 train efficiency has been increasing.

2.3 Rail Passengers 2.3.2 Commuter Rail

The number of commuter rail passengers in 2002 was 49.25 million. This is up 2.7 percent from 47.97 million in 2001, and, as shown in Figure 6, is up 20.1 percent from 41.00 million in 1997, when the RAC first started to collect commuter rail statistics. The average annual growth in commuter rail passengers is 3.8 percent. Commuter rail fuel consumption is up by 12.2 percent from 2001.

Overall intercity and commuter rail fuel consumption increased by 2.9 percent from 2001.

Figure 6 Commuter Rail Passengers passengers (millions) 60 20.1 percent increase 50 40 40 30 1997 1998 1999 2000 2001 2002

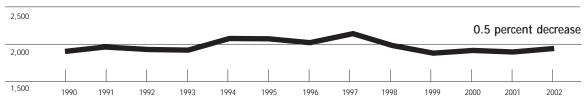
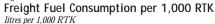
Commuter rail operators reporting are AMT (Montreal), Capital (Ottawa), GO Transit (Toronto) and West Coast Express (Vancouver).

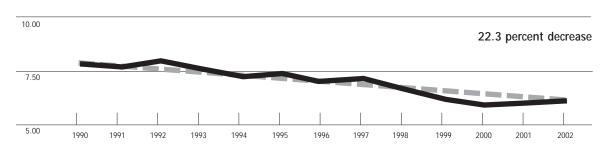
2.4 Freight Fuel Consumption

As shown in Table 1 and Figure 7, freight locomotive fuel consumption decreased from 1,958 million litres (L) in 1990 to 1,950 million L in 2002, a 0.4 percent decrease. Total rail fuel consumption decreased from 2,061 million L in 1990 to 2,051 million L in 2002, an overall 0.5 percent decrease.

Canadian freight railways aim to further reduce fuel consumption per 1,000 RTK by continuing a fleet replacement policy of purchasing modern locomotives while retiring older less fuel efficient locomotives. As well, operating practices that reduce fuel consumption will continue to be evaluated and implemented. Fuel consumption reduction initiatives are detailed in Section 4.0. In 2002, Canadian freight railways hauled 28.2 percent more RTK tonnage with 0.5 percent less fuel than 1990. This fact clearly shows the results of fuel conservation practices put in place by the railways.

The efficiency with which freight traffic was handled has improved overall since 1990, with the improvement between 1997 and 2000 being at a higher rate than average. This value decreased from 7.83 L per 1,000 RTK in 1990 to 6.07 L per 1,000 RTK in 2002, a 22.3 percent reduction and is shown in Figure 8. This shows clearly the success of the Canadian freight railways to accommodate higher traffic growth while reducing fuel consumption.


Figure 8

Total Freight Fuel Consumption

Figure 7

fuel consumption (Lx10[®])

<u>7</u>

LOCOMOTIVE EMISSIONS MONITORING PROGRAM Reporting Year 2002

3 Locomotive Emissions

3.1 Introduction

The emissions from locomotive operations have been calculated using Emissions Factors (EF) giving quantities of selected exhaust gases and particulate matter per litre of fuel consumed. Emissions factors are based on emissions data for the different engines in the various throttle notch settings applied to the duty cycle for locomotive operation applicable to Canadian service. These factors were derived from test measurements, in the early 1990s, by the Association of American Railroads (AAR) and the locomotive manufacturers⁽³⁾. Since then there has been further testing by the U.S. Environmental Protection Agency (EPA) at Southwest Research Institute on the newest highhorsepower locomotives plus changes in operational duty cycle of locomotives. The Emissions Factor (EF) for NO_y, agreed upon by EC and the RAC in 2001, was again used for the 2002 LEM emissions calculations (4).

Emissions are calculated for oxides of nitrogen (NO_x) , carbon monoxide (CO), hydrocarbons (HC), oxides of sulphur (SO_x), particulate matter (PM), and carbon dioxide (CO₂) for the several types of service and for the total for all railway operations.

3.2 Canadian Locomotive Fleet

The fleet of locomotives operating in 2002 in Canada is shown in Appendix B.

Canadian railways have been renewing their fleets since the early 1990s with new fuel-efficient, higher horsepower locomotives. New locomotives, purchased since 2000, meet U.S. EPA Tier 0 and Tier 1 emissions limits, which came into effect in 2000 and 2002 respectfully. There is a direct correlation between U.S. EPA compliant locomotives and lower NO_x. For example, Canadian NO_x emissions in 2002 are 4.5 percent lower than they would otherwise be if non-EPA compliant locomotives had been purchased since 2000. Table 2 shows the introduction rate of these new locomotives and those meeting either Tier 0 or Tier 1.

Canadian railways continue upgrading their locomotives to EPA Tier 0 level when overhauled. The U.S. EPA has estimated that it could take 20 years to replace the entire U.S. fleet with EPA compliant locomotives. At that time, as shown in Table 3, Tier 2 locomotive NO_x emissions will be 59.2% lower than pre-2000 locomotives.

Table 2

New Locomotives Introduced into the Canadian Fleet

Model	1995	1996	1997	1998	1999	2000	2001	2002
Total New higher horsepower locomotives*	225	350	565	568	657	680	707	722
Number of Locomotives that are U.S. EPA Tier 0 or 1	0	0	0	0	0	80	179	198

* EMD SD-75, SD-90 and GE Dash 9, P42DC

Table 3

NO_x Emissions Reduction for Line-Haul Locomotives

	Year	NO _x (g/bhp hr)	Percent Reduction
Non-compliant Locomotives	Pre- 2000	13.5	
Tier 0	2000	9.5	29.6
Tier 1	2002	7.4	45.2
Tier 2	2005	5.5	59.2

(3) See Tables 10 and 12 in EPS 2/TS/8, Recommended Reporting Requirements for the Locomotive Emissions Monitoring (LEM) Program – September 1994

(4) Review of Memorandum of Understanding Between Environment Canada and the Railway Association of Canada Regarding Railway Locomotive Emissions – June 2001.

3.3 Emissions 3.3.1 Oxides of Nitrogen (NO_x)

 $\rm NO_x$ emissions are related to the emissions profile of individual locomotive types. Canadian railways are committed to purchasing new locomotives that meet U.S. EPA emissions limits. $\rm NO_x$ emissions, therefore, should decrease as the railways continue to introduce new locomotives, meeting Tier 1 and Tier 2, and overhaul older main-line locomotives to Tier 0.

As shown in Table 4, total rail NO_x emissions were 120.2 kt in 2002 up slightly from 2001. Figure 9 shows the historical record since 1990 vis-a-vis the voluntary cap of 115 kt targeted in the MOU. The average annual

 $\rm NO_x$ emissions since 1990 are 114.5 kt. Freight operations account for 95 percent of railway generated $\rm NO_x$ emissions in Canada.

Kilotonnes of NO_x per 1000 RTK has decreased 17.1 percent since 1990 decreasing from 0.43 in 1990 to 0.36 in 2002 despite an increase in RTK of 28.2 percent. The value of total NO_x emissions per work unit is shown in Figure 10.

The purchase of new fuel-efficient locomotives and other fuel consumption reduction initiatives, discussed in section 4, will result in a continuing decrease in NO_x per unit of work.

Figure 9 NOx Emissions NOx Emissions (kilotonnes)

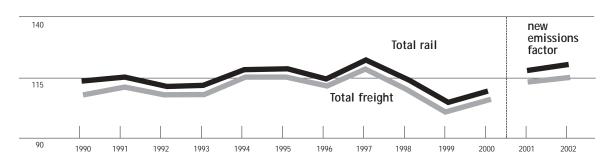
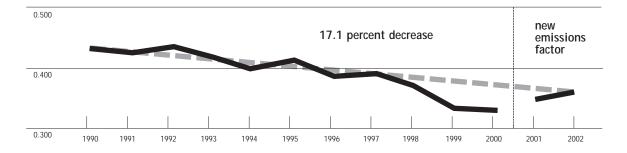



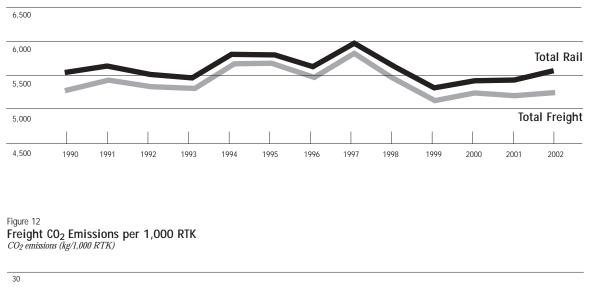
Figure 10 Freight NO_x Emissions per 1,000 RTK NOx Emissions (kg/1,000 RTK)

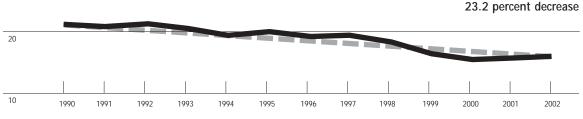
Table 4a

Locomotive Emissions, 1990 - 1995

Annual Emissions		Emissi	Emissions Factors								
		Freight & Yard Passenger Wor g/L g/L g/			1990	1991	1992 kiloto	1993	1994	1995	
Freight – Mainline & Branchline		1990- 2000	2001- 2002								
	NO _x CO HC	54.69 10.51 2.73	58.81		99.68 19.15 4.98	102.73 19.73 5.13	99.77 19.17 4.98	99.16 19.05 4.95	105.77 20.32 5.28	105.93 20.35 5.29	
Adjusted to 0.15% Sulphur Fuel Based on 86.5% Carbon Fuel	SO _x PM CO ₂	2.54 1.30 2709			4.62 2.37 4,938	4.76 2.44 5,089	4.63 2.37 4,942	4.60 2.36 4,912	4.91 2.51 5,239	4.91 2.52 5,248	
Yard Switching & Work Train											
	NO _x CO HC			61.01 10.42 3.61	8.27 1.41 0.49	8.14 1.39 0.48	8.28 1.41 0.49 0.34	8.26 1.41 0.49	9.07 1.55 0.54	9.14 1.56 0.54	
Adjusted to 0.15% Sulphur Fuel Based on 86.5% Carbon Fuel	SO _x PM CO ₂			2.53 1.48 2,709	0.34 0.20 367	0.34 0.20 362	0.34 0.20 368	0.34 0.20 367	0.38 0.22 403	0.38 0.22 406	
Passenger	2										
	NO _x CO HC	54.69 10.51 2.73			5.63 1.08 0.28	3.94 0.76 0.20	3.50 0.67 0.17	3.77 0.72 0.19	3.28 0.63 0.16	3.06 0.59 0.15	
Adjusted to 0.15% Sulphur Fuel Based on 86.5% Carbon Fuel	SO _x PM CO ₂	2.54 1.30 2,709			0.26 0.13 279	0.18 0.09 195	0.16 0.08 173	0.18 0.09 187	0.15 0.08 163	0.14 0.07 152	
Total – Rail Operations	NO _x	54.69		61.01	113.59	114.81	111.55	111.19	118.12	118.13	
	CO HC	10.51 2.73		10.42 3.61	21.64 5.75	21.88 5.81	21.25 5.65	21.19 5.63	22.50 5.98	22.50 5.98	
Adjusted to 0.15% Sulphur Fuel	SO _x PM	2.54 1.30		2.53 1.48	5.23 2.70	5.29 2.73	5.13 2.65	5.12 2.65	5.43 2.81	5.43 2.81	
Based on 86.5% Carbon Fuel	ι0 ₂	2,709		2,709	5,584	5,645	5,484	5,466	5,805	5,805	
Emissions from Freight Operations	NO _x CO HC	54.69 10.51 2.73	58.81	61.01 10.42 3.61	107.95 20.56 5.47	110.87 21.13 5.61	108.05 20.58 5.47	107.42 20.46 5.44	114.84 21.87 5.82	115.07 21.91 5.83	
Adjusted to 0.15% Sulphur Fuel	SO _x PM	2.5 1.3		2.53 1.48	4.97 2.57	5.10 2.64	4.97 2.57	4.94 2.56	5.28 2.73	5.29 2.74	
Based on 86.5% Carbon Fuel	CO ₂	2709		2709	5,305	5,450	5,310	5,279	5,642	5,653	
Emissions from Freight Traffic Unit	NO _x CO HC				0.432 0.082 0.022	kil 0.423 0.081 0.021	ograms / 0.428 0.082 0.022	/ 1000 R 0.417 0.079 0.021	TK 0.398 0.076 0.020	0.407 0.078 0.021	
	SO _x PM CO ₂				0.022 0.020 0.010 21.213	0.019 0.010	0.022 0.020 0.010 21.030	0.019 0.010	0.018 0.009	0.019 0.010	

Table 4b


Locomotive Emissions, 1996 - 2002


Annual Emissions	E	missi	ons Fact	tors								
		Freig	ght &	Yard &								
			enger	Work	1996	1997 1998		1999	2000	2001	2002	
		g/L	g/L	g/L				kilotonne	es	1		
Freight – Mainline & Branchline		1990- 2000	2001- 2002									
Ν	NO _x 5	54.69	58.81		102.37	111.05	102.90	94.43	100.43	107.21	109.86	
		10.51			19.67	21.33	19.77	18.91	19.29	19.15	19.63	
	HC	2.73			5.11	5.55	5.14	4.92	5.02	4.98	5.10	
· · ·	SO _x	2.54			4.75	5.15	4.77	4.57	4.66	4.62	4.74	
	PM	1.30			2.43	5.64	2.45	2.34	2.39	2.37	2.43	
	CO ₂ 2	2,709			5,071	5,501	5,097	4,875	4,975	4,938	5,060	
Yard Switching & Work Train				(1.04	0.74	7.00		E (0	0			
	NO _x			61.01	8.71	7.28	7.65	5.60	5.53	5.74	4.88	
	00			10.42	1.49	1.24	1.31	0.96	0.94	0.98	0.83	
	HC SO			3.61 2.53	0.52	0.43	0.45	0.33	0.33	0.34	0.29	
- · · ·	SO _x PM			2.53 1.48	0.36 0.21	0.30 0.18	0.32	0.23 0.14	0.23 0.13	0.24 0.14	0.20 0.12	
Based on 86.5% Carbon Fuel (2,709	387	323	340	249	246	255	217	
Passenger	2											
-	NO _x 5	54.69			3.23	3.34	3.23	3.17	3.34	5.41	5.47	
	~	10.51			0.62	0.64	0.62	0.61	0.64	1.04	1.05	
	HC	2.73			0.16	0.17	0.16	0.16	0.17	0.27	0.27	
Adjusted to 0.15% Sulphur Fuel S	SO _x	2.54			0.15	0.15	0.15	0.15	0.15	0.25	0.25	
	PM	1.30			0.08	0.08	0.08	0.08	0.08	0.13	0.13	
Based on 86.5% Carbon Fuel (CO ₂ 2	2,709			160	165	160	157	165	268	271	
Total – Rail Operations												
	~	54.69		61.01	114.30	121.67	113.78	103.21	109.30	118.36	120.21	
		10.51		10.42	21.78	23.21	21.70	20.48	20.88	21.17	21.51	
	HC	2.73		3.61	5.79	6.15	5.75	5.41	5.51	5.59	5.66	
	SO _X	2.54		2.53	5.26	5.61	5.24	4.95	5.04	5.11	5.19	
Based on 86.5% Carbon Fuel	PM	1.30 2,709		1.48 2,709	2.72 5,618	5.90 5,990	2.71 5,597	2.55 5,282	2.60 5,386	2.64 5,462	2.68 5,548	
				2,707	0,010	0,,,0	0,077	0,202	0,000	0,102		
Emissions from Freight Operations	NO _x 5	54.69	58.81	61.01	111.08	118.33	110.55	100.03	105.96	112.95	114.74	
		10.51	50.01	10.42	21.16	22.57	21.08	19.87	20.23	20.13	20.46	
	HC	2.73		3.61	5.63	5.98	5.59	5.25	5.35	5.32	5.39	
	SO _x	2.5		2.53	5.11	5.45	5.09	4.80	4.89	4.86	4.94	
-	PM	1.3		1.48	2.64	5.82	2.63	2.48	2.52	2.51	2.55	
Based on 86.5% Carbon Fuel (CO ₂ 2	2,709		2,709	5,458	5,825	5,437	5,125		5,194	5,227	
Emissions per Freight Traffic Unit							kil	ograms /	/ 1000 R	TK		
	NO _x				0.391	0.389	0.372	0.331	0.329	0.351	0.358	
	CO				0.075	0.074	0.071	0.066	0.063	0.063	0.064	
	HC				0.020	0.020	0.019	0.017	0.017	0.017	0.017	
	SO _x				0.018	0.018	0.017	0.016	0.015	0.015	0.015	
	PM				0.009	0.019	0.009	0.008	0.008	0.008	0.008	
(CO ₂				19.224	19.147	18.306	16.969	16.193	16.144	16.299	

3.3 Emissions3.3.2 Carbon Dioxide (CO₂)

The Canadian transportation sector contributes approximately one quarter of all Canadian CO_2 emissions. Rail contributes 4 percent of the total transportation CO_2 emissions⁽⁵⁾. As shown in Figure 11, the Canadian railway sector has demonstrated that it has made significant progress in lowering its CO_2 emissions. CO_2 emissions by the railway sector in 2002 are 0.6 percent lower than in 1990. This fact is the result of improvements in fuel efficiency in railway operations. (See section 2.4 and Figure 7) As shown in Figure 12, kilotonnes of CO_2 per 1,000 RTK have decreased 23.2 percent from 1990 going from 21.21 in 1990 to 16.30 in 2002. Of particular interest is the fact that the reduction in overall freight CO_2 emissions has decreased rapidly since 1997 when the railways invested in new locomotives. It is expected that this trend of lower emissions of CO_2 per 1,000 RTK will continue as Canadian railways continue to replace their fleet with new locomotives and continue to implement fuel consumption reduction strategies. This is discussed further in Section 4.

(5) Natural Resources Canada "Energy Efficiency Trends in Canada, 1990 – 2000", June 2002

3.4 Locomotive Duty Cycle

The duty cycle of Canadian locomotives was recently evaluated by Canada's Class 1 railways and by a commuter railway by evaluating the time spent at each notch level for a statistically significant sample of locomotives. The duty cycles, shown in Table 5, are for road freight, passenger and switching service. Also shown is the duty cycle used to calculate emissions data in 1990. The influence of duty cycles on NO_x emissions have been found to be minimal ⁽⁶⁾ even though duty cycles have changed since 1990, partic-

ularly in the amount of time spent in dynamic braking. The variation in NO_x emissions factors for example is +/- 0.7 percent for older locomotives and is +/- 1.2 percent for newer higher horsepower locomotives. Since this study was undertaken, the amount of idle time has been reduced through the use of automatic stop/start devices and through a strict shutdown policy. As a result, the idle time shown in Table 5 now includes shut down time from these devices and policies.

Service	Idle	N1	N2	N3	N4	N5	N6	N7	N8	DB
2001 Freight	58.1	3.9	5.0	4.4	3.7	3.3	3.0	1.5	12.0	5.1
2001 Passenger	69.6	0.0	4.8	2.1	1.4	1.2	0.8	0.2	19.5	0.0
2001 Switching	83.0	4.1	4.0	3.6	2.0	1.0	0.5	0.3	1.5	0.0
1990 Freight	60.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	12.0	0.0
1990 Branch/Yard	81.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	5.0	0.0

Table 5

Duty Cycle by Locomotive Service (Percent of Time)

(6) Transport Canada Report, TP 13945E Influence of Duty Cycles and Fleet Profile on Emissions from Locomotives in Canada

4 Emissions Reductions Initiatives

Locomotive exhaust emissions can be reduced via not only engine technology but also a variety of train handling and infrastructure improvements. The principal initiatives being pursued by Canadian railways are listed in this section.

4.1 Fleet Renewal

Canadian freight and passenger railways are progressively renewing their fleets by purchasing EPA compliant locomotives. As well, they are upgrading, their pre-2000 locomotives to Tier 0 upon overhaul. These costly measures will ensure emissions, particularly NO_x, will continue to be reduced per unit of work.

Locomotives meeting U.S. EPA Tier 2 will be available by 2005. Tier 2 locomotives will have NO_x emissions 25.7 percent lower than 2001 locomotives and 59.2 percent lower than pre-2000 locomotives. The RAC is an active participant in developing Tier 3 objectives for locomotives with the U.S. EPA and AAR. It is expected that Tier 3 locomotives will focus on lower particulate emissions.

4.2 Co-Production

Co-production initiatives are being implemented. An example is an agreement between Canada's two Class 1 railways to share track in the Fraser canyon. This agreement allows the railways to haul heavily loaded trains over lighter grade (less steep) track on one railway and light loads (empty cars) on heavier grade track on the other. The result of this agreement has lowered fuel consumption, hence emissions, on both railways.

4.3 Government Programs

The railways have taken advantage of Transport Canada's Freight Sustainability Demonstration Program, and have received funding for fuel reduction schemes. Some examples are top of rail lubrication, being tested on BC Rail, electronic fuel injection and automatic stop/start systems that are being evaluated on several short line railways.

4.4 Train Handling

The proportion of main line locomotives fitted with dynamic brake equipment continues to increase. This allows the increased use of the dynamic brake for control of train speed rather than the use of the air brake system. As the latter does not allow the locomotive engineer to reduce the severity of a brake application already in force, it is frequently necessary to apply power at the same time as the brakes to maintain speed over variable track grades. This causes the fuel consumption to be increased significantly. When the dynamic brake is used to control speed the severity of the application can be varied at will, and the fuel consumption is reduced.

As well, the railways have on-going training programs that focus on awareness and on the importance of fuel conservation practices, including locomotive shutdown in yards.

4.5 Rail Lubrication

Efficient rail gauge face lubrication has been shown in many tests to reduce fuel consumption. The railways have on-going programs to ensure that the system of track mounted rail lubricators is maintained in good operating condition. Railways which have applied on-board locomotive wheel flange lubricators also have programs to keep these in working order.

Top of rail lubrication is being evaluated on BC Rail and early results have shown fuel consumption reductions.

5 Diesel Fuel Properties

4.6 Freight Car Productivity Improvement

The maximum allowable axle load has been increased on many lines in Canada. This enables the railways to use certain cars with a gross weight on rail of up to 129,800 kg instead of 119,400 kg. The gross to tare ratio of such freight cars is increased so that the quantity of gross tonne-kilometers accumulated to move a given amount of freight is reduced, contributing to the improvement in the ratio of RTK to GTK. The railways have also invested in aluminum cars to replace the heavier steel cars.

4.7 Low Idle Applications

The railways are extending the application of the "Low Idle" feature to more mainline locomotives. This feature allows the diesel engine to idle at a reduced speed with a consequently reduced load from fans. The reduction in fuel consumption can be as much as 10 L/hr, and on the accepted duty cycles can be as much as 3 percent of the annual fuel consumption. The use of the low idle feature is limited in some cases by the ability of the auxiliary power system to generate sufficient power for battery charging. However a continued reduction in overall fuel consumption is expected from this feature.

4.8 Automatic Start / Stop Systems

Railways are installing devices on both mainline and switching locomotives which will automatically shut down and restart the diesel engine when the locomotive is not in use. The device is regulated by several locomotive system parameters such as water temperature and battery condition. It will restart the engine to idle for a time to prevent freezing and to charge the batteries. The railways now have a policy of shutting down unused engines when ambient temperatures permit; automatic start/stop systems will allow this practice to be extended all year. The railways use diesel fuel that complies with the existing engine builders requirements of an average sulphur content of no greater than 5,000 parts per million (ppm). In general, Canadian railways use fuel with a much lower Canadian average sulphur content of approximately 1500 ppm ⁽⁷⁾.

(7) Transport Canada Report, TP 13783E, Diesel Fuel Quality and Locomotive Emissions in Canada, April 2001

6 Fuel Consumption and Emissions in Tropospheric Ozone Management Areas

6.1 Data Derivation

Three Tropospheric Ozone Management Areas (TOMA) have been designated as being of particular interest for emissions. These areas, and the sections of the several railways which operate within them, are shown in Appendix C.

The fuel consumption in these TOMAs is derived from knowledge of the total traffic in the areas, expressed in gross tonne-kilometers, as a proportion of the total rail traffic in Canada. The emissions are then calculated using the established factors for the various gases.

The fuel consumed in the TOMAs is also shown as a percentage of the total fuel consumption in all rail operations. The results for the three TOMAs are shown in Table 6.

The balance of the total fuel consumption that is 79.4 percent in 2002 was used outside of the three TOMAs. The resulting emissions were therefore spread widely over areas with a relatively low population density.

6.2 Seasonal Data

The emissions in the TOMAs during 2002 have been divided according to two seasonal periods:

- Winter (7 months) January to April and October to December inclusively.
- Summer (5 months) May to September, inclusively, as specified in the initiating Memorandum of Understanding.

The division of traffic by winter/summer periods was received from the major railways for their entire systems. The division of traffic in the TOMAs in the seasonal periods was then taken as equal to that on the whole system for each railway. As the split was very close to the proportion of days in the periods, the latter ratio was used for the smaller railways for which no seasonal traffic data were received.

The fuel consumption in each TOMA was therefore divided in the proportion derived for the traffic on each railway, excepting in the case of GO Transit in TOMA No.2 where the actual seasonal fuel consumption data were available. The emissions in the seasonal periods were then calculated as before, the results being shown in Table 7.

ТОМА	1995	1996	1997	1998	1999	2000	2001	2002
Lower Fraser Valley, B.C.	4.27	4.42	4.17	4.26	4.24	4.02	3.83	3.36
Windsor-Quebec City Corridor	14.7	15.3	14.83	16.29	17.13	17.35	15.62	17.05
Saint John, N.B.	0.11	0.13	0.09	0.10	0.11	0.12	0.11	0.17

Table 6 TOMA Percentage of Total Fuel Consumption

<u>16</u> LOCOMOTIVE EMISSIONS MONITORING PROGRAM *Reporting Year 2002* Table 7

Tropospheric Ozone Management Areas – Traffic, Fuel Consumption and Emissions Data, 2002

TOMA				No. 1			No.2		No. 3				
					Lower	Fraser Vall	-	Wind	sor-Quebe		Saint	-John, N.B	
							al Split			al Split			al Split
					GTK	Winter	Summer	GTK	Winter	Summer	GTK	Winter	Summer
CN				million GTK	5,901	58.0%	42.0%	57,384	58.0%	42.0%	832	58.53%	41.47%
CPR				million GTK	13,432	58.0%	42.0%	29,243	58.0%	42.0%			
B.C. Rail*				million GTK	390	58.0%	42.0%						
Burlington Northern	Santa F	e Railro	bad	million GTK	415	58.0%	42.0%						
Southern Railway of	B.C.			million GTK	175	58.0%	42.0%						
GO Transit				million GTK				8	58.0%	42.0%			
Essex Terminal Railw	ay			million GTK				26	58.0%	42.0%			
Goderich-Exter Railv	/ay			million GTK				336	58.1%	42.0%			
CSX	-			million GTK				153	58.1%	42.0%			
So. Ontario Railink				million GTK				96	58.1%	42.0%			
Norfolk Southern				million GTK				314	58.1%	42.0%			
Ottawa Valley – Rail	ink			million GTK				480	58.1%	42.0%			
Quebec Gatineau				million GTK				335	58.1%	42.0%			
Quebec Southern				million GTK				69	58.1%	42.0%			
St. Lawrence & Atla	atic			million GTK				247	58.1%	42.0%			
								247	30.1%	42.0%	222	F0.000/	41.92%
N.B. Southern Railw	ау			million GTK	20.010			00 (02			222	58.08%	41.92%
Total Freight				million GTK	20,313	50.000/	11 0000	88,693	50.000/	10.00/	1054		
VIA				million GTK	74	58.08%	41.92%	2,659	58.08%	42.0%			
Fuel Consumption													
Fuel Rate – Freight	Service		Litres n	er 1,000 GTK	3.3			3.3			3.3		
Fuel Rate – Passeng			•	er 1,000 GTK	10.9			10.9			10.9		
Freight Fuel Consum				Million Litres	68.0	39.4	28.6	297	172.2	124.7	3.5	2.1	1.5
VIA Fuel Consumption	•			Million Litres	0.8	0.5	0.3	297	16.8	124.7	5.5	2.1	1.0
		IVIA			0.0	0.5	0.5						
GO Transit				Million Litres	(0.0	20.0	00.0	23	13.6	9.8	0.5	0.1	
Total Fuel Consumpt	ion in I	OMA	I	Million Litres	68.8	39.9	28.9	349	202.50	146.6	3.5	2.1	1.5
Canadian Total Fue	Consu	mption	ľ	Aillion Litres	2,048.0			2,048.0			2,048.0		
TOMA Fuel Consum	ntion &	Canad	ian Tota	1	3.36%			17.05%			0.17%		
		Carlau		1	5.50%			17.0370			0.1770		
Emissions													
	Emis	sions F	actors										
	Standar	d Yard	Combi	ned**									
	g/L	g/L	g/L										
	-	61.01	59.2	kilotonnes	4.07	2.36	1.71	20.67	11.99	8.68	0.21	0.12	0.09
Oxides of Nitrogen (NO _v)		10.42	10.5	kilotonnes	0.72	0.42	0.30	3.67	2.13	1.54	0.04	0.02	0.02
(NO _x) Carbon Monoxide	10.51											1	1
(NO _x) Carbon Monoxide (CO)			2.9	kilotonnes	0.20	0.12	0.08	1.01	0.59	0.43	0.01	0.01	0.00
(NO _x) Carbon Monoxide (CO) Hydrocarbons (HC)	2.73	3.61	2.9	kilotonnes kilotonnes	0.20	0.12	0.08	1.01	0.59	0.43	0.01	0.01	0.00
(NO _x) Carbon Monoxide (CO) Hydrocarbons (HC) Sulphur Oxides				kilotonnes kilotonnes	0.20 0.17	0.12 0.10	0.08 0.07	1.01 0.89	0.59 0.51	0.43 0.37	0.01 0.01	0.01 0.01	0.00
(NO _x) Carbon Monoxide (CO) Hydrocarbons (HC)	2.73	3.61	2.54										

* B.C. Rail GTK for TOMA No. 1 derived as % length of line in TOMA No. 1 of total line length.
 ** Combined emission factors derived from standard & yard factors with fuel consumption data from Table 1.

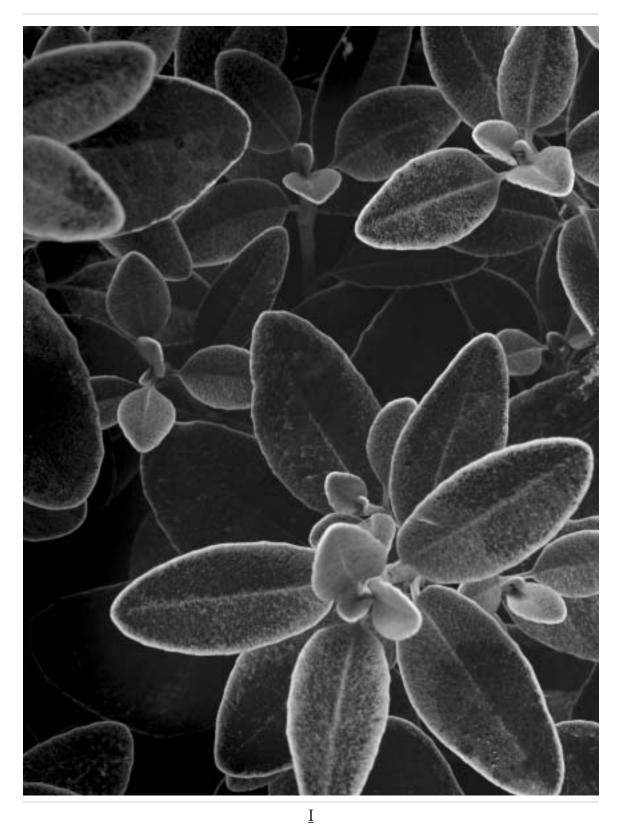
7 Summary and Conclusions

The rates of emission of NO_x and CO_2 in kg/1,000 RTK have decreased by 17.1 percent and 23.2 percent, respectively, since 1990. The rate of decrease was greatest in 1998, 1999 and 2000 showing the effects of the continual improvement in the fuel efficiency of rail transportation.

In 2002, the emissions of NO_x were above the voluntary cap of 115 kt. A new Emission Factor for NO_x and the growth in traffic since 1990 greater than forecast at the onset of the MOU contributed to higher NO_x emissions in 2002. The beneficial effect of the introduction of new locomotives meeting U.S. EPA Tier 0 and Tier 1, into the fleet is expected to reduce progressively NO_x emissions per unit of work, expressed as kg/1,000 RTK, in the future.

One area of traffic growth has been in the movement of containers. The growth in domestic intermodal traffic is the result of

the success of Canadian railways in developing strategic partnerships with shippers and trucking companies for the transportation of goods. Tonnage of intermodal traffic on Canadian railways increased by 15.2 percent in 2002, and is 104.3 percent higher than in 1990. Container tonnage has increased by 175.3 percent since 1990.


Traffic levels closely match North American economic activity and will continue to be monitored closely. Higher economic growth, or continued intermodal growth, would increase rail traffic. This modal shift would reduce overall transportation sector fuel consumption but would increase rail fuel consumption slightly. If higher rail traffic growth develops and persists over the longer term, consideration would have to be given to the revision of the measure by which emissions are reported. This concept was recognized in the EC Report "Recommended Reporting Requirements for the Locomotive Emissions Monitoring (LEM) Program" ⁽⁸⁾.

The Canadian railway industry continues its long term trend of improving the efficiency of its operations, measured by fuel consumption and emissions, per unit of traffic hauled.

Appendices

Appendix A

MEMORANDUM OF UNDERSTANDING between ENVIRONMENT CANADA and THE RAILWAY ASSOCIATION OF CANADA

Part 1 – Introduction

The purpose of this document is to set out the principles of the basic agreements reached among The Railway Association of Canada (RAC), The Canadian Council of Ministers of the Environment (CCME) and Environment Canada (EC) with respect to the control of emissions of oxides of nitrogen (NO_x) produced by locomotives during all rail operations in Canada.

The Memorandum of Understanding (MOU) has been developed from the recommendations contained in the joint Environment Canada / Railway Association of Canada (EC/RAC) report entitled "Recommended Reporting Requirements for the Locomotive Emissions Monitoring (LEM) Program".

Part 2 - Background

The Railway Association of Canada, being an association of environmentally concerned corporations doing business in Canada, proposed to the Canadian Council of Ministers of the Environment (CCME), a voluntary cap on the total emissions of oxides of nitrogen from locomotive engines in Canada of 115 kilotonnes per year. The RAC proposal for a voluntary cap on NO_x emissions has been included in the CCME NO_x/VOC Management Plan and is officially validated by this MOU.

Part 3 – The Program

Between January 1, 1990 and December 31, 2005 the RAC will endeavour to collect all data necessary to calculate the total amount of emissions of oxides of nitrogen (NO_x) produced during all rail operations in Canada and, if necessary, take whatever action is necessary to avoid exceeding the agreed maximum NO_x emissions of 115 kilotonnes per year.

The RAC will make every effort to report once per year to Environment Canada in the manner described below. The data collected should represent the activity of all RAC members and the RAC will endeavour to encourage Associate members of the RAC and non-members to participate in the data reporting.

The RAC also agrees to monitor developments in railway operations technology and encourage member railways to implement new cost-effective technologies that will reduce the NO_x emissions from their new equipment.

Part 4 – Reports

As outlined in the joint EC/RAC report entitled "Recommended Reporting Requirements for the Locomotive Emissions Monitoring (LEM) Program", the RAC will make every effort to submit to Environment Canada annual reports containing the following information;

- 1) A list of the Gross Ton Miles (GTM), Net Ton Miles (RTM) and total fuel consumption data for railway operations plus estimates of the emissions of oxides of nitrogen (NO_x), hydrocarbons (HC), oxides of sulphur (SO_x), particulate matter (PM), carbon monoxide (CO) and carbon dioxide (CO_2) using the RAC emissions factors as corrected in Table 9 of the Report referenced above. All fuel consumption and emissions data will be listed separated with respect to passenger, freight and yard switching services. These data will be submitted for the reporting year and will include revised projections for years 1995, 2000 and 2005;
- In addition to the national aggregate figures, fuel consumption and emissions should be provided for each Tropospheric Ozone Management Area (TOMA) as geographically defined in the NO_x/VOCs Management Plan (CCME, 1990);
- The emissions data for the TOMAs should be further separated into two additional categories: the Winter Months and the Critical Ground Level Ozone Forming Months of May, June, July, August and September;
- Updated information should be provided about the composition of the locomotive fleet by year of manufacture, horsepower, engine model, duty type and railway company;
- A brief written update should be provided on the progress of the railway industry in introducing new, more NO_x-efficient operating procedures and/or technology on rail operations;
- 6) Companies should submit a report on any emissions control systems, hardware or techniques installed or implemented during an engine rebuild program that would effect NO_x emissions;
- A report should be provided on new emissions performance data and new emissions factors for locomotives operated by railways obtained from the AAR, the manufacturers or other agencies;

- 8) Information should be provided about changes in the properties of diesel fuels used when the properties significantly depart from those specified in the Canadian General Standards Board Specifications CAN/CGSB-3-18-92, entitled Diesel Fuel for Locomotive Type Medium Speed Diesel Engines. Data should be reported from any tests on the sensitivity of emissions from various locomotive engines to fuel quality or to alternative fuels; and
- 9) A brief report should be provided on the progress and success of any other emissions reduction initiatives or changes in operational procedure, as well as any major changes in the type of duty cycles or service that would significantly affect emissions and their relative percentage of the overall railway operation.

The RAC will make every effort to submit an annual report containing all of the information indicated above by June 30th of the year following the report year. The first report covered by the MOU will be for the year 1990 and last report under this MOU will be for the year 2005.

Part 5 – General

The baseline of 115 kilotonnes per year for locomotive NO_x emissions is based upon the best technical information that was available by the end of 1989 and on projections for traffic increases. It is understood that, if new emissions factors significantly departing from those used to determine the baseline are developed as a result of advanced research on engine emissions or if the rail traffic growth rate is significantly impacted by a shift of traffic from or to another mode of transport, a new environmental review will be initiated.

Although both of the parties hereto have indicated by their signature, acceptance of the principles set out herein, this MOU is not intended to create a legally binding agreement and shall not be construed as creating enforceable contractual obligations among the parties hereto.

DATED at	this day of	1995
MINISTER OF THE ENVIRONMENT	THE RAILWAY ASSOCIATION OF CANADA	
Sheila Copps	R. H. Ballantyne	

Appendix B-1

Builder	MODEL	ENGINE	HP	YEAR	TOTAL	CN	СР	VIA	BC Rail	GO Transit	Total Other
GM/EMD	SD-90 "H"	16V-265H	6000	99	4		4			1	0
	SD-90	16V-710G3C	4300	98	61		61				0
	SD-75	16V-710G3C	4300	96-01	179	173					6
	SD-70	16V-710G3B	4000	95	26	26					0
	SD-60	16V-710G3	3800	85-89	63	63					0
	F59PH	12V-710G3	3000	88-95	62					45	17
	SD-50	16V-645F3B	3600	85-94	60	60					0
	GP-40	20V-645	2000		1						1
	SD-45-2	16V-645	3600		4						4
	SD-40	16V-645E3	3000	66-90	642	186	416				40
	SD-40	16V-645E3B	3000	85-87	15				15		0
	F40PH2	16V-695E3C	3000	87-89	46			46			0
	F40PH2	16V-645E3C	3000	70-79	5						5
	SD-40	16V-645D3A	2250	64-66	6						6
	GP-40	16V-645	3000	70-79	28		4				24
	SD-38	16V-645	2000	71-74	4						4
	GP-38	16V-645	2000	69-76	127	68					59
	GP-35	16V-645	3000		3						
	GP-35	16V-645	2000	72-76	3						3
	FP-9A	16V-645C	1800	83-85	1			1			3 3 0
	MP-15	12V-645	1500	76	3						3
	GP-15-1		1500	77	2						3 2
	GP-9	16V-645	1800	84-87	11						11
	SW-1200	16V-645	1200	62	1						1
	SW-1000	8V-645E	900	67-69	2						2
	GP-9	16V-567C	1750	55-68	6						6
	F92B	16V-567C	1750	58	1						1
	SW-9	8V-567C	900	56-64	10						10
SUB-TOTAL			,	1376	576	485	47	15	45	208	
MLW			3600	70-72	7	400	7 /	15	-10	200	7
		16V-251E	2400	63-66	2						
	CE-424	100 2012	2000	62	1						2
		12V-251	2000	71	7						7
		16V-251E	1800	85-89	12						12
	RS-18	100-2312	1800	54-58	6						6
	RS-23		1000	57-58	5						5
	MR-9 EMU		800 kw	95	29						29
	Talent DM	BR643	1000	01	3						3
		DI(043	1000			0	0	0	0	72	
SUB-TOTAL GE	Dash 9-44CM		1100	72	0	0 173	0	0	0	12	11
GE		16V-7FDL	4400	94-98	198	1/3	240		14		11
	Dash 9-44CW	16V-7FDL	4400	94-98	259		240	21			19
	P42DC	16V-7FDL	4250	01	21			21	27		0
	Dash 8-40CM	16V-7FDL	4000	90-94	84	55			26		3
	B39-8	16V-FDL16	3900	87-88	12				12		0
	B39-7	16V-FDL16	3600	80	8				8		0
	B39-7ME	16V-FDL16	3600	80	4				4		0
	B30-7		3000	75-80	5						5
	C30-7		3000	75-80	9						9
	DL535	Alco 251D	1200	69	8						8
	LL162/162	Alco 251B	990	54-66	10						10
SUB-TOTAL				618	228	240	21	64	0	65	
Budd					3		3				0
Steam					5		1				4
Total – Ma	inline & Branch	line			2074	804	729	68	79	45	349

Canadian Locomotive Fleet – Mainline and Branchline, 2002

Appendix B-2

Builder	MODEL	ENGINE	HP	YEAR	TOTAL	CN	СР	VIA	BC Rail	GO Transit	Total Other
		1/1///	2000	75.00	24		22				4
GM/EMD		16V-645	3000	75-90	26	24	22				4
	GP-9	16V-645E	2000 1800	71-01 54-81	170 155	24 151	129				
	GP-9 GP-20	16V-645 16V-645	1800	54-81 66	100	101					4
	SD-18	16V-645	1800	00	1						1
	GP-9	16V-645	1750	51-81	195		194				1
	GP-9 GP-9		1750	60			194				19
	GP-9	16V-645 16V-645			19						
	CD 15	100-045	1500	81-84	1						1
	GP-15	101/ / 45	1500	01.05	3	ГО					3
		12V-645	1200	81-85	52	50					2
	CD O	16V-567	1750	51-63	2						2
	GP-9	16V-567	1700	F1 70	2						2
	GP-7	16V-567	1500	51-78	2		1/				2
	SW-1500	16V-567	1500	51-78	23	,	16				7
	SW-1200	12V567	1200	55-60	45	6	33				6
	GP-9	12V567	1200	55-60	1		1				1
	SW-9		1200	62	1		1				
	SW-10	01.573	1200	04.05	8		8				
	011/1000	8V-567	900	84-85	1		1				
	SW1000	8-695E	1000	66	2	40.4	0	2	0	70	
SUB-TOTAL		5010	1000	710	231	404	2	0	0	73	
MLW		RS18	1800	54-58	4						4
		12V-251B	1800	56-65	15						15
		RS23	1000	59-60	3						3
		RS13	1000	59-60	2						2
SUB-TOTAL				24	0	0	0	0	0	24	
Other	CAT	12V-3512	2000		26				26		0
	GE	7FDL	2250	90-91	3						3
	Alco F9A		1750		6	6					0
	Alco F9B		1750		2	2					0
	Alco FP7A		1750		2	1	1				0
			1000		3						3
	Slug				12				10		2
SUB-TOTAL				54	9	1	0	36	0	8	
Total Vard	9. Switching				700	240	105	- -	24	0	105
	& Switching				788	240	405	2	36	0	105
Grand Tota	I – Mainline, I	Branchline, Yard a	nd Switching		2862	1044	1134	70	115	45	454

Canadian Locomotive Fleet - Yard & Switching & Grand Total, 2002

TOMA No.1 Lower Fraser Valley, British Columbia

CPR

Operations Service Area: Vancouver Subdivision: Cascade Mission Page

CN

Division: Pacific Subdivision: Rawlison Yale

B.C. Rail

Burlington Northern Railroad All

3.07% of total

Southern Railway of BC Ltd All

TOMA No. 2

Windsor - Quebec City Corridor, Ontario and Quebec

CPR

Division: SLH Quebec SLH Ontario Northern Ontario Subdivision: All All Chalk River Remarks: Smiths Falls-Arnprior

CN District:

District: Subdivisions:				s Point vacinthe urent field		
District:	Great Lakes	;				
Subdivisions:	Alexandria Caso Chatham Dundas Guelph	Grimsl Haltor Kingst Oakvil Payne	n ton Ie	Strathroy Talbot Uxbridge Weston York		
Essex Terminal	Railway	All				
Goderich - Exe	ter Railway	All				
CSX		AII				
Norfolk Southe		AII				
Ottawa Valley		Part				
Quebec – Gati		All				
Quebec – Sout		All				
So. Ont. – Rail	link	All				

TOMA No. 3

Saint John Area, New Brunswick

CN

District: Subdivision:

St. Lawrence & Atlantic

Champlain Denison Sussex

All

Participating Railways

(as of the end of 2002)

Agence métropolitaine de transport Alberta Prairie Railway Excursions Alberta RailNet Arnaud Railway Company Athabasca Northern Railway Ltd. Barrie-Collingwood Railway BC Rail Burlington Northern (Manitoba) Ltd. Burlington Northern Santa Fe Railway Company Canadian Pacific Railway Cape Breton & Central Nova Scotia Railway Capital Railway Cartier Railway Company Central Manitoba Railway Inc. Central Western Railway Charlevoix Railway Company Inc. Chemin de fer de la Matapédia et du Golfe inc. CN CSX Transportation Inc. E & N Railway Company (1998) Ltd. Essex Terminal Railway Company GO Transit Goderich-Exeter Railway Company Limited Great Canadian Railtour Company Ltd. Huron Central Railway Inc. Kelowna Pacific Railway Ltd. Lakeland & Waterways Railway Mackenzie Northern Railway New Brunswick East Coast Railway Inc. New Brunswick Southern Railway Company Limited Norfolk Southern Corporation

Ontario Northland Transportation Commission Ontario Southland Railway Inc. Ottawa Central Railway Inc. Ottawa Valley Railway Québec Gatineau Railway Inc. Québec North Shore and Labrador Railway Company Inc. Roberval and Saguenay Railway Company South Simcoe Railway Southern Manitoba Railway Southern Ontario Railway Southern Railway of British Columbia Ltd. St. Lawrence & Atlantic Railroad (Québec) Inc. Sydney Coal Railway Trillium Railway Company Limited VIA Rail Canada Inc. Wabush Lake Railway Company, Limited West Coast Express Ltd. White Pass & Yukon Route Windsor & Hantsport Railway