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Abstract
The Red Lake belt records ca. 300 Ma of episodic magmatism, sedimentation, and tectonothermal activity along
the south margin of the 3 Ga North Caribou terrane. Autochthonous assemblages appear to reflect initial
(2.99–2.96 Ga) plume magmatism, 2.94 to 2.91 Ga arc magmatism, 2.90 to 2.89 Ga sedimentation, and protracted
Neoarchean continental arc and intra-arc rift-related magmatism (2.75–2.73 Ga). A ca. 2.85 Ga oceanic assem-
blage containing MORB-like basalt may have been accreted and caused early uplift and erosion prior to
Neoarchean magmatism. This was followed by collisional orogenesis at ca. 2.72 Ga, the Uchian phase of the
Kenoran Orogeny, which was accompanied by extensive hydrothermal alteration and gold mineralization.
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INTRODUCTION

The second field season of Western Superior NATMAP activities in the Red Lake greenstone belt
focused on integrating geological mapping with new and previously available lithogeochemical, geo-
chronological, and GIS data to further our understanding of 1) the interplay between magmatism,

alteration, deformation, and mineralization; 2) the relationships between Meso- and Neoarchean assem-
blages; and 3) the tectonic setting of the belt through 300 Ma of Archean history. Collectively, these data
highlight a protracted history of episodic magmatic activity and sedimentation at the south margin of the
North Caribou terrane (Fig. 1), and orogenic activity that culminated in collision with the Winnipeg River
terrane during the ca. 2.72 Ga Uchian phase of the Kenoran Orogeny (Stott et al., 1989).
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Résumé
La ceinture de roches vertes de Red Lake témoigne de 300 millions d’années de magmatisme, de sédimentation et
d’activité tectonothermique épisodiques le long de la bordure méridionale du terrane de North Caribou dont l’âge
est de 3 Ga. Les assemblages autochtones témoigneraient d’un début de magmatisme en panache (de 2,99 à
2,96 Ga), de magmatisme d’arc (de 2,94 à 2,91 Ga), de sédimentation (de 2,90 à 2,89 Ga) et d’une longue période
de magmatism néoarchéen intra-arc et d’arc continental associé à un rift (de 2,75 à 2,73 Ga). Il y a peut-être eu
accrétion d’un assemblage océanique d’environ 2,85 Ga renfermant du basalte semblable au basalte de dorsale
médio-océanique, ce qui aurait provoqué un soulèvement et une érosion précoces antérieurs au magmatisme du
Néoarchéen. Ces événements ont été suivis d’une orogénèse de collision vers 2,72 Ga, soit la phase uchienne de
l’orogénèse kénoréenne, qui a été accompagnée d’altération hydrothermale et de minéralisation aurifère
importantes.



EPISODIC MAGMATISM (2.99–2.70 GA)

The Red Lake greenstone belt preserves a volcanic history that spans approximately 300 Ma and is
represented by seven volcano-sedimentary assemblages (Fig. 2), described below from oldest to
youngest. New field, geochemical, and isotopic data relevant to these build on observations pre-

sented in Sanborn-Barrie et al. (2000), and provide a more detailed basis for interpreting the origins of the
Red Lake belt (see Corfu and Stott, 1991; Tomlinson et al., 1998; Hollings et al., 1999) and speculating on
the evolution of the North Caribou terrane.

BALMER ASSEMBLAGE

The Balmer assemblage (2.99–2.96 Ga) is dominated by submarine tholeiitic basalt, komatiite, and
komatiitic basalt with minor felsic volcanic rocks, iron-formation, and fine-grained clastic rocks
(Fig. 2). This lithological association suggests deposition of the earliest recognized supracrustal

rocks in a sediment-starved, marine basinal setting. Basaltic flows are typically aphyric or variolitic. Ultra-
mafic flows include pillowed komatiitic basalt (<18% MgO) and spinifex-textured komatiite (Fig. 3a). The
assemblage has been dated at several localities (Corfu and Andrews, 1987; Fig. 2), with ages of 2992
+20/-9 Ma and 2989 ± 3 Ma for felsic pyroclastic units, and 2964 +5/-1 Ma from massive rhyolite that may
be intrusive in origin.

Basalt flows that dominate the Balmer assemblage are tholeiitic and distinguished from other basaltic
sequences in the belt by their relatively high Ti contents (<2 weight per cent; eg. Fig. 4b vs. 4e). These
rocks encompass a narrow range of primitive-mantle-normalized trace-element contents from light
rare-earth-element (LREE)- and large-ion lithophile-element (LILE)-depleted basalt (Fig. 4b), to more
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abundant, flat to slightly LREE- and LILE-enriched basalt with negative Nb anomalies (Fig. 4a). They
show a negative correlation between Mg content (a differentiation index) and degree of LREE enrichment
(e.g. La/Sm). Komatiitic rocks are typically LREE depleted, but show a range of LILE enrichment, and
many have negative Nb anomalies (Fig. 4c). Analyzed basalts from eastern Red Lake have initial eNd val-
ues (Tomlinson et al., 1998; R. Stevenson, pers. comm., 2000) ranging from +3.3, typical of depleted
mantle at 3 Ga (about >2), to 0.3, typical of sources with a longer lived history of LREE enrichment (e.g.
differentiated continental crust), whereas ultramafic samples encompass a wide range of initial eNd values
from -2.2 to +1.5.

BALL ASSEMBLAGE

The Ball assemblage (2.94–2.92 Ga) of northwestern Red Lake (Fig. 2) may be in tectonic contact with
the Balmer assemblage, as these assemblages young toward one another. The Ball assemblage
comprises a calc-alkalic sequence of basalt, andesite, dacite, and rhyolite intercalated with minor

komatiite and komatiitic basalt flows (Fig. 3b), conglomerate, quartzite, and locally stromatolitic marble.
Felsic volcanic rocks bracket the age of stromatolite growth between 2940 ± 2 Ma and 2925 ± 3 Ma (Corfu
and Wallace, 1986) and constrain two mafic-ultramafic submarine volcanic intervals, one prior to
2940 Ma and the other after 2925 Ma.

Ball assemblage calc-alkalic volcanic rocks encompass a wide range in silica and have relatively low Ti
contents (<0.5 weight per cent). Increasingly felsic compositions of the basalt–rhyolite continuum reflect
a progressive increase in LREE and LILE enrichment and an increase in the magnitude of negative Nb
anomalies (Fig. 4d, e, f). Despite their large compositional spectrum, the calc-alkalic rocks have initial
eNd values that range from +0.8 to +1.1 (Henry et al., 2000; this study). These uniform isotopic values are
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lower than estimated values of depleted mantle and suggest derivation from a LREE-enriched mantle
source. Ball assemblage komatiite and komatiitic basalt flows are characterized by flat to
LREE-enrichment profiles, enrichment in LILE, and large negative Nb anomalies (Fig. 4f). A sample of
peridotite from the large ultramafic intrusive body exposed in Pipestone Bay (Fig. 2) has a trace-element
profile similar to that of the komatiite flows and an initial eNd value of +2.2, consistent with depleted mantle
at ca. 2.9 Ga.

SLATE BAY ASSEMBLAGE

The Slate Bay assemblage (<2.92 Ga) is a clastic-dominated sequence that disconformably overlies
the Balmer assemblage. Clastic rocks include feldspathic wacke interbedded with lithic wacke,
argillite, and lenses of conglomerate, and compositionally mature conglomerate, grit, and quartzose

arenite. Quartz-rich rocks contain clasts of vein quartz, felsic volcanic rocks, and fuchsitic material indi-
cating derivation from felsic and ultramafic sources, respectively. They contain Balmer- and Ball-age
detrital zircons and their maximum depositional age is ca. 2916 Ma, the age of the youngest detrital zircon
analyzed (Corfu et al., 1998).

BRUCE CHANNEL ASSEMBLAGE

The Bruce Channel assemblage (2.89 Ga) appears to disconformably overlie the Balmer assemblage
in eastern Red Lake (Fig. 2) and comprises 2894 Ma intermediate volcaniclastic fragmental rocks,
locally overlain by a fining-upward sequence of chert-pebble conglomerate, crossbedded wacke,

siltstone, and quartz-magnetite iron-formation. The volcanic sequence is relatively thin (<500 m) and rep-
resents explosive volcanism followed by subsidence and deposition of clastic sediments and younger

2001-C19 M. Sanborn-Barrie et al. 5
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chemical sediments in a marine setting. Calc-alkalic volcanic rocks of the Bruce Channel assemblage
are dacitic to rhyodacitic and are characterized by LREE- and LILE-enriched trace-element profiles, with
negative Nb anomalies (Fig. 5). A sample of dacite has an initial eNd value of +2 (Henry et al., 2000), simi-
lar to estimated depleted mantle.

TROUT BAY ASSEMBLAGE

New field, geochronological, and geochemical data from the southwest part of the belt indicate that
rocks previously correlated with the Balmer assemblage (Stott and Corfu, 1991) represent a distinct
volcano-sedimentary sequence, the Trout Bay assemblage (2.85 Ga; Fig. 2). This assemblage con-

sists of a lower sequence of basalt overlain by clastic rocks, intermediate tuff, and chert-magnetite
iron-formation. These are intruded by gabbro and lesser ultramafic rocks that are economically important
in terms of their nickel, copper, and platinum-group-element potential (Parker, 2000a). The lower
sequence is overlain by a thick sequence of pillowed, LREE-depleted, tholeiitic basalt capped by thinly
bedded oxide-facies iron-formation. Separating the lower and upper sequences is a unit of fragmental
rock that generally appears to be pyroclastic in origin.

Intermediate tuff from the lower sequence yielded a U-Pb magmatic crystallization age of 2853 ± 1 Ma,
based on analyses of five single zircon grains (Fig. 6). The dated sample has calc-alkalic geochemical
affinity, is enriched in LREE and LILE, and has a negative Nb anomaly (Fig. 7a).

Pillow basalt from the upper Trout Bay assemblage is notable in the Red Lake belt for its very low over-
all trace-element abundances and depletion in LILE and LREE (Fig. 7a). Two samples of depleted basalt
have initial eNd values of +2 and +1.8, consistent with derivation from a depleted-mantle source. Gabbroic
rocks intrusive into the lower Trout Bay sequence, and likely related to the upper depleted basalt, have flat
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to depleted LREE profiles, but higher overall trace-element abundances (Fig. 7b). A minimum age con-
straint on the upper depleted-basalt sequence is given by a preliminary U-Pb zircon age of 2745 to 2735
Ma for a crosscutting dyke that is likely an apophysis of the 2734±2 Ma Douglas Lake pluton (Fig. 2).

HUSTON ASSEMBLAGE

A regionally extensive unit of polymictic conglomerate marks an angular unconformity between
Mesoarchean and Neoarchean strata. Along the unconformity, the character of the Huston sedimen-
tary assemblage (<2.89 >2.74 Ga) varies from a thin veneer of clastic detritus (e.g. Austin ‘tuff’ at

Madsen) to a thick (~0.5 km) succession of well bedded argillite and turbiditic wacke. This suggests an
erosional surface of considerable relief on which deposition of sedimentary detritus under locally marine
conditions took place prior to Neoarchean volcanism.

A sample of amphibolite-facies polymictic conglomerate (Austin tuff) from the Madsen mine yielded
Balmer- and Ball-age detrital zircons (Fig. 8) and a younger 2912 Ma grain that provides a maximum age
of sediment deposition. A reversely discordant titanite multigrain fraction yielded a preliminary age esti-
mate for amphibolite-facies metamorphism at 2714 ±19 Ma, and a minimum age for sediment deposition.
Three single zircons yielded younger 207Pb/206Pb ages of ca. 2.7 Ga and may date a late hydrothermal
event, possibly related to the adjacent 2704 Ma post-tectonic Killala-Baird batholith (Fig. 2; Corfu and
Andrews, 1987).

2001-C19 M. Sanborn-Barrie et al. 7
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CONFEDERATION ASSEMBLAGE

New field, geochemical, and geochronological data extend the known occurrence of the Confederation
assemblage (2.75–2.73 Ga) and allow its subdivision into three temporally and spatially distinct vol-
canic sequences. These are the 2745 to 2742 Ma McNeely calc-alkalic sequence in central Red

Lake, the <2744 to 2739 Ma Heyson tholeiitic sequence in southeastern Red Lake, and the 2734 to
2731 Ma Graves calc-alkalic sequence in the north (Fig. 2).

The McNeely sequence unconformably overlies the Balmer assemblage and is dominated by interme-
diate tuff breccia and lapilli tuff that, on McNeely Bay and McKenzie Island (Fig. 2), yielded zircon U-Pb
ages of 2748 +10/-5 Ma (Corfu and Wallace, 1986) and 2745 +7/-4 Ma (Corfu et al., 1998), respectively.
New U-Pb ages on intermediate tuff from central Red Lake and Martin Bay are 2742 +5/-2 Ma (Fig. 9a)
and 2742 +3/-2 Ma (Fig. 9b), respectively. The McNeely sequence is calc-alkalic and comprises interme-
diate to felsic rocks and low Ti (<1 weight per cent) plagioclase-phyric, amygdaloidal pillow basalt that are
enriched in LREE and LILE, with prominent negative Nb anomalies, and relatively depleted in heavy
rare-earth elements (HREE) and high field-strength elements (HFSE; Fig. 10a). A dacitic tuff has an
initial eNd value of +1.2 (Henry et al., 2000). Intrusive rocks of McNeely age cut Balmer and Bruce Channel
strata, consistent with eruption of this calc-alkalic sequence on a Mesoarchean continental margin.
These include a 2757 +9/-4 Ma felsic dyke (Corfu and Wallace, 1986) and the synvolcanic 2742 +3/-2 Ma
Brewis porphyry (Corfu and Andrews, 1987).

The overlying Heyson sequence (Fig. 2) comprises a thick succession of tholeiitic felsic volcanic rocks
dominated by pyroclastic tuff, lobe-hyaloclastite rhyolite flows, and rhyolite flow breccia. These are over-
lain and interlayered with pillowed mafic flows, quartz-feldspar crystal tuff, and younger
plagioclase-phyric, high-TiO2 basaltic andesite and associated dykes. Heyson basalt and andesite are
primarily tholeiitic, but locally overlie calc-alkalic dacitic tuff at Madsen, and are intercalated with
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calc-alkalic volcanic rocks on Keg Lake. The tholeiitic lavas have trace-element profiles characterized by
LREE and LILE enrichment, large negative Nb anomalies, and flat HREE and HSFE abundances
(Fig. 10b). A sample of Heyson basalt has an initial eNd value of +0.77, whereas an overlying ca. 2739 Ma
rhyolitic tuff has an initial eNd value of +2.9.

The ca. 2733 Ma Graves sequence (Corfu and Andrews, 1987) in northern Red Lake was erupted on
polymictic conglomerate that overlies, and sourced, Slate Bay and Balmer assemblages and mesozonal
granitoid rocks. Locally the conglomerate contains tuffaceous components and appears to grade transi-
tionally into the overlying Graves sequence, suggesting concomitant clastic and pyroclastic activity
10 Ma after initiation of Neoarchean volcanism in southeastern Red Lake. Accordingly, this conglomer-
ate appears to reflect younger uplift, erosion, and sedimentation than that recorded in the central and
southern parts of the belt. The Graves sequence includes andesitic to dacitic pyroclastic rocks and
synvolcanic diorite and tonalite, and likely represents a shallow-water to subaerial arc complex.
Synvolcanic plutons include the granodioritic 2731 ± 3 Ma Little Vermilion Lake batholith in the north
(Corfu and Wallace, 1986) and biotite tonalitic to granodioritic 2734 ± 2 Ma Douglas Lake pluton in the
southwest (Corfu and Stone, 1998). The Graves sequence is calc-alkalic and, like the McNeely
sequence, is characterized by LREE and LILEenrichment, negative Nb anomalies and depletion in
HREE and HFSE (Fig. 10c). Henry et al. (2000) report an initial eNd value for the Douglas Lake pluton of 0,
likely indicating significant assimilation of older continental crust.

2001-C19 M. Sanborn-Barrie et al. 9
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DEFORMATION

The Red Lake greenstone belt is polydeformed with an early (pre-2.748 Ga), nonpenetrative
deformational event (D0) and at least two recognizable generations of ductile structures (D1, D2)
imposed after ca. 2.742 Ga volcanism. Early deformation involved overturning of Balmer pillow

basalt, as documented by opposing facing on either side of the regionally extensive angular unconformity
in the Madsen and central Red Lake areas. Coplanar bedding orientations in oppositely facing Balmer
and Confederation rocks suggest overturning of the Balmer assemblage involved recumbent folding.

The main stages of penetrative deformation resulted in the formation of two generations of folds and
associated L-S fabrics throughout the belt. The F1 folds are established by opposing structural facing
(younging in the direction of the superimposed axial planar S2 fabric) and are recognized mainly in
clastic-dominated assemblages (Bruce Channel, Slate Bay, and Huston) where bedding structures high-
light fold development (Fig. 11a). The D1 planar fabrics strike northerly and are best developed in volca-
nic rocks of the Balmer, Ball, and Trout Bay assemblages.

The main penetrative structures recognized throughout the Red Lake belt are attributed to D2 deforma-
tion (Fig. 11b). These include sets of northeast-striking, moderately to steeply plunging F2 folds that, like
F1, are best developed in clastic rocks. Weakly to moderately developed L-S fabrics associated with F2
folds (D2) trend east to northeasterly and are developed in all sedimentary and volcanic units as well as
the Dome Stock.

Although D2 structures are dominantly east- to northeast-striking, a corridor of variably strained rock
with a dominant east-southeast strike extends from Cochenour through the Balmertown area. This
heterogenous strain corridor hosts the major gold deposits of the Red Lake camp (see Dubé et al.,
in press) and is marked by moderately developed ductile L-S fabrics with a consistent planar orientation
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of 120°/75°N and a mineral lineation that plunges 45° to 65° to the southwest. Subsequent semibrittle
and brittle structures have both localized and offset gold mineralization (Dubé et al., in press). The
relationship between the regional S2 and ‘mine-trend’ fabrics is best reconciled in the McKenzie Island
area where a progressive change in orientation can be documented (Fig. 12) from west of McKenzie
Island, where S2 strikes 070°, to the north end of the island where 090°-striking planar fabrics prevail, to
east of the island where the mine-trend fabric strikes 110°. In those localities, this variably oriented folia-
tion is of similar strain and bears the same relationship to pervasive ankerite alteration (Parker, 2000b).
Because there is no evidence of an overprinting relationship between the S2 and mine-trend fabrics, we
consider these to have formed coevally during D2. Given the absence of mylonitic rocks or strain gradi-
ents within these strain corridors, these are not interpreted as belt-scale conjugate shear zones, in con-
trast to the model of Andrews et al. (1986).

Timing constraints on deformation

The D0 event, manifested primarily through overturning of parts of the Balmer assemblage, predates
2744 ± 1 Ma, the age of tholeiitic rocks of the Heyson sequence that unconformably overlie and young
away (southeast) from northwest-younging Balmer basalt. A maximum age of D0 appears to be

2894 Ma, because the Bruce Channel assemblage is interpreted to disconformably overlie the Balmer
assemblage, as evidenced by same-facing, coplanar strata of the Bruce Channel assemblage overlying
mafic volcanic rocks of the older Balmer assemblage.

A maximum age of D1 is ca. 2742 Ma, given that F1 and F2 folds affect intermediate tuff of the McNeely
sequence in central Red Lake (Fig. 12). At present it does not appear that F1/S1 structures are recorded
by the ca. 2733 Ma Graves sequence, which suggests a minimum age of ca. 2733 Ma for D1 and highlights
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the potential role of D1 deformation in uplift, erosion, and subsequent deposition of polymictic conglomer-
ate that underlies and possibly interfingers with the Graves sequence. Emplacement of the 2734 Douglas
Lake pluton and 2731 Little Vermilion Lake batholith is consistent with the timing of D1; however, the
belt-wide presence of D1 structures suggests that D1 involved regional-scale, east-west (present-day
co-ordinates) shortening.

The timing of D2 is established by field relationships involving ca. 2.72 Ga intra-belt plutons. The
2.718 ±1 Ga Dome Stock contains S2 foliated xenoliths of local country rock, but is itself weakly to moder-
ately foliated with a throughgoing northeast-striking (060°/80°N average) fabric, coplanar with the
regional S2 foliation (Fig. 11b). Deviation in the orientation of interpreted D2 fabrics from the regional
(east- to northeast-striking) S2 trend to the east-southeasterly striking mine trend (described above) may
have been influenced by the syntectonic 2720 ± 2 Ma McKenzie Island stock and/or evolved through a
change in local boundary conditions in the eastern Red Lake belt related to ca. 2.72 Ga magmatism.

TECTONIC SETTING OF THE RED LAKE BELT AND EVOLUTION
OF THE NORTH CARIBOU TERRANE

The Red Lake greenstone belt records a ca. 300 Ma history of Archean crustal growth (Fig. 13) at the
south margin of the North Caribou terrane, a ca. 3 Ga terrane that sustained protracted reworking
(outlined below) that culminated in the 2.7 Ga Kenoran Orogeny. Prior to Balmer volcanism, the North

Caribou protocraton comprised 3.02 Ga island arc mafic-felsic volcanic crust and 3.01 to 3.0 Ga tonalitic
crust (Corfu and Wood, 1986; Thurston et al., 1991; Turek and Weber, 1994). Trace-element and isoto-
pic data for Balmer basalt support some degree of interaction with continental crust (see Tomlinson et al.,
1998; Hollings et al., 1999). Accordingly, Balmer volcanism at 2.99 Ga is inferred to have taken place on
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this volcano-plutonic substrate (Fig. 13a), leading to the development of a voluminous mafic-ultramafic
submarine sequence. Intercalated komatiite and basalt of the Balmer assemblage have been interpreted
as the products of a mantle plume in which the hot, deep, mantle-derived axis produced komatiitic
magma, and mixing with asthenospheric mantle produced tholeiitic basalt magma (Tomlinson et al.,
1998; Hollings et al., 1999). Anomalously low negative eNd values (-2) for komatiitic rocks reported by
Tomlinson et al. (1998) have been attributed to second-stage melting of a LREE-enriched mantle
(Tomlinson et al., 1998) or crustal contamination (Hollings et al., 1999).

Balmer volcanism at Red Lake was contemporaneous with komatiitic volcanism at Wallace Lake and
with mafic-felsic volcanism in the Birch-Uchi belt (2975–2964 Ma; Nunes and Thurston, 1980; Rogers et
al., 2000), McInnes belt (2974–2969 Ma; Corfu et al., 1998), and North Caribou belt (2981 Ma; de Kemp,
1987) (Fig. 13a). However, ca. 2.99 to 2.97 Ga komatiite is absent from these latter belts, suggesting
absence of a plume axis component. Plume-related magmatism may have triggered rifting of the North
Caribou terrane, with komatiite of the Balmer assemblage reflecting a locus of maximum crustal exten-
sion at Red Lake and Wallace Lake.

The diverse lithological association of the Ball assemblage suggests construction of a shallow marine,
central volcanic edifice with periods of quiescence and stromatolite growth. Enrichment in LILE and
LREE and relative depletion in HFSE in the isotopically juvenile mafic to felsic sequence suggests an
arc-like setting (Fig. 13b) for calc-alkalic volcanism (see Hollings et al., 1999). Two units of komatiitic
rocks separated by 15 Ma indicate the influx of anomalously hot melts, possibly during two intervals of
extension during arc formation. Intra-arc extension may be due to the influence of a mantle plume (see
Hollings et al., 1999) or to a change in plate dynamics (e.g. change in velocity of the upper plate during
rollback). Arc-like geochemical characteristics (Fig. 4f) of these isotopically juvenile ultramafic rocks sup-
port mixing between sub-arc-mantle and depleted-mantle components. Diverse, calc-alkalic-dominated,
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komatiite-bearing sequences similar to the Ball assemblage occur elsewhere in the North Caribou
terrane including the ca. 2928 Ma Power assemblage (McInnes), the ca. 2926 Ma Setting Net assem-
blage (Favorable Lake), and 2945 Ma subaerial pyroclastic rocks of the North Sandy assemblage (Corfu
et al., 1998, and references therein). The northerly trend (present-day co-ordinates) of coeval
calc-alkalic-dominated volcanic centres may reflect a contiguous continental arc built during eastward
subduction below the western margin of the North Caribou terrane at ca. 2.94 to 2.91 Ga.

Circa 2.9 Ga volcanism is widespread across the North Caribou terrane (Fig. 13c). At Red Lake it is
represented by calc-alkalic volcanic rocks of the 2.894 Ga Bruce Channel assemblage. Synchronous vol-
canism is inferred for the Pickle Crow assemblage (Fig. 1) from ca. 2892 Ma inherited zircon in the cross-
cutting 2860 Ma Pickle Crow porphyry (Corfu and Stott, 1991). Slightly older felsic volcanism at 2901 Ma
is recorded in the Hornby Lake belt (Corfu et al., 1998), whereas younger magmatism is recorded in the
Favourable Lake and North Caribou belts. The Bruce Channel assemblage has arc-like geochemical
attributes (LILE- and LREE enrichment, HFSE depletion, juvenile Nd isotopic composition) and may rep-
resent a time when the locus of arc volcanism expanded to include the present-day southern margin of
the terrane.

In the Red Lake greenstone belt, the ca. 2853 Ma Trout Bay assemblage appears to be a distinct
lithotectonic element characterized by strongly LREE-depleted submarine tholeiitic basalt of the upper
sequence, in likely tectonic (front-to-front) contact with the older Ball assemblage. This depleted basalt
sequence was later cut by the Douglas Lake pluton, which has an isotopic composition consistent with
interaction with continental crust at 2735 Ma (eNd =0; Henry et al., 2000). The Trout Bay assemblage may
represent a back arc or oceanic plateau crust, tectonically juxtaposed with the North Caribou terrane
between 2853 and 2735 Ma. This may have taken place during subduction and/or related strike-slip fault-
ing along its southern margin, evidence of which is recorded by ca. 2.84 to 2.82 Ga arc-like volcanic rocks
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distributed across the Uchi Subprovince (Fig. 13d; Stott and Corfu, 1991). Possibly related to such an
event is largely nonpenetrative deformation (D0) that appears to be diachronous across this region at
pre-2.86 Ga in Pickle Lake (Stott and Corfu, 1991), ca. 2.85 Ga in the Birch-Uchi belt (N. Rogers, pers.
comm., 2000) and between 2.894 and 2.750 Ga in Red Lake.

A regional angular unconformity separates rocks of the Balmer and Bruce Channel assemblages from
Neoarchean rocks of the Confederation assemblage and, as such, is widely bracketed between 2894 Ma
and 2744 Ma. An angular unconformity has also been described in the Bamaji Lake area to the east
(Fig. 1), where 2805 Ma volcanic and plutonic rocks are separated from 2781 Ma felsic tuff by conglomer-
atic rocks (Stott and Corfu, 1991). Unconformably overlying rocks record a Neoarchean history of
renewed arc volcanism (Fig. 13e). Mafic to felsic shallow-marine, calc-alkalic volcanic rocks of the 2745
to 2742 Ma McNeely sequence have LILE- and LREE-enrichment and HFSE-depletion characteristic of
arc-related volcanic rocks. Eruption of isotopically juvenile, submarine tholeiitic felsic±mafic volcanic
rocks of the <2744 to 2739 Ma Heyson sequence at Red Lake, and chemically and isotopically similar and
coeval volcanism at Confederation Lake to the east (Rogers et al., 2000), is interpreted to record intra-arc
rifting on the continental margin. Volcanogenic massive-sulphide mineralization is associated with this
rifting event in the Birch-Uchi belt. A final phase of Andean-style arc magmatism at ca. 2.73 Ga, recorded
at Red Lake by the Graves sequence and throughout the Berens arc, is diachronous along the North Caribou
margin between 2.73 Ga and 2.72 Ga. A switch from an extensional to compressional setting for the
Neoarchean arc may be reflected by diachronous penetrative D1 deformation across the area from
pre-2.74 Ga in the Pickle Lake area, to between 2.732 and 2.724 Ga in the Confederation Lake area
(N. Rogers, pers. comm., 2000), to between 2.742 and 2.718 Ga in the Red Lake belt (Fig. 13e). Con-
tinued subduction culminated in collision of the Winnipeg River terrane, the Uchian phase of the Kenoran
Orogeny (Stott et al., 1989), at ca. 2718 Ma in the Red Lake and Birch-Uchi belts (Fig. 13f) and slightly
younger to the east and possibly west (see Percival and Bailes, in press). Relationships in the Red Lake
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belt indicate that D2 was a protracted event involving brittle-ductile reworking during extensive hydrother-
mal alteration and metamorphism (Parker, 2000b; Dubé et al., in press), which ultimately led to syn- to
late-tectonic precipitation of gold to form one of Canada’s foremost gold mining camps.
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Figure 3. Spinifex-textured ultramafic rocks of the Red
Lake belt. a) bladed olivine komatiite, Balmer assemblage,
Golden Arm; b) acicular clinopyroxene komatiitic basalt,
Ball assemblage, Miles Creek.
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Figure 13. Geodynamic setting of the Red Lake
greenstone belt and evolution of the North Caribou
terrane. a) Plume-related magmatism on 3 Ga North
Caribou protocraton; b) arc magmatism and intra-arc
extension leading to komatiite eruption; c) arc
magmatism encompasses the southern North
Caribou terrane; d) arc volcanism and accretion of
oceanic rocksof theTroutBayassemblage;magmatic
quiescence at this time may reflect a change from arc
volcanism to transpression; e) Neoarchean arc
volcanism and intra-arc rifting reflecting subduction
along the northern and southern margins; a shift from
extensional to compressional arc magmatism at
2.73 Ga coincides with the development of the
Andean-style Berens River arc, D1 deformation and
uplift; f) 2.72 to 2.70 Ga diachronous collision of the
Winnipeg River terrane.
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