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ABSTRACT 
 

Multiple Frame Survey has been originally proposed according to an optimality approach in order to persecute survey cost 
savings, especially in the case of  a complete list available but expensive to sample. In the modern sampling practice it is 
frequent the case where one complete and up-to-date list of units, to be used as sampling frame, is not available. Instead, a 
set of two or more lists singularly partial, usually overlapping, with union offering adequate coverage of the target 
population, can be available. Thus the collection of the partial lists can be used as Multiple Frame. Literature about 
Multiple Frame estimation theory mainly concentrates over the Dual Frame case and it is only rarely concerned with the 
important practical issue of the variance estimation.  By using a multiplicity approach a fixed weights Single Frame 
estimator for Multiple Frame Survey is proposed. The new estimator naturally applies to any number of frames and 
requires no information about unit domain membership. Furthermore it is analytically simple so that its variance is given 
exactly and easily estimated. A simulation study comparing the new estimator with the major Single Frame competitors is 
also presented. 
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1. INTRODUCTION 
 

In the modern sampling practice it is not rare the case where a  unique, complete and  up-to-date list of units, to be 
used as sampling frame, is not available and it may not be built unless expensive or unfeasible screenings. For 
instance when dealing with a rare population such as persons with a rare disease, with elusive and/or hidden 
populations such as homeless, illegal immigrants or drug consumers, and in general when treating with special or 
difficult-to-sample populations (Sudman and Kalton, 1986, Lepkowski, 1991). Instead, a set of   unit lists can 
be available. In the general case, lists are singularly partial and overlapping each other, though their union might 
offer an adequate coverage of the target population U.  That is the context known as Multiple Frame Surveys (MF). 
Although literature on MF dates back to early sixties, in a recent paper Lohr and Rao stated: << As the U.S., Canada 
and other nations grow in diversity, different sampling frames may better capture subgroups of the populations. […] 
We anticipate that modular sampling designs using multiple frames will be widely used in the future >> (Lohr and 
Rao, 2005). 
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Literature mostly concentrates on the case of  2=Q  available unit lists, called Dual Frame Survey (DF), where two 
frames A and B are given with   and sizes   and , usually known,  such as , where N 
denotes  the population size,  usually unknown. The two overlapping frames are virtually divided into three disjoint 
domains: ,  (where  denotes complementation) and  the so-called 
overlapping domain 

UBA =∪ AN BN NNN BA ≥+

CBABAa ∩=−= CABABb ∩=−= C

BAab ∩= . Hence the population size equals the sum of the domain sizes 
 and the total  of the survey variable, assumed as the parameter to be estimated, 

equals the sum of the domain totals 
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=

ai ia yY .  Two random sample  

and   are selected independently  from  the  two  frames  under  a given  sampling design possibly different into 
each frame. Sample data from the two frames are used to produce estimates  for the domain totals.  Estimated 
domain totals are finally combined to provide estimation for the population total Y.  
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A DF estimator has been originally proposed  by Hartley (1974) focusing on the case where a complete frame A is 
available but expensive to sample and a second  frame B is available but partial. With the purpose of  persecuting  
cost savings by achieving the same or greater efficiency,  expensive data  from the complete frame A are combined 
with cheaper information from frame B under an optimality approach. Particularly, the estimator for the population 
total Y is produced by combining estimators of the domain totals with optimum weights 
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where for instance  denotes the subsample of  of units included into the overlap domain ab. The optimal 
Hartley’s estimator has been successively improved. Particularly  Fuller and Burmeister (1972) introduced a optimal 
estimator for the DF which has been interpreted as  a maximum likelihood estimator (Skinner, 1991) and proved to 
be asymptotically efficient (Lohr and Rao, 2000).  Some practical and methodological problems can be listed when 
the  optimality  approach is adopted and the optimal estimators applied: i) the optimum weights turn out to depend 
on unknown variances and covariances so that they have to be estimated from sample data, which could be 
complicated and affecting optimality itself;  ii)  estimated weights depend on the survey variable values so that  they 
differ for different survey variables, which is unpractical for multipurpose surveys;  iii) the generalization to MF 
setup  is not straightforward or even impossible (Skinner, 1991); iv) the important practical issue of variance 
estimation is scarcely considered;  v) the  knowledge of the domain membership for every sampled units is required. 
i.e. the correct  classification  into domains  of units sampled into each frames has to be performed in order to apply 
optimal estimators. This is a strong assumption as stated for instance in Lohr and Rao (2005) since optimal 
estimators result sensitive to misclassification of sampled units into domains. 
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Point ii) has been addressed by Skinner and Rao (1996), along with the application to complex sampling designs, by 
introducing a pseudo-maximum likelihood estimator (PML) for DF;  in Lohr and Rao (2005) point iii) is concerned 
for both optimal and PML  estimators;  in the present paper we focus on points iv) and  v). Particularly, in Section 2 
the single frame approach is recalled. In Section 3 a multiplicity estimator for  MF is proposed.  Some simulation 
results are presented in Section 4. 
 

2. SINGLE FRAME ESTIMATION 
 
In alternative to the optimality approach, a single frame (SF) approach can be used. In a SF estimator data from the 
two frames are combined by using fixed weights depending on the inclusion probabilities under the design induced 
by the two frame designs over the total sample, i.e. the union of the two frame samples (Bamkier, 1986; Kalton and 
Anderson, 1986; Skinner, 1991): ∑∑ ∈∈

+=
BA si iisi ii ywywŶ where ( ) 1−π+π= BiAiiw  with  if 0=π Ai bi∈  and 

 if  . For simple random sampling (SRS) of each frame, the SF estimator for DF is given by: 0=π Bi ai∈
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frame sampling fractions. Since fixed weights usually differ from optimum weights, the SF estimator is in general 
(asymptotically) less efficient than the optimal estimators (Lohr and Rao, 2000). Furthermore  the correct 
classification of sampled units into domains is still required. On the other hand, the SF estimator does not require to 
identify duplicate units since sampled units from the overlap domain are weighted by the same fixed coefficient; 
moreover it naturally extends to the MF setting. With this purpose the resourceful MF notation by Lohr and Rao 
(2005) is here extensively applied.  A collection of   overlapping frames  is given, assuming 
that .  Define the index sets K as subsets of the range of the frame index 
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population total, to be estimated, is expressed as a sum over the set of  12 −Q domains through the unit domain 
membership, i.e. ( )∑ ∑∈
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. Let  be the  sample selected from frame  under a given design, 

independently for . The (simple) SF estimator in the general case of MF is then given by 
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As mentioned above, fixed weights are in general non-optimal. Hence in order to improve efficiency it has been 
proposed to correct the simple SF estimator via raking ratio by using the known frame sizes .  In the DF,  
Skinner (1991) derived the limiting (closed) form of the SF raking ratio estimator as the number r of the raking runs 
increases to infinity. In the MF framework the raked SF estimator   becomes computationally more complex: 
estimator (1) has to be corrected every 

qN

SFrakŶ
( )Qr mod  raking run with respect to the size of frames involved into 

every domain , i.e. , iteratively  until convergence. Note that since SF estimators simple or raked 

involve the domain membership indicator 

qN

KD qK ∋∀
( )KD
iδ , as appears for instance in equation (1), their application requires  a 

known and  correct classification of sampled units into domains. Besides the risk of misclassification, this implies to 
collect additional information since sampled units have to be asked, alongside  about the survey variable, also about 
to which frames they belong  (besides the one in which they have been sampled). This assumption can be removed 
by adopting a multiplicity approach  to correct the SF estimator. 
 
 

3. A MULTIPLICITY ESTIMATOR  
 

The notion of multiplicity has been first introduced in connection with Network Sampling (Sirken, 2004; Casady 
and Sirken, 1980). It is also a tool of the Generalized Weight Share Methods (Lavallée, 2002) as well as of the 
Center Sampling  estimation theory (Mecatti, 2004) since Center Sampling and MF frameworks are equivalent 
under certain conditions.  By using a multiplicity approach, a design-unbiased MF estimator is proposed. Unlike the 
optimal and SF estimators, the multiplicity estimator does not depend on the domain membership of sampled units 
for requiring knowledge of how many frames they belong to instead of to which frames. As already mentioned this is 
a practical advantage for reducing the risk of misclassification and for reducing the amount of information asked to 
sampled units who might be somehow sensitive to the frame membership, for instance when sampling ex-prisoners, 
drug addicts, patients, illegal immigrants and so on.  
 
In Lohr and Rao (2005),  the multiplicity of domain  is defined as the cardinality of the index set K. Since 
domains are mutually exclusive, i.e. every unit i belongs to one and only one domain, the multiplicity is also a 
characteristic of every unit  where 
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iδ  denotes the frame membership indicator, i.e. the random 

variable taking value 1 if  and 0 otherwise. Unit multiplicity  equals the number of frames in which unit i 
is included. Hence it can  be observed by simply asking units how many frames they belong to. By using multiplicity 
the population total to be estimated is expressed as a sum over frames instead of a sum over domains:   
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Note that in equation (2) the domain membership indicator is not involved (for being ). 
Equation (2) represents a practical advantage since domains are virtual objects while the sampling is actually 
performed into the Q frames. As a consequence a SF multiplicity estimator is given by: 
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with fixed weights ensuring, for instance, unbiasedness under the chosen frame designs, i.e. the inverse of the 

inclusion probability. For SRS we have .  Owing to its Horvitz-Thompson structure, the exact 
variance of estimator (3) is given in closed form and hence easily estimated.  For SRS of every frame the estimator 
variance is given by 
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A customary unbiased variance estimator for SRS is then 
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Ŷv̂

Q

q si
miq

si
iiq

qq

qqq
SFmulti

qq

∑ ∑
= ∈

−−

∈

−

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−

−
=

1

2

1122
2 1 ∑               (5) 

 
Estimator (3) has been first compared in the MF framework with  direct SF competitors, namely the simple and 
raked  SF estimators, under SRS of every frame. To start with, notice that while in the simple SF estimator as given 
by (1) unit values are weighted by ( ) ( ) ( )Kwf i

D
iKq q

K =δ
−

∈∑ 1  i.e. an average coefficient over the frames involved 

into each domain, in the multiplicity estimator unit values are weighted by ( ) ( )qwmf iiq =−1  i.e. a specific frame 
coefficient. Thus they coincide for proportionate sampling of every frame, i.e. for constant sample fractions 

, while they differ for disproportionate sampling. ( Qqff q L1== )
 
 

4. A SIMULATION STUDY 
 

A simulation study has been performed in order to compare the proposed multiplicity estimator with the direct SF 
competitors and to investigate inferential properties for finite sample sizes. 
 
 Figure 1: Simulated Populations 
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Simulation concerns artificial populations of size N=120 randomly divided into Q=3 overlapping frames; the survey 
variable is provided with Discrete Uniform distribution between 1 and 100 and the population total Y is assumed as 
the parameter to be estimated. Different scenarios are produced by varying  the frame coverage NN qq =α under 

the constraint in order to control the overlapping among frames, and by varying the sampling fractions 1>α∑q q

NNf qq = . In Figure 1 the simulated populations are represented as points in the plane formed by the two main 
simulation parameters: the sum of frame coverages on the vertical axis and a measure of dispersion among the 



sampling fractions on the horizontal axis. As the dispersion of sampling fractions increases, increasing sampling 
disproportion is obtained. Hence by simulating along the vertical axis the case of proportionate sampling is 
investigated while all over the plane disproportionate sampling is simulated. In this study 45 populations/points are 
considered. For every population, a monte carlo distribution of the three SF estimators  and  is 
produced under SRS of each frame and their empirical mean and mean square error (EMSE) are calculated.  The 
main objective of the simulation study is the evaluation of the proposed multiplicity estimator with respect to its 
relative efficiency so that the  empirical  efficiency  ratio 

SFrakSF Ŷ,Ŷ SFmultiŶ
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 Table 1:  Proportionate sampling. 
 
 
 
 
 
 
 
 
 
can result  less, equal or greater than 1 indicating that  is more, equally or less efficient than the compared 
estimator. The monte carlo error  has been taken under control by accepting exclusively simulations giving a monte 
carlo relative bias less than 1% for estimators known to be unbiased,. This has required to keep the number of 
simulation runs between 32000 and  60000 in the worst cases. 
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Table 1 and 2 refer to some indicative simulation results in the case of proportionate sampling, when the multiplicity 
and the simple SF estimators coincide. In this case simulations regard the effects of the raking ratio correction over 
unbiasedness and efficiency. As a general indication, the raking ratio correction does not affect unbiasedness, since  

 results always unbiased or nearly so.  We then focus on efficiency.  Results in Table 1 show that the raking 
ratio correction does not improve the simple SF estimator for equal frame coverages. In other words, when the frame 
sizes  are all equal 

SFrakŶ

QNN q = , they do not give additional information and  to rake  becomes irrelevant. As the 
difference among frame coverages increases, some efficiency gains between 2% and 14% are observed. Over all 
cases explored for proportionate sampling, the raking ratio correction improves the simple SF estimator in the 60% 
of cases while giving the same efficiency in the remaining 40%. About 62 raking runs are needed, on average, to 
reach convergence. Tables 3 to 5 report the main simulation results in the case of disproportionate sampling,  First 
the effects of the multiplicity correction are concerned by comparing the multiplicity estimator and the simple SF 
estimator.  Table 3 refers to the case of equal frame coverages:  is less efficient than simple SF estimator only 
in one case for  high  frame coverages while efficiency gains between 12% and 22% are registered in all the other 
cases. As a general indication, the multiplicity correction improves the simple SF estimator especially for decreasing  
frame coverages. For different frame coverages, as reported in Table 4,  the major efficiency gains of multiplicity 
estimator over the simple SF estimator are registered, ranging  from 12% to 73% as the sampling disproportion 
increases. As a general indication, multiplicity correction improves the simple SF estimator  especially for 
increasing sampling disproportion. 
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Efficiency of Y relative to Y  SFSFmulti Ŷˆ ≡ ˆ
SFrak

Equal frame coverages 
qα  EEff 

high   0.8 [0.97,  1.03] 
low    0.4 [0.97,  1.03] 

 

Table 2:  Proportionate sampling. 
Efficiency of Y relative to Y  SFSFmulti Ŷˆ ≡ ˆ

SFrak

Different frame coverages 
qα  EEff 

0.2   0.4   0.8 [0.99,  1.14] 
0.2  0.15  0.9 [1.09,  1.12] 
0.8   0.9  0.25 [1.02,  1.08] 

Table  3: Disproportionate sampling 
Efficiency of Y  relative to Y  SFmulti

ˆ ˆ
SF

Equal frame coverages 
qα  qf  EEff %Efficiency gains 

0.4 0.1  0.3  0.6 
0.75  0.75  0.15 

0.78 
0.84 

22% 
16% 

0.6 0.9 0.05  0.5 
0.2  0.2  0.75 

0.79 
0.88 

21% 
12% 

0.7 0.6  0.05  0.25 0.86 14% 
0.8 0.2  0.2  0.75 1.14 -14% 

Table  4: Disproportionate sampling 
Efficiency of  relative to  SFmulti

Different frame coverages 
Ŷ SFŶ

qα  qf  EEff %Efficiency gains 

0.2  0.15  0.9 0.9  0.01  0.81 
0.75  0.75  0.15

0.27 
0.81 

73% 
19% 

0.9  0.7  0.5 0.05 0.25  0.95
0.5  0.08  0.9 

0.88 
0.85 

12% 
15% 



 
Finally estimator  has been compared with the raked estimator  as alternative ways of correcting the 
simple SF estimator. Since the multiplicity estimator requires less sample information than the raked estimator for  
using neither the domain membership of sampled units nor the frame sizes, some efficiency loss is expected. The 
interesting point is how much and when. With this respect simulation results are highly dispersed: Table 5 is an 
attempt to summarize them and to grasp any general indication. All the simulation results for disproportionate 
sampling have been classified on the basis of the  empirical efficiency ratio into three classes: 1) none or negligible 
efficiency loss (less than 10%),  2) slight efficiency loss (between 10% and 20%) and 3) severe efficiency loss (more 
than 20%).  Second column in Table 5 shows that none efficiency loss has been registered in 15%  of cases with 0% 
loss on average (third column);  in 23% of cases  the efficiency  loss is 18% on average and a severe efficiency loss 
(59% on average) appears in  62% of cases. The last three columns of Table 5 report the minimum, the maximum 
and the 75

SFmultiŶ SFrakŶ

th quantile of  the efficiency losses observed so that negative values indicate efficiency gains of the 
multiplicity correction with respect to the raking ratio correction. As a general indication,  results equally 

efficient or slightly less efficient than especially for decreasing frame coverages. 
SFmultiŶ

SFrakŶ
 
 
 
 
 
 
 
 
 

 

Table  5: Disproportionate sampling 
Efficiency of Y  relative to Y  SFmulti

ˆ ˆ
SFrak

Efficiency loss Cases Average min max 75th

none < 10% 15% 0% -4% 7 -1% 
slight 10% to 20% 23% 18% 15% 20% 20% 
severe > 20% 62% 59% 21% 112% 75% 
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