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ABSTRACT 
 

In survey sampling, Taylor linearization is often used to obtain variance estimators for calibration estimators of totals and 
nonlinear finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be 
expressed as smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead 
to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the 
variance estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the 
estimator under an assumed model, and (ii) validity under a conditional repeated sampling framework. Demnati and Rao 
(2004) proposed a new approach to deriving Taylor linearization variance estimators that leads directly to a unique 
variance estimator that satisfies the above considerations for general designs. Afterwards, Demnati and Rao (2002) 
considered the case of missing responses when adjustment for complete nonresponse and imputation for item nonresponse 
based on smooth functions of observed values, in particular ratio imputation, are used. When analyzing survey data, finite 
populations are often assumed to be generated from superpopulation models, and analytical inferences on model 
parameters are of interest. If the sampling fractions are small, then the sampling variance captures almost the entire 
variation generated by the design and model random processes. However, when the sampling fractions are not negligible, 
the model variance should be taken into account in order to construct valid inferences on model parameters under both 
randomization processes. In this paper, we focus on total variance estimation using the Demnati-Rao approach when the 
characteristics of interest are assumed to be random variables generated from a superpopulation model.  We illustrate the 
method using ratio estimators and estimators defined as solutions to calibration weighted estimating equations. Application 
to a zero-inflated Poisson model is also given.  
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1. INTRODUCTION 
 
Taylor linearization is a popular method of variance estimation for complex statistics such as ratio and regression 
estimators and logistic regression coefficient estimators.  It is generally applicable to any sampling design that 
permits unbiased variance estimation for linear estimators unlike a resampling method such as the jackknife, and it 
is computationally simpler than the latter method. However, it can lead to multiple variance estimators that are 
asymptotically design unbiased under repeated sampling. The choice among the variance estimators, therefore, 
requires other considerations such as (i) approximate unbiasedness for the model variance of the estimator under an 
assumed model, and (ii) validity under a conditional repeated sampling framework.  For example, in the context of 
simple random sampling and the ratio estimator, XxyYR )/(ˆ = , of the population total Y , Royall  and Cumberland 

(1981) showed that a commonly used linearization variance estimator  does not track the 

conditional variance of  given 

2112 )( zL sN−nN −−=ϑ

RŶ yx x, unlike the jackknife variance estimator .  Here  and Jϑ  are the sample 

means, X  is the known population total of an auxiliary variable ,  is the sample variance of the residuals 2
zsx

kkk xxyyz )/(−=  and  denote the sample and population sizes.  By linearizing the jackknife variance 

estimator, 

),( Nn

LJL xX ϑϑ 2)/(=, we obtain a different linearization variance estimator, Jϑ , which also tracks the 
conditional variance as well as the unconditional variance, where NXX /=  is the mean of .  As a result,  or JLϑx

 may be preferred over . Valliant (1993) obtained Jϑ Lϑ JLϑ  for the post-stratified estimator and conducted a 
simulation study to demonstrate that both  and  possess good conditional properties given the estimated post-Jϑ JLϑ
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strata counts.  Särndal, Swensson and Wretman (1989) showed that JLϑ  is both asymptotically design unbiased and 

asymptotically model unbiased in the sense of , where  denotes model expectation and 

 is the model variance of  under a “ratio model”: 

)ˆ()( RmJLm YVE =ϑ mE

)ˆ( Rm YV RŶ Nk ,...,1=kkm xyE β=)( ;  and the ’s are 

independent with model variance , .  Thus, 
ky

kkm xyV 2)( σ= 02 >σ JLϑ  is a good choice from either the design-
based or the model-based perspective.  Demnati and Rao (2004) proposed a new approach to variance estimation 
that is theoretically justifiable and at the same time leads directly to a JLϑ -type variance estimator for general 
designs.  Demnati and Rao (2004) applied the method under the design based approach to a variety of problems, 
covering regression calibration estimators of a total Y  and other estimators defined either explicitly or implicitly as 
solutions of estimating equations.  They obtained a new variance estimator for a general class of calibration 
estimators that includes generalized raking ratio and generalized regression estimators.  They also extended the 
method to two-phase sampling and obtained a sampling variance estimator that makes fuller use of the first phase 
sample data compared to traditional linearization variance estimators.  Demnati and Rao (2002) extended their 
method to the case of missing responses when adjustments for complete nonresponse and imputation for item 
nonresponse based on smooth functions of observed values, in particular ratio imputation, are used. 
 
When analyzing survey data, the finite population values  are often assumed to be generated from a 
superpopulation model, and analytical inferences on model parameters are of interest.  If the sampling fractions are 
negligible, the sampling variance captures almost the entire variation generated by the design and model random 
processes.  However, when the sampling fractions are not small, the model variance is not negligible in comparison 
to the total variance.  In this case, the model variance should also be accounted for in order to construct valid 
inferences on model parameters under both random processes.  

T
Nyy ),...,( 1=y

 
Molina, Smith and Sugden (2001) obtained general expressions for the mean and covariance function of the sample 
data  and for the sample totals under the joint processes, where , T

N sasas ))(),...,(()( 1=aya ))(( sdiag 1)( =sak  if 
element  belongs to the sample k )( =sak and 0s  otherwise. There is no doubt that the combined process of 
selection of the sample and generation of the finite population should be the basis for analytic inferences, as argued 
by Molina, Smith and Sugden (2001). However, a broadly applicable method is needed for total variance estimation. 
In section 2, we extend the Demnati-Rao approach to total variance estimation when the characteristics of interest 
are assumed to be random variables generated from a superpopulation model.  The method is theoretical justifiable 
and at the same time leads directly to a unique estimator of total variance with desirable properties. We apply the 
method to ratio estimators of model parameters in section 2. The method is then extended in section 3 to estimators 
that are defined as solutions to weighted estimating equations, using generalized regression (GREG) calibration 
weights.  

 
 

2. RATIO ESTIMATOR WHEN  IS RANDOM ky
 
Suppose that  is the ratio estimator  and the model parameter is RXsdxsdyX kkkk

ˆ))(/())((ˆ ≡∑∑=θθ̂

)()( kmm yEYE ∑==θ , where the sum is over the  elements in the population,  if element  is not in 

the sample 

N 0)( =sdk k

 and . Let , where T
kkk dd ),( 21=dX )(1 sdd kk =s  is the known total of , , and kkk ysdd )(2 =x s  is 

suppressed in  for simplicity. We may then express  as , where  is a 

 matrix with  column . We use the Horvitz-Thompson (HT) weights 

)/()()(ˆ
12 kkkd dxdXf ∑∑== Aθθ̂)(skd dA

thk kdN×2 kkk sasd π/)()( = , where  
is the sample membership indicator variable and 

)(sak

pmEEE = is the inclusion probability. In this case, letting kπ  

denote the total expectation, we have kmkpmk EsdEEdE 11 1)1())(()( μ≡===  and 

kkmkpkmk yEsdEyEdE 22 )()))((()( μ≡== , where  denotes expectation with respect to the design. Hence, 

, where  is a  matrix with  column . 

pE

θθ μ =≈ )(ˆ AfE thk T
kkk ),( 21 μμ=μN×2μA

 



Demnati and Rao (2004) have shown that the Taylor expansion of  maybe written as θθ −ˆ

)(~ˆ
kk

T
k μdz −∑≈−θθ , (2.1) 

 

μAAbAz =∂∂=
bkbk f |/)(~where  and  is a bA N×2  matrix of arbitrary real numbers with  column . This result 

is true for any  that can be expressed as a smooth function of estimated totals. Using operator notation, let 

thk kb

θ̂ )(uϑ  

denote the estimator of total variance of a linear estimator . Then the Demnati-Rao (DR) linearization 

variance estimator of  is simply given by 
k

T
kU du∑=ˆ

θ̂

 , (2.2) )()ˆ( zϑθϑ =DR

)(uϑ
dbkbk f AAbAz =∂∂= |/)(which is obtained from  by replacing  by ku . Note that  is a consistent estimator of kz

kz~ . For the ratio estimator , we have θ̂
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In (2.5), , T
kk y ),1(=v

 , , kttkkt sasasd π/)()()( = )()( sdsd kkk =

, ,  kttkkt πππω /= )/()(/)1( tktkktktkt πππππωω −=−
and  is an estimator of the covariance of  and  under the assumed model, where ),(cov tkm yy ky ty ktπ is the joint 
inclusion probability for , and tk ≠ kkk ππ = . When the model covariance of  and  is zero,  is 
taken as zero. 

ky ty ),(cov tkm yy

 
Substituting  in (2.3) for  in (2.4), we get kz ku
 

 . (2.6) 
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where  and . Note that the first term, XXzz kmk
ˆ/2; == )ˆ)(ˆ/(21; kkkkkk

T
ksk xRyXXyzzz −=+== vz mϑ , on the 

right side of (2.6) corresponds to the model and the second term, , corresponds to the sampling design. sϑ
 
Under simple random sampling, 
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xyR /ˆ =where  and )1/()ˆ)(( 22 −−∑= nxRysas kkke . Further, under the ratio model 
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, the model variance of ,  is estimated robustly by  , and  2)ˆ( kk xRy −2)()( kkmkm xyEyV β−=Xβθ = ky
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 remains valid under misspecification of the model variance of . kyNote that mϑ



Now combining (2.7) with (2.9), we get an estimator of the total variance of  as θ̂
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It is interesting to note that the “g-weight”  appears automatically in , and that the finite population 

correction  is absent in . The Demnati-Rao approach leads to a unique choice of variance estimator 
that preserves the g-factors automatically.  

)ˆ(θϑDRXX ˆ/

)ˆ(θϑDRNn /1−

In the traditional approach to estimation of total variance,  is written as 

 under the ratio model. The first term is 

estimated by an estimator of , typically using 

)ˆ(θV
2)()ˆ()()ˆ()ˆ()ˆ( kkmpmmpmpmpm xyEVEYVVEEVVE βθθθθ −∑+=+≈+

)ˆ(θpV sϑ  without the g-factor. The second term is estimated robustly 

by . The sum of the two estimated terms equals (2.10) without the g-factor. 
The choice of variance estimator under the traditional approach is not unique. 
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under the ratio model. The traditional approach typically uses the same variance estimator of . β̂
 
 

3. SURVEY WEIGHTED ESTIMATING EQUATIONS 
 
Suppose the supperpopulation model on the responses  is specified by a generalized linear model with mean 

, where is a 
ky

)()()( θuθ T
kkkm hyE == μ 1×pku vector of explanatory variables and  is a “link” function.  The 

model parameter of interest is . For example, the choice 
(.)h

θ aah =)(  gives linear regression model and 

 gives logistic regression model for binary responses . )1/()( aa eeah += ky
 

0=∑= )()( θlθl k 0=)(θlkmE with We define census estimating equations (CEE) as , and the solution to CEE 

gives the census parameter . For example, Nθ̂ ))(()( θμuθl kkkk y −=  for linear and logistic regression models. We 
use generalized regression (GREG) calibration weights ))(()()( sgsdsw kkk d= , where the “g-weights” are given by 

 , (3.1) kk
T
kkkk

T
k ccsdsg xxxXXd -1])([)ˆ(1))(( ∑−+=

for specified ,  is the HT estimator of the known total kk sd xX )(ˆ ∑= X 1×qkc  of a  vector of calibration variables 
 and  is the  vector of HT weights . The resulting GREG estimator of the total Y , namely 

 has the calibration property 
kx )(sd 1×N )(sdk

kk yswY )(ˆ ∑= Xx =∑ kk sw )( (Särndal et al., 1989). 
  
We use the calibration weights to estimate the CEE. The calibration weighted estimating equations are given by 
  
 . (3.2) 0=∑= )())(()()(ˆ θldθl kkk sgsd

The solution to (3.2) gives the calibration weighted estimator θ  of , and  is approximately design-model 
unbiased for θ , i.e., . It follows from (3.2) that  is of the form  with 

, where is a 
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dbkbk AAbAfZ =∂∂= |/)(Following the implicit differentiation method of Demnati and Rao (2004),  is evaluated as  
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and  is the identity matrix. The DR linearization variance estimator of θ  is obtained from (2.4) and (2.5) by 

replacing  by the  matrix ,   by  and  by an estimator of the 
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covariance matrix of  under the assumed model. After simplification, we get )(θlk
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where  is the sampling estimated covariance matrix given by sϑ
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The model estimated covariance matrix depends on the assumed model covariance structure. If 

 for , and  is estimated robustly by , then the 
model estimated covariance matrix , 
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Note that for the linear regression and logistic regression models,  for if the ’s are 
uncorrelated under the model, noting that 
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Example: Zero-Inflated Poisson Model 
 
 We now report the results of a simulation study on the finite sample bias of the new variance estimator 

 given by (3.6). We consider a zero-inflated Poisson regression model that is often used for count data with 

excess zeros. The model assumes that with probability 

)ˆ(θDRϑ

kp−1  the value of  element, , is always 0 and with 
probability  it is ( ) that is drawn from a Poisson (

thk ky

kp ka 0≥ kλ ) distribution (Lambert, 1992). We assume that 

 and   with 62.0)1/( ≈+== αα eeppk 7.2≈== βλλ ek 1=β and  so that the model parameters are 5.0=α α  
and β . We generated 300 populations, each of size 000,1=N , from the above zero-inflated Poisson model, and 
from each generated population we selected 300 samples using Bernoulli sampling with probability 1.0=π . To 
implement calibration, we generated constants  ),...,1( Nk =kx  from Bernoulli(0.6) and fixed them over the 
simulation runs. Using these  and the design weights kx π/)()( sasd kk = , we calculated the GREG weights with 

. 1=kc

The estimating (or score) function  under the above model has two components, where  : T),( βα=θ)(θlk
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where  if  and  if , and  is the density of Poisson (0=kI 0=ky 1=kI 0>ky )( kyf kλ ). Using (3.10) and (3.11) in 

(3.2), we calculated  for each simulated sample. Using , we then calculated the total variance estimate  
and its components 

)ˆ(θDRϑθ̂ θ̂
 and  for each sample. Using these values, we evaluated the simulated covariance matrix mϑ sϑ



of  and the average values of θ̂ mϑ , sϑ  and  and  over simulations. The bias in the estimation of  is 

negligible here: 

)ˆ(θDRϑ θ̂ θ

β̂9936.0ˆ =β5169.0ˆ =α α̂1=β vs.  and  vs. , where  and  denote the average values of 5.0=α

α̂  and . We have the following results on the average values β̂ mϑ , sϑ  and  compared to simulated : )ˆ(θVDRϑ
561.0)ˆ( =αV 583.0)ˆ( =αϑDR 525.0)ˆ( =αϑs 0058.0)ˆ( =αϑm,  ,  ,  , 

0076.0)ˆ( =βV 0076.0)ˆ( =βϑDR 0069.0)ˆ( =βϑs 0007.0)ˆ( =βϑm,   , ,  , 

0041.0)ˆ,ˆ( −=βαCov 0042.0)ˆ,ˆ( −=βαϑDR 0038.0)ˆ,ˆ( −=βαϑs 0004.0)ˆ,ˆ( =βαϑm, , , , 
It is clear that the DR variance and covariance estimators track the corresponding population values, while the use of 

sϑ  only leads to underestimation of )ˆ(αV  and . )ˆ(βV
 
 

CONCLUDING REMARKS 
 
 
For estimators of model parameters defined as solutions to GREG calibration weighted estimating equations, we 
studied total variance estimation, assuming that the characteristics  in the finite population are generated from a 
superpopulation model. We obtained a linearization variance estimator, using the Demnati and Rao (2004) approach. 
The proposed variance estimator automatically preserves the “g-weights”. Also, it remains valid under 
misspecification of the model variance of , assuming that the model covariance of  and  is 0 for 

ky

ky ky ty tk ≠ . We 
plan to extend our results to longitudinal survey data, allowing for misspecification of the model covariance over 
time. Other extensions under study include two-phase sampling and missing responses. 
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