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ABSTRACT

In survey sampling, Taylor linearization is often used to obtain variance estimators for calibration estimators of totals and
nonlinear finite population (or census) parameters, such as ratios, regression and correlation coefficients, which can be
expressed as smooth functions of totals. Taylor linearization is generally applicable to any sampling design, but it can lead
to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the
variance estimators requires other considerations such as (i) approximate unbiasedness for the model variance of the
estimator under an assumed model, and (ii) validity under a conditional repeated sampling framework. Demnati and Rao
(2004) proposed a new approach to deriving Taylor linearization variance estimators that leads directly to a unique
variance estimator that satisfies the above considerations for general designs. Afterwards, Demnati and Rao (2002)
considered the case of missing responses when adjustment for complete nonresponse and imputation for item nonresponse
based on smooth functions of observed values, in particular ratio imputation, are used. When analyzing survey data, finite
populations are often assumed to be generated from superpopulation models, and analytical inferences on model
parameters are of interest. If the sampling fractions are small, then the sampling variance captures almost the entire
variation generated by the design and model random processes. However, when the sampling fractions are not negligible,
the model variance should be taken into account in order to construct valid inferences on model parameters under both
randomization processes. In this paper, we focus on total variance estimation using the Demnati-Rao approach when the
characteristics of interest are assumed to be random variables generated from a superpopulation model. We illustrate the
method using ratio estimators and estimators defined as solutions to calibration weighted estimating equations. Application
to a zero-inflated Poisson model is also given.
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1. INTRODUCTION

Taylor linearization is a popular method of variance estimation for complex statistics such as ratio and regression
estimators and logistic regression coefficient estimators. It is generally applicable to any sampling design that
permits unbiased variance estimation for linear estimators unlike a resampling method such as the jackknife, and it
is computationally simpler than the latter method. However, it can lead to multiple variance estimators that are
asymptotically design unbiased under repeated sampling. The choice among the variance estimators, therefore,
requires other considerations such as (i) approximate unbiasedness for the model variance of the estimator under an
assumed model, and (ii) validity under a conditional repeated sampling framework. For example, in the context of

simple random sampling and the ratio estimator, \fR =(y/X)X , of the population total Y , Royall and Cumberland

(1981) showed that a commonly used linearization variance estimator 9, =N?*(n™"—~N™)s’ does not track the

X, unlike the jackknife variance estimator 8,. Here y and X are the sample

means, X is the known population total of an auxiliary variable x, sz2 is the sample variance of the residuals

Zy =Y —(¥/X)x, and (n,N) denote the sample and population sizes. By linearizing the jackknife variance

conditional variance of Yy given

estimator, $,, we obtain a different linearization variance estimator, 9, =(X/X)*9,, which also tracks the
conditional variance as well as the unconditional variance, where X = X /N is the mean of x. Asaresult, 9, or
3, may be preferred over 9, . Valliant (1993) obtained &, for the post-stratified estimator and conducted a
simulation study to demonstrate that both 4, and $, possess good conditional properties given the estimated post-
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strata counts. Sérndal, Swensson and Wretman (1989) showed that ., is both asymptotically design unbiased and
asymptotically model unbiased in the sense of Em(SJL)zvm(\fR), where E_ denotes model expectation and
Vm(\fR) is the model variance of \?R under a “ratio model”: E, (y,)=8%.; k=1..,N and the y,’s are

independent with model variance V,,(y) :o—zxk, c?>0. Thus, 9, is a good choice from either the design-
based or the model-based perspective. Demnati and Rao (2004) proposed a new approach to variance estimation
that is theoretically justifiable and at the same time leads directly to a 9, -type variance estimator for general
designs. Demnati and Rao (2004) applied the method under the design based approach to a variety of problems,
covering regression calibration estimators of a total Y and other estimators defined either explicitly or implicitly as
solutions of estimating equations. They obtained a new variance estimator for a general class of calibration
estimators that includes generalized raking ratio and generalized regression estimators. They also extended the
method to two-phase sampling and obtained a sampling variance estimator that makes fuller use of the first phase
sample data compared to traditional linearization variance estimators. Demnati and Rao (2002) extended their
method to the case of missing responses when adjustments for complete nonresponse and imputation for item
nonresponse based on smooth functions of observed values, in particular ratio imputation, are used.

When analyzing survey data, the finite population values y = (yy,..., Yy )" are often assumed to be generated from a

superpopulation model, and analytical inferences on model parameters are of interest. If the sampling fractions are
negligible, the sampling variance captures almost the entire variation generated by the design and model random
processes. However, when the sampling fractions are not small, the model variance is not negligible in comparison
to the total variance. In this case, the model variance should also be accounted for in order to construct valid
inferences on model parameters under both random processes.

Molina, Smith and Sugden (2001) obtained general expressions for the mean and covariance function of the sample
data diag(a(s))y and for the sample totals under the joint processes, where a(s) = (a,(5),...ay (5))", a, (s) =1 if
element k belongs to the sample s and a, (s)=0 otherwise. There is no doubt that the combined process of

selection of the sample and generation of the finite population should be the basis for analytic inferences, as argued
by Molina, Smith and Sugden (2001). However, a broadly applicable method is needed for total variance estimation.
In section 2, we extend the Demnati-Rao approach to total variance estimation when the characteristics of interest
are assumed to be random variables generated from a superpopulation model. The method is theoretical justifiable
and at the same time leads directly to a unique estimator of total variance with desirable properties. We apply the
method to ratio estimators of model parameters in section 2. The method is then extended in section 3 to estimators
that are defined as solutions to weighted estimating equations, using generalized regression (GREG) calibration
weights.

2. RATIO ESTIMATOR WHEN vy, ISRANDOM

Suppose that 6 is the ratio estimator @ = XXy d, (s)/(Xx,d,(s) = XR and the model parameter is
6=E,(Y)=2E,(yy), where the sum is over the N elements in the population, d, (s) =0 if element k is not in
the sample s and X is the known total of x. Let d, =(dy,dy )", where dy =d, (), dyy =d, (5)y,,and s is
suppressed in d, (s) for simplicity. We may then express 0 as 0= f(4y) = X(2d, ) /(X xdy,), where A4, is a
2xN matrix with k™ column d, . We use the Horvitz-Thompson (HT) weights d, (s) =a, (s)/z, , where a, (s)
is the sample membership indicator variable and 7, is the inclusion probability. In this case, letting E=E E|

denote the total expectation, we have E(dy) =EnEp(dy(s)) = En(D) =1= sy and
E(d,) =E,(Y«E,(d(5))) =E, () = u, Where E, denotes expectation with respect to the design. Hence,

EO~ f(4,)=6,where A, isa 2xN matrix with k™ column g, = (11, 4t)" -



Demnati and Rao (2004) have shown that the Taylor expansion of 6-06 maybe written as
0-0~3Z (d,— ), (2.1)

where z, = of (4,)/0b, l4,-4, @nd A, isa 2xN matrix of arbitrary real numbers with k™ column b, . This result

is true for any 0 that can be expressed as a smooth function of estimated totals. Using operator notation, let 3(u)
denote the estimator of total variance of a linear estimator U =Y u} d, . Then the Demnati-Rao (DR) linearization
variance estimator of @ is simply given by

Ior(0) = 9(2), 22)
which is obtained from $(u) by replacing u, by z, =of (4,)/0by |44, - Note that z, is a consistent estimator of

%, - For the ratio estimator é, we have

o = (2 22) " = (XTI X)ER) DT (23)
It remains to evaluate 9(u) . We have
9(u)=> > u, cov(d,.d,)u,, (2.4)
where
0 l-w
cov(d, d) =d, (S)[O cov. (V.Y ):| +dy, () ( o) VkVIT . (2.5)
m ko Jt kt

In(2.5), v, =L y)",
di (s) =2, (s)a, (8)/ 7y, dic(s) =di(s),
oy =mad ny, -0l o = (1, —m7) (77,)
and cov,, (Y,,Y,) is an estimator of the covariance of y, and y, under the assumed model, where 7, is the joint

inclusion probability for k =t , and 7y =z, . When the model covariance of y, and vy, is zero, cov,(Y,.Y,) is
taken as zero.

Substituting z, in (2.3) for u, in (2.4), we get

19DR (é) = szkl (S)Zk;mzt;m COVm (yk 1 yt) + szkl (S)Zk;szl;s (1_wkt)/a)kl
=4, +9
where z., =2, =X /X and Zis = TV = Zy + 2y Yy = (X /)Z)(yk —Iixk) . Note that the first term, 4, on the

(2.6)

right side of (2.6) corresponds to the model and the second term, 9, corresponds to the sampling design.

Under simple random sampling,

N2 nY X)),
G =—o/|1-— | = | s¢, 2.7
e EHE @
where se2 =2a (s)(Yy —Fixk)zl(n—l) and FAQ:VIK. Further, under the ratio model
En(Yi) =B%c, Cov (Y, y) =0, k=t, (2.8)

0= B X , the model variance of y, , V. (v,) =E, (Y, —Bx.)’ is estimated robustly by (y, — Fixk)2 , and

CON(XY )
19m —F(?) (n—l)se . (29)

Note that 4, remains valid under misspecification of the model variance of vy, .



Now combining (2.7) with (2.9), we get an estimator of the total variance of 0 as

~ NZ(X VP N-1
‘gDR(H):T(?] Tsez (2.10)

It is interesting to note that the “g-weight” X/ X appears automatically in 9pg (é), and that the finite population
correction 1-n/N is absent in Iy (é) . The Demnati-Rao approach leads to a unique choice of variance estimator
that preserves the g-factors automatically.

In the traditional approach to estimation of total variance, V(¢) is written as
Emvp(é)+VmEp(é) ~ EmVp(67)+Vm )= EmVp(é)JrZEm(yk —%.)? under the ratio model. The first term is
estimated by an estimator of Vp(é) , typically using §; without the g-factor. The second term is estimated robustly

by >d, (S)(y, — FAixk)2 =(N /n)(n—l)sez. The sum of the two estimated terms equals (2.10) without the g-factor.
The choice of variance estimator under the traditional approach is not unique.

If the parameter of interestis g =6/ X, then ,B =0/X =R and
~ - N2 1 N-1
Ior (B) :‘gDR(Q/X):TWng, (2.11)
under the ratio model. The traditional approach typically uses the same variance estimator of ,é .

3. SURVEY WEIGHTED ESTIMATING EQUATIONS

Suppose the supperpopulation model on the responses y, is specified by a generalized linear model with mean

E. (Y.) = (0)=h(u.0), where u,_is a px1vector of explanatory variables and h(.) is a “link” function. The
model parameter of interest is #. For example, the choice h(a)=a gives linear regression model and

h(a) =e® /(L +e?) gives logistic regression model for binary responses vy, .

We define census estimating equations (CEE) as I(#) =>1,(0) =0 with E_/,(8) =0, and the solution to CEE

gives the census parameter éN . For example, 1, (0) = u, (y, — u, (0)) for linear and logistic regression models. We
use generalized regression (GREG) calibration weights w, (s) =d, (s)g, (d(s)) , where the “g-weights” are given by

0, (d(s) =1+ (X - X)"[Zd, (S)e,x x( T e x, (3.)
for specified ¢, , X= 2.d, (s)x, is the HT estimator of the known total X of a qx1 vector of calibration variables
x, and d(s) is the Nx1 vector of HT weights d, (s). The resulting GREG estimator of the total Y, namely

Y = 2w, (s)y, has the calibration property > w, (s)x, = X (Sérndal et al., 1989).

We use the calibration weights to estimate the CEE. The calibration weighted estimating equations are given by

10) = £, ()0, (@($))1, (6) = 0. (32)
The solution to (3.2) gives the calibration weighted estimator 0 of 0,and 0 is approximately design-model
unbiased for @, ie., EmEp(é)za. It follows from (3.2) that 0 is of the form f(4,) with

d, =(d,(s).d, ()] ()", where f(4,)isa px1 vectorand A4, isa (p+1)xN matrix with k™ column d, .

Following the implicit differentiation method of Demnati and Rao (2004), Z, = df(A,)/0b, |, _,, isevaluated as



Z{ =IO 9 @B x,. 1,), (33)
with
B, =[Zd, () x X 1M 2y (), x, Iy (6), (34)
J(0)=2d, (5)9,(d(s))(0L (0)/067) , (3.5)
and 7, is the identity matrix. The DR linearization variance estimator of 0 is obtained from (2.4) and (2.5) by
replacing u, by the px(p+1) matrix Z;, v, by (LI ()" and cov,(y,,y,) by an estimator of the pxp
covariance matrix of 7, (6) under the assumed model. After simplification, we get

95 (@) =3, + 9., (3.6)

where 9, is the sampling estimated covariance matrix given by
9, =[J O] £, (5)9, (d(5) 9, [@(s)A-0,) | e, (O)e; (DT (O)]™, (37)
with
e (0)=1,(0)- B x,. (3.8)

The model estimated covariance matrix depends on the assumed model covariance structure. If
Cov,, (1,(0),1] (8))=0 for k=t, and V, (I, (0)) =E, (I, ()L (#)) is estimated robustly by I, (é)l[ (é), then the
model estimated covariance matrix , 4, , reduces to

8 =[T O] £, (59 S O DT ON . (39)
Note that for the linear regression and logistic regression models, Cov, (I, (0),1] (8)) =0 for k =t if the y, s are
uncorrelated under the model, noting that /, () = u, (y, — u,(9)) .

Example. Zero-Inflated Poisson Model

We now report the results of a simulation study on the finite sample bias of the new variance estimator
9or (8) given by (3.6). We consider a zero-inflated Poisson regression model that is often used for count data with

excess zeros. The model assumes that with probability 1— p, the value of k™ element, Y, is always 0 and with
probability p, it is a, (=0) that is drawn from a Poisson (4, ) distribution (Lambert, 1992). We assume that
p.=p=e“/(l+e“)~0.62 and A =A=e” ~2.7 with «=0.5 and =1 so that the model parameters are «
and S . We generated 300 populations, each of size N =1,000, from the above zero-inflated Poisson model, and

from each generated population we selected 300 samples using Bernoulli sampling with probability = =0.1. To
implement calibration, we generated constants x, (k=1...,N) from Bernoulli(0.6) and fixed them over the

simulation runs. Using these x, and the design weights d, (s) = a,(s)/z, we calculated the GREG weights with
¢, =1.
The estimating (or score) function /, (8) under the above model has two components, where 8 = (c, )" :
I Q- +pf
|1k(0): k( pk) pk (yk)
1-p + P F(YK)

olog f(y,)/op (3.10)

I — Py + P F (YY)
L, (0) = <—* dlogp, /0a, (3.11)
% 1-p + P F (Vi) ‘
where I, =0 if y,=0and I, =1if y, >0, and f(y,) isthe density of Poisson (4, ). Using (3.10) and (3.11) in

(3.2), we calculated @ for each simulated sample. Using 0, we then calculated the total variance estimate Ior ((3)
and its components 9., and 4 for each sample. Using these values, we evaluated the simulated covariance matrix



of @ and the average values of G, 9 and 9 (é) and @ over simulations. The bias in the estimation of @ is

negligible here: « =0.5 vs. & =0.5169 and L=1vs. ,é =0.9936, where & and ,é denote the average values of

a and ,3 . We have the following results on the average values 9,,, 9, and 9, compared to simulated V(0):

V(a)=0.561, Sor (@) =0.583, 9.(a)=0.525, 8. (a)=0.0058,
V() =0.0076 , Jor () =0.0076, 3.(/3) = 0.0069, 3..(f) =0.0007,
Cov(d, ) =-0.0041,  9p.(&, B)=-0.0042,  &.(a,B)=-0.0038, 3.(a, ) =0.0004,

It is clear that the DR variance and covariance estimators track the corresponding population values, while the use of
9, only leads to underestimation of V() and V(3) .

CONCLUDING REMARKS

For estimators of model parameters defined as solutions to GREG calibration weighted estimating equations, we
studied total variance estimation, assuming that the characteristics y, in the finite population are generated from a
superpopulation model. We obtained a linearization variance estimator, using the Demnati and Rao (2004) approach.
The proposed variance estimator automatically preserves the “g-weights”. Also, it remains valid under
misspecification of the model variance of y, , assuming that the model covariance of y, and y, is0 for k =t . We

plan to extend our results to longitudinal survey data, allowing for misspecification of the model covariance over
time. Other extensions under study include two-phase sampling and missing responses.

REFERENCES

Demnati, A. and Rao, J. N. K. (2002), “Linearization Variance Estimators for Survey Data With Missing
Responses”, Proceeding of the Section Survey Research Methods, American Statistical Association, pp.
736-740.

Demnati, A. and Rao, J. N. K. (2004), “Linearization Variance Estimators for Survey Data (with discussion)”,
Survey Methodology, 30, pp. 17-34.

Lambert, D. (1992), “Zero-inflated Poisson Regression, With an Application to Defects in Manufacturing”,
Technometrics, 34, pp.1-14.

Molina, E. A., Smith, T. M. F. and Sugden, R. A. (2001), “Modeling Overdispersion for Complex Survey Data”,
International Statistical Review, 69, pp. 373-384.

Royall, R. M., and Cumberland, W. G. (1981), “An Empirical Study of the Ratio Estimator and Estimators of its
Variance”, Journal of the American Statistical Association, 76, pp. 66-77.

Sarndal, C.-E., Swensson, B., and Wretman, J.H. (1989), “The Weighted Residual Technique for Estimating the
Variance of the General Regression Estimator of the Finite Population Total”, Biometrika, 76, pp. 527-537.

Valliant, R. (1993), “Postsratification and Conditional Variance Estimation”, Journal of the American Statistical
Association, 88, pp. 89-96.



	cover page 2005 ENG.pdf
	Demnati_Final_English.pdf

