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ABSTRACT 
 

A class of estimators based on the dependency structure of a multivariate variable of interest and the survey design is 
defined. The dependency structure is the one described by the Bayesian networks. This class allows ratio type estimators as 
a subclass identified by a particular dependency structure. It will be shown by a MonteCarlo simulation how the adoption 
of the estimator corresponding to the population structure is more efficient than the others. It will also be underlined how 
this class adapts to the problem of integration of information from two surveys through the probability updating system of 
the Bayesian networks.  
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1. INTRODUCTION 
 
The whole information collected by one or more surveys is undoubtedly a complex system. For this reason, it is not 
only important to organize these surveys in an appropriate system (e.g. for sample coordination or coherence of 
definitions) but also to provide tools suitable to support representation, estimation and updating. 
 
In this paper we will show how Bayesian Networks (BN) can help in achieving such goals taking into account the 
survey design. BNs have been successfully applied in several contexts as artificial intelligence, forensic statistics, 
genetics, computer troubleshooting and other fields where it is common to deal with a large number of variables 
linked by a complex dependence structure (Neapolitan 2004). BNs have already been used also in official statistics, 
e.g. for the description of some census results (Getoor et al. 2001) and for imputation of missing values (Thibaudeau 
and Winkler 2002, Di Zio et al. 2005 and references therein).  
 
It should be noted that, while in the previous analyses the i.i.d. assumption is natural and well justified, in the 
context of complex survey designs this assumption does not hold anymore. Our proposal is to explicitly represent 
the sampling design in the BN and to highlight its statistical relationship with the variables of interest. This approach 
defines a class of estimators of the joint distribution of these variables that includes the usual ratio type estimators. 
Moreover information propagation properties of BNs (Cowell et al. 1999) will be used to update the estimates of a 
survey once an informative shock resulting from another survey occurs. In this sense BNs help in visualizing and 
understanding how information coming from different surveys interacts. 
 
 

2. ESTIMATORS BASED ON BAYESIAN NETWORKS 
 
Let P be a finite population of size n, and let X1,…,Xk be k variables of interest. For the sake of simplicity, let these 
variables be categorical, with frequency distribution in P 
 

                                                 
1 Marco Ballin, Istat, via A. Ravà 150, 00100 Roma Italy; Mauro Scanu, Istat, via C. Balbo 16, 00184 Roma Italy 
(scanu@istat.it); Paola Vicard, Università Roma Tre, via Ostiense 139, 00154 Roma Italy (vicard@uniroma3.it). 



∑
=

=
N

i

ikixx
k N

xxI
xxF k

1

1...
1

),...,(
),...,( 1                    (1) 

 
where I(.) is the indicator function. Equation (1) is the parameter of interest. Let S be a sample drawn from P 
according to a complex survey design defined by the survey weights wi, i∈ S. A natural and intuitive estimator of the 
distribution (1) is: 
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Estimator (2) is a ratio type estimator.  
 
Let S be an additional (categorical) variable with as many categories as the different weight values, say w(h), 
h=1,…H, and marginal probability distribution 
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where nh is the size of the subsample of units sh of S with equal weight w(h), h=1,…H. Using S in (2), it is possible to 
hide the role of the weights conditioning on S , e.g. 
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for any j=1,…K, and l≠j, and to highlight the role of S in the estimator (2) by using the chain rule (Cowell et al. 
1999). This is possible by rewriting estimator (2) via a recursive factorization involving the factors in (3) and (4), i.e. 
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The factorization (5) shows that the usual ratio estimator (2) relies on a particular dependence model among the 
variables X1,…,XK, S. This dependence model is the situation of complete dependence between these variables, i.e. 
the saturated model. This can be represented graphically as a BN called clique. For instance, when there are three 
variables of interest X, Y, and Z under the design S, the clique corresponds to the network (a) of Figure 1. It should 
be noted that the order of the variables in factorization (5) is not unique and leads to alternative but equivalent 
graphical structures. 
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Figure 1 – Eight possible BNs representing the dependence structure between three variables of interest X, Y, Z and 
the survey design S. 
 
It might happen that the clique is an overparameterized model because some variables are marginally or 
conditionally independent. For instance, networks (b)-(h) in Figure 1 show some simplified BNs. The dependence 
structure of a BN suggests an estimator based on the chain rule, whose general form is: 
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For instance, the BN based estimator of the BN (f) of Figure 1: 
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Note that pa(Xj) does not necessarily include S, as in networks (d)-(h) of Figure 1. In that case, the estimator of the 
conditional distribution does not use sample weights. Furthermore, the class of estimators (6) based on the different 
BN structures is finite for a fixed survey design S, and always includes estimator (2).  
 
Despite each estimated factor in (6) is design unbiased when the sum of the sample weights in each S category is 
constant with respect to sample variability (e.g. in the stratified sampling design), unbiasedness is ensured only for 
the estimator relative to the clique, i.e. estimator (2) (the only condition is that the sum of the sample weights equals 
N). The other estimators might be biased with respect to the multivariate joint frequency distribution of X1,…XK in P. 
Nevertheless there is empirical evidence that the exploitation of the dependency structure of the variables of interest 
and the survey design might lead to better estimators (Section 3). 
 
A different class of BN based estimators is discussed in Ballin et al (2005). It consists in producing weights 
estimates also for those factors in Equation (6) that do not admit S in the conditional pa(Xj). The comparison 
between these two alternative definitions will be provided elsewhere. 
 

 
 
 



3. MONTE CARLO SIMULATION 
 
A MonteCarlo simulation has been carried out in order to evaluate the performance of the estimators suggested by 
BNs and the consequences of possible model misspecifications. In particular, eight populations consisting of 10000 
units have been generated according to the eight BNs of Figure 1. For each population 500 samples of size 1000 
have been drawn according to the stratified sample design described in Table 1 (note that sampling fraction is not 
proportional to stratum size). 
 

Stratum code h Stratum size Nh F(S=h) Sample size nh
S=1 5995 0,5995 100 
S=2 2959 0,2959 200 
S=3 1046 0,1046 700 

Table 1: stratum and sample sizes 
 
For each population and for each MonteCarlo replication the estimates of the joint distribution resulting from the 
estimator suggested by the corresponding BN have been compared with the true joint distribution. The performance 
of the estimator has been measured by the mean of MonteCarlo estimates of relative MSE of each element of the 
joint distribution: 
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where V is the number of MonteCarlo replications and ( )zyxF vBN ,,ˆ

.  is the estimate of  obtained with the 
v-th sample. In order to have an idea of the robustness of estimates against model misspecification, the joint 
distribution has been estimated using the estimators suggested by BNs associated to the other seven BN structures. 
The results are reported in Table 2, where each row refers to a population and each column refers to an estimator.  

( zyxF ,, )

 
Pop MSE( ) aF̂ MSE( ) bF̂ MSE( )cF̂ MSE( )dF̂ MSE( )eF̂ MSE( )fF̂ MSE( ) gF̂ MSE( )hF̂

a 0.32 0.54 0.36 3.07 3.51 2.71 2.57 8.59
b 0.27 0.15 0.22 3.16 3.14 10.41 10.43 11.93
c 0.29 0.45 0.25 10.17 11.29 9.17 9.12 11.07
d 0.28 6.25 0.45 0.10 0.47 0.63 0.52 15.34
e 0.30 0.37 0.25 0.12 0.11 0.18 0.22 7.12
f 0.28 0.25 0.23 1.44 1.43 0.11 0.15 7.25
g 0.30 0.31 0.25 1.30 1.46 0.28 0.18 6.98
h 0.37 0.14 0.31 0.14 0.11 0.14 0.25 0.03

Table 2 – MonteCarlo estimates of relative MSE for the BN based estimators suggested by the BNs in Figure 1 
 
In Table 2 the estimator is labelled with the same index of the corresponding population (the first column refers to 
the BN based estimator suggested by the BN (a) of Figure 1, the second to the BN based estimator suggested by the 
BN (b) of Figure 1, and so on.). This simulation shows that the estimators suggested by the corresponding BN 
perform always better than estimator (2) (compare values contained in the diagonal with those of the first column). 
Even if it is difficult to measure the “distance” between the data generating model and the model assumed by the 
usual ratio estimator , the comparison among values of the diagonal and values of the first column suggests that 
the gain of efficiency depends on such “distance”. For example, in the case of population (b) (characterized by only 
three links) the gain of efficiency is higher (0.15 vs 0.27) than in the case of population (c) (0.25 vs 0.29) which 
differs from the usual model for only the link between X and Y. 

aF̂

 
The previous result is rather general. For population (h) the different estimators seem ordered according to the 
number of additional arrows. The worst estimator is actually , whose structure is the most distant. From the other 
rows it is possible to see that adding arrows seems to have a milder effect than deleting arrows. This is due to the 

aF̂



fact that a simplified structure is unable to take into account the actual dependences, while when data show 
independence this is almost preserved also when adding (a few) arrows. 
 
Table 3 shows the estimated bias and variance contributions to the relative MSEs of the estimators. It can be noted 

that for the usual estimator  (that is unbiased) the contribution of estimated bias to MonteCarlo MSE is 
negligible. The contribution of bias is negligible along the diagonal too. This result suggests that estimators 
including a known dependence structure are approximately unbiased. Outside the diagonal the contribution of bias is 
usually higher. 

aF̂

 
Pop Biasa Vara Biasb Varb Biasc Varc Biasd Vard Biase Vare Biasf Varf Biasg Varg Biash Varh

a 2.0 98.0 74.0 26.0 25.9 74.1 57.8 42.2 70.4 29.6 69.3 30.7 48.1 51.9 85.1 14.9
b 1.9 98.1 3.0 97.0 1.9 98.1 57.8 42.2 59.1 40.9 88.7 11.3 85.3 14.7 94.9 5.1 
c 1.6 98.4 71.5 28.5 2.6 97.4 82.9 17.1 85.5 14.5 79.2 20.8 69.4 30.6 91.2 8.8 
d 0.4 99.6 97.4 2.6 41.2 58.8 1.6 98.4 68.5 31.5 61.4 38.6 31.1 68.9 97.7 2.3 
e 3.8 96.2 62.5 37.5 1.9 98.1 5.2 94.8 7.1 92.9 17.8 82.2 12.8 87.2 90.7 9.3 
f 3.9 96.1 49.9 50.1 1.7 98.3 28.3 71.7 30.5 69.5 4.6 95.4 1.8 98.2 83.3 16.7
g 3.1 96.9 56.9 43.1 2.1 97.9 12.1 87.9 44.9 55.1 44.2 55.8 1.8 98.2 51.0 49.0
h 4.1 95.9 6.2 93.8 1.7 98.3 2.5 97.5 3.9 96.1 4.0 96.0 1.7 98.3 6.3 93.7

Table 3. MonteCarlo estimates of bias and variance contribution to relative MSE 
 
The same results hold also for the marginal estimated distributions.  
 
 

4. INTEGRATION ISSUES 
 
In a complex and integrated system of two or more surveys it is important to have tools to update estimates 
computed with a survey when results of other surveys or new archives become available. In this case we are in 
presence of an informative shock and we need to propagate the additional information to results of previous surveys 
in order to achieve consistency between surveys (external consistency). This problem can be faced in official 
statistics by means of calibration estimators allowing to estimate the parameters of interest under linear constraints. 
Here we propose the use of BNs since they are a natural tool for information propagation (Cowell et al. 1999). 
 
BNs can be updated when an informative shock occurs. With new information here we mean a new frequency 
distribution for one or more variables of interest gained from an archive or a new survey. The relationship among 
the variables of a BN (i.e. the arrows connecting them) is the road for the propagation of this kind of information. 
For the sake of simplicity, consider a BN composed of just two nodes, X1 and X2, joined by the arrow X1 → X2. 
Hence, the probability distributions F(X1 = x1), F(X2 = x2 | X1 = x1) can be associated to the BN. Let the marginal 
probability distribution for X2 be changed into F*( X2 = x2). In order for the network to absorb the new distribution 
F*(X2=x2) leaving the relationship between the variables unchanged, i.e. the conditional distribution of X2 given X1, 
it is necessary to update the marginal distribution of X1: 
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In other words, the old joint distribution F(X1 = x1, X2 = x2) is updated via the ratio )()( 2222

* xXFxXF ==  
(called update ratio) between the new and old marginal distributions of X2. 
 
Here information propagation mechanism has been illustrated via a two-variables example. The results above can be 
generalized to the multivariate case when new information updates more than one variable distributions. To this 
purpose, different efficient algorithms based on the concept of junction trees (see Jensen, 1996) have been defined. 
The propagation process just illustrated can be applied to perform the traditional poststratification procedure. 
Consider the ratio type estimator (2). For the sake of simplicity let the informative shock be relative to just variable 



X1 whose updated frequency distribution is , q=1,…,Q. Propagating this shock through the BN corresponds to  
poststratify with respect to X

*
1qN

1. More precisely the old sample weights wi are changed into: 
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where  are the frequency estimates computed on the old survey weights. The shock produces a change in the 
node S, which modifies into a new node S

qN̂1
* in a way such that: (i) S* categories are given by the Cartesian product of 

the S and X1 categories, i.e. (h,q), h=1,…,H, q=1,…,Q; (ii) the units in the same category (h,q) have the same 
weight, . Again, Bayes theorem allows the computation of the probability distribution of S given X*

)q,h(w 1: 
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Poststratification leaves unchanged the previous distribution, i.e. the statistical relationship between S and X1 
according to the initial survey design. Furthermore post-stratifying with respect to the new distribution of X1, 

, q=1,…,Q, or better to the relative frequency distribution: )q(N*
1 QqNNqF q ,,1,)( *

1
*

1 K== , corresponds to 
consider the following new joint distribution: 
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S* is characterized by constant weights, , for all the units in the same category (h,q). Let n*

)q,h(w hq be the size of this 
category. Hence 
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The poststratification procedure described above can be directly applied when the informative shock involves the 
joint distribution of two or more linked variables. This procedure is straightforward for estimator (2). In the case of 
any other BN structure, the preservation of the shock on the joint distribution of a subset of variables is preserved 
only when that subset is a clique (this should be considered as a constraint for any poststratification). 
In this section we have illustrated how to update estimates produced with a survey on the base of results from a new 
survey or an archive. This information propagation can be seen as part of a more general and extended system 
composed by more than two surveys and archives organized according to various criteria, among which their 
reliability and time sequence of performance. The use of BNs allows an efficient update of estimates due to the 
junction tree based propagation. In this sense it is necessary to organize the system of surveys so that new 
information available on a variable, say X1, can reach, following the arrows, all the variables known to be 
statistically dependent on X1. In technical terms the surveys must be connected in such a way that the so called 
junction property (Lauritzen, 1996) is fulfilled. 
 



As a further development, we think that object-oriented Bayesian network (OOBN, see Koller and Pfeffer, 1997) 
can be a valid support to represent, manage and use a system of surveys. OOBN is a recent extension of BN 
technology. It allows hierarchical definition and construction of a BN, using simple modular building blocks. 
Additional complexity can easily be introduced by adding new modules or refining existing ones. In our case the 
OOBN would be composed by as many modules (instances) as the number of surveys. These modules would be 
connected by a system of output/input nodes - representing in our case identity relations between variables observed 
in different surveys - allowing updating, i.e. the output node would be the new estimate for say variable X to be 
propagated to previous surveys where X was observed as well. The information can then be extended to the other 
variables by means of the procedure illustrated above. It is interesting that with OOBNs macro coherence would be 
explicitly represented and the final user would have not to interpret a very complex structure. However the clear 
picture of any single survey is not lost since, whenever necessary, it is possible to focus and work on any of them. 
We think that this way is promising (OOBNs are implemented in the software Hugin version 6, 
http://www.hugin.com) although still to be explored so further research on it is needed. 
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