

GEOTECHNICAL SITE STUDY REPORT (PHASE 3)

VOLUME 1 OF 2

# **RABASKA LIMITED PARTNERSHIP**

Rabaska – LNG Receiving Terminal West Option Site Levis, Quebec

Our File : T-1050-C (604238)

May 2006



## www.snclavalin.com

# TERRATECH, division of SNC-Lavalin Environment inc.

455, René-Lévesque Blvd. W. Montreal (Quebec) H2Z 1Z3 Canada Telephone: (514) 393-1000 Telecopier: (514) 393-9540

# Rabaska – LNG Receiving Terminal West Option Site Levis, Quebec

Geotechnical Site Study Report (Phase 3) Volume 1 of 2

**Rabaska Limited Partnership** 

Our File T-1050-C (604238) May 2006

TERRATECH Division of SNC-LAVALIN ENVIRONMENT INC. 455 René-Lévesque Blvd. West Montreal (Quebec) H2Z 1Z3

Telephone: (514) 393-1000 Telecopier: (514) 393-9540



# TABLE OF CONTENTS VOLUME 1 OF 2

# <u>PAGE</u>

| 1. | INTRODU   | JCTION                                      | 1  |
|----|-----------|---------------------------------------------|----|
| 2. | PROCED    | URES                                        |    |
|    | 2.1 Ge    | eneral information                          | 3  |
|    | 2.2 Bo    | rehole Drilling and Sampling                | 4  |
|    | 2.3 Ex    | ploration Trenches / Test Pits              | 6  |
|    | 2.4 Tri   | al Excavations                              | 6  |
|    | 2.5 Ge    | ophysical Investigations                    | 7  |
|    | 2.5.1     | Seismic Refraction Surveys                  | 8  |
|    | 2.5.2     | Down-Hole Seismic Surveys                   | 8  |
|    | 2.5.3     | Vertical Electric Soundings                 | 9  |
|    | 2.6 La    | boratory Testing                            | 9  |
|    | 2.6.1     | Soil Testing                                | 9  |
|    | 2.6.2     | Rock Testing                                | 10 |
|    | 2.6.3     | Groundwater Testing                         | 11 |
| 3. | GEOLOG    | SY AND SEISMICITY                           | 12 |
|    | 3.1 So    | il Deposits                                 | 12 |
|    | 3.2 Be    | drock                                       | 13 |
|    | 3.2.1     | Regional geological context                 | 13 |
|    | 3.2.2     | Local geology                               | 13 |
|    | 3.2.2.1   | Geophysical surveys                         | 15 |
|    | 3.2.2.2 F | Rock core drilling                          | 15 |
|    | 3.2.2.3 7 | Trial Excavations                           | 17 |
|    | 3.3 Se    | ismicity                                    | 21 |
| 4. | SOIL ANI  | D BEDROCK DESCRIPTION                       | 22 |
|    | 4.1 Ge    | eneral consideration                        | 22 |
|    | 4.2 So    | ils                                         | 22 |
|    | 4.2.1     | Topsoil or Peat                             | 22 |
|    | 4.2.2     | Generally Compact Sand with silt and gravel |    |
|    | 4.2.3     | Firm to Very Stiff Clayey Soils             |    |
|    | 4.2.4     | Dense to Very Dense and Well Graded         |    |
|    |           | Gravely Sand with Some Silt                 | 25 |
|    | 4.3 Be    | drock                                       |    |

| 5. | GROUNDW    | ATER CONDITIONS AND CHEMICAL ANALYSES         | 30 |
|----|------------|-----------------------------------------------|----|
| 6. | CONCLUSIO  | ONS AND RECOMMENDATIONS                       | 33 |
|    | 6.1 Gener  | ral                                           | 33 |
|    | 6.2 LNG \$ | Storage Tanks                                 | 33 |
|    | 6.2.1 \$   | Structural Features and Subsurface Conditions | 33 |
|    | 6.2.2 E    | Excavation                                    | 35 |
|    | 6.2.3 F    | Foundations                                   | 37 |
|    | 6.3 LNG F  | <sup>&gt;</sup> rocess Area                   | 38 |
|    | 6.3.1 \$   | Structural Features and Subsurface Conditions |    |
|    | 6.3.2 F    | <sup>-</sup> oundations                       | 40 |
|    | 6.3.3 F    | -loor Slabs-on-grade                          | 42 |
|    | 6.3.4      | Гетрогагу Lay-down Area                       | 43 |
|    | 6.4 Unloa  | ding Lines                                    | 44 |
|    | 6.4.1      | Structural Features and Subsurface Conditions | 44 |
|    | 6.4.2 F    | Foundations                                   | 44 |
|    | 6.4.3 [    | Deep Rock Cut to the Jetty                    | 45 |
|    | 6.4.4 F    | Rock Cut on the cliff near the Jetty          | 46 |
|    | 6.5 Acces  | ss Roads and Paved Areas                      | 47 |
|    | 6.6 Soil a | nd Bedrock Dynamic Properties                 |    |
|    | 6.7 Grour  | nd Apparent Electrical Resistivity            |    |
|    | 6.8 Gene   | ral Conditions and Limitations                | 50 |
| 7. | REFERENC   | ES                                            | 53 |
| 8. | PERSONNE   | ٤                                             |    |

#### LIST OF TABLES

| Table 4-1 | Results of Laboratory Testing Compact Sand with Silt and Gravel | 24 |
|-----------|-----------------------------------------------------------------|----|
| Table 4-2 | Results of Laboratory Testing Firm to Very Stiff Clayey Soils   | 25 |
| Table 4-3 | Results of Laboratory Testing Dense to Very Dense               |    |
|           | Gravely Sand with Some Silt                                     | 26 |
| Table 4-4 | Results of Laboratory Testing Bedrock                           | 28 |
| Table 5-1 | Groundwater Levels                                              | 31 |
| Table 5-2 | Results from Chemical Testing on Groundwater Samples            | 32 |
| Table 6-1 | Soil and Bedrock properties and parameters (LNG Process Area)   | 39 |
| Table 6-2 | Allowable Bearing Pressure for Footings seated                  |    |
|           | on Natural Soil or on Bedrock                                   | 41 |

| Table 6-3 | Proposed Static Spring Values for Footings |    |
|-----------|--------------------------------------------|----|
|           | seated on Natural Soil or on Bedrock       | 42 |
| Table 6-4 | Dynamic Parameters of Soils and Bedrock    | 49 |

#### LIST OF APPENDICES

| APPENDIX I   | - | Boring and Test Pit Logs                         |
|--------------|---|--------------------------------------------------|
| APPENDIX II  | - | Laboratory Testing on Soil, Rock and Groundwater |
| APPENDIX III | - | Drawings                                         |

#### VOLUME 2 OF 2

| APPENDIX IV   | - | Photographs of Rock Cores                                                                                          |
|---------------|---|--------------------------------------------------------------------------------------------------------------------|
| APPENDIX V    | - | Detailed Rock Description                                                                                          |
| APPENDIX VI   | - | Geological and Seismic Features (Note: the data of this Appendix were moved to the incoming Seismic Hazard Report) |
| APPENDIX VII  | - | Seismic Refraction Surveys                                                                                         |
| APPENDIX VIII | - | Down-Hole Seismic Surveys and Vertical Electric Soundings                                                          |
| APPENDIX IX   | - | Geotechnical report by Laboratoires d'expertises de Québec Ltée (to Roche Ltée Groupe-conseil).                    |
| APPENDIX X    | - | Seismic-reflection survey report by Procean Environnement inc. (SNC-Lavalin inc.)                                  |

## 1. INTRODUCTION

The services of Terratech, a Division of SNC-Lavalin Environment Inc., were retained by Rabaska Limited Partnership to carry out a Phase 3 geotechnical site study at the proposed Rabaska - LNG Receiving Terminal, specifically at the selected West Option Site located in Levis, Quebec.

The reader is informed of the existence of four earlier geotechnical reports, namely:

- **Terratech Report T-1050 (603794)** issued on 30 July 2004 "Rabaska-LNG Receiving terminal, Levis / Beaumont, Quebec, Preliminary Geotechnical Consultation Report". This document provided early and readily available information in terms of topography, hydrometry, bathymetry, geological soil and rock data, groundwater conditions and seismicity.
- Terratech Report T-1050-A (603333-RABA) issued on 10 March 2005 "Rabaska-LNG Receiving terminal, Levis / Beaumont, Quebec, Geotechnical Site Investigation Report (Phase 1)". This document provided factual information from boreholes and seismic refraction surveys carried out during the fall of 2004, at four option sites initially considered for the project, together with the results of laboratory testing of soil and rock samples retrieved from the boreholes, including the boreholes of the W Series carried out at the West Option Site.
- Terratech Report T-1050-B (603333-KELL) issued on 4 May 2005 "Rabaska-LNG Receiving Terminal, West Option Site, Levis, Quebec, Geotechnical Site Investigation Report (Phase 2)". This report is presented in two volumes: Volume 1 and 2. The document provided all factual information gathered at the selected West Option Site, and thus included the results of boreholes of the W Series (carried out in fall 2004) and boreholes of the BH-101-05 to BH-401-05 Series (put down during winter and spring 2005), and comprised seismic refraction surveys carried out during the fall of 2004, including down-hole seismicity data obtained in April 2005. The report also provided recommendations for the preliminary design of foundations of the proposed facilities.

 Terratech Report T-1050-B (603333-KELL) / Addendum to Volumes 1 and 2 issued on 9 September 2005 "Rabaska-LNG Receiving Terminal, West Option Site, Levis, Quebec, Addendum to Volumes 1 and 2 / Geotechnical Site Investigation Report (Phase 2)". This document provides additional information and recommendations based on readily available geotechnical and geological data, in response to comments from M. W. Kellogg Limited and the Industrial Division of SNC-Lavalin Inc.

This Phase 3 geotechnical study **Report T-1050-C** gathers all geological and geotechnical data previously obtained at the retained West Option Site, and thus includes all pertinent information previously provided in the aforementioned reports T-1050, T-1050-A, T-1050-B and T-1050-B (Addendum). This document also provided new input information from recently carried out (Fall 2005) boreholes, exploration trenches, trial rock excavations, additional down-hole seismic survey, electric soundings, and laboratory testing of soil and rock.

Subsurface investigations in the St. Lawrence River (at the site of the proposed Jetty) were not included in the scope of works of Terratech. These were performed by Laboratoires d'expertises de Québec Ltée (working for Roche Ltée Groupe-conseil) and by Procean Environnement inc. (SNC-Lavalin). At the specific request of Rabaska Limited Partnership, the results and technical reports relevant to these investigations were inserted in Appendix IX and Appendix X of Volume 2 of this report. A stratigraphic cross section of the entire project site, from the proposed docking facilities in the St. Lawrence River to the contemplated LNG Process Area is presented on the very last drawings inserted in Appendix III of this report (Volume 1).

Phase 3 subsurface exploration works at the West Option Site were carried out with the objective of specifically investigating the proposed LNG Process Area (and Lay-Down Area), Unloading Lines (Deep Rock Cut to the Jetty), and Access Roads and Paved Areas. The investigations were also aimed at determining rock features and anomalies by means of special trial rock excavations.

### 2. <u>PROCEDURES</u>

#### 2.1 <u>General information</u>

Detailed procedures for Phases I through 3 of the geotechnical site study carried out at the selected West Option Site of the proposed Rabaska - LNG Receiving Terminal, are outlined in the following sections.

Subsurface investigations, soil description, and in-situ and laboratory testing of soil and rock were performed in compliance to the recognized standards listed in Appendix II. Standards applicable to chemical testing of groundwater are given at the end of Appendix II.

During the Phase 1 geotechnical site investigation, the West Option Site, was investigated by means of 7 boreholes, identified as W-001-04 to W-006-04, and W-008-04, totalling 104 m of drilling works. The boreholes were carried out during the period of 22 to 30 September 2004. Also, geophysical investigations involving 4 seismic refraction survey lines for a total of 3.4 km were carried out at and close to the West Option Site on 4 October 2004, from 18 to 21 October and from 11 to 13 November 2004.

During the Phase 2 geotechnical site investigation, the West Option Site was investigated by means of 23 boreholes, identified as BH-101-05 to BH-110-05, BH-111A-05, BH-116A-05, BH-116B-05, BH-117A-05, BH-117B-05, BH-301-05 to BH-307-05, and BH-401-05, totalling 637 m of drilling works. The site investigation also included 2 down-hole seismic surveys in open holes (BH-101-05 and BH-109-05) to determine soil and rock shear wave velocities and small strain dynamic properties. The Phase 2 subsurface investigations were carried out during the period of 8 February 2005 to 15 April 2005.

During the Phase 3 geotechnical site investigation, the West Option Site was investigated by means of 7 boreholes, identified as BH-501-05 to BH-507-05, totalling 121 m of drilling works. The site investigation also included 3 test pits, named TP-503-05 to TP-505-05, extending in the overburden to depths ranging from 1.5 to 1.7 m below existing grade, 2 trial excavations into rock (TE-A-05 and TE-B-05), and 2 vertical electric soundings (RT-1-05 and RT-2-05), and one down-hole seismic survey in an open hole (BH-501-05) to determine soil and rock shear wave velocities and small

strain dynamic properties. The Phase 3 subsurface investigations were carried out during the period of 30 September to 4 November 2005.

The boreholes, exploration trenches, trial excavations, electric soundings and geophysical survey lines were located on site by Terratech personnel with respect to the SCOPQ-NAD83 system of coordinates. The elevation of the existing ground surface at the location of the field exploration works was determined in reference to the geodetic datum.

The location of the boreholes and geophysical lines is shown on Drawing T-1050-C-0000-4GDD-0001 included in Appendix III.

#### 2.2 Borehole Drilling and Sampling

The boreholes of Phase 1 (W-Series) and of Phase 3 investigations (BH-501-05 to BH-507-05 Series) were carried out using a track mounted CME 55 rotary drill rig.

The boreholes of the Phase 2 investigation (BH-100-05 to BH-401-05 Series) were accomplished by means of two track mounted rotary drill rigs, although inclined boreholes (BH-116A-05 and BH-117A-05) were carried out with a rotary drill rig mounted on skids. The inclined boreholes BH-116A-05 and BH-117A-05 were put down with an inclination of about 50° from the horizontal. They were oriented towards the Northwest. During the course of the inclined holes, the inclination (from the horizon) was monitored by means of the Tropari Apparatus, which gave inclination and magnetic azimuth. The Tropari Apparatus, designated as Tropari/PDSI, was supplied by Pajari Instruments Ltd. (Ref.: Section 7.0).

The drill rigs were equipped with drill casing of sizes NW, HW and PW. The boreholes were terminated at depths ranging from 4.7 to 79.5 m below existing ground surface. Water was used as drilling fluid in all of the boreholes whose results are presented in Appendix I of this report.

Remolded soil samples were recovered from the boreholes using a standard 51 mm O.D. standard split-spoon sampler and a procedure that allowed the simultaneous determination of Standard Penetration Test N-values. A hammer of the "automatic and safety" type was used to drive the split-spoon sampler into the ground. Clayey or

cohesive and stiff to very stiff soils were encountered only sparsely, very locally and within thin layers at the investigated site. Therefore, only disturbed soil samples were taken in the boreholes by means on the standard split spoon sampler.

The soil sampling by means of the standard split-spoon sampler (and SPT testing) was generally carried out at depth intervals of 0.8 m. However locally in Boreholes BH-401-04, BH-501-05, BH-503-05 and W-004-04, soil samples were taken at 0.8 m intervals down to depths ranging from 6.0 to 10.7 m below existing ground surface, and at intervals of 1.5 m thereafter. No soil sample was retrieved from the inclined boreholes (BH-116A-05 and BH-117A-05). In some boreholes, core drilling techniques were used to sample and traverse dense to very dense soils containing cobbles and boulders.

All recovered soils samples were visually examined in the field by Terratech senior soil technicians. They were placed in plastic bags and sent to Terratech Laboratory in Montreal for laboratory testing and storage. Visual description of soils was done in compliance to the classification and terminology provided in Appendix I (see: Explanation of the Form Boring Log). Applicable test standards are listed in Appendix II of this report.

Bedrock was encountered and core drilled in all boreholes, except in Boreholes BH-401-05, BH-504-05 and BH-506-05 which were terminated in the overburden. In most of the boreholes, the bedrock was drilled in NQ-3 size core barrel. Locally (Boreholes W-004-04, BH-102-05, BH-104-05, BH-106-05, BH-110-05, and BH-111A-05), HQ or HQ3 core barrels were used for rock core drilling. In Boreholes BH-101-05, BH-109-05 and BH-501-05, the bedrock was drilled in PQ size core barrel, and the said boreholes were provided with 63.5 mm internal diameter and bottom capped PVC lining grouted in place with a ciment-bentonite mixture, to allow down-hole seismicity tests to be performed.

After completion of the boreholes, bottom perforated plastic standpipes were inserted in the boreholes drilled in NW / NQ3 size, to allow groundwater level observations. In Boreholes drilled in HW / HQ or HQ3 size (W-004-04, BH-102-05, BH-104-05, BH-106-05, BH-110-05, and BH-111A-05), 50 mm diameter PVC tubes were inserted in the completed holes. Each PVC tube was provided with a slotted bottom portion 6.1 m in length. A peripheral sand jacket was placed at the outset of the slotted portion of the

tube, and bentonite seal was provided above the slotted portion, as to convert the borehole into an observation well (or piezometer) for groundwater sampling and monitoring. Borehole BH-503-05 was equipped with a 20 mm size open end Casagrande type piezometer tube. Schematic information on the main components of the above groundwater observation wells and piezometer is shown on the Boring Logs included in Appendix I.

The detailed description of the various soil layers and bedrock encountered in the boreholes are presented on the boring logs included in Appendix I.

The soil and rock samples retrieved from boreholes and exploration trenches during Phases 1 to 3, that were not used for testing purposes, will be stored at Terratech Laboratory in Montreal until 31 December 2008, which is considered as a practical foreseeable future. At that time, Rabaska Limited Partnership or its representatives shall be consulted about future use or disposal of the said samples.

### 2.3 Exploration Trenches / Test Pits

Three shallow exploration trenches or test pits, numbered TP-503-05 through TP-505-05, were put down in the overburden to depths ranging from 1.5 to 1.7 m below existing grade. They were carried out on 14 October 2005, by means of a backhoe (Caterpillar 430), at the site of a potential lay-down area. The purpose of this investigation was to retrieve large size soil samples mainly for Proctor compaction and CBR testing. The test pits were put down respectively in the immediate vicinity of Boreholes BH-503-05 through BH-505-05.

The detailed description of the various soil layers encountered in the test pits are presented on test pit logs inserted at the very end of Appendix I (after the boring logs).

#### 2.4 <u>Trial Excavations</u>

Two trial excavations, identified TE-A-05 and TE-B-05, were carried out at the project site during the period of 12 to 21 October 2005, for the main purpose of assessing the rock cartography and the bedrock structure. The location of the trial excavations is shown on Drawing T-1050-C-0000-4GDD-0001 in Appendix III.

Trial Excavation TE-A-05 is situated at the crest of the rock plateau some 200 m south of the St. Lawrence shoreline and is oriented in a SE to NW direction (N  $135^{\circ}$  / N  $315^{\circ}$ ). The position of this trial excavation corresponds to the south limit of a proposed Deep Rock Cut leading to a future Harbour Facility or Jetty. The trench has a width of about 3 m, a length of 10.0 m and an average depth 2.5 m below existing ground surface. It was extended in depth to about 2.0 to 2.3 m into the bedrock. The excavation was performed by means of a Caterpillar 225 LC Excavator using a 1 m<sup>3</sup> size bucket.

Trial Excavation TE-B-05 is located near the proposed West Storage Tank, at the site of an inferred rock anomaly, and is oriented in SE to NW direction (N  $135^{\circ}$  / N  $315^{\circ}$ ). The location of this trial excavation was selected on the basis of site accessibility for the excavator (to limit damage to the property), further to be within the alignment of rock anomalies previously assessed by the geophysical survey lines. The excavation has a bottom width of about 2.5 to 3.0 m and a length of 45 m. With an average depth of 4 m below existing ground surface, the excavation was extended approximately 0.6 to 3.0 m into the overburden and some 0.5 to 2.0 m into bedrock. The excavation was performed by means of a Caterpillar 235 Excavator equipped with a 1.7 m<sup>3</sup> size bucket.

The main objectives of the trial excavations were to investigate, within the upper strata of the bedrock, specific and detailed rock features, such as folds, dips, anomalies, closely jointed stratigraphy, rock quality. The excavations were also used to assess the performance of standard excavators into the shallow layers of bedrock.

The observed overburden and bedrock features at the trial excavations are shown on Drawings T-1050-C-0000-4GDD-0005 and T-1050-C-0000-4GDD-0006 in Appendix III.

#### 2.5 <u>Geophysical Investigations</u>

Geophysical investigations were carried out by Geophysics GPR International Inc. at the West Option Site. These included 4 seismic refraction survey lines, 3 down-hole seismic surveys in Boreholes BH-101-05, BH-109-05 and BH-501-05, and 2 vertical electric soundings.

# 2.5.1 Seismic Refraction Surveys

The seismic refraction survey lines varied in length from 600 to 1200 m, for a total of 3.4 km. They are located within or close to the West Option Site, at the following locations:

| • | Beyond southeast sector: | Line GW-002-04; |
|---|--------------------------|-----------------|
|   | Northeast limit:         | Line GN-001-04: |

- Northeast sector: Line GN-001A-04;
- Southwest sector: Line GN-001B-04.

The purpose of the seismic refraction surveys was to produce depth profiles for layers of overburden and for bedrock, and also to identify zones of alteration or weaknesses within the bedrock, in order to verify or/and locate possible fault zones, as expected from available regional geological maps.

Geophysical seismic refraction lines GW-002-04 and GN-001-04 were carried out on 4 October and during the period of 18 to 21 October 2004. Geophysical Lines GN-001A-04 and GN-001B-04 were accomplished from 11 to 13 November 2004. The conventional seismic refraction method, which is in reference to the usual practice for soils and bedrock surface, was applied to all four survey lines. For details, the reader should refer to Appendix VII (section 4.1 of the report by Geophysics GPR International Inc., dated 2 March 2005). However, with survey lines GN-001A-04 and GN-001B-04, special on-site testing and interpretation designated as seismic resonance or "TISAR" were also performed. The term "TISAR" is an acronym for Testing & Imaging using Seismic Acoustic Resonance. Procedures related to "TISAR" interpretation are discussed in Appendix VII (section 4.2 of the report by Geophysics GPR International Inc., dated 2 March 2005).

Detailed procedures, results and limitations relevant to the seismic refraction surveys are presented in Appendix VII, in Report M-04958 issued in March 2005 by Geophysics GPR International Inc.

# 2.5.2 Down-Hole Seismic Surveys

Down-hole seismic tests were performed by Geophysics GPR International Inc. in Boreholes BH-101-05 and BH-109-05, to the maximum borehole depth of 25 m, and also in Borehole BH-501-05 to a depth of 19 m. The objective of the down-hole surveys was to determine soil and bedrock shear wave velocities as well as low strain dynamic parameters. The surveys were carried out on 3 April 2005 (BH-101-05 and BH-109-05) and on 3 and 4 November 2005 (BH -501-05). There was a 0.6 to 1.0 month difference between the installation of the casing (with peripheral bentonite-cement grouting) and the doing the down-hole tests. This is believed to have a negligible impact on the test results from delamination of the grout.

Detailed procedures, results and limitations relevant to the down-hole seismic surveys are presented in Appendix VIII, in Report M-05043 issued on 22 April 2005 an in Report M-05128 issued on 29 November 2005 by Geophysics GPR International Inc.

# 2.5.3 Vertical Electric Soundings

Two vertical electric soundings, identified TR-1-05 and TR-2-05, were carried out at the site of the proposed LNG Process Plant. The soundings were performed on 3 and 4 November 2005 by Geophysics G.P.R. International inc.

Detailed procedures, results and limitations relevant to the vertical electric soundings are presented in Appendix VIII, in Report M-05128 issued on 29 November 2005 by Geophysics GPR International Inc.

# 2.6 Laboratory Testing

# 2.6.1 Soil Testing

Laboratory testing of soil and rock were performed in compliance to the recognized standards listed in Appendix II of this report. Standards applicable to chemical testing of groundwater are given at the end of Appendix II.

On selected and representative soil samples recovered from the boreholes, grain size analyses, and moisture content determinations were carried out in the laboratory of Terratech, to complement the visual soils descriptions. Moisture content and Atterberg limits determinations were also done on clay soil samples recovered from the boreholes. The results of the moisture content and Atterberg limit determinations on soil samples are shown on borehole logs in Appendix I. Grain size curves and tabulated results of moisture content and Atterberg limits are presented in Appendix II. On representative soil samples retrieved from the Test Pits TP-503-05 to TP-505-05, the following set of laboratory testing was performed: natural moisture content, Modified Proctor compaction test, and California Bearing Ratio (CBR) determinations following a 96 hour soaking period. The detailed results of this testing are presented in Appendix II.

### 2.6.2 Rock Testing

All rock cores retrieved from the boreholes were visually examined on site by the senior geotechnical technician supervising the drilling. Later in the laboratory, the recovered rock cores were submitted to a detailed structural description performed by Terratech licensed geologists.

Also on selected and rather intact or suitable rock cores originating from the West Option Site, unit weight and uniaxial compressive strength determinations were carried out in the laboratory.

Unit weights were measured on rock cores retrieved from Boreholes of the W-002-04 to W-008-04 Series and subsequently submitted to compressive strength determinations. In boreholes of the BH-102-05 to BH-110-05 Series and of the W-002-04 to W-008-04 Series, the rock compressive strength determinations were not performed in true compliance to the applicable standards (ASTM D 2938 "Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens"). The tests were carried out on an hydraulic press normally used to perform compression tests on concrete cylinders. In general, the tested rock cores were grinded and capped with high resistance sulfur compound before being submitted to the compression tests. This procedure, which somewhat deviates from the standard test protocol, is inferred to yield test results that would be on the low margin of standard test results. With due consideration to the generally very poor to poor quality of the rock, which allowed only the best segments of rock cores to be submitted to the testing, this deviation from the standard test procedure is considered acceptable.

On Boreholes BH-505-05 and BH-507-05, uniaxial unconfined compressive strength determinations were carried out as per ASTM Standard D 2938 on rather best quality rock cores. The tested cock cores are inferred to belong to the good or excellent quality bedrock, as rock cores originating from very poor to fair quality rock could not be tested for compressive strength.

Pyrite detection tests in compliance to the Quebec Standard NQ 2560-500 Procedure were undertaken on 3 rock cores sampled at shallow depth in boreholes of the W Series, and also on 18 rock core segments retrieved from boreholes of the BH-101-05 to BH-401-05 Series at depth ranging from 7 to 13 m below ground surface. The purpose of the testing was to assess the rock swelling potential due to the presence of pyrite. Results of the pyrite detection tests are presented in Appendix II.

Photographs were taken of all rock cores. On the rock core photographs of boreholes of the W-Series, depths are given in feet. The reader should therefore refer to the tables of the structural description of bedrock (Appendix V) to obtain a direct depth conversion in meters. Photographs of the rock cores of the boreholes of the BH-Series are given in meters. Photographs of all rock cores are included in Appendix IV.

The detailed structural description of the bedrock is presented in Appendix V.

### 2.6.3 Groundwater Testing

Groundwater samples were taken on 14 April 2005 from Boreholes BH-102-05, BH-104-05, BH-106-05 and BH-110-05. The said boreholes, which were converted in observation wells, were purged prior to the groundwater sampling. The following chemical analyses were performed on groundwater by Maxxam Analytics inc.:

- pH
- Sulfur anion (S=)
- Alkalinity (Total as CaCO3) pH 4.5
- Bicarbonates (HCO<sub>3</sub> as CaCO<sub>3</sub>)
- Carbonate (CO<sub>3</sub> as CaCO<sub>3</sub>)
- Chloride (Cl)
- Sulfates (SO<sub>4</sub>)

The results of the testing are presented and discussed in Section 5 of this report. Analytical Report pertaining to the chemical testing of groundwater are inserted at end of Appendix II.

# 3. <u>GEOLOGY AND SEISMICITY</u>

In reference to published soil and bedrock geological and seismic information, as outlined in Section 7 of this report, and with due consideration to soils and bedrock features recently observed at the site, the following sections are provided.

# 3.1 <u>Soil Deposits</u>

In LaSalle 1978, soils or overburden on the project site were designated as high terrace well sorted marine sand. Based on that publication, the overburden at the contemplated West Option Site was inferred to vary from less than 3 m in thickness, although to the west the soils were believed to exceed 3 m. Locally within the northeastern part of the project site, a poorly drained marsh area was inferred to contain some peat, with bedrock at shallow depth. At the site of the Hydro-Quebec power line and within about 0.5 km north of the said line, investigations carried out in 1963 by Terratech indicated the presence of compact to dense silty sand with gravel, with bedrock at depths of about 1 to 2 m, or locally at 5 m.

Investigations, recently carried out within the project site and adjacent area, generally indicated, under 0.1 to 0.3 m of topsoil (and locally under 0.5 to 0.9 m of surface peat), the presence of compact sand with silt and gravel, extending to about 1 to 6 m below existing grade. These are locally underlain by a layer of stiff to very stiff clay soils some 0.4 to 1.7 m in thickness and extending no deeper than 0.9 to 4.9 m below grade. Dense to very dense glacial till consisting of sand with some silt and gravel and occasional cobbles and boulders, is encountered beyond 1.2 to 6.1 m depth, generally extending down to depths of the order of 2.7 to 13.2 m (and locally to 24 m), where bedrock was encountered.

A drawing showing the elevation of bedrock is presented in Appendix I. Based on this drawing, two rock depressions were found some 150 m southwest and 270 m south of the proposed West Storage Tank, i.e. near Borehole BH-503-05 and Seismic Line GN-001B-04 (at metric point 0+729).

A poorly drained and peat covered (marsh) zone is present within the eastern sector of the project site, expanding some 250 m northeast of the proposed East Storage Tank.

#### 3.2 <u>Bedrock</u>

#### 3.2.1 Regional geological context

In the region of the project area, the sedimentary rocks overlying the Precambrian crystalline basement belong to the Appalachian Geological Province and are of lower Paleozoïc age. Based on Saint-Julien 1995, these rocks form a lithotectonic domain called the Bacchus Nappe. This structural domain, is limited in the northwest by the overthrust Logan Fault which runs through the St. Lawrence River and marks the front on the Appalachian Mountain Belt.

The Bacchus Nappe is in faulted contact with the adjacent nappes and overlies younger rock formations. For example, its Cambrian base overlies the Lower and Middle Ordovician terranes west of the site (Levy Nappe and Quebec Nappe).

Generally, the geology on the south shore of the St. Lawrence River in front of Quebec City consists mainly of thinly folded and faulted strata, imbricated and piled together along large, deep and reversed fault planes, gently dipping with depth, toward the southeast. During the taconian orogeny, the sediments were pushed over the continental platform approximately from the southeast to the northwest, thus forming stacking lithostratigraphic units piles called nappes. This mechanism could be compared, at a very large scale, to a sliding card deck.

In the vicinity (5 km SW) of the project site, the total thickness of the piled nappes covering the Grenville sub-basement is estimated at 4 km approximately. The Bacchus Nappe lies on top of the sequence and its stratigraphic sequence reaches a thickness of approximately 1 km as mentioned in the available governmental geological documents. The reader is invited to review some of the references listed in Section 7 of this report.

#### 3.2.2 Local geology

The Bacchus Nappe, which outcrops locally within a short range of the project site, is composed, from base to summit, of the following three rock formations (St-Julien, 1995):

- The L'Anse Maranda Formation;
- The Lauzon Formation;

• The Pointe de la Martinière Formation.

The above Lower Cambrian to Lower Ordovician lithostratigraphic units are mainly composed of shales and multicolor mudstones interbedded with siltstones, sandstones and calcareous conglomerates. Except locally, the contacts between the three formations do not show angular discordance.

The main body of the Bacchus nappe is characterized by the presence of numerous imbricated overthrust faults which repeat the stratigraphy inside the nappe. They are oriented NNE-SSW to N-S on the south shore, and dip toward east and southeast. In addition, the formations are folded (asymmetric folds).

At the project site, the underlying bedrock belongs to the Pointe de la Martinière Formation. It generally consists of thinly bedded (20 to 300 mm thick) red and green shales and mudstones, dolomitic mudstones, black micaceous shales, grey shales, siltstones, some limestones (less than 300 mm thick) interbedded with grey shales and finally, calcareous conglomerates. The total thickness of the formation is estimated at 350 m (St-Julien 1995).

The beddings are generally oriented NNE-SSW, and dip to the east. This pattern is often disturbed by the presence of folds which locally form series of anticlines (or antiforms) and synclines (or synforms) generally plunging 10 to 20° to the south.

The mudstones are usually massive, whereas the shales remain more fissile. The mudstone and shale locally present a slaty cleavage parallel to the axial planes of folds.

Investigations carried out at the project site by means of seismic refraction geophysical surveys and diamond core drilling have provided valuable information concerning the quality of the rock and in some extent its structure. Subsurface investigations carried out at the project site by boreholes, have also revealed the nature and properties of soils and the true position of bedrock. Two trial excavations were carried out to assess the rock cartography and also the bedrock structure with respect to rock anomalies, folds, faults, and synforms.

The detailed rock core description are presented in Appendix V, whereas the photographs of rock cores are inserted in Appendix IV. The seismic refraction geophysical report is included in Appendix VII.

The main geological features of the rock are outlined and discussed in the following sections.

### 3.2.2.1 Geophysical surveys

From the seismic refraction geophysical surveys, the bedrock profile and the rock seismic velocities were determined. Based on the results of the surveys, the rock quality was found to vary substantially, thus ranging from anomalous to sound rock. The heterogeneity noticed in the bedrock velocities seems to reflect the lithological pattern observed on site.

Some anomalous targets were specifically investigated by means of diamond core drilling. In these cases (see Boreholes W-003-04 and W-005-04), the core recovery indicated a poor quality rock with very low RQD values, especially near the bedrock surface. This finding is compatible with the geophysical results.

The seismic resonance survey highlighted some planar features, which may be interpreted in some cases as shear zones or fault zones. The seismic resonance also showed some bedding trends and some folding features such as the synform shape interpreted on Seismic Line GN-001A-04. In all, the geophysical surveys reflect the general structure of the bedrock.

Trial excavations were carried out (see Section 3.2.2.3) to assess the bedrock structure with respect to rock anomalies, folds, faults, and synforms.

#### 3.2.2.2 Rock core drilling

From the close examination of the rock cores retrieved from the boreholes, the rock facies intersected at the site were found to be similar to those described in the literature (ref.: Appendix I and Section 4.3 of this report).

Based on RQD values, the rock quality may be described as very poor to fair in general, and occasionally ranging from good to excellent. It is worth to remind the reader that, in

this type of rock, especially in laminated or thinly layered sections such as shales, where parting along the bedding planes occurs easily, the RQD evaluation is influenced by the number of lithologic joints and their features, i.e. whether they are induced or natural. The judgment of the geologist is therefore required. For this reason, RQD values are often underevaluated.

In this study, the RQD values do not reflect completely and thoroughly the rock quality. Therefore, the RQD should be used as a guide to discriminate the relative rock quality over sections within a same borehole.

Few targets identified by means of the geophysical surveys, were investigated particularly to verify the presence of faults, or inferred faults. Also boreholes were performed at the project site to determine the quality of the bedrock.

Two boreholes, one inclined towards the northwest and one vertical hole (Boreholes BH-117A-05 and BH-117B-05) were located along Seismic Refraction Line GN-001-04 close to borehole W-003-04. At this location, the rock in the inclined hole (BH-117A-05) shows evidences of folding near 16.2 m depth, and at a deeper depth the rock is fragmented and silty. Microfolds and minor movements in the sediments are also reported. At a deeper depth in the hole, calcite veins and hairy veinlets are present.

In the vertical borehole (Borehole BH-117B-05), the lithology is similar down to 28.5 m below existing grade, whereas it is followed by a red mudstone which is not intercepted in the adjacent incline hole.

These holes were drilled close to a narrow fold hinge as shown on the St-Julien map. Based on scarce evidences, the presence of a fault is not clearly determined. However, in the area, as shown on sections by St-Julien, the narrow folds are usually faulted, and this could therefore be the case here. Meanwhile, the predominant structures encountered in the holes are believed to be in relation with the folding. Nevertheless, the presence of a faulted fold remains highly possible. Additional information concerning past fault activity is provided at end of Section 3.2.2.3.

In borehole BH-108-05, between depths of 52 m and 64 m approx., the rock is anomalous, of poor quality and probably faulted. Calcite veinlets and veins, frequent slickensides and fault striations on joint surfaces are described. At a depth of 62 m, a

probable fault breccia (cemented with calcite) is reported. The nature of this perturbed rock section is not fully understood. However, on the photographs, the fault breccia appears to be healed.

### 3.2.2.3 Trial Excavations

Two trial excavations, identified TE-A-05 and TE-B-05, were carried out at the project site for the main purposes of assessing the rock cartography and the bedrock structure. The location of the trial excavations is shown on Drawing T-1050-C-0000-4GDD-00001 in Appendix III.

The following sections depict soil and bedrock conditions and features, as observed in the trial excavations.

#### • Trial Excavation TE-A-05

Trial Excavation TE-A-05 is situated at the crest of the rock plateau some 200 m south of the St. Lawrence shoreline. The detailed results Trial Excavation TE-A-05 are shown on Drawing no T-1050-C-0000-4GDD-0005 in Appendix III.

This excavation was about 3 m in width and 10 m in length. It was extended, by means of a Caterpillar 225 LC Excavator using a 1  $m^3$  size bucket, to an average depth 2.5 m below existing ground surface, and to depths of the order of 2.0 to 2.3 m into the bedrock. This equipment was able to easily complete the excavation within a 2.5 hour period.

In this excavation, the overburden averages a thickness of 0.2 to 0.5 m. It is exclusively composed of brown reddish sand and silt with some gravel, with also some roots close to the natural ground surface.

At the exposed bottom of the excavation, the bedrock is fragmented and slightly weathered within its first 0.3 m, whereas at greater depth it becomes of relative good quality. The bedrock consists of a succession of green and red mudstones beds (some 10 to 300 mm thick), mostly slaty with traces of dark shale interbeds (10 mm thick). Along the entire length of the excavation, rock beddings are typically oriented N 30°, with dips ranging from 58° to 64°. Numerous joints were observed, belonging to three main families (see Drawing no T-1050-C-0000-4GDD-0005, in Appendix III).

Very minor water inflows were observed at the bottom of the excavation, originating mainly from the bedrock. These were easily controlled and evacuated by pumping .

#### • Trial Excavation TE-B-05

Trial Excavation TE-B-05 is located near the proposed West Storage Tank at the site of an inferred rock anomaly. The location of this trial excavation was selected with the deliberate intention of intercepting the potential alignment of rock anomalies previously assessed by the geophysical survey lines. Positioning the trial excavation was also done on the basis of practical site accessibility for the excavator, mainly to limit damage to the property and with due consideration of access limitations to the project site. The reader is reminded that the "possible faults" shown on the appended Drawing T-1050-C-0000-4GDD-0001 (Appendix III) were directly transcripted from the geological maps. These "possible fault" lines, which are located at least some 0.2 to 0.5 km from the contemplated LNG facilities, have provided no specific or clear signs of rock anomalies during the geophysical surveys. However, signs of rock anomalies were locally disclosed elsewhere along the geophysical survey lines. In view of this, it has become desirable to have a direct look at the rock anomalies by stretching out Trial Excavation TE-B-05 some 20 to 25 m on each side of the alignment of anomalous rock features previously assessed by the geophysical survey lines. The detailed results of Trial Excavation TE-B-05 are shown on Drawing no T-1050-C-0000-4GDD-0006, in Appendix III.

The excavation has a bottom width close to 2.5 or 3.0 m and a length of 45 m. The excavation was performed by means of a Caterpillar 235 Excavator using a  $1.7 \text{ m}^3$  size bucket, and was extended to an average depth of 4 m below the existing ground surface. The excavation generally comprises some 0.6 to 3.0 m of overburden, plus 0.5 to 2.0 m of bedrock, as these depths were deemed sufficient to observe shallow rock anomalies and possible movement or disturbance in the soils that could be related fault activity.

During the field work related to this trial excavation, which lasted about 4 days, water inflows due the high ground water condition concurred to flood the excavation as limited on-site pumping equipment was then available. In spite of this, it was estimated that the excavator would have been able to complete the excavation (soil and rock) within

about a 5 hour (half day) period with adequate pumping equipment. Pumping of the water, to lower the groundwater table down to the exposed bottom of the excavation, was achieved by means of a high capacity pump. To completely dry-out the flooded excavation with a high capacity pump took about 2 hours. During the rather short time period needed to draw-down of the water table, limited silt and sloughings were observed on the exposed 1.5 (H) : 1.0 (V) sand and silt and clayey slopes of the excavation.

Numerous water inflows were observed in the open excavation, often originating from the bedrock and generally associated with fissile rock partings. The water inflows were continuous but their intensity decreased after two days (upon uninterrupted pumping).

In this trial excavation, the depth of the overburden typically reaches 3 m, consisting of variable thicknesses of sand, silt and gravel, atop of a 1 m thick layer of grey clay itself overlaying a rather continuous and very stiff reddish horizon of silt some 0.5 m in thickness. This basal deposit is underlain by bedrock.

As observed on the total length of the excavation and specifically along its western side, the bedrock surface is irregular and undulating. This, in some extent, highlights the presence of folds hinges and steep rock beddings. The bedrock is usually fragmented and slightly to moderately weathered from the surface to a depth of 1.5 m where it becomes sounder. In some areas of the trench, the exposed rock was also found in very fragmented, softer and highly weathered conditions, at least within 1 m depth.

The observed bedrock consists essentially of alternating greenish grey and pale to dark grey mudstones, sometimes sandy and slaty, and interbedded with generally thin layers of dark grey to black shales. The shales occur in variable proportions (see the legend on Drawing T-1050-C-0000-4GDD-0006). Occasionally, thin (approximately 30 mm) calcareous and siltstone or fine grained sandstone horizons are present. Some sparse calcite veinlets are also observed.

The rock formation is typically folded with trends roughly northeast / southwest (N 035° / N 215°), in reference to True North. Along the trench, successions of minor synforms and antiforms were noticed. Evidences of movement such as striations (almost parallel to the dip direction of the beddings) and polished rock faces, are often visible over softer rock facies bedding surfaces, especially in the very fine grain rock and in the

black shale. These movement features appear to be linked to the general folding process.

One of the main objectives for digging Trial Excavation TE-B-05 was to locate within a short distance from the Storage Tanks, and also whenever possible to investigate, the rock anomaly previously assessed from the geophysical survey. Based on the results of the survey, the projection of the anomaly along a northeast - southwest line is expected to cross the trench alignment at a distance of 30 measured from the southeast end of the trial excavation. However, the position of the anomaly remains then somewhat approximate, although probable.

In Trial Excavation TE-B-05, at distances ranging from 30 to 35 m from the southeast end of the trench, the bedrock is sheared and consists of weathered and well fragmented greenish mudstone and schitose black shale. This feature is visible, in an equal proportion especially on the west side of the trench. Some "hairy calcite veinlets" without definite pattern and few closely spaced joints steeply dipping to the north are also present. This poor rock quality formation is stacked between more competent formations.

The above features could indicate a rock anomaly related to a limited shear zone associated with foldings and parallel to the bedding planes. Similar features were also observed in Boreholes BH-507-05, BH-103-05 and BH-104-05, and in Borehole BH-108-05 which presents evidences of minor faulting such as secondary calcite fillings. The rock appeared to be healed.

Trial Excavation TE-B-05 was carried out in the glacial deposit to observe rock features and any movement or disturbance in the soils that could be related to a fault activity since the drawback of the glacier (-12 to -9.5 ky), whereas the aforementioned rock foldings and shear zones are believed to be related to the Appalachian Front (-450 My to -400 My). In this respect, while this excavation was being carried out, attention paid to the overburden has provided no clear evidence that the soil materials were disturbed to the bedrock otherwise that by human activity.

### 3.3 <u>Seismicity</u>

A site specific hazard assessment study is presently underway, and shall be inserted in a Seismic Hazard Report to be issued in a near future. This incoming report is intended to cover items such as earthquake history, local faults and fault activity, seismic hazard, and soil liquefaction potential.

# 4. SOIL AND BEDROCK DESCRIPTION

#### 4.1 <u>General consideration</u>

The description of the various soil layers and of the bedrock encountered in the boreholes are presented in the Boring Logs included in Appendix I. The bedrock contour elevation are shown on Drawing # T-1050-C-0000-4GDD-0001 inserted in Appendix I.

Tabulated soil  $N_{SPT}$  values, and also rock RQD and compressive strength values are shown on the boreholes logs with respect to the depth and elevation. This information is presented in Appendix 1.

It should be noted that the subject site investigation was carried out for geotechnical purposes only. Thus, an environmental characterization of the site was beyond the scope of this mandate and as such, the soil descriptions provided herein shall not be used to ascertain the presence, or absence of contamination.

Soil and bedrock conditions are summarized in the following sections specifically for the contemplated West Option Site.

# 4.2 <u>Soils</u>

A summary of the soil conditions at the site is presented below.

# 4.2.1 Topsoil or Peat

Topsoil varying in thickness from 0.10 to 0.30 m was generally encountered in the vicinity of the West Storage Tank (Boreholes BH-101-05 to BH-105-05, BH-116B-05), at the site of the proposed Unloading Lines (Boreholes BH-301-05 to BH-307-05, and BH-507-05) and also at the location and in the near vicinity of the LNG Process Area (Boreholes BH-401-05, BH-501-05 to BH-506-05, W-001-04, W-002-04 and W-006-04, and test Pits TP-503-05 to TP-505-05). Locally (Boreholes BH-303-05 and BH-305-05 and W-004-04), no topsoil but only fill materials were found at ground surface.

At the site of the East Storage Tank, peat locally combined with top soils or overlain by fill materials was encountered, extending to depths of about 0.5 to 0.9 m below existing ground surface (Boreholes BH-106-05 to BH-111A-05). North and east of the East Storage Tank area (Boreholes W-003-04, BH-117B-05 and W-005-04), peat, covered by 0.3 to 0.6 m of fill, was found to extend to depths in the range 1.2 to 2.1 m below existing grade. The peat is generally fibrous at shallow depth and becomes amorphous with depth.

#### 4.2.2 Generally Compact Sand with silt and gravel

At the site of the West Storage Tank (BH-101-05 to BH-105-05) and in its vicinity (W-002-04 and W-004-04), compact sand and gravel with some silt was identified below the topsoil (or locally peat) down to depths ranging from 1.4 to 2.3 m.

This same soil, or locally sand with some or trace of silt and gravel, was also found, in a compact to locally loose state of relative density, under the topsoil or fill covered peat at the site of the East Storage Tank and some distance north, east and west thereof (BH-106-05 to BH-111A-05, BH-116B-05, BH-117B-05, W-003-04 and W-005-04), extending to depths in the range of 1.5 to 5.0 m below grade.

Within the proposed LNG Process Area (BH-401-05, BH-501-05 to BH-506-05, W-002-04, W-004-04, W-006-04), compact sand with silt and gravel was generally encountered, extending to depths ranging from 0.8 to 6.1 m below existing ground surface.

Generally along the proposed unloading lines (BH-301-05 to BH-307-05, and BH-507-05), loose to compact sand with some silt and gravel was identified down to depths of the order of 0.6 to 3.1 m below grade, and locally to bedrock (BH-303-05, BH-305-05 to BH-307-05, and BH-507-05).

Results of laboratory testing obtained on this stratum are be summarized in Table 4-1.

| Table 4-1                                |
|------------------------------------------|
| Results of Laboratory Testing            |
| <b>Compact Sand with Silt and Gravel</b> |

| Tests                                        | Number   | Unit              | Results |         |         |  |
|----------------------------------------------|----------|-------------------|---------|---------|---------|--|
| 10000                                        | of tests |                   | Minimum | Maximum | Average |  |
| Grain size analyses (gravel, 5 to 80 mm)     | 13       | %                 | 4.0     | 54.9    | 24.4    |  |
| Grain size analyses (sand, 0.08 to 5 mm)     | 13       | %                 | 21.0    | 65.0    | 45.4    |  |
| Grain size analyses (fines, < 0.080 mm)      | 13       | %                 | 8.0     | 59.2    | 30.1    |  |
| Grain size analyses (clay size, < 0.002 mm)  | 6        | %                 | 4.8     | 18.8    | 9.8     |  |
| Moisture content                             | 12       | %                 | 9.6     | 14.5    | 11.7    |  |
| Modified Proctor (Maximum dry unit weight)   | 3        | kN/m <sup>3</sup> | 20.4    | 21.5    | 20.8    |  |
| Modified Proctor (Optimum moisture           | 3        | %                 | 7.8     | 8.5     | 8.2     |  |
| content)                                     |          |                   |         |         |         |  |
| California Bearing Ratio following a 96 hour | 9        | %                 | 1       | 22      | 13      |  |
| soaking period (at moisture content varying  |          |                   |         |         |         |  |
| from 0.8 to 4.5 % above the optimum          |          |                   |         |         |         |  |
| moisture, and within a degree of             |          |                   |         |         |         |  |
| compaction of 92 to 98 % of the Modified     |          |                   |         |         |         |  |
| Proctor maximum dry density)                 |          |                   |         |         |         |  |

#### 4.2.3 Firm to Very Stiff Clayey Soils

Clayey soils were encountered locally (BH-101-05, BH-103-05, BH-104-05, BH-106-05 to BH-108-05, BH-111A-05, BH-501-05, BH-502-05, and W-003-04), generally at depths of the order of 1.5 to 2.7 m, and extending to depths ranging from 1.8 to 5.2 m below existing ground surface. They ranged from stiff to very stiff sandy and clayey silt, to firm to stiff clay with some silt and gravel.

Very locally at the site of the Unloading Lines (BH-301-05), stiff to very stiff clay was identified below topsoil and down to 0.9 m below existing grade, where bedrock was encountered.

Results of laboratory testing obtained on this stratum are be summarized in Table 4-2.

| Tosts                                       | Number   | Unit | Results |         |         |  |
|---------------------------------------------|----------|------|---------|---------|---------|--|
| 16313                                       | of tests |      | Minimum | Maximum | Average |  |
| Grain size analyses (gravel, 5 to 80 mm)    | 6        | %    | 0       | 12      | 4       |  |
| Grain size analyses (sand, 0.08 to 5 mm)    | 6        | %    | 3       | 52      | 20      |  |
| Grain size analyses (fines, < 0.080 mm)     | 6        | %    | 36      | 97      | 76      |  |
| Grain size analyses (clay size, < 0.002 mm) | 6        | %    | 12      | 37      | 26      |  |
| Natural moisture content                    | 10       | %    | 10      | 24      | 18      |  |
| Limit of plasticity                         | 5        | %    | 13      | 19      | 17      |  |
| Limit of liquidity                          | 5        | %    | 25      | 34      | 30      |  |
| Plasticity Index                            | 5        | %    | 10      | 15      | 13      |  |

# Table 4-2Results of Laboratory TestingFirm to Very Stiff Clayey Soils

### 4.2.4 Dense to Very Dense and Well Graded Gravely Sand with Some Silt

At the site of the West Storage Tank (BH-101-05 to BH-105-05), dense to very dense soils were identified at depths of the order of 1.7 to 4.2 m, varying in gradation from gravely silt and sand, to sand with some gravel and silt, or sand and silt. They were found to extend to depths 7.7 to 11.1 m, where bedrock was encountered. Close to West Tank (W-004-04), dense to very dense sand with some silt and gravel, and silt and sand with trace of gravel and clay and occasional cobbles and boulders were found between depths of 1.8 and 11.3 m, underlain by bedrock.

Within the footprint of the East Storage Tank and its neighbouring area (BH-106-05 to BH-111A-05, BH-116B-05, BH-117B-05 and W-003-04) dense to very dense gravely sand with some silt and occasional cobbles, and silty and gravely sand were encountered at depths ranging from 3.4 to 5.0 m below ground surface. They were found to extend to depths of the order of 5.1 to 7.3 m (BH-106-05 to BH-110-05), and to depths of about 5.6 to 12.5 m below grade (BH-111A-05, BH-116B-05, BH-117B-05 and W-003-04).

Very dense sand with silt and gravel was found locally at the site of the Unloading Lines (BH-302-05 and BH-304-05) at depths of 3.1 and 2.1 m, and down to 4.6 and 2.7 m where bedrock was met.

Within the proposed LNG Process Area and the adjacent area (BH-401-05, BH-501-05, BH-503-05, BH-504-05, BH-506-05 and W-004-04), dense soils were found at depths of the order of 1.2 to 6.1 below existing grade, consisting of sand with some silt and gravel, and occasional cobbles and boulders, and locally sand and silt with trace and occasional gravel. In Boreholes BH-501-05, BH-503-05, W-004-04, dense and very dense soils reached bedrock at depths of the order of 11.3 to 24.0 m below grade. In Borehole BH-401-04, dense silt and gravel was encountered between depths of 4.6 to 10.7 m, followed by silty sand with occasional gravel presumably to about 17.5 m below grade and underlain by dense soils extending at least to 20.1 m depth where dynamic penetration tests were terminated on refusal, without formal rock determination. Boreholes BH-504-05 and BH-506-05 were also terminated within the dense to very dense soils respectively at depths of 6.5 and 6.6 m below grade, without encountering bedrock.

Results of laboratory testing obtained on this stratum are be summarized in Table 4-3.

|                                             | Number<br>of tests | Unit | Results |         |         |  |
|---------------------------------------------|--------------------|------|---------|---------|---------|--|
| Tests                                       |                    |      | Minimum | Maximum | Average |  |
| Grain size analyses (gravel, 5 to 80 mm)    | 17                 | %    | 5.0     | 57.1    | 23.1    |  |
| Grain size analyses (sand, 0.08 to 5 mm)    | 17                 | %    | 27.9    | 65.5    | 43.8    |  |
| Grain size analyses (fines, < 0.080 mm)     | 17                 | %    | 8.1     | 66.2    | 33.0    |  |
| Grain size analyses (clay size, < 0.002 mm) | 6                  | %    | 3.1     | 26.4    | 11.5    |  |
| Moisture content                            | 17                 | %    | 7.8     | 15.8    | 10.3    |  |

Table 4-3Results of Laboratory TestingDense to Very Dense Gravely Sand with Some Silt

# 4.3 <u>Bedrock</u>

Bedrock was encountered in all boreholes (BH and W Series) carried out at the site, except in Boreholes BH-401-05, BH-504-05 and BH-506-05. In Borehole BH-401-05, bedrock was not proven, as this last borehole was terminated at a depth of 15.9 m without rock coring and was extended from 15.9 to 20.1 m below existing grade only by cone dynamic penetration tests.

At the site of the West Storage Tank (BH-101-05 to BH-105-05), bedrock was encountered (and proven by core drilling) at depths ranging from 7.7 to 11.1 m below existing ground surface or between (geodetic) elevations 64.6 and 68.1 m. In the vicinity of the West Tank (W-002-04 and W-004-04), bedrock was met at depths of 1.8 and 11.3 m or at elevations 74.6 and 63.9 m respectively.

At the site of the East Storage Tank (BH-106-05 to BH-110-05), bedrock was encountered and proven by core drilling at depths ranging from 5.1 and 7.3 m below existing grade or between elevations 68.8 and 71.3 m. Within a close range of this structure (BH-111A-05, BH-116B-05, BH-117B-05, W-003-04 and W-005-04), bedrock was found at depths ranging from 2.3 to 12.5, or between elevations 63.2 and 75.3 m.

At the site of the proposed LNG Process Area, bedrock was encountered at depths varying from 0.6 to 24.0 m below existing grade at the location of Boreholes BH-501-05 to BH-503-05, and BH-505-05, and Test Pit TP-505-05. Locally at the site of Borehole BH-401-05, bedrock is inferred to be somewhat beyond 20.1 m depth, whereas at the location of Boreholes BH-504-05 and BH-506-05, bedrock is a depths greater than 6.5 and 6.6 m. Within distances of 200 to 300 m from the center of the LNG Process Plant (W-001-04, W-002-04, W-004-04 and W-006-04), bedrock is at depths ranging from 0.2 and 11.3 m below grade.

At the site of the Unloading Lines or at the location of Boreholes BH-301-05 to BH-307-05, and BH-507-05, bedrock was found at depths ranging from 0.6 to 4.6 m below ground surface.

Based on the results of the boreholes, the following general bedrock features were identified at the project site:

- Red and green mudstones or shales;
- Pale to dark grey, greenish grey and black shales or mudstones, with some sandstone, siltstone and calcareous horizons;
- Red mudstones.

The reader should refer to the borehole logs (Appendix I) and also to Section 3.2 of this report for detailed information about the bedrock.

Results of laboratory testing obtained on rock cores are be summarized in Table 4-4. The reader is reminded that the test results included in Table 4-4 are inferred to belong to relatively good quality bedrock since, as stated in Section 2.6.2, compressive strength determinations could not be achieved on very poor to fair quality rock. The compressive strength of the rock varied from 4 to 100 MPa, with average values ranging from 23 to 44 Mpa.

| Tests                                                                                                                                                                 | Number   | Unit              | Results |         |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|---------|---------|---------|--|
| 10000                                                                                                                                                                 | of tests | onic              | Minimum | Maximum | Average |  |
| Uniaxial unconfined compressive strength on<br>rock cores (not complying to ASTM D 2938)<br>/ Boreholes BH-102-05 to BH-110-05 Series<br>and W-002-04 to W-008 Series | 24       | MPa               | 3       | 99      | 23      |  |
| Uniaxial unconfined compressive strength on<br>rock cores (complying to ASTM D 2938) /<br>Boreholes BH-505-05 and BH-507-05                                           | 6        | MPa               | 12      | 100     | 44      |  |
| Unit weight of rock / Boreholes W-002-04 to W-008-04 Series                                                                                                           | 12       | kN/m <sup>3</sup> | 26.0    | 27.2    | 26.5    |  |

Table 4-4Results of Laboratory Testing Bedrock

Based on the RQD values, the bedrock condition may be summarized as follows within the project site:

- West Storage Tank (Boreholes BH-101-05 to BH-105-05): The bedrock varies from very poor to poor quality down to a depth range of 23 to 38 m below existing grade, and generally becomes good to excellent thereafter.
- East Storage Tank (Boreholes BH-106-05 to BH-110-05, and BH-111A-05): The bedrock varies from very poor to poor quality down to a depth range of 22 to 24 m below grade, and generally becomes good or excellent thereafter.
- LNG Process Plant (Boreholes BH-501-05 to BH-503-05, BH-505-05, W-001-04, W-002-04, W-004-04 and W-006-04): The bedrock varies from very poor to fair quality down to a depth range of 1 to 20 m below grade, and generally becomes good to excellent thereafter.

Unloading Lines (BH-301-05 to BH-307-05, and BH-507-05): In general the bedrock varies from very poor to fair quality at least down to depths ranging from 3.4 to 6.2 m below existing ground surface. Locally in Borehole BH-302-05, good quality rock is encountered down to 7.3 m depth. In borehole BH-507-05 carried out to 41 m below grade close to the site of a proposed Deep Rock Cut to the jetty, fair to good quality rock was encountered, with also intermittently and locally very poor to poor quality rock between depths of 1.3 to 3.4 m, 12.2 to 14.0 m, 20.3 to 24.5 m and 27.7 to 32.1 m.

In addition to the laboratory testing stated in Table 4-4, petrographic examination for pyrite determination was performed on 20 selected rock cores and 1 split spoon sample (i.e. 18 rock cores from boreholes of the BH Series and 2 rock cores and I split-spoon sample from boreholes of the W Series). The results of this testing are included at the end of Appendix II. They are summarized as follows with respect to the main rock facies, and also in reference to the boreholes and sample depths:

- Black shale (Boreholes BH-102-05 at 10.5 m and W-002-04 at 2.3 m), black shale / light grey mudstone (Borehole BH-102-05 at 12.5 m), and black shale / calcareous sandstone (Borehole BH-102-05 at 11.5 m): with SPPI (Swelling Potential Petrographic Index) values in the range of 39 to 56 and equivalent pyrite contents varying from 0.54 % to 2.60 %, the rock is considered as having a high swelling potential due to the presence of pyrite.
- Light grey, grey or red mudstones: with SPPI (Swelling Potential Petrographic Index) values in the range of 12 to 50 and equivalent pyrite contents varying from 0.02 % to 0.11 %, the rock is considered as stable and is not presenting any swelling potential due to the presence of pyrite.
### 5. GROUNDWATER CONDITIONS AND CHEMICAL ANALYSES

To allow groundwater level observations, perforated plastic standpipes were installed in most the boreholes of the BH and W Series. Boreholes BH-102-05, BH-104-05, BH-106-05, BH-107-05, BH-110-05, BH-111A-05 and W-004-04 were converted into monitoring wells by the intrusion of a 50 mm diameter PVC and base slotted tube. Borehole BH-503-05 is equipped with a 25 mm size piezometer tube. Boreholes BH-101-05, BH-109-05 and BH-501-05 are provided with a capped bottom PVC liners, and thus cannot serve to monitor the groundwater.

Groundwater was measured in the boreholes of the W Series during Fall of 2004 (6 October 2004). The boreholes of the BH-102-05 through BH-401-05 Series were monitored in early Spring of 2005 (15 April 2005), whereas boreholes of the BH-502-05 to BH-507-05 Series were surveyed for groundwater in Fall of 2005 (14 October 2005). Groundwater levels were thus observed from 1 to 59 days after completion of drilling.

Groundwater readings in the boreholes are summarized on Table 5-1. Artesian conditions were observed in three boreholes (BH-102-05, BH-116B-05, and BH-503-05).

It should be noted that the elevation of the groundwater table is usually not stable as it generally fluctuates with the seasons or subsequent to modifications to the environment. Thus, the groundwater may be found at or very close to the ground surface at certain times of the year, namely during the spring thaw or after periods of heavy precipitations.

Representative groundwater samples were subjected to chemical testing to assess their aggressiveness to concrete. The analytical report for the groundwater is included at the end of Appendix II. The results of chemical analyses performed on water samples retrieved from boreholes of the BH Series are summarized in Table 5-2. An hydrological study of the project site was carried out during the period of July through September 2005 by SNC-Lavalin Environment inc.

| Table 5-1                 |
|---------------------------|
| <b>Groundwater Levels</b> |

| Boreholes  | Level of<br>Ground<br>Surface | Date of<br>Groundwater<br>Measuremen | Depth of<br>groundwater<br>(below ground<br>surface) | Groundwater<br>Level | Note       |
|------------|-------------------------------|--------------------------------------|------------------------------------------------------|----------------------|------------|
|            | m                             | L                                    | Μ                                                    | m                    |            |
| BH-102-05  | 75.52                         | 15-Apr-05                            | -0.20                                                | 75.72                | Well       |
| BH-103-05  | 75.67                         | 15-Apr-05                            | 0.22                                                 | 75.45                | Standpipe  |
| BH-104-05  | 75.72                         | 15-Apr-05                            | 0.46                                                 | 75.26                | Well       |
| BH-105-05  | 75.41                         | 15-Apr-05                            | 0.20                                                 | 75.21                | Standpipe  |
| BH-106-06  | 76.25                         | 15-Apr-05                            | 0.51                                                 | 75.74                | Well       |
| BH-107-05  | 75.79                         | 15-Apr-05                            | 0.07                                                 | 75.72                | Well       |
| BH-108-05  | 76.19                         | 15-Apr-05                            | 0.33                                                 | 75.86                | Standpipe  |
| BH-110-05  | 76.20                         | 15-Apr-05                            | 0.39                                                 | 75.81                | Well       |
| BH-111A-05 | 75.74                         | 15-Apr-05                            | 0.17                                                 | 75.57                | Well       |
| BH-116B-05 | 75.44                         | 15-Apr-05                            | -0.35                                                | 75.79                | Standpipe  |
| BH-117B-05 | 77.38                         | 15-Apr-05                            | 1.50                                                 | 75.88                | Standpipe  |
| BH-301-O5  | 76.79                         | 15-Apr-05                            | 0.07                                                 | 76.72                | Standpipe  |
| BH-302-05  | 77.19                         | 15-Apr-05                            | 1.28                                                 | 75.91                | Standpipe  |
| BH-303-05  | 71.50                         | 15-Apr-05                            | 0.96                                                 | 70.54                | Standpipe  |
| BH-304-05  | 66.06                         | 15-Apr-05                            | 0.70                                                 | 65.36                | Standpipe  |
| BH-305-05  | 64.06                         | 15-Apr-05                            | 0.50                                                 | 63.56                | Standpipe  |
| BH-306-05  | 61.48                         | 15-Apr-05                            | 0.76                                                 | 60.72                | Standpipe  |
| BH-307-05  | 52.81                         | 15-Apr-05                            | 3.25                                                 | 49.56                | Standpipe  |
| BH-401-05  | 76.58                         | n/a                                  | n/a                                                  | n/a                  | Standpipe  |
| BH-502-05  | 75.75                         | 14-Oct-05                            | 0.75                                                 | 75.00                | Standpipe  |
| BH-503-05  | 75.33                         | 14-Oct-05                            | -0.39                                                | 75.72                | Piezometer |
| BH-504-05  | 75.92                         | 14-Oct-05                            | 0.63                                                 | 75.29                | standpipe  |
| BH-505-05  | 77.44                         | 14-Oct-05                            | 0.50                                                 | 76.94                | standpipe  |
| BH-506-05  | 76.77                         | 14-Oct-05                            | 0.40                                                 | 76.37                | standpipe  |
| BH-507-05  | 54.17                         | 14-Oct-05                            | 4.30                                                 | 49.87                | standpipe  |
| W-001-04   | 78.14                         | 6-Oct-04                             | 2.50                                                 | 75.64                | standpipe  |
| W-002-04   | 76.40                         | 6-Oct-04                             | 1.00                                                 | 75.40                | standpipe  |
| W-003-04   | 77.53                         | 6-Oct-04                             | 2.20                                                 | 75.33                | standpipe  |
| W-004-04   | 75.15                         | 6-Oct-04                             | 0.64                                                 | 74.51                | well       |
| W-005-04   | 77.55                         | 6-Oct-04                             | 1.30                                                 | 76.25                | standpipe  |
| W-006-04   | 79.84                         | 6-Oct-04                             | 0.85                                                 | 78.99                | standpipe  |
| W-008-04   | 78.60                         | 6-Oct-04                             | 2.74                                                 | 75.86                | standpipe  |

| Table 5-2                                            |   |
|------------------------------------------------------|---|
| Results from Chemical Testing on Groundwater Samples | 5 |

| Baramatara                        | Unito | Test Results |           |           |            |  |  |  |
|-----------------------------------|-------|--------------|-----------|-----------|------------|--|--|--|
| Parameters                        | Units | BH-102-05    | BH-104-05 | BH-106-05 | BH-110-05  |  |  |  |
| рН                                | pН    | 8.6          | 8.8       | 8.8       | 11         |  |  |  |
|                                   |       |              |           |           | (doubtful) |  |  |  |
|                                   |       |              |           |           |            |  |  |  |
| Sulfur anion (S=)                 | mg/L  | ND           | ND        | ND        | ND         |  |  |  |
| Alkalinity (Total as              |       |              |           |           |            |  |  |  |
| CaCO <sub>3</sub> ) pH 4.5        | mg/L  | 320          | 260       | 350       | 200        |  |  |  |
| Bicarbonates (HCO <sub>3</sub> as |       |              |           |           |            |  |  |  |
| CaCO <sub>3</sub> )               | mg/L  | 300          | 230       | 320       | ND         |  |  |  |
| Carbonate (CO <sub>3</sub> as     |       |              |           |           |            |  |  |  |
| CaCO <sub>3</sub> )               | mg/L  | 16           | 29        | 29        | 130        |  |  |  |
| Chloride (CI)                     | mg/L  | 50           | 180       | 5.5       | 5.6        |  |  |  |
| Sulfates (SO <sub>4</sub> )       | mg/L  | 11           | 22        | 34        | 36         |  |  |  |
| <u>Notes</u> :                    |       |              |           |           |            |  |  |  |
| ND = Not detected                 |       |              |           |           |            |  |  |  |
| N/A = Not applicable              |       |              |           |           |            |  |  |  |
| DL = Detection Limit              |       |              |           |           |            |  |  |  |
|                                   |       |              |           |           |            |  |  |  |

Based solely on the above results of chemical analyses, i.e. the pH values and sulfates (SO<sub>4</sub>), the groundwater is inferred to constitute a low level of aggressiveness to concrete.

However, in recent years it has become a general and common practice to recommend the use of sulphate resistant Type 50 cement, or cement with silica fume, for concrete foundations installed in the St. Lawrence River Low Lands. This recommendation should be implemented on the Rabaska Project, in order to avoid long term sulfatation of the concrete foundations and floor-slab-on-grades, as the process is initiated by two sources: the low sulfate content in the groundwater, and the sulfate generation from the oxidation of the pyrite enclosed in the dark shale beddings within the mudstone and shale bedrock.

### 6. <u>CONCLUSIONS AND RECOMMENDATIONS</u>

### 6.1 <u>General</u>

Rabaska Limited Partnership is contemplating the construction of a LNG Receiving Terminal, in Levis, Quebec. The project is located close to the eastern limit of the Municipality of Levis, between the south shore of the St. Lawrence River and a main project area situated some 1.4 km to the southeast or between Hydro-Quebec power lines and Highway 20 (see Drawing T-1050-B-0000-4GDD-0001 in Appendix III).

Based on available information, the project comprises the construction of the following industrial components and facilities:

- LNG Storage Tanks;
- LNG Process Area;
- Unloading Lines (Deep Rock Cut);
- Access Road and Paved Areas.

Comments and preliminary recommendations, from a geotechnical point of view, are included in the following sections of this report, to assist in the early design of earthworks and foundations, slab-on-grades, roads and paved zones, and lay-down area, within the proposed facilities. Geotechnical recommendations given herein will likely need to be adjusted and reviewed in the future, as conceptual details and project features and layout get more advanced. Dynamic response of foundations will also be addressed in the future within the detailed engineering phase.

### 6.2 LNG Storage Tanks

### 6.2.1 Structural Features and Subsurface Conditions

As indicated on Drawing T-1050-B-0000-4GDD-0001 (Appendix III), the construction of two LNG Storage Tanks are contemplated at the site of Boreholes BH-101-05 to BH-110-05. The tanks will be 90 m in diameter and some 46 m in height (with dome). Each tank will be installed within a 150 m x 150 m permanent depressed enclosure with its base at a depth of approximately 10 m below the existing ground surface, or at about

elevation 65 m. Center and edge static bearing pressures induced by the storage tanks are expected respectively not exceed 170 and 280 kPa during operation, or 250 and 320 kPa during initial water testing.

The storage tanks will be seated on circular mat type foundations. The mat foundations will be provided with thermal insulation and underlying heating cables, to avoid the formation of permafrost due to the extreme low temperature of the LNG containment.

Subsurface investigations recently carried out at the sites of the LNG Storage Tanks indicated the following soil and bedrock conditions:

- West Storage Tank: Under about 0.2 m of topsoil, compact sand and gravel was encountered down to about 1.4 to 2.3 m below grade, locally followed by firm to very stiff clayey soils extending to 2.7 or 4.2 m depth. These are underlain, at depths ranging from 1.7 to 4.1, by dense to very dense gravely silt and sand that extends to 7.7 or 11.1 m below existing ground surface, where bedrock was encountered. Bedrock, found at about elevations 64.6 to 68.1 m, generally consisted (Boreholes BH-101-05 to BH-104-05) of very poor to poor quality light grey mudstone or (locally) sandstone, with about 5 to 10 % layers of greenish grey and dark grey shale. Locally (BH-105-05), very poor to fair quality red mudstone was encountered.
- East Storage Tank: Under about 0.5 to 0.9 m of topsoil or 0.6 m of peat, compact (and locally dense) sand and gravel or sand and silt with some or trace of gravel was encountered down to about 1.5 to 3.3 m below grade, locally followed by stiff to very stiff clayey soils extending to 3.7 or 4.9 m depth. These are underlain, at depths ranging from 2.7 to 4.9 m by dense to very dense gravely sand with some silt and occasional cobbles and boulders, or silty and gravely sand that extends to 5.1 or 7.3 m below existing ground surface, where bedrock is met. Bedrock, found at about elevations 68.8 to 71.4 m, generally consisted (BH-106-05 to BH-108-05) of very poor to fair quality dark grey shale, grey mudstone with 10-15 % of black shale layers, or greenish grey shale or mudstone with black shale layers. Locally (BH-109-05 and BH-110-05), very poor to good quality red mudstone, with dark shale layers was identified.

Groundwater was observed (15 April 2005) between 0 and 0.5 m depth. Groundwater levels are subject to seasonal fluctuations and modifications to the environment.

#### 6.2.2 Excavation

The proposed Storage Tanks will be installed within two depressed enclosures, extending to a depth of about 10 m below the existing ground surface.

Based on the known subsurface conditions, and in view of the general design schemes and layouts already contemplated at the project site, the following comments and preliminary recommendations are given concerning the excavation of the depressed enclosures of the LNG Storage Tanks:

- (1) In view of the soil stratigraphy prevailing at the site, and the high groundwater conditions observed namely at thaw, permanent side slopes of 2.5 (H): 1 (V) within the generally well graded and dense to very dense soils are considered to be at risk of experimenting seasonal or intermittent slope erosion and sand/silt sloughing problems. In this perspective, the surface and the toe of the slope within the overburden should be covered and protected with an inverted granular filter pad. This granular slope protection and pad will consist of a geotextile fabric covered by coarse clean crushed stone, eventually combined with inclined perforated drains located a short distance from the exposed face of the slopes. This feature should be implemented with a drainage system installed at the crown of slope to intercept runoff. Furthermore, a drainage trench should be provided a short distance "upstream" of the toe of the slope, as to allow systematic draw-down of the water table, and thus prevent toe erosion. At the toe of the overburden slope, a minimum 1.5 m wide horizontal berm should be provided at the bedrock surface.
- (2) Although the bedrock encountered at the site within the proposed excavation depths was generally found to vary from very poor to fair quality, further to generally being thin bedded, it is believed that excavation thereof will require hydraulic breaking process and blasting locally. Ripping is not considered practical, except maybe locally in the very poor to poor rock surface (often most severely fractured and weathered). The reader is reminded that bedrock at the site of Trial Excavation TE-B-05 (Section 3.2.2.3) could be easily excavated at

least down to about 2 m below the bedrock surface by means of an excavator equipped with a  $1.7 \text{ m}^3$  size bucket.

- (3) Permanent pumping will be required in the excavations due to the high groundwater conditions prevailing at the project site. This situation was observed in October 2005 in Trial Excavation TE-B-05 (Section 3.2.2.3) where pumping was also needed to draw-down the water table at the bottom of the excavation. Recommended drainage features at the bottom of the depressed enclosures consist of a layer of clear and uniform crushed stone entrapped between unwoven geotextile fabrics and traversed by perforated pipes. This system should be connected to sumps.
- (4) In view of the inclination of the bedrock beddings and the bedrock layered structure, the permanent excavated rock surface should generally be provided with a side slope of 1 (H) : 1 (V). Exposed rock surfaces will undergo alteration and weathering due to the exposition to air, and frost action. To limit the consequences of long term rock weathering and alteration and retain future rock scaling, the excavated and exposed rock surfaces should be covered with a steel wire mesh connected to closely spaced anchors. As the bedrock is likely dipping in one direction, i.e. towards the southeast, rock bolting may also be locally contemplated. Where dipping would permit it, steeper rock slopes close to 2.5 (V) : 1 (H) and generally no higher than 6 m may be contemplated if duly protected from weathering and alteration by shotcrete covered wire mesh adequately retained by closely spaced rock anchors, and provided with underdrainage.
- (5) Exposed bedrock, at or below the foundation level, should be protected against alteration and weathering due to oxidation and/or frost action. In this perspective it should be sealed without delay by means of a thin layer (100 mm) of concrete. The concrete sealing should be placed immediately after excavation and after approval by a qualified technician, of the exposed rock surfaces. Also rock surfaces (under foundations) should be protected against frost action, if the excavations are carried out during winter.
- (6) In addition to the above recommendations, and to prevent the rock swelling process that could be initiated by the oxidation of the dark mudstone and/or

shale beddings of the bedrock, the exposed bedrock bearing surface under foundation should be permanently maintained at least 0.5 m below groundwater. This could therefore require deeper excavation within the bedrock, with respect to what was needed to comply to recommendations stated in (5). In this perspective, drainage within the depressed enclosures of Storage Tanks should be achieved accordingly.

(7) Because of inferred and locally proven swelling properties and weathering characteristics, the excavated rock shall not be reused as fill material under structures or floor-slabs-on-grade.

#### 6.2.3 Foundations

The LNG Storage Tanks may be founded on circular mat type foundations, in compliance to the following recommendations:

- (1) An allowable net bearing pressure of 500 kPa is recommended for large size mat foundations seated on the poor quality bedrock, or on a layer of concrete in direct contact with the bedrock. This allowable bearing pressure was determined essentially from judgment based on the bedrock descriptions performed at the foundation levels on the rock cores and also at shallow depth in the trial excavations. As the frequently encountered very poor to poor quality bedrock is thinly bedded and shows closely spaced discontinuities, it may be considered in many instances to be as good or better than a thoroughly compacted and well interlocked granular fill. The above recommended allowable bearing pressure is consistent with suggested lower bearing values stated in typical building codes for comparative poor quality rock (schist, slate and shale). As the center and edge static bearing pressures induced by the storage tanks are expected respectively not exceed 170 and 280 kPa during operation, or 250 and 320 kPa during initial water testing, the aforementioned allowable bearing pressure is deemed sufficient.
- (2) For transient loadings due to wind or seismic events, the above net allowable bearing pressure may be increased by 30 percent.

- (3) As the dark grey and black mudstone / shale will likely show swelling properties in addition to be prone to undergo quick alteration and weathering process when exposed to air, it is recommended in zones where this type of rock is encountered, that bedrock be excavated to comply to recommendations stated in 6.2.2. (Items 5 and 6). This is aimed at permanently maintaining the exposed rock (under the tank) below groundwater to avoid oxidation that could generate swelling and weathering. All excavated and exposed rock surfaces should then be immediately covered with fill materials, or with concrete to limit alteration and weathering, as outlined in Section 6.2.2. (Item 6).
- (4) Based on a freezing index of about 1250°C. days typical for the Quebec City / Levis area, the mat foundation of the tanks should normally be provided with a soil cover of at least 2.0 m at its periphery. It is inferred that frost action may take place at the outset of the said mat foundation during winter, even in consideration of the partially heated environment provided (by heating cable) below the tank bottom. If required, a portion of the soil cover may be replaced by a suitable thickness of thermal insulation adequately and horizontally placed at shallow depth at the periphery of the mat foundation.
- (5) Due to the very low temperature of the LNG containment within the Storage Tanks, thermal insulation and heating cables are essential to prevent the formation of permafrost within the bearing bedrock.

### 6.3 LNG Process Area

### 6.3.1 Structural Features and Subsurface Conditions

The proposed LNG Process Area will comprise equipment and compressor foundations, footings to support lightly loaded steel columns, and small buildings. These will likely be situated within a distance of 500 m southwest of the West Storage Tank.

The area was investigated by means of Boreholes BH-401-5 and BH-501-05 to BH-506-05 and Test Pits TP-503-05 to TP-505-05. Compact sand with gravel and silt was encountered generally down to depths of about 0.8 to 6.1 m, followed by dense to very dense sand with gravel and occasional cobbles and boulders. Bedrock was found at depths ranging from 5.2 to 13.2 m (BH-501-05 and BH-502-05), or beyond 6.5 or

6.6 m (BH-504-05 and BH-506-05) or at depth greater than 20.1 m (BH-401-05 and BH-503-05), whereas it was also locally identified at shallow depths i.e. between 0.6 or 0.8 m (TP-505-05 and BH-505-05). Bedrock varies from very poor to poor quality and consists of light grey or siltstone or mudstone. Soil and bedrock data and properties are summarized in Table 6-1, together with recommended design parameters.

| Typical Soil o                                                              | Properties            |                      |                     | Recommended Parameters     |                    |     |     |                   |                       |     |      |     |
|-----------------------------------------------------------------------------|-----------------------|----------------------|---------------------|----------------------------|--------------------|-----|-----|-------------------|-----------------------|-----|------|-----|
| Soil / Bedrock<br>Type                                                      | Depth<br>Range        | Stratum<br>Thickness | Unit<br>Weight<br>γ | N <sub>SPT</sub><br>Values | q <sub>u</sub> (6) | c'  | φ'  | E                 | Poisson<br>Ratio<br>ν | Ko  | Ka   | Кр  |
|                                                                             | m                     | m                    | KN/m <sup>3</sup>   | Blows /<br>0.3 m           | MPa                | kPa | (°) | MPa               | -                     | -   | -    | -   |
| Topsoil<br>(2)                                                              | 0 to 0.15<br>or 0.30  | 0.2 to 0.3           | 18 to 20            | n/a                        | n/a                | n/a | n/a | n/a               | n/a                   | n/a | n/a  | n/a |
| Compact sand<br>with silt and gravel<br>(2)                                 | 0.2 to 0.8<br>or 6.1  | 0.6 to 6.0           | 20 to 21            | 13 to 30<br>(1)            | n/a                | 0   | 30  | 10 to 28          | 0.35                  | 0.5 | 0.30 | 3.3 |
| Dense to very<br>dense sand with<br>gravel and<br>occasional<br>cobbles (3) | 1.2 or 4.6<br>to 6.1+ | 1.5 to 4.9+          | 21.5 to<br>22.3     | 34 - 60+<br>refusal        | n/a                | 0   | 34  | 95 to 200         | 0.30                  | 0.5 | 0.28 | 3.6 |
| Very severely and<br>fractured bedrock<br>(4)                               | 0.8 to 1.5            | 0.7                  | 26.0                | refusal                    | n/a                | 0   | 36  | 150 to<br>300     | 0.30                  | n/a | 0.26 | 3.8 |
| Poor to good<br>quality bedrock<br>(4)                                      | 1.5 to 4.7+           | 3.2+                 | 26.5                | n/a                        | 12 to<br>40        | n/a | 42  | 5000 to<br>20000  | 0.30                  | n/a | n/a  | n/a |
| Fair to good<br>quality bedrock<br>(5)                                      | 5.2+                  | 0.9+                 | 26.5                | n/a                        | 20 to<br>50        | n/a | 42  | 10000 to<br>25000 | 0.30                  | n/a | n/a  | n/a |
|                                                                             |                       |                      |                     |                            |                    |     |     |                   |                       |     |      |     |

# Table 6-1 Soil and Bedrock properties and parameters (LNG Process Area)

Notes : 1 - Excluding the first 0.5 m depth

2 - General soil feature (BH-401-05, and BH-501-05 to BH-506-05)

3 - Frequent soil feature (BH-401-05, BH-502-05 to BH-504-05, and BH-506-05)

4 - Local bedrock feature (BH-505-05)

5 - Local bedrock feature (BH-502-05)

6 - Rock unconfined compressive strength

A temporary Lay-down Area is contemplated in the vicinity of Boreholes BH-503-05 to BH-505-05 and Test Pits TP-503-05 to TP-505-05. Subsurface investigation works performed in this area, indicated the presence of 0.1 to 0.3 m of topsoil followed by silty sand with some gravel in a compact state of relative density at depths smaller than 1.6 to 2.0 m (BH/TP-503-05 and BH/TP-504-05) and locally (BH/TP-504-05) comprising a thin clayey silt layer. Locally at the site of BH/TP-505-05 rock is encountered at 0.6 or 0.8 m below existing grade.

Groundwater was observed (14 October 2005) between 0 and 0.5 m depth. Groundwater levels are subject to seasonal fluctuations and modifications to the environment.

### 6.3.2 Foundations

Isolated or strip shallow footings may be contemplated for structures and equipments within the proposed LNG Process Area. They should be designed and constructed to comply to the following recommendations:

- (1) Based on the borehole results and the soil N<sub>SPT</sub> index values, the net allowable bearing pressures applicable to shallow footings are given in Table 6-2. These may be considered for footings seated on intact natural soils, in view of limiting total settlements to less than 20 mm, and differential settlements to less than 15 mm between adjacent columns typically spaced at 5 m or more (to limit angular distortion to 1:330). Static spring constant for foundation are given in Table 6-3.
- (2) Footings seated on (poor quality) bedrock may be designed for an allowable net bearing pressure of 500 kPa. The bedrock surface should be cleared of severely fragmented rock, prior to footing installation.
- (3) For transient loadings due to wind or seismic events, the above allowable bearing pressures may be increased by 30 percent.
- (4) All topsoil, peat and organic soils, as well as remoulded, soft or frozen soils and uncontrolled fill should be excavated prior to the installation of a footing on intact natural soils.

- (5) Protection and sealing of exposed rock should be carried out as outlined in Section 6.2.2. and in Section 6.2.3. Item (1).
- (6) To limit differential movements for cases where some of the footings belonging to a same structure would be partly seated on rock, and on fill or soil, a well compacted and non swelling crushed stone cushion, at least 300 mm in thickness, should be provided under any footing that otherwise would have been on rock.
- (7) The minimum width of footings (on soil or on rock) should be 1 m. Settlements are expected to be less than 3 to 5 mm for shallow foundations seated on bedrock, whereas settlements of the order of 15 to 20 mm may occur with footings installed on compacted granular fill (seated on rock), or on compact to dense natural soils.
- (8) Footings (on soil or rock) exposed to freezing conditions must be protected against frost action. Based on a freezing index of about 1250 C° days typical for the Quebec City / Levis area, exterior foundations of heated structures should be provided with a soil cover of at least 2.0 m. For unheated structures, the soil cover should be increased to 2.4 m. Thermal insulation may be contemplated to reduce frost penetration during winter.

| ~     | Anowable bearing r ressure for r ootings seated on Natural oon of on bedrock |                     |                  |                                      |                       |                       |                         |                       |                       |                       |
|-------|------------------------------------------------------------------------------|---------------------|------------------|--------------------------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|-----------------------|
| Deptl | h (m)                                                                        | Approx<br>elevation | kimate<br>on (m) | Net allowable bearing pressure (kPa) |                       |                       |                         |                       |                       |                       |
| from  | to                                                                           | From                | to               | Borehole<br>BH-401-05                | Borehole<br>BH-501-05 | Borehole<br>BH-502-05 | Borehole<br>BH-503-05   | Borehole<br>BH-504-05 | Borehole<br>BH-505-05 | Borehole<br>BH-506-05 |
| 0     | 1.0                                                                          | 76.3                | 75.3             | 30                                   | 60                    | 70                    | 100                     | 50                    | 200                   | 60                    |
| 1.0   | 2.0                                                                          | 75.3                | 74.3             |                                      | 170                   |                       | 200                     | 200                   |                       |                       |
| 2.0   | 3.0                                                                          | 74.3                | 73.3             |                                      |                       | 270                   | 200                     |                       | 500 (on               |                       |
| 3.0   | 5.2                                                                          | 73.3                | 71.1             | 300                                  | 200                   |                       |                         | 300                   | bedrock)              | 250                   |
| 5.2   | 6.1                                                                          | 71.1                | 70.2             |                                      | 200                   | 500 (on<br>bedrock)   | 500 (on 300<br>bedrock) |                       | Seal Ook)             |                       |

Table 6-2

#### Allowable Bearing Pressure for Footings seated on Natural Soil or on Bedrock

#### Table 6-3

Proposed Static Spring Values for Footings seated on Natural Soil or on Bedrock

| Deptl | h (m) | Approx<br>elevation | kimate<br>on (m) | Approximate range of modulus of subgrade reaction (MN/m <sup>3</sup> |                       |                             |                       |                       | l/m³)                 |                       |
|-------|-------|---------------------|------------------|----------------------------------------------------------------------|-----------------------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| from  | to    | From                | to               | Borehole<br>BH-401-05                                                | Borehole<br>BH-501-05 | Borehole<br>BH-502-05       | Borehole<br>BH-503-05 | Borehole<br>BH-504-05 | Borehole<br>BH-505-05 | Borehole<br>BH-506-05 |
| 0     | 1.0   | 76.3                | 75.3             | 2 – 3                                                                | 5 – 8                 | 6– 9                        | 6 - 14                | 3 - 7                 | 13 - 20               | 4 - 9                 |
| 1.0   | 2.0   | 75.3                | 74.3             |                                                                      | 11 – 21               |                             | 13 - 25               | 13 - 20               |                       |                       |
| 2.0   | 3.0   | 74.3                | 73.3             |                                                                      |                       | 20 - 40                     |                       | 50 - 120              |                       |                       |
| 3.0   | 5.2   | 73.3                | 71.1             | 27 - 42                                                              |                       |                             |                       |                       | (on                   | 25 - 40               |
| 5.2   | 6.1   | 71.1                | 70.2             |                                                                      | 13 – 20               | 50 - 120<br>(on<br>bedrock) | 25 - 50               | 20 - 38               | bedrock)              | 20 40                 |

### 6.3.3 Floor Slabs-on-grade

The following recommendations are applicable to floor slabs-on-grade, within heated structures:

- (1) All organic, remoulded, soft or frozen soils, and uncontrolled fill materials should be excavated prior to the installation of a floor slab-on-grade.
- (2) The floor slabs-on-grade should be underlain by at least 300 mm of crushed stone of size 20-0 mm compacted to at least 95% of the Modified Proctor maximum dry density. The crushed stone must be tested prior to placement (in accordance with the SPPI procedure - Standard NQ 2560-500) to ensure that it is non-swelling. This crushed stone pad combined with the underlaying soil is believed to yield a subgrade modulus ranging from 25 to 40 MN/m<sup>3</sup>.
- (3) Construction joints should be provided in the floor slabs-on-grade especially at the face of foundation walls and columns, to allow small differential settlements to occur without damage.

(4) Constant vibratory loadings applied to floor slabs warrant detailed dynamic analysis, which are considered outside the scope of this mandate.

#### 6.3.4 Temporary Lay-down Area

The proposed temporary Lay-down Area will be provided with a granular fill cover to enable the free traffic of heavy delivery vehicles, further to allow the storage, handling and assembling of structural components, specialized industrial equipment, and temporary facilities needed during the construction and commissioning of the LNG Receiving Terminal.

In view of the existing subsurface and groundwater conditions, the following recommendations are provided:

- (1) All topsoil, peat, large roots and stumps, loose or soft soil, or soil remolded by the construction activities should be removed prior to the placement of the granular fill cover within the contemplated lay-down area. At this stage of the site preparation, peripheral drainage ditches should be provided at the outset of the lay-down areas and the exposed bottom of the stripped area should, whenever possible, be profiled towards the ditches.
- (2) The granular fill cover within the contemplated lay-down area should consist of the following sub-base and base materials:
  - Sub-base (crushed or granular material, fragmented rock): 500 mm
  - Base course (crushed stone):
     400 mm

The sub-base material should essentially be well draining and consist of well graded crushed or granular material (typically complying to MG 112 of Ministère des Transports du Québec) with less than 10 % of fines particles smaller than 0.080 mm. Excavated rock fragmented to less than 50 - 200 size particles could also be used as sub-base material if adequately rolled with a dozer.

The base course materials should comply to MG 20 gradation (Ministère des Transports du Québec) or be composed of MG 56 materials topped with MG 20, with less than 8 % of fines particles smaller than 0.080 mm.

(3) Periodic profiling and maintenance of the finished base course surface is essential during the service life of the temporary lay-down area, to maintain traficability and surface runoff evacuation towards the ditches.

#### 6.4 Unloading Lines

#### 6.4.1 Structural Features and Subsurface Conditions

Unloading conduits are contemplated between the south shore of the St. Lawrence River and the LNG Storage and Process Facilities, at the site of Borehole BH-507-05, and Boreholes BH-307-05 to BH-301-05.

Sand in loose to compact state of compactness and with silt was generally found between ground surface and a depth of approximately 0.6 to 1.5 m in most of the above boreholes, whereas locally (BH-302-05) loose sand extends to 3.1 below grade. Also locally (BH-301-05) a stiff to very stiff clay stratum was encountered down to 0.9 m below grade. In Boreholes BH-302-05 to BH-305-05, the loose soils are underlain by compact to very dense sand extending to 2.4 or 4.6 m below ground surface. Bedrock was proven at shallow depths of 0.6 to 0.9 m (BH-301-05, BH-307-05 and BH-507-05) and at depths ranging from 1.3 to 4.6 m below grade (BH-302-05 to BH-306-05).

Groundwater was observed (15 April 2005) in Boreholes BH-301-05 to 306-05 between 0 and 1.0 m depth, whereas in Boreholes BH-307-05 and BH-507.05, groundwater was found (April and October 2005) at depths ranging from 3.3 to 4.3 m. Groundwater levels are subject to seasonal fluctuations and modifications to the environment.

#### 6.4.2 Foundations

The following allowable net bearing pressures may be considered for footings seated at depths of about 2.0 to 2.4 m below grade:

- Borehole BH-301-05: 250 kPa on very severely fractured bedrock
- Borehole BH-302-05:
- Borehole BH-303-05:
- Borehole BH-304-05:
- 30 kPa on soil (or 200 kPa on soil at 3.1 m) 100 kPa on soil (or 500 kPa on rock at 2.4 m)
- 100 kPa on soil (or 500 kPa on rock at 2.7 m)

- Borehole BH-305-05: 500 kPa on bedrock
- Borehole BH-307-05:
- Borehole BH-507-05: 500 kPa on bedrock

Settlements are expected to be less than 3 to 5 mm for shallow foundations seated on bedrock, whereas settlements of the order of 10 to 20 mm may occur for footings installed on intact natural soils. Differential settlements of adjacent footings seated on soils may range from 8 to 15 mm thus limiting angular distortion to 1:350 between columns typically spaced at 3 to 5 m or more.

500 kPa on bedrock

Recommendations, already provided in Sections 6.2.2, 6.2.3. and 6.3.2 concerning the minimum width of footings, and the protection against rock alteration to air and swelling process, and frost protection are applicable to the installation of the Unloading Lines, if they are routed or founded at shallow depth in the overburden or within the upper layer of bedrock.

### 6.4.3 Deep Rock Cut to the Jetty

Between the south shore of the St. Lawrence River and a point located at least some 100 m SE of the locus of Boreholes BH-307-05 and BH-507-05 and Trial Excavation TE-A-05, a 300 m long open Rock Cut with a maximum depth of 22 m is presently contemplated for (i) LNG unloading lines originating from the ship docking facilities, and (ii) an access road. The Rock Cut will be oriented in a NW-SE direction.

Based on the local geology and in reference to the results of the subsurface investigations, that are valid only near the southeastern part of the Rock Cut, the bedrock consists of a succession of relatively thin (10 to 300 mm thick) mudstone and siltstone beds with shale interbeds (10 mm thick). In general the rock beddings are dipping from 58 to 62°. However, from local direct visual observations performed at shallow depth in Trail Excavation TE-A-05, the orientations of the beddings were found to be at 30°. Although the bedding orientations observed in TE-A-05 are considered favorable with respect to the lateral rock stability of the proposed deep linear rock cut aligned in a NW to SE direction, the local geology also provides indications that unfavorable bedding orientations would also exist.

In view of the above, the following general comments are provided:

- (1) According to the usual practice and the standards of Ministère des Transports du Québec, which are normally applied to road construction, rock cuts to a maximum depth of 6 m into sedimentary rocks would normally be provided with 1.0 (H) to 2.5 (V) rock slopes. Deeper rock cuts, may warrant special geological studies. As a general rule, pending more detailed studies, the rock cuts should be provided with 6 m wide benches at vertical intervals of no more than 12 m. A rock catch ditch is also recommended for falling rocks alongside the roadway.
- (2) In view of the above standards, several benches will be required with the contemplated deep and steep-sloping Rock Cut. Furthermore, with due consideration the poor quality of the rock, which is thinly bedded and could locally also be dipping unfavorably, the extensive weathering and scaling process which will likely be worsen by frost action and seasonal groundwater seepage remains a major concern, with permanently exposed rock slopes, even if they are no steeper than 1.0 (H) to 2.5 (V).
- (3) In this perspective and as the project gets more advanced towards developing open Rock Cut schemes, slope protection by means of wire mesh, rock bolting, rock mass drainage, etc,. will need to be addressed and optimized from a rock mechanic point of view.
- (4) The bedrock encountered at the site (Borehole BH-507-05) within the proposed excavation depth of the Deep Rock Cut was found to vary from poor to excellent quality, further to generally being thin bedded. It is believed that excavation thereof will require hydraulic breaking process or blasting. Ripping is not considered practical, except maybe locally in the very poor to poor rock encountered at shallow depths.

### 6.4.4 Rock Cut on the cliff near the Jetty

The steep rocky cliff along the south shore of the St. Lawrence River near the proposed Jetty appears to be the site of only local and limited surface rock scaling. Seismic events would not aggravate the situation.

It is presently envisaged to route the LNG unloading lines originating from the ship docking facilities on a sustaining vertical steel frame structure. This structure, which will be founded on a granular fill placed at the toe of the cliff, shall reach at least the top of the 21 m high steepest section (2.3V:1.0H) of the cliff. In this perspective, rock excavation in the immediate vicinity of the sustaining structure should comply to the general recommendations already outlined in Section 6.4.3.

#### 6.5 Access Roads and Paved Areas

The following recommendations apply to the design and construction of access roads and paved areas:

- (1) All topsoil, peat, uncontrolled fill, loose or soft soil, or soil remolded by the construction activities should be removed prior to the construction of access roads and paved areas.
- (2) For local traffic of heavy and light vehicles, the following sub-base, base and pavement layers may be considered:
  - Heavy vehicles:
    - Sub-base (sand or crushed stone) : 300 mm
    - Base course (crushed stone) : 450 mm
    - Wearing course (asphalt) : 55 mm (EB-14) + 40 mm
      - (EB-10S)

Light vehicles:

| $\triangleright$ | Sub-base (sand or crushed stone) | : 300 mm |
|------------------|----------------------------------|----------|
| ≻                | Base course (crushed stone)      | : 300 mm |

- ➢ Wearing course (asphalt) : 60 mm (EB-10S)
- (3) All materials should comply with the Ministère des Transports du Québec (MTQ) standards, in terms of gradation, soundness and compaction. The above EB-14 and EB-10S pavement denominations are as per MTQ Standards.
- (4) To ensure proper performance of the access roads and paved areas, all sub-base and base course materials should be implemented at the subgrade.

(5) Long term performance and good behavior of access roads paved areas rely on good drainage. Therefore, adequate drainage ditches should be provided to maintain groundwater below the base course and sub-base layers.

#### 6.6 Soil and Bedrock Dynamic Properties

The dynamic parameters of the overburden soil and of the bedrock were determined on-site by means of down-hole seismicity surveys recently carried out by Geophysics GPR International Inc. in Boreholes BH-101-05, BH-109-05, and BH 501-05. The detailed results of the testing are gathered and discussed in Appendix VIII of this report, and are summarized hereafter in Table 6-4.

| Dambah    | Depth       | Decembration                                                      | Assumed<br>Mass   | Poisson<br>Ratio |      | Gs   |      | E    | s     |
|-----------|-------------|-------------------------------------------------------------------|-------------------|------------------|------|------|------|------|-------|
| Borenole  |             | Description                                                       | Density           | min.             | max. | min. | max. | min. | max.  |
|           | m           |                                                                   | kg/m <sup>3</sup> |                  | -    | GF   | Pa   | G    | Pa    |
| BH 101 05 | 2.2 - 9.7   | Dense to very dense sand<br>with some gravel and silt             | 1 900             | 0.36             | 0.46 | 0.46 | 0.87 | 1.30 | 2.41  |
| BI-101-05 | 9.7 - 23.4  | Poor to good quality<br>mudstone                                  | 2 600             | 0.33             | 0.48 | 0.91 | 3.93 | 2.71 | 11.31 |
|           | 2.3 - 5.1   | Compact to dense sand<br>and silt                                 | 1 900             | n/a              | n/a  | 0.14 | 0.18 | n/a  | n/a   |
| BH-109-05 | 5.1 - 7.3   | Very severely fractured and<br>weathered red mudstone             | 1 900             | n/a              | n/a  | 0.39 | 0.79 | n/a  | n/a   |
|           | 7.3 - 20.8  | Fair to good quality red and greenish grey mudstone               | 2 600             | 0.40             | 0.48 | 0.87 | 1.90 | 2.53 | 5.52  |
|           | 20.8 - 23.2 | Fair to good quality grey<br>shale                                | 2 600             | 0.43             | 0.45 | 2.45 | 3.80 | 7.14 | 10.85 |
|           | 0.0 - 2.1   | Loose to compact silty<br>sand, some gravel                       | 1 900             | n/a              | n/a  | n/a  | n/a  | n/a  | n/a   |
|           | 2.1 - 6.1   | Compact silt and sand,<br>trace of gravel                         | 1 900             | 0.37             | 0.46 | 0.14 | 0.63 | 0.39 | 1.81  |
| BH-501-05 | 6.1 - 13.2  | Dense to very dense silt<br>and sand, trace of gravel<br>and clay | 1 900             | 0.40             | 0.47 | 0.44 | 0.73 | 1.25 | 2.11  |
|           | 13.2 - 19.8 | Very poor to fair quality<br>limestone                            | 2 600             | 0.42             | 0.45 | 1.51 | 2.46 | 4.36 | 7.05  |

Table 6-4Dynamic Parameters of Soils and Bedrock

### 6.7 Ground Apparent Electrical Resistivity

Vertical electrical soundings were carried out in October 2005 by Geophysics GPR International Inc. to determine the ground apparent electrical resistivity for grounding purposes. The electrical soundings were performed at two locations (RT-1-05 and RT-2-05) using the Wenner four electrode array. The procedure and the detailed results of the in-situ testing are provided in Appendix VIII.

### 6.8 General Conditions and Limitations

The use of this report is subjected to the following General Conditions and Limitations, Sections A through F, applicable to geotechnical report:

### A. USE OF THE REPORT

- A.1 The factual data, interpretations and recommendations contained in this report pertain to a specific project as described in the report and are not applicable to any other project or site location. If the project is modified in concept, location or elevation or if the project is not initiated within eighteen months of the date of the report TERRATECH should be given an opportunity to confirm that the recommendations are still valid.
- A.2 The recommendations given in this report are intended only for the guidance of the design engineer. The number of test holes to determine all the relevant underground conditions which may affect construction costs, techniques and equipment choice, scheduling and sequence of operations would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual test hole data, as to how subsurface conditions may affect their work.

### B. FOLLOW-UP

- B.1 All details of the design and proposed construction may not be known at the time of submission of TERRATECH's report. It is recommended that TERRATECH be retained during the final design stage to review the design drawings and specifications related to foundations, earthworks, retaining systems and drainage, to determine that they are consistent with the intent of TERRATECH's report.
- B.2 Retention of TERRATECH during construction is recommended to confirm and document that the subsurface conditions throughout the site do not materially differ from those given in TERRATECH's report and to confirm and document

that construction activities did not adversely affect the design of TERRATECH's recommendations.

#### C. SOIL AND ROCK CONDITIONS

- C.1 Soil and rock descriptions in this report are based on commonly accepted methods of classification employed in professional geotechnical practice. Classification and identification of soil and rock involves judgement and TERRATECH does not guarantee descriptions as exact, but infers accuracy only to the extent that is common in current geotechnical practice.
- C.2 The soils and rock conditions described in this report are those observed at the time of the study. Unless otherwise noted, those conditions form the basis of the recommendations in the report. The condition of the soil and rock may be significantly altered by construction activities (traffic, excavation, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil and rock must be protected from these changes or disturbances during construction.

### D. LOGS OF TEST HOLES AND SUBSURFACE INTERPRETATIONS

- D.1 Soil and rock formations are variable to a greater or lesser extent. The test hole logs indicate the approximate subsurface conditions only at the location of the test holes. Boundaries between zones on the logs are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends on the method of boring, the frequency of sampling, the method of sampling and the uniformity of subsurface conditions. The spacing of test holes, frequency of sampling and type of boring also reflect budget and schedule considerations.
- D.2 Subsurface conditions between test holes are inferred and may vary significantly from conditions encountered at the test holes.
- D.3 Groundwater conditions described in this report refer only to those observed at the place and time of observation noted in the report. These conditions may

vary seasonally or as a consequence of construction activities on the site or adjacent sites.

#### E. CHANGED CONDITIONS

Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of the use or reliance by the client of this report that TERRATECH is notified of the changes and provided with an opportunity to review the recommendations of this report. Recognition of changed soil and rock conditions requires experience and it is recommended that an experienced geotechnical engineer be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

#### F. DRAINAGE

Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage can have serious consequences. TERRATECH can take no responsibility for the effects of drainage unless TERRATECH is specifically involved in the detailed design and follow-up site services during construction of the system.

#### 7. <u>REFERENCES</u>

- LaSalle, P. 1978 "Géologie des sédiments de surface de la région de Québec". Ministère des Richesses Naturelles – Québec, Direction générale des Mines. Report DPV-565, March 1978, 22 maps : Map 21 L/14 SE (pp 8 and 20).
- *Pajari Instruments Ltd.* "Tropari/PDSI". (available from <u>http://www.pajari.com</u> as of 24 March 2006)
- Saint-Julien, P. and Osborne, F.F. 1973 "Géologie de la région de la ville de Québec". Ministère des Richesses Naturelles - Québec, Direction générale des Mines, Service de l'exploration géologique. Report DP-205, 1973, 30 p. + maps : Map 21 L/14 a-b.
- *Saint-Julien, P. 1995* "Géologie de la région de Québec", Ministère des Ressources naturelles Québec. Report MB-94-40.

#### 8. PERSONNEL

The subsurface investigations (boreholes and test pits) were carried out under the close supervision of Mr. Hugues Chouinard, Mr. Alain Périard, and Mr. Denis Désaulniers, Senior Technicians of Terratech. The trial excavations into bedrock were performed in the presence of Mr. Jean-Jacques Hébert, Geologist, and Mr. Yves Boulianne, Eng.

The detailed description of the recovered rock cores was performed by Mr. Christian Boucher, Geologist, Mrs. Isabelle Robillard, Geologist, and Mr. Martin Labelle, Geologist in training, and by Mr. Alain Blanchette, Geologist, M.A.Sc.

Sections 1 to 3.1, and 4 to 8 of this report were prepared by Mr. Raymond Bousquet, Eng., M.A.Sc. Section 3.2 of the report was written by Mr. Jean-Jacques Hébert, Geologist, and Mr. Yves Boulianne, Eng. The document was reviewed (ISO Conformity) by Mr. Henri Madjar, Eng., M.A.Sc.

#### TERRATECH Division of SNC-Lavalin Environment Inc.



Raymond Bousquet, Eng., M.A.Sc. Senior Geotechnical Engineer and Project Director

Jan jaque Riber



Jean-Jacques Hébert, B.Sc., Geologist Senior Geologist

Yves Boulianne, Eng. Project Engineer



Reviewed for conformity with ISO 9001 by :

-

-

-

-

Henni Madjar

Henri Madjar, Eng., M.A.Sc. President

RB/ds

Distribution

- PDF files PDF files 1 copy 6 copies 2 copies
- SNC-Lavalin Inc. Terratech, Division of SNC-Lavalin Environment Inc. Rabaska Limited Partnership

Rabaska Limited Partnership

SNC-Lavalin Inc.

T:\PROJ\604238\Perm\T-1050-C\Rapport final\T-1050-C\_Vol1\_rp3.doc





## APPENDIX I Boring and Test Pit logs

Explanation of the Form Boring Log Explanation of the Term Rock Quality Designation (RQD)

> Boring Logs: Boreholes BH Series Boring Logs; Boreholes W Series

Test Pit Logs: Test Pits TP Series



#### EXPLANATION OF THE FORM BORING LOG

This form summarizes both field information and selected laboratory test results obtained from each boring. An explanation of the various columns of the form follows.

#### DEPTH

This column gives the depth scale of the boring.

#### **STRATIGRAPHY**

#### ELEVATION AND DEPTH

This column gives the elevation and depth of inferred geologic contacts. The elevation is referred to the datum shown in the general heading.

#### DESCRIPTION

This column gives a description of the soil based on visual examination of the samples and laboratory tests. Each stratum is described according to the following classification and terminology :

| <u>Classification</u>           | <u>Particle Size</u>   |
|---------------------------------|------------------------|
| Clay                            | less than 0 002 mm     |
| Silt                            | from 0,002 to 0,080 mm |
| Gravel                          | from 5 to 80 mm        |
| Cobbles                         | from 80 to 200 mm      |
| Boulders                        | larger than 200 mm     |
| <u>Terminology</u>              | Proportion             |
| Trace                           | less than 10%          |
| Some                            | 10 to 20%              |
| Adjective (e.g. silty or sandy) | 20 to 35%              |
| And (e.g. sand and gravel)      | 35 to 50%              |

The compactness condition of cohesionless soils is defined as follows :

| Compactness | SPT N-Index               |
|-------------|---------------------------|
| Condition   | Blows/0.3 m or Blows/foot |
| Very loose  | 0 to4                     |
| Loose       | 4 to 10                   |
| Compact     | 10 to 30                  |
| Dense       | 30 to 50                  |
| Very dense  | over 50                   |
|             |                           |

The consistency of cohesive soils is defined as follows :

| <b>Consistency</b> | Undrained S | Shear Strength |
|--------------------|-------------|----------------|
|                    | <u>kPa</u>  | <u>psf</u>     |
| Very soft          | 0 to 12     | 0 to 250       |
| Soft               | 12 to 25    | 250 to 500     |
| Firm               | 25 to 50    | 500 to 1000    |
| Stiff              | 50 to 100   | 1000 to 2000   |
| Very stiff         | 100 to 200  | 2000 to 4000   |
| Hard               | over 200    | over 4000      |

#### SYMBOL

This column represents, using standard symbols, the soil and rock stratigraphy at the borehole location.



Contraction of the sol









Gravel

Cobbles or boulders

Clay

Bedrock



#### WATER LEVEL

This column shows the groundwater level in the boring measured on the date indicated. In impervious soils the accurate determination of groundwater elevations by standpipe, casing or open-hole readings is not possible within the normal time frame of the completion of the site work, and the true groundwater level may be higher or lower than indicated. Where both pervious and impervious soil strata are penetrated, the groundwater levels in each layer may be at different levels and sealed piezometers or standpipes within the individual layers are required to establish true groundwater conditions. Water levels determined by a piezometer can be considered as representative groundwater levels for the layer in which the piezometer tip is located.



#### SAMPLES

The first three columns describe the type and number, the condition, as well as the percentage recovery, of each sample obtained from the boring. The location and condition of each sample is plotted to scale. The legends for sample condition and type of sampler used are explained on the top left side of the form.

The fourth column shows the SPT N-Index of the soil as determined by the Standard Penetration Test or the RQD value of the rock. The "N" value corresponds to the number of blows from a 63.5 kg hammer, falling from a height of 760 mm, required to drive the last 300 mm of a 51 mm diameter standard split spoon sampler. The Standard Penetration Test is carried out according to NQ 2501-140. The RQD value of rock is defined as the modified percentage of rock cores recovered by diamond core drilling, counting only those pieces of sound rock that are 100 mm or more in length.

The soil and rock samples will be stored for a one year period after which they will be discarded unless otherwise instructed.

#### WATER CONTENT AND LIMITS

The central section of the boring log forms a graph which is used to plot the water content and Atterberg limits test results obtained in the laboratory, at the elevation of the samples on which they have been carried out.

#### **OTHER TESTS**

This column shows the results or abbreviations of other laboratory or field tests which have been performed. An explanation of the abbreviations is given at the top of the form. The results of other tests not plotted on the form are appended to the report.

#### DYNAMIC CONE PENETRATION TEST, UNDRAINED SHEAR STRENGTH

The last column on the right side of the form presents graphically, and at the elevation at which they were carried out, the results of the dynamic cone penetration test (i.e., the number of blows of a 63.5 kg hammer having a free fall of 760 mm, required to drive in the soil, for a depth of 300 mm, a standard 51 mm diameter cone point). This test is carried out from the ground surface or beyond the cased depth of the borehole according to NQ 2501-145.

This column also presents graphically the results of the shear strength measurements as obtained by the Field Vane test (NQ 2501-200) or in laboratory by the Swedish Fall-Cone test (NQ 2501-110).



#### **EXPLANATION OF THE TERM**

#### ROCK QUALITY DESIGNATION (RQD)

The Rock Quality Designation (**RQD**) is an indirect measure of the number of fractures and of the degree of softening or alteration in a rock mass. The RQD values are used to assess the overall quality of the rock mass.

The Rock Quality Designation is determined on rock cores which have been recovered using double or triple diamond core barrels of at least NQ size (minimum rock core diameter of 45 mm). For a given rock core, the lengths of those pieces that are 100 mm or more are added. The RQD is then obtained by dividing this sum by the total length drilled and expressing the result as a percentage.

Rock cores broken during drilling or by handling are fitted together and counted as one piece. Such broken cores are readily identified by their fresh fracture surfaces which consist of irregular breaks and are unaltered.

This method of rock quality evaluation is not applicable in the case of thinly bedded sedimentary rocks and foliated metamorphic rocks. For such cases, the rock quality for a particular engineering application should be evaluated by a qualified geologist.

The RQD values may be used to describe and classify the rock quality as follows:

| Description of<br>Rock Quality      | RQD (%)  |
|-------------------------------------|----------|
| Very poor / Very severely fractured | < 25     |
| Poor / Severely fractured           | 25 – 50  |
| Fair / Fractured                    | 50 – 75  |
| Good / Moderately jointed           | 75 – 90  |
| Excellent / Sound                   | 90 – 100 |

|                 |         | _                                         |                                                    | PR              | OJECT                                | : Rabas            | ska Pr            | oject  |          | BOREHOLE : BH-101-05 |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
|-----------------|---------|-------------------------------------------|----------------------------------------------------|-----------------|--------------------------------------|--------------------|-------------------|--------|----------|----------------------|--------|-----------|--------------------------|---------------------|------------------|--------------|-------|-------------------|---------|--|--|--|
|                 |         | Т                                         | matach                                             | SIT             | Έ:                                   | West               | Optior            | n Site |          |                      |        |           |                          | PAGE                | :                | 1            | OF _  | 3                 |         |  |  |  |
| ,               | ▼       |                                           | rratech                                            | FIL             | E NO :                               | <u>T-105</u>       | 0-B (             | 6033   | 33-KELL) |                      |        |           |                          | CASING : PW         |                  |              |       |                   |         |  |  |  |
|                 | •       |                                           |                                                    | во              | BORING DATE :2005-03-15 TO2005-03-16 |                    |                   |        |          |                      |        |           |                          |                     | CORE BARREL : PQ |              |       |                   |         |  |  |  |
|                 | ]       | BORIN                                     | G LOG                                              | DA              | DATUM : Geodetic COORDINATES : 5     |                    |                   |        |          |                      |        |           | 5186835.66 N 261816.10 E |                     |                  |              |       |                   |         |  |  |  |
| SAN             | IPLE CC | NDITION                                   | TYPE OF SAMPLER                                    |                 | LABORATORY AND IN SITU TEST          |                    |                   |        |          |                      |        |           |                          |                     | ield Vane (Su)   |              |       |                   |         |  |  |  |
| $\geq$          | Rem     | oulded                                    | SS Split spoon                                     |                 |                                      | GS G               | rain si           | ze an  | alysis   |                      |        |           | 1                        | (Sur) ♦ remoulded   |                  |              |       |                   |         |  |  |  |
|                 | Undi:   | sturbed                                   | e                                                  |                 |                                      | onsoli<br>nit we   | datior<br>iaht (k | N/m³)  |          |                      |        | Swedi     | sh cone                  | (C)                 | u) ⊽             | / inta       | ict   |                   |         |  |  |  |
|                 | Rock    | core                                      | DC Diamond core barrel                             |                 |                                      | CP Co              | ompre             | ssive  | strength | (MPa)                |        |           | Dyn. C                   | Cone Pe             | n. Test          | ur) ▼<br>č × | ' ren | 10ulde<br>- – – × | 96<br>< |  |  |  |
|                 |         | STRA                                      |                                                    | ۶               |                                      | SAMPLES            |                   |        |          |                      |        |           |                          | DYN. CONE PEN. TEST |                  |              |       |                   |         |  |  |  |
| ε               | ш<br>   |                                           |                                                    | -<br>           | _                                    | -                  | %                 |        | WAT      | ER CO                | ONTENT | JRΥ       | STS                      | (                   | (blow            | /0.3         | m)    | -                 |         |  |  |  |
| T<br>T          | NOI-    |                                           |                                                    | õL              | ĒVĒ                                  | TYPE AND<br>NUMBER | CONDITIO          | RΥ     | ßD       | and                  | LIMI   | TS (%)    | ATC                      | μ                   | 50 100           |              |       |                   |         |  |  |  |
| EPT             | VAT     | DE                                        |                                                    | ΥMB             | R L                                  |                    |                   | OVE    | or R     | w_                   | w      | w.        | 30R                      | ar<br>SITU          | UND              | RAI          | IED S | SHEA              | ١R      |  |  |  |
|                 | D       | DL                                        |                                                    | S               | ATE                                  |                    |                   | REC    | z        |                      |        |           | LAE                      | N.                  | STRENGTH (kPa)   |              |       |                   |         |  |  |  |
|                 | 75.53   | GROUND SUR                                | RFACE                                              |                 | 5                                    |                    |                   |        |          | 20                   | 40     | 60 80<br> |                          |                     |                  | 50           | 10    | )0                |         |  |  |  |
| Ē               | 0.00    | Topsoil.                                  | and gravel some silt                               |                 |                                      | SS-1               | $\boxtimes$       | 75     | 13       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               | 0.50    | Compact Sand                              | and gravel, some sit.                              | 0 0             |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| <b>-</b> 1      |         |                                           |                                                    | 6 G             |                                      | SS-2               | $\ge$             | 58     | 20       |                      |        |           | -                        |                     |                  |              |       |                   |         |  |  |  |
| Ē               | 74.01   |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               | 1.52    | Stiff to very stiff<br>silt, trace of gra | f grey sandy and clayey avel.                      |                 |                                      | SS-3               | $\succ$           | 33     | 17       | $\odot$              |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
|                 |         |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               | 72.79   |                                           |                                                    |                 |                                      | SS-4               | $\ge$             | 50     | 19       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 3             | 2.74    | Generally dens<br>sand with some          | e to very dense brown<br>e gravel and silt or sand | 9               |                                      |                    |                   |        |          |                      | _      |           | _                        |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         | and silt, occasions                       | onal layers of silt and                            | 0 0<br>0 0      |                                      | SS-5               | $\ge$             | 62     | 51       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         |                                           |                                                    | ¢.              |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| <b>₽</b> 4      |         |                                           |                                                    |                 |                                      | SS-6               | $\mathbb{X}$      | 50     | 56       |                      |        |           | -                        |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         |                                           |                                                    | 0               |                                      | SS-8               |                   | 75     | 26       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē,              |         |                                           |                                                    | 9<br>- 0<br>- 0 |                                      | SS-7               | $\succ$           | 33     | 65       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         | NOTE:<br>Upon completic                   | on, the borehole was                               | \$              |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         | provided with a<br>diameter PVC t         | bottom capped 63.5mm                               | 0<br>0          |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 6             |         | cement bentoni                            | ite, to allow down-hole                            | 0               |                                      |                    |                   |        |          |                      |        |           | -                        |                     |                  |              | _     |                   |         |  |  |  |
| Ē               |         | seisinicity tests                         |                                                    | • • •<br>• •    |                                      | SS-9               | $\times$          | 50     | 18       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 7<br>-        |         |                                           |                                                    | Ф.<br>0         |                                      | SS-10              | $\ge$             | 62     | 32       | $\odot$              |        |           |                          |                     | -                |              | -     |                   |         |  |  |  |
| Ē               |         |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 8             |         |                                           |                                                    | •<br>•<br>•     |                                      | SS-11              | $\boxtimes$       | 71     | 38       |                      |        |           |                          |                     |                  | _            |       |                   |         |  |  |  |
| Ē               |         |                                           |                                                    | 0               |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         |                                           |                                                    |                 |                                      | SS-12              | $\bowtie$         | 67     | 46       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 9             |         |                                           |                                                    | Ð               |                                      |                    |                   |        |          |                      |        |           | -                        |                     |                  | +            | +     | $\vdash$          |         |  |  |  |
| ŧ               | 65 88   |                                           |                                                    | 0               |                                      | SS-13              | arproptom         | 100    | 68/13cm  |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| Ē.,             | 9.65    | Bedrock: Poor                             | quality light grey                                 |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| E <sup>10</sup> |         | grey and dark g                           | grey shale, 5% of<br>dstone (less than 140mm       |                 |                                      | DC-14              |                   | 100    | 37       |                      |        |           | 1                        |                     |                  |              |       |                   |         |  |  |  |
| Ē               |         | thick).                                   |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| - 11            |         |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           | -                        |                     |                  |              |       | $\square$         |         |  |  |  |
| ŧ               |         |                                           |                                                    |                 |                                      | DC-15              |                   | 73     | 25       |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| É               |         |                                           |                                                    |                 |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |
| t               |         |                                           |                                                    | (**/;*/         |                                      |                    |                   |        |          |                      |        |           |                          |                     |                  |              |       |                   |         |  |  |  |

|               |          |                                  |                                    |                                                      | PROJECT : Rabaska Project (Phase 2), Levis, Quebec |                             |              |         |          |               |                                |          |                      |        |         |                             | BOREHOLE : BH-101-05 |             |            |               |               |    |  |
|---------------|----------|----------------------------------|------------------------------------|------------------------------------------------------|----------------------------------------------------|-----------------------------|--------------|---------|----------|---------------|--------------------------------|----------|----------------------|--------|---------|-----------------------------|----------------------|-------------|------------|---------------|---------------|----|--|
|               |          |                                  | То                                 | matach                                               | sn                                                 | TE :                        | West         | Optior  | n Site   |               |                                |          |                      |        |         | _ PAGE: _2 OF _3            |                      |             |            |               |               | _  |  |
|               |          |                                  |                                    | rratech                                              | FIL                                                | E NO :                      | <u>T-105</u> | )-В (   | 60333    | 3-KELL        | )                              |          |                      |        |         | _ <b>Casing</b> : <u>PW</u> |                      |             |            |               |               |    |  |
|               |          | •                                |                                    |                                                      | вс                                                 | BORING DATE :               |              |         |          | 2005-03-15 To |                                |          | <b>TO</b> 2005-03-16 |        |         |                             |                      | RREL        | : <u>P</u> | Q             |               |    |  |
|               |          | ]                                | BORIN                              | G LOG                                                | DA                                                 | TUM :                       |              |         |          | : 5           | 5186835.66 N 261816.10 E       |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| SA            | MPL      | E CO                             | NDITION                            | TYPE OF SAMPLER                                      |                                                    | LABORATORY AND IN SITU TEST |              |         |          |               |                                |          |                      |        | Field V | /ane                        | (                    | Su)         | $\diamond$ | intac         | ct            |    |  |
|               |          | Remo                             | oulded                             | SS Split spoon                                       | 20                                                 |                             | GS G         | ain si  | ze ana   | alysis        |                                |          |                      |        |         |                             | (                    | Sur)        | ٠          | rem           | oulde         | эd |  |
|               |          | Lost                             | sturbed                            | PS Piston sampler                                    | Je                                                 |                             |              | nit wei | ight (k  | N/m³)         |                                |          |                      |        | Swedi   | sh cone                     | e (                  | Cu)<br>Cur) | $\nabla$   | intac<br>rem  | ct<br>oulde   | be |  |
|               |          | Rock core DC Diamond core barrel |                                    |                                                      |                                                    | r                           | CP Co        | ompre   | ssive    | strength      | (MPa)                          |          |                      |        | Dyn. C  | one Pe                      | en. Te               | st          | <u>×</u>   | <u> </u>      | <u>×</u>      |    |  |
|               | -        | =1                               | STR/                               |                                                      | ε                                                  |                             | SAM          | PLES    |          |               |                                |          |                      |        | 6       | DYN                         | I. CO                | NE          | PEN        | I. TE         | ST            |    |  |
| Ę             |          | ΞE                               |                                    |                                                      |                                                    |                             |              | ۲ %     | 0        | and           | ATER CONTENT                   |          |                      | OR     | ESTS    | (blows/0.3m)                |                      |             |            |               |               |    |  |
| Ē             | Ē        | E E                              |                                    |                                                      | BOL                                                | LEV                         | BEF          | OITIO   | ER)      | RQI           | unu                            |          | • (/                 | •)     | RAT     |                             | 50 100               |             |            |               |               |    |  |
| L H           |          |                                  | DE                                 | SCRIPTION                                            | SΥM                                                | ER                          | YPE          | COND    | co<br>Co | l or          | w <sub>P</sub> ww <sub>L</sub> |          |                      | ABO.   |         |                             |                      |             |            |               | R             |    |  |
|               | ū        |                                  |                                    |                                                      |                                                    | -MM                         |              |         | RE       | -             | <br>20                         | <br>40 € | 80 08                | <br> 0 | ב       | Z                           |                      | 50          | )          | 10            | 0             |    |  |
| F             |          |                                  | Poor quality lig                   |                                                      |                                                    |                             |              |         |          |               | +                              |          |                      |        |         |                             | $\rightarrow$        |             | +          | +             |               |    |  |
| Ē             |          |                                  | mudstone, laye<br>dark grey shale  | ers of greenish grey and<br>e, 5% of calcareous      |                                                    |                             | DC-16        |         | 44       | 100           |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē             | 3        |                                  | sandstone (less thick). Occasion   | s than 140mm<br>nal veinlets of calcite,             |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē             |          |                                  | layers at 45° fro                  | om borehole axis,<br>rite in joints (in greenish     |                                                    |                             | DC-17        |         | 100      | 50            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē             |          |                                  | and dark shale                     | ).                                                   |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| <b>1</b>      | 4        |                                  |                                    |                                                      |                                                    |                             |              | _       |          |               |                                |          |                      |        |         |                             |                      |             |            | -             | -             |    |  |
| Ē             |          |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē.            | 5        |                                  |                                    |                                                      |                                                    |                             | DC-18        |         | 82       | 62            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē             | 5        |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| E             | 5<br>1   | 9.93<br><b>5.60</b>              | Fair to good qu                    | ality greenish grey                                  |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| E 1           | 6        |                                  | mudstone, laye<br>layers of dark s | ers of light grey mudstone,<br>shale (less than 10mm |                                                    |                             |              |         |          |               |                                | -        | -                    |        |         |                             |                      | _           | +          | +             | $\rightarrow$ |    |  |
| E             |          |                                  | thick). 15-20%<br>than 35mm thic   | of sandstone beds (less<br>ck). Beddings at 40° from |                                                    |                             | DC-19        |         | 90       | 63            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē,            | _        |                                  | borenole axis.                     |                                                      |                                                    |                             |              |         |          | _             |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| E             | <b>'</b> |                                  |                                    |                                                      |                                                    |                             | DC-20        |         | 66       | 6             |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| E             |          |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| <b>1</b> 1    | 8        |                                  |                                    |                                                      |                                                    |                             | DC-21        |         | 92       | 77            |                                | -        | -                    |        |         |                             |                      | _           | +          | +             | $\rightarrow$ |    |  |
| Ē             | 5        | 6.89                             |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| É.            | 1        | 8.64                             | Poor quality gre                   | eenish grey mudstone,<br>rey mudstone and dark       |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Ē             |          |                                  | shale (1-40mm                      | thick).                                              |                                                    |                             | DC-22        |         | 93       | 23            |                                |          |                      |        |         |                             |                      | T           |            | T             | T             |    |  |
| E             |          |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| - 2           | 0<br>5   | <u>5.3</u> 4                     |                                    |                                                      |                                                    |                             | DC-23        |         | 98       | 48            |                                |          |                      |        |         |                             |                      |             | _          | $\rightarrow$ | -             |    |  |
| 8:55hrs       | 2        | 0.19                             | Fair to good qu<br>sandstone laye  | ality calcareous<br>ers (350mm thick), layers        |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| 11-23 0       |          |                                  | of greenish gre<br>dark grey slate | y mudstone, thin layers of (1-5mm thick), beddings   |                                                    |                             | DC-24        |         | 97       | 72            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| 2002-         | 1        |                                  | at 35° from bor                    | ehole axis.                                          |                                                    |                             |              |         | •••      |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| OTTED         |          |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| 12<br>As      | 2        |                                  |                                    |                                                      |                                                    |                             |              |         |          |               | $\vdash$                       | -        | -                    |        |         |                             |                      | -+          | +          | $\dashv$      | +             | —  |  |
| -A-BH.        |          |                                  |                                    |                                                      |                                                    |                             | DC-25        |         | 100      | 76            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| eT-105(       | 2        |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Z4/Style      | 3        |                                  |                                    |                                                      |                                                    |                             |              | ┝╋      |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| Seotec        |          |                                  |                                    |                                                      |                                                    |                             | DC-26        |         | 98       | 77            |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |
| 2<br> -<br> - |          |                                  |                                    |                                                      |                                                    |                             |              |         |          |               |                                |          |                      |        |         |                             |                      |             |            |               |               |    |  |

|          |            |                 |                          | PR  | OJECT                            | : Rabas             | ska Pr  | oject      | BOREHOLE : BH-101-05 |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|----------|------------|-----------------|--------------------------|-----|----------------------------------|---------------------|---------|------------|----------------------|--------------------------------|---|----------|--------------------|--------------------|--------------------------|---------------|----------------|------------|--|--|--|
|          |            |                 | manata alla              | sn  | ſE :                             | West                | Optio   | n Site     |                      |                                |   |          | PAG                | 3                  |                          |               |                |            |  |  |  |
|          | ▼          | jj ie           | rratech                  | FIL | .E NO :                          | <u>T-105</u>        | 0-B (   | (60333     | 33-KELL)             |                                |   |          | CAS                | NG :               | PW                       |               |                |            |  |  |  |
|          | •          |                 |                          | вс  | RING I                           | DATE :              |         | 2005       | 03-15                | тс                             | ) | 2005-03- | <u>16</u> COR      | CORE BARREL : PQ   |                          |               |                |            |  |  |  |
|          | ]          | BORIN           | G LOG                    | DA  | DATUM : Geodetic COORDINATES : _ |                     |         |            |                      |                                |   |          |                    |                    | 5186835.66 N 261816.10 E |               |                |            |  |  |  |
| SAM      | IPLE CC    | NDITION         | TYPE OF SAMPLER          |     |                                  | LABOF               | RY AI   | Field Vane | d Vane (Su) ⇔ intact |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|          | Rem        | oulded          |                          |     | GS G                             | Grain size analysis |         |            |                      |                                |   |          | (                  | (Sur) ♦ remould    |                          |               |                |            |  |  |  |
|          | Lost       | sturbed         | PS Piston sampler        | e   |                                  | D Ui                | nit we  | ight (k    | N/m³)                |                                |   |          | Swedish con        | e ((               | Cu)<br>Cur)              | ⊽ i<br>▼      | intact<br>remo | í<br>ulded |  |  |  |
|          | Rock       | core            | DC Diamond core barrel   |     |                                  | CP Co               | ompre   | ssive      | strength             | (MPa)                          |   |          | Dyn. Cone P        | en. Te             | st                       | <u>×</u>      |                | ×          |  |  |  |
|          | <b>C</b>   | STR             | ATIGRAPHY                |     | ε                                |                     | SAMPL   |            | PLES                 |                                |   |          |                    | DYN                | I. CO                    | NE F          | PEN.           | TEST       |  |  |  |
| ε        | и-и<br>- И |                 |                          |     | ЕГ.                              | 0.4                 | z       | %          | -                    | WATE                           |   |          | ORY<br>STS         |                    | (blo                     | )ws/(         | ).3m           | 1)         |  |  |  |
| Ξ        | TIOI       |                 |                          | BOL | LEV                              | ANI<br>BER          | 10<br>E | ERY        | RQD                  | anu                            |   | 3(%)     | RAT<br>Ind<br>J TE |                    | 50 100                   |               |                |            |  |  |  |
| DEP      | EVA        | DE              | SCRIPTION                | ЗYМ | TER                              | TYPE<br>NUM         |         | SOV        | l or                 | w <sub>P</sub> ww <sub>L</sub> |   |          |                    | UN                 |                          |               | D SH           |            |  |  |  |
|          |            |                 |                          |     | ΓΑW                              |                     | ŭ       | RE         | 2                    | ⊢<br>20                        |   |          | Z L                | 5                  | 50 100                   |               |                | ra)        |  |  |  |
| <u> </u> |            | Good quality ca | alcareous sandstone with |     |                                  |                     |         |            |                      |                                | + | ++++     |                    | +                  | $\neg$                   | -             | +              | -          |  |  |  |
| Ē        |            | layers of green | ish grey mudstone.       |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         | •          |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 25     | 50.16      |                 |                          |     |                                  | DC-27               |         | 100        | 84                   |                                |   |          | -                  |                    |                          |               |                |            |  |  |  |
|          | 25.38      | END OF BORE     | EHOLE                    |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 26     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | -                  |                    |                          | +             | +              |            |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 27     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | -                  |                    |                          |               |                |            |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 28     |            |                 |                          |     |                                  |                     |         |            |                      |                                | _ |          | -                  |                    |                          | $\rightarrow$ | $\perp$        |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 29     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | -                  |                    |                          | +             | -              |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| E<br>30  |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | _                  |                    |                          |               |                |            |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 31     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | _                  |                    |                          | -             |                | _          |  |  |  |
| Ē        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| -<br>    |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| F 32     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               | T              |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 33     |            |                 |                          |     |                                  |                     |         |            |                      | $\vdash$                       |   |          | -                  | $\left  - \right $ | $\dashv$                 | +             | +              | +          |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 34     |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          | 1                  |                    | +                        | +             | +              |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| - 35     |            |                 |                          |     |                                  |                     |         |            |                      |                                | _ |          | -                  |                    | $\square$                | $\perp$       | $\perp$        |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
|          |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |
| Ŀ        |            |                 |                          |     |                                  |                     |         |            |                      |                                |   |          |                    |                    |                          |               |                |            |  |  |  |

|             |                                        |                                 |                                               | PROJECT : Rabaska Project (Phase 2), Levis, Quebec |                                                           |              |                   |                  |                                            |                                 |     |                          |                 |                         |                    | BOREHOLE : BH-102-05   |             |               |          |         |            |  |  |
|-------------|----------------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|--------------|-------------------|------------------|--------------------------------------------|---------------------------------|-----|--------------------------|-----------------|-------------------------|--------------------|------------------------|-------------|---------------|----------|---------|------------|--|--|
|             |                                        | Т                               | matach                                        | si                                                 | E :                                                       | West         | Optior            | n Site           |                                            |                                 |     |                          |                 |                         | PAGE:1 OF3         |                        |             |               |          |         |            |  |  |
|             | ▼                                      |                                 | rratech                                       | FIL                                                | E NO :                                                    | <u>T-105</u> | 0-B (             | 6033             | 33-KELL)                                   |                                 |     |                          |                 |                         | CASING : <u>HW</u> |                        |             |               |          |         |            |  |  |
|             | •                                      |                                 |                                               | вс                                                 | BORING DATE :2005-02-19 TO2005-02-22                      |              |                   |                  |                                            |                                 |     |                          |                 | _ CORE BARREL : HQ      |                    |                        |             |               |          |         |            |  |  |
|             |                                        | BORIN                           | G LOG                                         | DA                                                 | TUM :Geodetic COORDINATES : 5                             |              |                   |                  |                                            |                                 |     | 5186804.92 N 261805.33 E |                 |                         |                    |                        |             |               |          |         |            |  |  |
| SAN         | IPLE C                                 | ONDITION                        | TYPE OF SAMPLER                               |                                                    | LABORATORY AND IN SITU TEST                               |              |                   |                  |                                            |                                 |     |                          | Field           | ield Vane (Su) ⇔ intact |                    |                        |             |               |          |         |            |  |  |
| $\geq$      | Ren                                    | noulded                         | SS Split spoon                                |                                                    |                                                           | GS G         | rain si           | ze ar            | alysis                                     | _                               | -   |                          |                 |                         |                    |                        | (?          | Sur)          | ♦ r      | emoul   | lded       |  |  |
|             | Undisturbed SI Thin walled Shelby tube |                                 |                                               |                                                    |                                                           |              | onsoli<br>nit wei | datior<br>aht (I | ו<br>(N/m³)                                |                                 |     |                          |                 |                         | Swedi              | ish cone               | ) (         | Cu)           |          | ntact   | 1.1        |  |  |
|             | Roc                                    | k core                          | DC Diamond core barrel                        |                                                    |                                                           | CP C         | ompre             | ssive            | strength                                   | (MPa                            | )   |                          |                 |                         | Dyn. (             | Cone Pe                | )<br>n. Teء | ur)<br>st ≻   | ▼ r<br>← | emoul   | Ided<br>-× |  |  |
|             |                                        | STR                             | ATIGRAPHY                                     |                                                    | ٤                                                         |              | SAMPI             |                  | PLES                                       |                                 | · · |                          |                 | ,                       | DYN. CONE PEN TEST |                        |             |               |          |         |            |  |  |
| _ ا         | <u>ء</u> '                             |                                 |                                               |                                                    | Ļ                                                         |              |                   | %                |                                            | WATER CONTENT<br>and LIMITS (%) |     |                          |                 | RY                      | STS                | (blows/0.3m)<br>50 100 |             |               |          |         |            |  |  |
| ι.Ξ         | NO - H                                 |                                 |                                               | ОГ                                                 | EVE                                                       | UND<br>ER    | NOL               | RΥ               | QD                                         |                                 |     |                          |                 | АТО                     | TES                |                        |             |               |          |         |            |  |  |
| I III       | VAT                                    |                                 |                                               | 'MB                                                | R L                                                       | PE A         | ١ <u>ק</u>        | OVE              | or R                                       |                                 |     |                          | or<br>an<br>ITU | an<br>ITU               | UN                 | EAR                    |             |               |          |         |            |  |  |
| □           |                                        | DE                              |                                               | ATE                                                | l∑ J                                                      | CO           | N RC              |                  | w <sub>P</sub> w w <sub>L</sub><br>⊢────── |                                 |     | LAB<br>IN S              |                 | STRENGTH (kPa)          |                    |                        |             |               |          |         |            |  |  |
|             | 75.52                                  | GROUND SUF                      | RFACE                                         |                                                    | 3                                                         |              |                   | 4                |                                            | 2                               | 04  | 06                       | 0 8             | )                       |                    |                        |             | 50            |          | 100     | -          |  |  |
| Ē           | 0.00                                   | Topsoil.<br>Compact sand        | and gravel (trace of                          |                                                    |                                                           | SS-1         | $\ge$             | 38               | 2                                          |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           | 0.15                                   | organics from                   | 0.15 to 0.3m).                                | 0 Q                                                |                                                           | c            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <b>F</b> 1  |                                        |                                 |                                               | .00                                                |                                                           | SS-2         |                   | 12               | 16                                         |                                 |     |                          |                 |                         |                    |                        |             | +             |          | +       |            |  |  |
| Ē           |                                        |                                 |                                               | 0 0<br>0                                           |                                                           | •            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           | 73.84<br><b>1.68</b>                   | Dense gravelly                  | silt and sand.                                |                                                    |                                                           | SS-3         | $\ge$             | 38               | 27                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <b>2</b>    |                                        |                                 |                                               | 9 9                                                |                                                           | s<br>s       |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           |                                        |                                 |                                               | 0<br>0                                             |                                                           | SS-4         | $\boxtimes$       | 58               | 43                                         | $\odot$                         |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē 3         |                                        |                                 |                                               |                                                    | s                                                         |              |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               | $\perp$  |         |            |  |  |
| Ē           |                                        | NOTE ON WA<br>Water level at    | a 0                                           |                                                    | SS-5                                                      | $\boxtimes$  | 54                | 44               |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           |                                        | 2005-04-15.                     |                                               | \$<br> -<br> -                                     |                                                           | ¢            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <u></u>     |                                        |                                 |                                               |                                                    |                                                           | SS-6         | $\ge$             | 42               | 39                                         |                                 |     |                          |                 |                         |                    |                        |             | +             |          | +       |            |  |  |
| Ē           |                                        |                                 |                                               | a   a.                                             | D 0 0 0<br>D 0 0<br>D 0 0 0                               | s            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē.          |                                        |                                 |                                               |                                                    |                                                           | SS-7         | $\mathbb{N}$      | 75               | 29                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <b>۴</b>    | 70.22                                  |                                 |                                               |                                                    | $ \begin{array}{c c}                                    $ | c            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           | 5.30                                   | Very dense bro                  | own gravelly sand and silt.                   | 9<br>1                                             | D0 D0<br>D0 D0<br>D0 D0                                   | SS-8         | $\square$         | 83               | 117                                        |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <b>6</b>    |                                        |                                 |                                               | Ø                                                  |                                                           | ė            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             | $\rightarrow$ |          | +       |            |  |  |
| Ē           |                                        |                                 |                                               | <i>6</i><br>0                                      |                                                           | SS-9         | $\geq$            | 77               | 105/18cm                                   | $\odot$                         |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē           |                                        |                                 |                                               | 0<br>7 0                                           | 0 0 0 0<br>D                                              | s            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| F 7         |                                        |                                 |                                               | 0 0                                                |                                                           | , SS-10      | $\geq$            | 75               | 50/5cm                                     |                                 |     |                          |                 |                         |                    |                        |             | -             |          | +       |            |  |  |
| Ē           |                                        |                                 |                                               |                                                    |                                                           | 5            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| Ē,          |                                        |                                 |                                               | <b>}</b><br>                                       | $ \begin{array}{c c}                                    $ | SS-11        | $\geq$            | 50               | 50/10cm                                    |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
|             |                                        |                                 |                                               | 9.0                                                |                                                           | c<br>c       |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
|             |                                        |                                 |                                               | 9 B                                                |                                                           | SS-12        | $\mid$            | 100              | 89/15cm                                    |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| 9           |                                        |                                 |                                               | 0                                                  |                                                           | s            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             | +             |          | +       |            |  |  |
| -<br>-<br>- |                                        |                                 |                                               | 0<br>8                                             |                                                           | SS-13        | $\boxtimes$       | 58               | 83                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
|             |                                        |                                 |                                               | 0                                                  |                                                           |              |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| 10          | 65.28                                  |                                 |                                               |                                                    |                                                           | 6            |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        |             | +             | +        | +       | +          |  |  |
|             | 10.23                                  | Bedrock: Poor<br>calcareous sar | quality light grey<br>ndstone, layers of grey |                                                    | 00 00<br>00 0<br>00 00                                    | DC-14        |                   | 100              | 42                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| -<br>- 11   |                                        | calcareous mu<br>greenish grey  | astone, some layers of and dark grey shale.   |                                                    |                                                           | e<br>e       |                   |                  |                                            |                                 |     |                          |                 |                         |                    |                        | $\square$   | $\square$     | $\perp$  | $\perp$ |            |  |  |
|             |                                        |                                 |                                               |                                                    | 0 0 0 0<br>• 0 0<br>0 0 0 0                               | DC-15        |                   | 93               | 48                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
|             |                                        |                                 |                                               |                                                    |                                                           | DC-16        |                   | 100              | ۵R                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |
| <u>_</u>    |                                        |                                 |                                               | ŔŔ                                                 |                                                           | 100-10       |                   | 100              | 90                                         |                                 |     |                          |                 |                         |                    |                        |             |               |          |         |            |  |  |

|         |                                                                                                   |          |                                     |                                                         | PR    | OJECT                                                                                                                                                                                  | : Rabas      | ska Pi           | roject (             | Phase 2       | BOREHOLE : BH-102-05                     |                   |                                |             |                          |                  |               |                                           |        |                |  |
|---------|---------------------------------------------------------------------------------------------------|----------|-------------------------------------|---------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------------------|---------------|------------------------------------------|-------------------|--------------------------------|-------------|--------------------------|------------------|---------------|-------------------------------------------|--------|----------------|--|
|         |                                                                                                   |          | То                                  | matach                                                  | SIT   | Έ:                                                                                                                                                                                     | West         | Optio            | n Site               |               |                                          |                   |                                |             | :: _                     | 2                | OF            | 3                                         |        |                |  |
|         |                                                                                                   |          |                                     | rratech                                                 | FIL   | E NO :                                                                                                                                                                                 | <u>T-105</u> | 0-В              | (60333               | 3-KELL)       | )                                        |                   |                                | CASING : HW |                          |                  |               |                                           |        |                |  |
|         | •                                                                                                 | •        |                                     |                                                         | во    | RING [                                                                                                                                                                                 | DATE :       | 02-19            | -22 CORE BARREL : HQ |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
|         |                                                                                                   | ł        | BORIN                               | G LOG                                                   | DA    | DATUM : Geodetic                                                                                                                                                                       |              |                  |                      |               |                                          |                   | COORDINATES : 5186804.92 N 261 |             |                          |                  |               |                                           |        |                |  |
| SAN     | IPLE                                                                                              | co       | NDITION                             | TYPE OF SAMPLER                                         |       | LABORATORY AND IN SITU TEST                                                                                                                                                            |              |                  |                      |               |                                          |                   |                                |             | Field Vane (Su) ♢ intact |                  |               |                                           |        |                |  |
| $\geq$  | ] R                                                                                               | lemo     | ulded                               | SS Split spoon                                          |       |                                                                                                                                                                                        | GS G         | rain s           | ize ana              | alysis        |                                          |                   |                                | 1           |                          | (?               | Sur)          | ♦ 1                                       | remo   | ulded          |  |
|         | Undisturbed ST Thin walled Shelby tube                                                            |          |                                     |                                                         |       |                                                                                                                                                                                        |              | onsoli<br>nit we | idation<br>eight (k  | N/m³)         |                                          |                   |                                | Swedis      | h cone                   | ; ((             | Cu)           | ⊽ i                                       | intact |                |  |
|         | Lost         PS         Piston sampler           Rock core         DC         Diamond core barrel |          |                                     |                                                         |       |                                                                                                                                                                                        | CP C         | ompre            | essive               | strength      | (MPa)                                    |                   |                                | Dyn. C      | one Pe                   | )<br>n. Te       | Sur)<br>st    | ▼ I<br>×                                  | emoi   | ulded<br>· - × |  |
|         | STRATIGRAPHY                                                                                      |          |                                     |                                                         |       | ٦                                                                                                                                                                                      | ;            | SAM              | PLES                 | ;             | -                                        |                   |                                |             |                          |                  | . ca          |                                           | PEN.   | TEST           |  |
| Ε       | <u>ع</u>                                                                                          | ٤        |                                     |                                                         | -<br> | _                                                                                                                                                                                      | -            | %                |                      | WATER CONTENT |                                          |                   | JRΥ                            | STS         | (blows/0.3m)             |                  |               |                                           |        |                |  |
| Ē       | NOI-                                                                                              | - H      |                                     | öL                                                      | Ĕ     | AND<br>ØER                                                                                                                                                                             |              |                  | gD                   | and           | LIMIT                                    | S (%)             | ATC                            | Ц<br>Ц      |                          | 50 100           |               |                                           |        |                |  |
| EPT     | VAT                                                                                               |          |                                     |                                                         |       | MB SI                                                                                                                                              | PE /         | ĪQ               | OVE                  | or R          |                                          |                   |                                | 30R         | "ITI                     | UN               | DRA           | INE                                       | D SH   | IEAR           |  |
|         | Ш                                                                                                 |          |                                     |                                                         |       | ATE                                                                                                                                                                                    | Łź           |                  | REC                  | z             | w <sub>P</sub> w w <sub>L</sub><br>⊢ ⊙ ⊣ |                   |                                | IN S        |                          | S                | TRE           | H (k                                      | kPa)   |                |  |
|         |                                                                                                   |          | Door quality ligh                   | ht arou colooroouo                                      |       | <b>S</b>                                                                                                                                                                               |              |                  | _                    |               | 20 4                                     | <b>) 40 60 80</b> |                                |             |                          | L_+              | 50            | '<br>———————————————————————————————————— | 100    |                |  |
| Ē       |                                                                                                   |          | sandstone, laye                     | ers of grey calcareous                                  |       | 0.0<br>00<br>00<br>00<br>00<br>00                                                                                                                                                      | DC 17        |                  | 100                  | 0             |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          | mudstone, som<br>and dark grey s    | le layers of greenish grey<br>shale. Beddings at 30-50° | XX    | $ \begin{array}{c c} \mathcal{D}_{A} & \mathcal{D}_{A} \\ \mathcal{D}_{B} & \mathcal{D}_{A} \\ \mathcal{D}_{A} & \mathcal{D}_{A} \\ \mathcal{D}_{A} & \mathcal{D}_{A} \\ \end{array} $ | DC-17        |                  | 100                  | U             |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 13    |                                                                                                   |          | from borehole a<br>Local presence   | axis. Veinlets of calcite.                              |       | 0.0 00<br>00 00<br>0.0 00                                                                                                                                                              | DC 18        |                  | 100                  | 05            |                                          |                   |                                | -           |                          |                  | -             | -                                         |        |                |  |
| Ē       |                                                                                                   |          | pyrite.                             | · · · · · · · · · · · · · · · · · · ·                   |       | DA DA<br>DA DA<br>DA DA                                                                                                                                                                | DC-10        |                  | 100                  | 30            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē "     |                                                                                                   |          |                                     |                                                         |       | $   \begin{array}{c c}                                    $                                                                                                                            | 50.40        |                  |                      | 05            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| E '*    |                                                                                                   |          |                                     |                                                         |       | DC-19                                                                                                                                                                                  |              | 100              | 25                   |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       | D D D D D D D D D D D D D D D D D D D                                                                                                                                                  |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 15    |                                                                                                   |          |                                     |                                                         |       | $ \begin{bmatrix}                                    $                                                                                                                                 | DC-20        |                  | 100                  | 42            |                                          |                   |                                | -           |                          |                  | $\rightarrow$ | +                                         |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       | PA . D.D<br>D                                                                                                                                                                          |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       | D D D D D D D D D D D D D D D D D D D                                                                                                                                                  | DC 21        |                  | 100                  | 45            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 16    |                                                                                                   |          |                                     |                                                         |       | P.0 .D.0<br>P.0 P.0<br>.D.0 P.0                                                                                                                                                        | DC-21        |                  | 100                  | 45            |                                          |                   |                                | -           |                          |                  | -             | -                                         |        | _              |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       | R p. D.p<br>R p. D.p<br>R p. D.p                                                                                                                                                       | DC-22        |                  | 100                  | 50            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| -<br>17 |                                                                                                   |          |                                     |                                                         |       | .D. 0.0<br>D.0 0.0<br>D.0 0.0                                                                                                                                                          | DC-23        |                  | 100                  | 50            |                                          |                   |                                | _           |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | 00 20        |                  | - 100                | 00            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | DC-24        |                  | 100                  | 39            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 18    | 57.<br><b>18</b> .                                                                                | 42<br>10 | Poor quality cal                    | Icareous sandstone                                      |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                | -           |                          |                  |               | -                                         | _      |                |  |
| Ē       |                                                                                                   |          | (500mm thick),                      | with greenish grey                                      |       |                                                                                                                                                                                        | DC-25        |                  | 100                  | 36            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē 👝     |                                                                                                   |          | (1-20mm) of bla                     | ack shale. Bedding at 45°                               |       |                                                                                                                                                                                        | 2010         |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| ŧ "     |                                                                                                   |          | from borehole a<br>joints. Occasior | axis. Presence of pyrite in<br>nal calcite veins.       |       |                                                                                                                                                                                        | DC-26        |                  | 100                  | 33            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | 00 20        |                  | 100                  | 00            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 20    |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | DC-27        |                  | 100                  | 24            |                                          |                   |                                | _           |                          |                  |               | _                                         | _      |                |  |
|         |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
|         |                                                                                                   |          |                                     |                                                         | X     |                                                                                                                                                                                        | DC-28        |                  | 100                  | 77            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| F 21    |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | DC-29        |                  | 91                   | 41            |                                          |                   |                                |             |                          |                  | $\top$        | $\top$                                    | Τ      |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| - 22    |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        | DC-30        |                  | 100                  | 51            |                                          |                   |                                | -           |                          | $\mid \mid \mid$ | $\rightarrow$ | -+                                        | +      |                |  |
|         |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       | 52.<br>22                                                                                         | 74       |                                     |                                                         |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| 23      |                                                                                                   | -        | sandstone (max<br>mudstone laver    | x. 400mm thick), greenish<br>rs. 10-15% dark shale      |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  | +             | +                                         | +      |                |  |
|         |                                                                                                   |          | layers (1-20mm                      | thick).                                                 |       |                                                                                                                                                                                        | DC-31        |                  | 100                  | 89            |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
| Ē       |                                                                                                   |          |                                     |                                                         |       |                                                                                                                                                                                        |              |                  |                      |               |                                          |                   |                                |             |                          |                  |               |                                           |        |                |  |
|                            |                |                                |                                                    | PR  | ROJECT  | : Rabas      | ska Pr  | roject  | Phase 2  | ), Levis, | Quebe   | C             |       | I        | BORE  | HOLE      | : E        | 3H-1        | 02-0           | 5    |
|----------------------------|----------------|--------------------------------|----------------------------------------------------|-----|---------|--------------|---------|---------|----------|-----------|---------|---------------|-------|----------|-------|-----------|------------|-------------|----------------|------|
|                            |                | Т                              | matach                                             | si  | TE :    | West         | Optio   | n Site  |          |           |         |               |       | I        | PAGE  | :         | 3          | OF          | 3              | 5    |
|                            | ▼              |                                | rratech                                            | FIL | E NO :  | <u>T-105</u> | 0-B (   | (6033:  | 33-KELL) |           |         |               |       | (        | CASIN | IG :      | HW         |             |                |      |
|                            | •              |                                |                                                    | вс  |         | DATE :       |         | 2005-   | 02-19    | т         | ·o _    | 2005          | -02-2 | 22       | CORE  | BAR       | REL        | : нс        | 2              |      |
|                            | -              | BORIN                          | G LOG                                              | DA  | тим :   |              | Geod    | letic   |          |           | coo     | RDINA         | TES   | : _ 518  | 6804. | 92 N      |            | 2618        | 05.33          | Е    |
| SAN                        | IPLE CO        | ONDITION                       | TYPE OF SAMPLER                                    |     |         | LABOR        | RATO    | RY AI   | ND IN SI | TU TES    | т       |               |       | Field Va | ne    | (S        | u)         | ni 🛇        | ntact          |      |
|                            | Rem            | oulded                         | SS Split spoon                                     |     |         | GS G         | rain si | ize an  | alysis   |           |         |               |       |          |       | (S        | ur)        | ♦ r         | emoul          | lded |
|                            | Lost           | sturded                        | PS Piston sampler                                  | e   |         | D Ur         | nit we  | ight (k | N/m³)    |           |         |               |       | Swedish  | cone  | (C<br>(C  | u)<br>ur)  | ⊽ ir<br>▼ r | ntact<br>emoui | Ided |
|                            | Rock           | core                           | DC Diamond core barrel                             |     |         | CP Co        | ompre   | essive  | strength | (MPa)     |         |               |       | Dyn. Co  | ne Pe | n. Tes    | <u>t ×</u> | <u> </u>    | <u></u>        | - X  |
|                            | C I            | STR                            | ATIGRAPHY                                          |     | ε       |              | SAM     | PLES    | 6        |           |         |               |       |          |       | DYN.      | CO         | NE P        | EN.            | TEST |
| ε                          | ч<br>- Е       |                                |                                                    |     | L       | <u>م</u>     | z       | % /     | •        | WAI       |         | JNTE<br>TS (% |       | ORY      | STS   |           | (blo       | ws/0        | .3m)           |      |
| Ξ.                         | ETIO           |                                |                                                    | BOL | LEV     | ANI<br>BER   | 110     | ΈRΥ     | RQD      | an        |         | 10 (70        | ,     | RAT      | Ë     |           |            |             |                |      |
| DEP                        | EVA            | DE                             | SCRIPTION                                          | sΥM | E       | YPE          |         | COV     | l or     | w         | 5 W     | w             | L     | NBOI     | SITI  | UNI       |            |             |                |      |
|                            |                |                                |                                                    | ••• | MA      |              | Ŭ       | RE      | 2        | ⊢<br>20   | ⊙<br>40 |               | )     | 2        | Z     | 0.        | 50         | ion.        | 100            | α,   |
| -                          |                | Layers of good                 | quality calcareous                                 |     |         |              |         |         |          |           |         | + + +         |       |          |       |           | +          | -           | +              |      |
| Ē                          |                | sandstone (ma<br>mudstone laye | x. 400mm thick), greenish<br>rs, 10-15% dark shale |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| 25                         | F0 07          | layers (1-20mn                 | n thick).                                          |     |         | DC-32        |         | 100     | 82       |           |         |               |       |          |       |           |            |             |                |      |
| Ē                          | 50.37<br>25.15 | END OF BORE                    | EHOLE                                              |     | ·.:H::: |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 26                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | -     |           | +          | +           | +              |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| L 27                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| <b>– – – – – – – – – –</b> |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 28                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | -     |           | +          | +           | +              |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| = 29                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | Ī     |           |            |             |                |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 30                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | -     |           | _          | _           | —              |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 31                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | ľ     |           |            | +           | 1              |      |
| Ē                          |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 32                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | -     |           | +          | _           | _              |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| 33                         |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | ŀ     | +         | +          | +           | +              |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| 34                         |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | ŀ     | $\square$ | $\perp$    | $\perp$     | $\perp$        |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
| - 35                       |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          | ŀ     | -+        | +          | +           | +              |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |
|                            |                |                                |                                                    |     |         |              |         |         |          |           |         |               |       |          |       |           |            |             |                |      |

|          |                      | _               |                               | PR           | OJECT    | : Rabas      | ska Pr             | oject           | (Phase 2)   | ), Lev  | is, Qu              | ebec | :     |      |          | BORE    | EHOL               | .E :          | BH-        | 103          | -05             |          |
|----------|----------------------|-----------------|-------------------------------|--------------|----------|--------------|--------------------|-----------------|-------------|---------|---------------------|------|-------|------|----------|---------|--------------------|---------------|------------|--------------|-----------------|----------|
|          |                      | Т               | annataah                      | SIT          | E:       | West         | Option             | i Site          |             |         |                     |      |       |      |          | PAGE    | E: _               | 1             | _ 0        | F _          | 7               |          |
|          |                      |                 | erratech                      | FIL          | .E NO :  | <u>T-105</u> | 0-B (              | 6033            | 33-KELL)    | )       |                     |      |       |      |          | CASI    | NG :               | NW            | 1          |              |                 |          |
|          | •                    |                 |                               | вс           | RING     | DATE :       |                    | 2005            | -03-23      |         | то                  |      | 2005- | 03-3 | 51       | CORE    | EBAF               | REL           | ١          | VQ3          |                 |          |
|          |                      | BORIN           | IG LOG                        | DA           | тим :    |              | Geod               | etic            |             |         | C                   | OOR  |       | FS   | • 5'     | 186802  | .02 1              | ч<br>ч        | 26         | 1849         | .13 E           | _        |
| SAN      |                      |                 |                               |              |          |              |                    |                 |             |         | ет                  |      |       |      |          | /202    | .02 .              | · ·           |            | into         |                 |          |
|          | Rei                  | moulded         | SS Split spoon                |              |          | GS G         | rain si            | ze an           | alysis      |         |                     |      |       |      | Field V  | ane     | (                  | Su)<br>Sur)   | $\diamond$ | rem          | ct<br>iould:    | ed       |
|          | Un                   | disturbed       | ST Thin walled Shelby tu      | be           |          |              | onsolio            | datior          | )<br>N ( 2) |         |                     |      |       |      | Swedia   | sh cone | э (                | Cu)           | $\nabla$   | inta         | ct              |          |
|          |                      | st<br>sk.core   | DC Diamond core barrel        |              |          | CP C         | nit wei<br>ompre   | gnt (r<br>ssive | strenath    | (MPa    | )                   |      |       |      | Dvn C    | one Pr  | (<br>en Te         | Cur)          | •          | rem          | oulde           | эd       |
|          |                      | ST              | RATIGRAPHY                    |              | _        | ;            | SAM                | PLES            | 8           |         | ,                   |      |       |      | <u> </u> |         |                    |               |            |              | <u> </u>        | <u>`</u> |
| _        | E                    |                 |                               |              | 2        |              |                    | %               |             | WA      | TER                 | co   | NTEN  | т    | ž        | TS      | DYN                | 1. CC<br>(bl- | JNE<br>ows | PEF<br>/0.3/ | ч. н.<br>m)     | :51      |
| μ-<br>-  | No -                 |                 |                               | Ъ            | NEI<br>N | S R          | NOI                | ۲ ،             | Q           | a       | nd L                | іміт | S (%) |      |          | TES     |                    | 5             | ٥<br>,     | 10           | 0               |          |
| НЦ       | TTA<br>TTA           |                 |                               | MBC          | R LE     | E A<br>MBE   | DIT                | NEI<br>VEI      | r R(        |         |                     |      |       |      | ORA      |         |                    | חחו           |            |              |                 |          |
| B        |                      | ;               | DESCRIPTION                   | SΥ           | TEI      | T<br>₹ J     | CON                | ы               | No          | v       | V <sub>₽</sub><br>∟ | w    | w     | L    | AB.      | N SI    | S                  | TRE           | ING        | TH (         | kPa             | )        |
|          | <b>ш</b><br>75.67    | GROUND S        | URFACE                        |              | Š        |              |                    | R               |             | 2       | 0 4                 | ິ້   | 0 80  |      | _        | -       |                    | 5             | ο.         | 10           | 0               |          |
| -        | 0.00                 | Topsoil.        |                               |              | 4        | SS-1         | $\ge$              | 50              | 18          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          | 0.15                 | gravel to gra   | velly, some silt, cobbles.    | •¢           | 4-15     | 001          |                    | 00              | 10          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 1      |                      |                 |                               |              | 005-0    | 55-2         | $\boxtimes$        | 52              | 87          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          | 74 15                | 5               |                               |              | on 2     | 002          |                    | 02              | 01          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          | 1.52                 | Compact to      | loose gravel and sand, some   |              | .45m     | <b>66</b> 2  | $\boxtimes$        | E 0             | 17          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 2      |                      | 311, 3116113.   |                               |              | ev. 75   | 33-3         |                    | 50              | 17          | 0       |                     |      | -     |      |          |         |                    |               |            |              |                 |          |
| -        |                      |                 |                               |              | at el    | SS 4         | $\ge$              | 17              | 0           |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          | 72.93<br><b>2.74</b> | Firm to stiff g | grey clay, some silt,         |              | r leve   | 33-4         |                    | 17              | 0           |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| - 3      |                      | occasional s    | and beds, shells.             |              | Water    | 00.5         | $\bigtriangledown$ | 07              | 2           |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          |                      |                 |                               |              |          | 55-5         |                    | 67              | 3           |         | 9                   |      |       |      |          |         |                    |               |            |              | 1               |          |
| - 4      | 71.56                | 5               |                               |              |          |              |                    |                 |             |         |                     |      |       |      |          |         |                    |               | _          |              |                 |          |
|          | 4.11                 | Dense grey      | and reddish sand, some silt   |              |          | SS-6         |                    | 0               | 9           |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| -        |                      | occasional c    | obbles and boulders.          |              |          |              | $\ge$              |                 |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 5      |                      |                 |                               |              |          | SS-7         | _                  | 46              | 48          | $\odot$ |                     | _    | -     |      |          |         |                    |               | -          | _            |                 |          |
| -        |                      |                 |                               | 0            |          | DC-8         | $\ge$              | 100             |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          |                      |                 |                               | •            |          | SS-9         |                    | 38              | 34          |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| <b>°</b> |                      |                 |                               | .⇔°<br>Io    |          | DC-10        | $\times$           | 33              |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          |                      |                 |                               | <b>A</b> (   |          | SS-11        |                    | 58              | 40          |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| 7        |                      |                 |                               |              |          |              |                    |                 |             |         |                     |      |       |      |          |         |                    |               | -+         |              | $ \rightarrow $ |          |
|          |                      |                 |                               |              |          | DC-12        |                    | 16              |             |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| Ē        |                      |                 |                               | <u>.</u>     |          |              | $\searrow$         |                 |             |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| - 8      |                      |                 |                               |              |          | SS-13        |                    | 62              | 35          |         |                     | _    | -     |      |          |         |                    |               | _          | -            |                 |          |
| -        |                      |                 |                               | a g          |          |              |                    |                 |             |         |                     |      |       |      |          |         |                    |               |            |              | 1               |          |
| ŧ,       |                      |                 |                               | ч ()<br>6 () |          | DC-14        |                    | 44              |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 9      |                      |                 |                               | R            |          |              | $\searrow$         |                 |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| F        |                      |                 |                               |              |          | SS-15        | $\leq$             | 58              | 32          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 10     |                      |                 |                               | ₽            |          |              |                    |                 |             |         |                     |      |       |      |          |         | $\left  - \right $ |               | $\dashv$   | -            | $ \rightarrow $ |          |
| Ē        |                      |                 |                               |              |          | DC-16        |                    | 25              |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
|          |                      |                 |                               |              |          | SS-17        | $\times$           | 21              | 58/25cm     |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| - 11     | 64.55                | Bodroek: V-     | ny noor quality groonish area |              |          | 33-17        |                    | 51              | JOIZOCIN    |         |                     |      | +     |      |          |         |                    |               | $\dashv$   | $\neg$       |                 |          |
| Ē        |                      | mudstone.       | ry poor quality greenish grey |              |          | DC-18        |                    | 92              | 20          |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |
| -        |                      |                 |                               |              |          |              |                    |                 |             |         |                     |      |       |      |          |         |                    |               |            |              |                 |          |

|            |                |                                   |                                                     | PR       | OJECT  | r: <u>Rabas</u> | ska Pi           | roject            | Phase 2  | ), Levis | s, Qu | ebec |          |      |            | BORE   | HOL        | E: /          | BH-                              | 103          | -05         | _      |
|------------|----------------|-----------------------------------|-----------------------------------------------------|----------|--------|-----------------|------------------|-------------------|----------|----------|-------|------|----------|------|------------|--------|------------|---------------|----------------------------------|--------------|-------------|--------|
|            |                | То                                | ***atach                                            | SIT      | Έ:     | West            | Optio            | n Site            |          |          |       |      |          |      |            | PAGE   | : _        | 2             | _ 0                              | F _          | 7           | _      |
|            | ✓              |                                   | Tratech                                             | FIL      | E NO : | <u>T-105</u>    | 0-B              | (60333            | 33-KELL  | )        |       |      |          |      |            | CASI   | NG :       | NW            | /                                |              |             | _      |
|            | •              |                                   |                                                     | во       | RING I | DATE :          |                  | 2005-             | 03-23    |          | то    |      | 2005-0   | 3-31 |            | CORE   | EBAF       | RREL          | .: <u>۱</u>                      | 1Q3          |             | _      |
|            |                | BORIN                             | G LOG                                               | DA       | TUM :  |                 | Geoc             | letic             |          |          | С     | OOR  | DINAT    | ES : | 518        | 86802  | .02 N      | 1             | 261                              | 849.         | 13 E        |        |
| SAN        | IPLE CO        | NDITION                           |                                                     |          |        | LABOR           | RATO             | RY AI             | ND IN SI | TU TES   | ST    |      |          | Fi   | eld Va     | ane    | (          | Su)           | $\diamond$                       | inta         | ct          |        |
|            | Remo           | bulded                            | SS Split spoon<br>ST Thin walled Shelby tub         | e        |        | C C             | rain s<br>onsoli | ize an:<br>dation | aiysis   |          |       |      |          | S    | wedisl     | h cone | ()<br>e () | Sur)<br>Cu)   | <ul> <li>♦</li> <li>□</li> </ul> | rem<br>inta  | oulde       | əd     |
|            | Lost           |                                   | PS Piston sampler                                   |          |        | D U             | nit we           | ight (k           | N/m³)    |          |       |      |          |      |            |        | (          | Cur)          | Ť                                | rem          | oulde       | ed     |
|            | Rock           | core<br>STRA                      | ATIGRAPHY                                           |          |        | CP C            | ompre            |                   | strength | (MPa)    |       |      |          | D    | yn. Co     | one Pe | en. Te     | st            | × - ·                            |              | >           | <      |
|            | E              |                                   | -                                                   |          | Е      |                 | -                |                   |          | WA       | TER   | со   | NTEN     | т    | ≿          | S      | DYN        | l. CC<br>ble) | )NE<br>ows                       | PEN<br>/0.3r | N. TE<br>m) | EST    |
| а<br>Н     | - u<br>NO +    |                                   |                                                     | Ч        | INEL   | ON R            | NO               | ۲ %               | g        | ar       | nd Ll | МІТ  | S (%)    |      |            | TES    |            | 5             | 0                                | 10           | 0           |        |
| L L        | ATI<br>PTF     |                                   |                                                     | MBC      | R LE   | PE A            | <b>IDI</b>       | OVEF              | or RC    |          |       |      |          |      | ORA<br>and | Ē      | UN         |               |                                  | -0.5         | HFA         | AR     |
| ä          | DE             | DE                                | SCRIPTION                                           | SΥ       | ATE    | IY I            | CO               | RECC              | ž        | V        | Р     | ••   | ‴∟<br>—⊣ |      | LAB        | N S    | S          | TRE           | NG                               | TH (         | kPa         | )      |
|            |                |                                   |                                                     | <u> </u> | 3      |                 |                  | Ľ                 |          | 20       | ) 40  | ) 6  | 0 80     |      |            |        |            | 5             | 0<br><del></del> +               | 10           | 0           |        |
| Ē          |                | mudstone, 5-10                    | 0% of thin black shale                              |          |        | DC-19           |                  | 100               | 31       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          |                | 12.50m. Freque                    | ent calcite veinlets,                               |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 13       |                | beddings at 45                    | ° from borehole axis.                               |          |        | DC-20           |                  | 74                | 0        |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          | 62.01          |                                   |                                                     |          |        | 2020            |                  |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 14       | 73.00          | greenish grey n                   | nudstone beds, 10-15%                               |          |        | 50.01           |                  | 100               | 44       |          |       |      |          | _    |            |        |            |               | -+                               | -            |             | _      |
| Ē          |                | 5% silghtly calc                  | ack shale (1-10mm thick),<br>careous sandstone beds |          |        | DC-21           |                  | 100               | 11       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē.         |                | (max. 40mm th<br>vienlets, beddir | ick), occasional calcite                            |          |        | DC-22           |                  | Q1                | 0        |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 15       |                | axis.                             |                                                     |          |        | 00 22           |                  | •                 | Ū        |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          |                |                                   |                                                     |          |        | DC-23           |                  | 95                | 20       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 16       |                |                                   |                                                     |          |        | DC 24           |                  | 100               | 12       |          |       |      |          | _    |            |        |            |               | $\dashv$                         | $\dashv$     |             | $\neg$ |
| Ē          |                |                                   |                                                     |          |        | 00-24           |                  | 100               | 15       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| E 17       |                |                                   |                                                     |          |        | DC 25           |                  | 80                | 28       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          |                |                                   |                                                     |          |        | DC-23           |                  | 09                | 20       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          |                |                                   |                                                     |          |        | DC-26           |                  | 97                | 14       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 18       |                |                                   |                                                     |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               | -                                | -            |             | _      |
| Ē          |                |                                   |                                                     |          |        | DC-27           |                  | 94                | 14       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 19       | 56.80<br>18.87 | Fair quality red                  | and greenish grey                                   |          |        |                 |                  |                   |          |          |       |      |          | _    |            |        |            |               | _                                | $\square$    |             | _      |
| Ē          |                | mudstone layer<br>beds at 20.3m,  | rs, undulated mudstone occasional calcite veins,    |          |        | DC-28           |                  | 88                | 55       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| Ē          |                | local presence<br>from borehole a | of pyrite. Beddings at 45°<br>axis.                 |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 20       |                |                                   |                                                     |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               | $\neg$                           |              |             |        |
|            |                |                                   |                                                     |          |        | DC-29           |                  | 92                | 44       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 21       |                |                                   |                                                     |          |        |                 |                  |                   |          |          |       |      |          | _    |            |        |            |               | $\neg$                           | $\neg$       |             |        |
|            |                |                                   |                                                     |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
|            |                |                                   |                                                     |          |        | DC-30           |                  | 93                | 40       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| <b>E *</b> |                |                                   |                                                     |          |        |                 | ┝╋               |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
|            |                |                                   |                                                     |          |        | DC-31           |                  | 100               | 46       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
| - 23       |                |                                   |                                                     |          |        |                 | ┝╋               |                   |          | $\vdash$ |       |      |          |      |            |        |            |               | $\dashv$                         | $\dashv$     |             | $\neg$ |
|            |                |                                   |                                                     |          |        | DC-32           |                  | 100               | 54       |          |       |      |          |      |            |        |            |               |                                  |              |             |        |
|            |                |                                   |                                                     |          |        |                 |                  |                   |          |          |       |      |          |      |            |        |            |               |                                  |              |             |        |

|                 |                       | _                                   |                                                         | PR  | OJECT  | r: <u>Raba</u> s | ska P           | roject     | (Phase 2 | !), Lev            | is, Qı             | lepec  | ;     |        |         | BORE     | HOL         | E: /        | BH-                | 103      | -05             |         |
|-----------------|-----------------------|-------------------------------------|---------------------------------------------------------|-----|--------|------------------|-----------------|------------|----------|--------------------|--------------------|--------|-------|--------|---------|----------|-------------|-------------|--------------------|----------|-----------------|---------|
|                 |                       | Т                                   | matach                                                  | SIT | Έ:     | West             | Optio           | n Site     |          |                    |                    |        |       |        |         | PAGE     | : _         | 3           | _ 0                | F _      | 7               |         |
|                 | ▼                     |                                     | rratech                                                 | FIL | E NO : | <u>T-105</u>     | 0-B             | (6033      | 33-KELL  | )                  |                    |        |       |        |         | CASI     | NG :        | NW          | 1                  |          |                 |         |
|                 | •                     |                                     |                                                         | во  | RING I | DATE :           |                 | 2005       | -03-23   |                    | то                 |        | 2005  | 5-03-3 | 31      | CORE     | EBAF        | RREL        | ١                  | VQ3      |                 |         |
|                 | ]                     | BORIN                               | G LOG                                                   | DA  | TUM :  |                  | Geod            | detic      |          |                    | c                  | OOR    |       | TES    | : 5     | 186802   | .02 N       | J           | 261                | 1849.    | .13 E           |         |
| SAN             | IPLE CO               | NDITION                             | TYPE OF SAMPLER                                         |     |        | LABOR            | RATO            | RY A       | ND IN SI | TU TE              | ST                 |        |       | -      | Field \ | /ane     | (           | Su)         | $\wedge$           | inta     | ct              |         |
| $\geq$          | Remo                  | oulded                              | SS Split spoon                                          |     |        | GS G             | rain s          | ize an     | alysis   | -                  | -                  |        |       |        |         | ano      | (           | Sur)        | ٠<br>ا             | rem      | ioulde          | ed      |
|                 | Undis                 | sturbed                             | ST Thin walled Shelby tub                               | e   |        |                  | onsol<br>nit we | idatior    | N/m³)    |                    |                    |        |       |        | Swedi   | sh cone  | ) (         | Cu)         | $\bigtriangledown$ | inta     | ct              |         |
|                 | Rock                  | core                                | DC Diamond core barrel                                  |     |        | CP C             | ompre           | essive     | strength | (MPa               | )                  |        |       |        | Dyn. C  | one Pe   | )<br>en. Te | cur)<br>est | ▼<br>×             | rem<br>  | oulde           | ed<br>× |
|                 |                       | STR                                 | ATIGRAPHY                                               |     | F      |                  | SAM             | PLES       | 3        |                    |                    |        |       |        | -       |          | DYN         |             | )NF                | PFI      | . т             | EST     |
| _               | ۲<br>- ۲              |                                     |                                                         |     | ÷      |                  |                 | %          |          | WA                 | <b>ATEF</b>        | R CO   | NTE   | NT     | RY      | TS       | <b>_</b>    | (ble        | ows                | /0.31    | m)              | -0.     |
|                 | NOL H                 |                                     |                                                         | Ы   | EVE    | UN R             |                 | RY         | BD       | a                  | nd L               | ІМІТ   | 'S (% | )      | ÅT0     | TES<br>T |             | 50          | )                  | 10       | 0               |         |
| E               | /AT                   |                                     |                                                         | MB  | RL     | NB A             | 1<br>1<br>1     | OVE        | r R      |                    | .,                 |        |       |        | OR/     |          | UN          |             | AINE               | ED S     | HE/             | AR      |
| ā               | DE LE                 | DE                                  | SCRIPTION                                               | ۶   | ATE    | Σĭ               | 0<br>S          | ECC<br>ECC | ž        | v                  | <sup>▼</sup> Р<br> | ••<br> |       | "L     | LAB     | SN       | S           | TRE         | NG                 | TH (     | kPa             | )       |
|                 |                       |                                     |                                                         |     | 3      |                  |                 | Ľ.         |          | 2                  | 04                 | 06     | 08    | 0      |         |          |             | 50          | ) (                | 10       | 0               |         |
| Ē               | 24.01                 | Layers of poor<br>grey mudstone     | quality red and greenish                                |     |        |                  |                 | 1          |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| Ē               |                       |                                     |                                                         |     |        | DC-33            |                 | 93         | 37       |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| - 25            | 50.40                 |                                     |                                                         |     |        | DC-34            |                 | 75         | 18       |                    |                    |        |       |        |         |          |             |             | _                  | $\neg$   |                 |         |
| Ē               | <b>25.27</b>          | Layers of fair to                   | good quality red and                                    |     |        |                  |                 |            |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| Ē               |                       | greenish grey r<br>mudstone are l   | nudstone. Layers of red<br>ocally fissile at 26.7, 28.2 |     |        | DC-35            |                 | 100        | 87       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| - 26            |                       | calcareous mu                       | th and contain layers of dstone (5mm thick).            |     |        |                  |                 | -          |          |                    |                    |        |       |        |         |          |             |             | -                  |          |                 |         |
| Ē               |                       | Layers of grey<br>of thin layers of | mudstone contain 15-20%<br>f dark shale. Beddings at    |     |        | DC-36            |                 | 100        | 17       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| 27              |                       | 45° from boreh                      | ole axis.                                               |     |        |                  |                 | 1          |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        | DC-37            |                 | 93         | 87       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        |                  |                 |            |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| - 28            |                       |                                     |                                                         |     |        | <b>DO 00</b>     |                 | 100        |          |                    |                    |        |       |        |         |          |             |             | _                  |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        | DC-38            |                 | 100        | 41       |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| Ē               |                       |                                     |                                                         |     |        |                  |                 | 1          |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| - 29            |                       |                                     |                                                         |     |        | DC-39            |                 | 100        | 44       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        | DC-33            |                 | 100        |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| E<br>30         | 45.77<br><b>29.90</b> | Eair quality gre                    | enish arev mudstone                                     |     |        |                  |                 | -          |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       | 15% thin dark s                     | shale layer. Beddings at                                |     |        | DC-40            |                 | 96         | 46       |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| Ē               |                       | 50 Hom boren                        |                                                         |     | لکا    |                  |                 | -          |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| - 31            | 44.72<br>30.95        | Layers of poor                      | to fair quality red and                                 |     |        | DC 41            |                 | 100        | 42       |                    |                    |        |       |        |         |          |             |             | _                  | _        |                 |         |
| Ē               |                       | greenish grey r<br>breccia) in gree | nudstone. Breccia (fault<br>enish grey mudstone from    |     |        | DC-41            |                 | 100        | 43       |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| Ē               |                       | 32.78 to 33.20r                     | n depth. Calcite veinlets.                              |     |        | <b>DO</b> 10     |                 |            |          |                    |                    |        |       |        |         |          |             |             |                    |          | 1               |         |
| - 32            |                       | Deddings at 40                      |                                                         |     |        | DC-42            |                 | 89         | 20       |                    |                    |        |       |        |         |          |             |             | -                  |          |                 |         |
|                 |                       |                                     |                                                         |     |        | DC-43            |                 | 100        | 59       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| 33              |                       |                                     |                                                         |     |        |                  | ┝╋              | -          |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        | DC-44            |                 | 100        | 59       |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
|                 |                       |                                     |                                                         |     |        |                  | ┝╋              | -          |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| - 34            |                       |                                     |                                                         |     |        | DC-45            |                 | 100        | 55       | $\left  - \right $ |                    |        |       |        |         |          |             |             | $\dashv$           | $\dashv$ | $ \rightarrow $ |         |
| Ē               |                       |                                     |                                                         |     |        |                  |                 | 4          |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| Ē               |                       |                                     |                                                         |     |        |                  |                 |            |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
| F <sup>35</sup> |                       |                                     |                                                         |     |        | DC-46            |                 | 100        | 71       |                    |                    |        |       |        |         |          |             |             | -                  |          |                 |         |
| Ē               | 40.21<br>35.46        | Layers of fair q                    | uality greenish grey                                    |     |        |                  |                 |            |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |
|                 |                       | mudstone.                           |                                                         | ××  |        |                  | $\vdash$        |            |          |                    |                    |        |       |        |         |          |             |             |                    |          |                 |         |

|      |            | _                                 |                                                     | PR  | OJECT  | : Rabas      | ska Pi | oject (          | Phase 2  | ), Levis, Q    | uebec | ;              |                | BORE    | HOLE     | :: <b>E</b>   | 3H-10        | 13-05         | 5   |
|------|------------|-----------------------------------|-----------------------------------------------------|-----|--------|--------------|--------|------------------|----------|----------------|-------|----------------|----------------|---------|----------|---------------|--------------|---------------|-----|
|      |            | Т                                 | matach                                              | SIT | Έ:     | West         | Optio  | n Site           |          |                |       |                |                | PAGE    | :        | 4             | OF           | 7             |     |
|      | ▼          |                                   | rratech                                             | FIL | E NO : | <u>T-105</u> | 0-B    | (60333           | 3-KELL)  | )              |       |                |                | CASIN   | IG :     | NW            |              |               |     |
|      | •          |                                   |                                                     | во  | RING [ | DATE :       |        | 2005-            | 03-23    | то             |       | 2005-03-       | 31             | CORE    | BAR      | REL           | NQ           | 3             |     |
|      | ]          | BORIN                             | G LOG                                               | DA  | TUM :  |              | Geoc   | letic            |          |                | COOF  |                | <b>3</b> : _51 | 86802.  | 02 N     |               | 26184        | 9.13 E        | Ξ   |
| SAN  | IPLE CO    | NDITION                           | TYPE OF SAMPLER                                     |     |        | LABOF        | RATO   | RY AN            | ID IN SI | TU TEST        |       |                | Field V        | ane     | (S       | Su)           | ♦ in         | tact          |     |
|      | Rem        | oulded                            | SS Split spoon                                      |     |        | GS G         | rain s | ize ana          | alysis   |                |       |                | ]              |         | (S       | sur)          | 🔶 re         | mould         | ded |
|      | Lost       | sturbed                           | PS Piston sampler                                   | e   |        |              | nit we | ight (k          | N/m³)    |                |       |                | Swedis         | sh cone | (C<br>(C | ;u)<br>;ur)   | ⊽ in<br>▼ re | tact<br>mould | led |
|      | Rock       | core                              | DC Diamond core barrel                              |     |        | CP Co        | ompre  | essive           | strength | (MPa)          |       |                | Dyn. C         | one Pe  | n. Tes   | st >          | <u>+</u>     |               | ×   |
|      | <b>C</b> 1 | STR/                              | ATIGRAPHY                                           |     | ε      |              | SAM    | PLES             | 6        |                |       |                |                |         | DYN.     | . <b>CO</b> I | NE PI        | EN. T         | EST |
| ε    | Ϊ          |                                   |                                                     |     | Ľ      | ۵~           | z      | % /              | •        | and            |       | NIENI<br>S (%) | ORY            | ESTS    |          | (blo          | ws/0.        | 3m)           |     |
| Ē    | E H        |                                   |                                                     | BOL | ΓEΛ    | BEF          | OL     | ER)              | RQD      | una            |       | 0 (70)         | RAT            | U TE    |          |               |              |               |     |
| ШШ   | DEP        | DE                                | SCRIPTION                                           | NΧ  | LER    | YPE          |        | cov              | l or     | w <sub>P</sub> | w     | wL             | ""             | SIT     | UN       |               |              | SHE/          | AR  |
|      | 비          |                                   |                                                     |     | MA     |              | Ŭ      | RE               | 2        | 20 4           |       | <br>0 80       | 1              | Z       | •        | 50            |              | 100           | ~)  |
| -    |            | Layers of fair qu                 | uality greenish grey                                | ŚŚ  |        |              |        |                  |          |                |       |                |                |         |          |               | +            | +             |     |
| Ē    |            | mudstone, 20%<br>(1-30mm thick)   | o of dark shale layers<br>, few slightly calcareous |     |        | DC-47        |        | 100              | 77       |                |       |                |                |         |          |               |              |               |     |
| - 37 |            | sandstone beds<br>occasional calc | s (max. 40mm thick),<br>ite veinlets. Beddings at   |     |        |              | -      |                  |          |                |       |                |                |         |          |               |              |               |     |
| 5,   |            | 30-45° from bo                    | rehole axis.                                        |     |        | DC-48        |        | 95               | 51       |                |       |                |                |         |          |               |              |               |     |
| Ē    |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| - 38 |            |                                   |                                                     |     |        | DC-49        |        | 100              | 51       |                |       |                | _              |         | _        |               | +            | +             |     |
| Ē    | 37.12      |                                   |                                                     |     |        | DC-50        |        | 100              | 39       |                |       |                |                |         |          |               |              |               |     |
| Ē    | 38.55      | Layers of good<br>mudstone, beds  | to excellent quality red<br>s of greenish grey      |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| - 39 |            | mudstone, few (1-40mm thick)      | layers of dark shale<br>. Small calcite vienlets.   |     |        | DC-51        |        | 100              | 97       |                |       |                |                |         |          |               |              |               |     |
| Ē    |            | Beddings at 30                    | -45° from borenole axis.                            |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| - 40 |            |                                   |                                                     |     |        |              |        |                  |          |                | -     |                | _              |         | _        |               | +            | +             |     |
| Ē    |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| Ē.   |            |                                   |                                                     |     |        | DC-52        |        | 97               | 90       |                |       |                |                |         |          |               |              |               |     |
| - 41 |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| Ē    |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| - 42 |            |                                   |                                                     |     |        | DC-53        |        | 100              | 84       |                | -     |                | _              |         | _        |               | —            | +             |     |
| Ē    |            |                                   |                                                     |     |        | 00 00        |        | 100              | 04       |                |       |                |                |         |          |               |              |               |     |
| Ē.   |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| - 43 |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
| Ē    |            |                                   |                                                     |     |        | DC-54        |        | 100              | 70       |                |       |                |                |         |          |               |              |               |     |
| - 44 |            |                                   |                                                     |     |        |              |        |                  |          |                | -     |                | _              |         |          |               | +            | —             |     |
|      |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
|      |            |                                   |                                                     |     |        | DC-55        |        | 100              | 63       |                |       |                |                |         |          |               |              |               |     |
| 45   |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              | -             |     |
|      |            |                                   |                                                     |     |        | DC-56        |        | 100              | 76       |                |       |                |                |         |          |               |              |               |     |
| 46   |            |                                   |                                                     |     |        |              | ┝╋     |                  |          |                | -     |                | -              |         |          | +             | +            | –             |     |
|      |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |
|      |            |                                   |                                                     |     |        | DC-57        |        | 100              | 85       |                |       |                |                |         |          |               |              |               |     |
| 47   |            |                                   |                                                     |     |        |              |        |                  |          |                |       |                | 1              |         |          | +             | +            | 1             |     |
|      |            |                                   |                                                     |     |        |              | ┝╋     | $\left  \right $ |          |                |       |                |                |         |          |               |              |               |     |
| 2    |            |                                   |                                                     | ŴŇ  |        |              |        |                  |          |                |       |                |                |         |          |               |              |               |     |

|           |                       |                                  |                                                | PR  | OJECI  | : Rabas      | ska Pi           | oject (           | Phase 2  | ), Levis, | Quebe | С      |       | BOR       | EHOL             | E: /           | BH-                | 103      | -05           | _      |
|-----------|-----------------------|----------------------------------|------------------------------------------------|-----|--------|--------------|------------------|-------------------|----------|-----------|-------|--------|-------|-----------|------------------|----------------|--------------------|----------|---------------|--------|
|           |                       | Т                                | matach                                         | SIT | Е:     | West         | Optio            | n Site            |          |           |       |        |       | PAGE      | E: _             | 5              | OF                 | : _      | 7             | _      |
|           | ▼                     |                                  | rratech                                        | FIL | E NO : | <u>T-105</u> | 0-B              | (60333            | 33-KELL) | )         |       |        |       | CASI      | NG :             | NW             |                    |          |               |        |
|           | •                     |                                  |                                                | во  | RING   | DATE :       |                  | 2005-             | 03-23    | т         | o     | 2005-0 | 3-31  |           | E BAF            | REL            | .: N               | Q3       |               |        |
|           | -                     | BORIN                            | G LOG                                          | DA  | TUM :  |              | Geoc             | letic             |          |           | cool  |        | ES :  | 5186802   | .02 N            | 1              | 261                | 849.     | 13 E          | _      |
| SAN       | IPLE CO               | NDITION                          | TYPE OF SAMPLER                                |     |        | LABOR        | RATO             | RY AN             | ND IN SI | TU TEST   | •     |        | Field | l Vane    | (                | Su)            | $\diamond$         | intac    | ct            |        |
| $\geq$    | Rem                   | oulded                           | SS Split spoon                                 |     |        | GS G         | rain s           | ize ana           | alysis   |           |       |        |       |           | (                | Sur)           | ٠<br>۲             | remo     | oulde         | d      |
|           | ∬ Undi<br>∎ Lost      | sturbed                          | ST Thin walled Shelby tub<br>PS Piston sampler | e   |        |              | onsoli<br>hit we | dation<br>ight (k | N/m³)    |           |       |        | Swe   | dish cone | e) é             | Cu)            | $\bigtriangledown$ | intac    | x             |        |
|           | Rock                  | core                             | DC Diamond core barrel                         |     |        | CP Co        | ompre            | essive            | strength | (MPa)     |       |        | Dyn.  | Cone Pe   | )<br>en. Te      | est            | ▼<br>×             | remo     | ouide<br>×    | ;<br>; |
|           |                       | STR/                             | ATIGRAPHY                                      |     | E      |              | SAM              | PLES              | 5        |           |       |        |       |           | DYN              | I. CC          | DNE '              | PEN      | I. TE         | ST     |
| ε         | ع <u>'</u>            |                                  |                                                |     | Ē      |              | -                | %                 |          | WAT       | ER CO | ONTEN  | r   ∑ | STS       |                  | (blo           | ows/               | 0.3n     | n)            | -      |
| Ē         | NOI- H                |                                  |                                                | öL  | ĒČĒ    | AND          | 10               | RΥ                | gD       | and       | LIMI  | ſS (%) | ATC   | д<br>ТЕ   |                  | 50             | )<br>              | 10       | 0             |        |
| EPT       | VAT                   | DE                               |                                                | ΥMB | R L    | PE /         | Ī                | OVE               | or R     | w_        | w     | w.     | 30R   | ar        | UN               | IDR/           | AINE               | DS       | HEA           | R      |
|           |                       |                                  |                                                | Ś   | ATE    | Żź           | ပ္ပ              | REC               | z        |           |       | — I    | LA E  | Z         | S                | TRE            | NGT                | 'H (I    | κPa)          | '      |
|           |                       |                                  | welity red mudetene, hade                      |     | 5      |              |                  | _                 |          | 20        | 40 6  | 50 80  |       |           | L-               | 50             | )<br>—+            | 10       | 0<br>         |        |
| Ē         |                       | of greenish gre                  | ey mudstone.                                   |     |        | DC-58        |                  | 100               | 57       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| - 49      |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                | +                  | _        |               |        |
| Ē         |                       |                                  |                                                |     |        | DC-59        |                  | 100               | 69       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         | 25.89<br><b>49.78</b> | Fair to good qu                  | ality red and greenish                         |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| F 50      |                       | grey mudstone<br>layers and san  | , few dark mudstone<br>dstone beds (max. 80mm  |     |        | DC-60        |                  | 100               | 65       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       | thick). Occasio                  | nal calcite veinlets.                          |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| - 51      |                       | Deddings at 40                   |                                                |     |        |              |                  |                   |          |           |       |        | _     |           |                  | _              | $\rightarrow$      |          | $\rightarrow$ |        |
| Ē         |                       |                                  |                                                |     |        | DC-61        |                  | 100               | 68       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| 52        |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                | -+                 |          |               |        |
| Ē         |                       |                                  |                                                |     |        | DC-62        |                  | 100               | 77       |           |       |        |       |           |                  |                |                    |          |               |        |
| 53        |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| = ~       |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       |                                  |                                                |     |        | DC-63        |                  | 100               | 70       |           |       |        |       |           |                  |                |                    |          |               |        |
| 54        |                       |                                  |                                                |     |        |              |                  |                   |          |           | _     |        | _     |           |                  |                | $\rightarrow$      | _        |               |        |
| Ē         | 21.24                 | Good to ovcolle                  | ant quality groonish grov                      |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         | 54.45                 | and dark muds                    | tone, sandstone beds                           |     |        | DC-64        |                  | 100               | 100      |           |       |        |       |           |                  |                |                    |          |               |        |
| - 55<br>- |                       | (max. 10mm th<br>microfolds. Bec | lick). Presence of<br>ddings at 35° from       |     |        |              |                  |                   |          |           |       |        |       |           |                  |                | +                  |          |               |        |
| Ē         |                       | borehole axis.                   |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| 56        |                       |                                  |                                                |     |        | DC-65        |                  | 100               | 86       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         | 19.06<br><b>56.61</b> | Good quality re                  | ed and greenish grey                           |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| 57        |                       | mudstone, 5% (1-7mm thick).      | dark mudstone layers<br>few sandstone beds     |     |        |              |                  |                   |          | $\vdash$  |       | +      | _     |           | $\vdash$         | $\rightarrow$  | +                  | +        | +             | —      |
| ŧ         |                       | (max. 30mm th                    | ick). Beddings at 45° from                     |     |        | DC-66        |                  | 100               | 86       |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       | DOIGHUIG AND.                    |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| 58        |                       |                                  |                                                |     |        |              | ┝╋               |                   |          |           |       |        |       |           |                  | $ \uparrow$    | $\top$             | $\top$   | $\uparrow$    |        |
| Ē         |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| 59        |                       |                                  |                                                |     |        | DC-67        |                  | 100               | 84       | ┝─┤─      |       |        | _     |           | $\mid \mid \mid$ | $ \rightarrow$ | -+                 | $\dashv$ | $\downarrow$  |        |
| ŧ         |                       |                                  |                                                |     |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |
| Ē         |                       |                                  |                                                |     |        |              | ┝╋               | $\left  \right $  |          |           |       |        |       |           |                  |                |                    |          |               |        |
| t         |                       |                                  |                                                | KKK |        |              |                  |                   |          |           |       |        |       |           |                  |                |                    |          |               |        |

|      |              |                |                                     |                                                       | PR  | OJECT       | : Raba       | ska P           | roject (          | Phase 2  | ), Levis,      | Quebe | ec    |       |         | BORE    | HOL        | E: /         | BH-                              | 103          | -05        |         |
|------|--------------|----------------|-------------------------------------|-------------------------------------------------------|-----|-------------|--------------|-----------------|-------------------|----------|----------------|-------|-------|-------|---------|---------|------------|--------------|----------------------------------|--------------|------------|---------|
|      |              |                | То                                  | matach                                                | SIT | Έ:          | West         | Optio           | n Site            |          |                |       |       |       |         | PAGE    | : _        | 6            | _ 0                              | F_           | 7          |         |
|      |              |                |                                     | rratech                                               | FIL | E NO :      | <u>T-105</u> | 0-B             | (60333            | 3-KELL)  |                |       |       |       |         | CASI    | NG :       | NW           | /                                |              |            |         |
|      |              |                |                                     |                                                       | во  | RING I      | DATE :       |                 | 2005-             | 03-23    | т              | o _   | 2005  | -03-3 | 31      | CORE    | EBAF       | RREL         | .: <u>۱</u>                      | 1Q3          |            |         |
|      |              | F              | BORIN                               | G LOG                                                 | DA  | TUM :       |              | Geod            | letic             |          |                | coo   | RDINA | TES   | : 5     | 186802  | .02 N      | I            | 261                              | 1849.        | 13 E       |         |
| SAM  | PLE          | CO             | NDITION                             | TYPE OF SAMPLER                                       |     |             | LABO         | RATO            | RY AN             |          | TU TES         | Г     |       |       | Field \ | /ane    | (          | Su)          | $\diamond$                       | inta         | ct         |         |
|      | ]R<br>ℤU     | lemo<br>Indisi | ulded<br>turbed                     | SS Split spoon<br>ST Thin walled Shelby tub           | е   |             | C C          | raın s<br>onsol | ize ana<br>dation | alysis   |                |       |       |       | Swedi   | sh cone | ()<br>• () | Sur)<br>Cui) | <ul> <li>♦</li> <li>□</li> </ul> | rem          | oulde      | ed      |
|      | L            | ost            |                                     | PS Piston sampler                                     |     |             | D U          | nit we          | ight (k           | N/m³)    |                |       |       |       | e noui  |         | · ()       | Cur)         | ▼                                | rem          | oulde      | ed      |
|      | ] R          | lock           | core                                | DC Diamond core barrel                                |     |             | CP C         |                 | essive            | strength | (MPa)          |       |       |       | Dyn. C  | Cone Pe | en. Te     | st           | <u>×</u>                         |              | >          | <       |
|      | ε            |                | 3117                                |                                                       |     | Ε           |              |                 |                   | •        | WAT            | ER CO |       | ΝТ    | ≻       | S       | DYN        | l. CC        | )NE                              | PEN          | N. TE      | EST     |
| Е    | - N          | Ē              |                                     |                                                       | _   | VEL         | ₽∞           | z               | Х %               | Δ        | and            | LIMI  | TS (% | )     | TOR     | EST     |            | (Die<br>5(   | 0                                | 10.31<br>10  | 0          |         |
| РТН  | ATIC         | PTH            |                                     |                                                       | ABO | Ш<br>Г<br>С | E AN<br>MBE  | Ē               | VER               | RQ       |                |       |       |       | RA'     |         | '          |              |                                  |              | ı          |         |
| DE   | ΓE           | Ē              | DE                                  | SCRIPTION                                             | SYI | TER         | ΝU           | NO              | 0<br>Si           | ō<br>N   | w <sub>P</sub> | , w   | w     | L     | ABC     |         |            |              | AINE<br>ENG                      | :D S<br>TH ( | HE/<br>kPa | AR<br>) |
|      | Ш            |                |                                     |                                                       |     | Ā           | -            |                 | R                 |          | 20             | 40    | 60 80 | )     |         | =       |            | 5            | 0                                | 10           | 0          |         |
| _    |              |                | Good quality re                     | d and greenish grey<br>dark mudstone lavers           |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             | DC-68        |                 | 100               | 80       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| 61   |              |                |                                     |                                                       |     |             |              |                 |                   |          |                | _     |       |       |         |         |            |              | _                                |              |            |         |
|      | 14.3<br>61.3 | 34<br>33       | Layers of fair qu                   | uality greenish grey and                              |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                | black mudstone<br>of calcareous s   | e (locally fissile), 10-15%<br>andstone layers. (max. |     |             | DC-69        |                 | 100               | 92       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 62 |              |                | 400mm thick). I<br>borehole axis. ( | Beddings at 35-55° from<br>Occasional calcite         |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                | veinlets. Local                     | presence of pyrite.                                   |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| 63   |              |                |                                     |                                                       |     |             | DC 70        |                 | 100               | 75       |                | _     |       |       |         |         |            |              | _                                |              |            |         |
|      |              |                |                                     |                                                       |     |             | DC-70        |                 | 100               | 75       |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 64 |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| -    |              |                |                                     |                                                       |     |             | DC-71        |                 | 100               | 69       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| 65   |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              | _                                |              |            |         |
|      |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 66 |              |                |                                     |                                                       |     |             | DC-72        |                 | 95                | 83       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| -    |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| 67   |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              | _                                | _            |            |         |
|      |              |                |                                     |                                                       |     |             | DC-73        |                 | 100               | 95       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| 60   |              |                |                                     |                                                       |     |             | 2010         |                 | 100               | 50       |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 00 |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 69 |              |                |                                     |                                                       |     |             | DC-74        |                 | 97                | 68       | $\vdash$       | +     | +     |       |         |         |            |              | $\dashv$                         | $\dashv$     |            |         |
| Ē    |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| È    |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 70 |              |                |                                     |                                                       |     |             | DC-75        |                 | 100               | 70       |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             | / 0          |                 |                   |          |                |       |       |       |         |         |            |              |                                  |              |            |         |
| - 71 |              |                |                                     |                                                       |     |             |              |                 |                   |          | $\vdash$       |       | +     |       |         |         |            |              | $\dashv$                         | $\dashv$     |            |         |
|      |              |                |                                     |                                                       |     |             | DC-76        |                 | 96                | 82       |                |       |       |       |         |         |            |              |                                  |              |            |         |
|      |              |                |                                     |                                                       |     |             |              |                 |                   |          |                |       |       | _     |         |         |            |              |                                  |              |            |         |

|                  |                       |                                   |                                                        | PR  | OJECT  | : Rabas       | ska Pr           | roject           | (Phase 2 | ), Levi | is, Qu | iebec | :      |      |         | BORE    | HOL    | E: / | BH-         | 103             | -05         | _    |
|------------------|-----------------------|-----------------------------------|--------------------------------------------------------|-----|--------|---------------|------------------|------------------|----------|---------|--------|-------|--------|------|---------|---------|--------|------|-------------|-----------------|-------------|------|
|                  |                       | То                                | matach                                                 | SIT | E :    | West          | Optio            | n Site           |          |         |        |       |        |      |         | PAGE    | : _    | 7    | 0           | F _             | 7           | _    |
|                  | ▼                     |                                   | rratech                                                | FIL | E NO : | <u>T-105</u>  | )-В (            | (6033:           | 33-KELL) | )       |        |       |        |      |         | CASI    | NG :   | NW   | 1           |                 |             |      |
|                  | •                     |                                   |                                                        | во  | RING   | DATE :        |                  | 2005             | 03-23    |         | то     |       | 2005-0 | )3-3 | 1       | CORE    | BAF    | REL  | .: <u>^</u> | 1Q3             |             |      |
|                  | ]                     | BORIN                             | G LOG                                                  | DA  | TUM :  |               | Geod             | letic            |          |         | с      | OOR   |        | ES : | 51      | 186802  | .02 N  | I    | 261         | 1849.           | 13 E        |      |
| SAM              | IPLE CO               | NDITION                           | TYPE OF SAMPLER                                        |     |        | LABOF         | RATO             | RY AI            | ND IN SI | TU TE   | ST     |       |        |      | Field V | /ane    | (      | Su)  | $\diamond$  | inta            | ct          |      |
|                  | ] Rem<br>ℤ Undi       | oulded<br>sturbed                 | SS Split spoon<br>ST Thin walled Shelby tub            | е   |        | GS GI<br>C Co | ain si<br>onsoli | ize an<br>dation | alysis   |         |        |       |        |      | Swedie  | sh cone | ()     | Sur) | <b>♦</b>    | rem             | oulde       | ;d   |
|                  | Lost                  |                                   | PS Piston sampler                                      |     |        | D Ur          | nit we           | ight (k          | N/m³)    |         |        |       |        |      | onean   |         | . (    | Cur) | ▼           | rem             | oulde       | ed : |
|                  | Rock                  | core                              | DC Diamond core barrel                                 |     |        | CP Co         | ompre            | essive           | strength | (MPa    | )      |       |        | _    | Dyn. C  | one Pe  | en. Te | st   | <u>×</u>    |                 | X           | :    |
|                  | ٤I                    | 0110                              |                                                        |     | E      |               |                  |                  | -        | WA      | TER    | co    | NTEN   | т    | ≿       | Ś       | DYN    | . CC | )NE         |                 | ۱. TE<br>m) | ST   |
| <u>ع</u>         | - NC                  |                                   |                                                        | _   | VEL    | 9 8           | NO               | ۲%               | Q        | a       | nd L   | міт   | S (%)  |      | TOR     | EST     |        | 50   | 0           | 10              | 0           |      |
| PTH              | ATIC<br>PTH           |                                   |                                                        | MBO | s LE   | E Al          | Π                | VER              | r RQ     |         |        |       |        |      | DRA     |         |        |      |             |                 |             |      |
| DE               | DE                    | DE                                | SCRIPTION                                              | SYI | ATEF   | ΝU            | CON              | ECO              | o<br>Z   |         | P      | w     |        | -    | -AB(    | N SI    | S      | TRE  | :NG         | TH (            | kPa)        |      |
|                  | ш                     |                                   |                                                        |     | Š      |               | _                | R                |          | 2       | 0 4    | 0 6   | 0 80   |      |         |         | 1      | 50   | )<br>       | 10              | 0           |      |
|                  |                       | Layers of excel<br>and black muds | lent quality greenish grey<br>stone (locally fissile), |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       | 10-15% of calc<br>(max. 400mm t   | areous sandstone layers.<br>hick). Beddings at 35-55°  |     |        | DC-77         |                  | 100              | 96       |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 73             |                       | from borehole a veinlets.         | axis. Occasional calcite                               |     |        |               |                  |                  |          |         |        |       |        | _    |         |         |        |      | _           |                 | -           | -    |
| Ē                |                       | ,                                 |                                                        |     |        |               |                  | -                |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| 74               |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       |                                   |                                                        |     |        | DC-78         |                  | 100              | 88       |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  | 0.72                  |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 75             | 74.95                 | Layers of good                    | to excellent quality                                   |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      | _           |                 | -           | -    |
| Ē                |                       | of light grey cal                 | careous sandstone layers                               |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 76             |                       | from borehole a                   | axis. Occasional calcite                               |     |        | DC-79         |                  | 100              | 97       |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| Ē                |                       | veinlets.                         |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 77<br>-        |                       |                                   |                                                        |     |        | DC-80         |                  | 100              | 89       |         |        |       |        |      |         |         |        |      |             | -               | -           | _    |
| Ē                |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 78             |                       |                                   |                                                        |     |        |               |                  | -                |          |         |        |       |        |      |         |         |        |      | _           | $ \rightarrow $ | _           | _    |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       |                                   |                                                        |     |        | DC-81         |                  | 97               | 80       |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 79             |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| Ē                | -3.86<br><b>79.53</b> | END OF BORE                       | HOLE                                                   |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 80             |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      | _           | $ \rightarrow$  | _           | _    |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| 81               |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 | $\uparrow$  |      |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| - 82             |                       |                                   |                                                        |     |        |               |                  |                  |          |         | _      |       | _      |      |         |         |        | _    | $\dashv$    | $\dashv$        | $\dashv$    | -    |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| -<br>-<br>-<br>- |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 | $\top$      |      |
|                  |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |
| ŀ                |                       |                                   |                                                        |     |        |               |                  |                  |          |         |        |       |        |      |         |         |        |      |             |                 |             |      |

|         |               |                                   |                             | PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OJECT                                                                                                      | : Raba       | ska Pr                | oject           | (Phase 2) | ), Levis | , Que | bec     |         |         | BORE       | HOLE      | ≡: <b>B</b> | H-10          | 4-05                       |                    |
|---------|---------------|-----------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------|-----------|----------|-------|---------|---------|---------|------------|-----------|-------------|---------------|----------------------------|--------------------|
|         |               | То                                | matach                      | SIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E :                                                                                                        | West         | Optior                | n Site          |           |          |       |         |         |         | PAGE       | :: _      | 1           | OF            | 3                          |                    |
|         | ✓             |                                   | Tratech                     | FIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E NO :                                                                                                     | <u>T-105</u> | 0-B (                 | 6033            | 33-KELL)  |          |       |         |         |         | CASI       | NG :      | HW          |               |                            |                    |
|         | •             |                                   |                             | во                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RING                                                                                                       | DATE :       |                       | 2005            | -03-17    |          | ю     | 2       | 005-03- | 20      | CORE       | E BAR     | REL :       | HQ            |                            |                    |
|         | ]             | BORIN                             | G LOG                       | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TUM :                                                                                                      |              | Geod                  | etic            |           |          | со    | ORD     | INATES  | : _51   | 186802     | .14 N     |             | 26189         | 4.45 E                     | :                  |
| SAN     | IPLE CO       | NDITION                           | TYPE OF SAMPLER             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | LABO         | RATO                  | RY A            | ND IN SIT | TU TES   | БТ    |         |         | Field V | /ane       | (5        | Su)         | ♦ int         | act                        |                    |
|         | Remo          | oulded                            | SS Split spoon              | he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            | GS G         | rain si<br>onsoli     | ze an<br>datior | alysis    |          |       |         |         | Quadia  | ob 0004    | (8        | Sur)        | ♦ re          | mould                      | ed                 |
|         | Lost          | sturbed                           | PS Piston sampler           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | DU           | nit wei               | ght (k          | :N/m³)    |          |       |         |         | Swedis  | sn cone    | ; (C<br>( | Cur)        | ∨ int<br>▼ re | .act<br>mould <sup>,</sup> | ed                 |
|         | Rock          | core                              | DC Diamond core barrel      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | CP C         | ompre                 | ssive           | strength  | (MPa)    |       |         |         | Dyn. C  | one Pe     | en. Tes   | st ×        | <u></u>       | >                          | ×                  |
|         | ۶ı            | STR                               | ATIGRAPHY                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E                                                                                                          |              | SAM                   | PLES            | 5         | 14/4-    |       | 00N     |         |         | <i>(</i> 0 | DYN       | . coi       | NE PE         | :N. TI                     | EST                |
| ε       | -<br>N<br>E   |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ĒĽ.                                                                                                        |              | z                     | ۲ %             | 0         | an       |       |         | (%)     | OR      | ESTS       |           | (blov<br>50 | ws/0.:        | 3 <b>m)</b><br>100         |                    |
| Ē       | THO<br>TH.    |                                   |                             | BOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ē                                                                                                          | E AN         | DITIO                 | /ER             | RQI       |          |       |         | (,,,,   | RAT     |            |           |             |               | <u> </u>                   | L                  |
| DEP     | EVA<br>DEP    | DE                                | SCRIPTION                   | SYM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TER                                                                                                        | YPE<br>NUN   | OND                   | 00              | N or      | w        | Ρ١    | w       | wL      | ABO     | SIT        | UN<br>S   | DRAI        | INED          | SHE/<br>(kPa               | AR                 |
|         | Щ             |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M                                                                                                          | н –          | U<br>U                | RE              | -         | ⊢<br>20  | 40    | ⊛<br>60 |         | ב       | Z          |           | 50          |               | 100                        | ,                  |
| -       | 15.72<br>0.00 | Topsoil.                          |                             | Di fi fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            | SS-1         | $\mathbf{\mathbf{x}}$ | 60              | 8         |          |       |         |         |         |            |           |             |               | + +                        |                    |
|         | 0.15<br>75.26 | Loose silty san                   | d and gravel, cobbles.      | ه. ه<br>ه. ه                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            | 00-1         |                       | 00              | 0         |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē 1     | 0.46          | at 1.5m).                         |                             | 0.<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04-15                                                                                                      |              | $\ge$                 |                 | 40        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē       |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2005                                                                                                       | 55-2         |                       | 38              | 49        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē       |               |                                   |                             | ₽. ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                            | SS 2         | $\boxtimes$           | 50              | 20        |          |       |         |         |         |            |           |             |               |                            |                    |
| - 2     | 73 43         |                                   |                             | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 75.26                                                                                                      | 33-3         |                       | 50              | 20        |          | -     |         | _       | -       |            |           |             |               | -                          | $\vdash$           |
| Ē       | 2.29          | Very stiff grey                   | clayey silt, traces of sand |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | elev.                                                                                                      | 55-1         | $\ge$                 | 33              | 40        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ė,      | 72.98<br>2.74 | Compact to ver                    | y dense brown silty sand    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vel at                                                                                                     | 00 4         |                       | 00              | 40        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē       |               | and gravel or s                   | lity and gravelly sand.     | 8 9<br>2 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d d d d d d d d d d d d d d d d d d d                                                                      | SS-5         | $\boxtimes$           | 50              | 27        | $\odot$  |       |         |         |         |            |           |             |               |                            |                    |
| Ē       |               |                                   |                             | 0. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D D D D D                                                                                                  |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
| - 4     |               |                                   |                             | о<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            | SS-6         |                       | 0               | 75        |          | +     | _       |         | -       |            | $\vdash$  | —           | <u> </u>      | +                          | $\left  - \right $ |
| Ē       |               |                                   |                             | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē,      |               |                                   |                             | 6 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                            | SS-7         | $\times$              | 33              | 97        |          |       |         |         |         |            |           |             |               |                            |                    |
| ʰ       |               |                                   |                             | 0.<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē       |               |                                   |                             | <ul> <li>₽</li> <li>₽</li></ul> |                                                                                                            | SS-8         |                       | 0               | 27        |          |       |         |         |         |            |           |             |               |                            |                    |
| - 6     |               |                                   |                             | 0 a<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                            |              |                       |                 |           |          | -     | _       |         | -       |            | $\vdash$  | —           | <u> </u>      | +                          | $\left  - \right $ |
| Ē       |               |                                   |                             | ¢ 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c c}         D_{I} & D_{I} \\         D_{I} & D_{I} \\         D_{I} & D_{I} \end{array} $ | SS-9         | X                     | 42              | 41        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē,      |               |                                   |                             | о<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
| Ḗ       |               |                                   |                             | a.<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                            | SS-10        | $\land$               | 50              | 28        |          |       |         |         |         |            |           |             |               |                            |                    |
| Ē       | 68.05         | De des els: ) /em :               |                             | @<br>\ <u>\</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | SS-11        |                       | 50              | 10/5cm    |          |       |         |         |         |            |           |             |               |                            |                    |
| - 8     | 7.07          | greenish grey r                   | nudstone with light grey    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |              |                       |                 |           |          | _     |         | _       | -       |            |           |             |               |                            | $\vdash$           |
|         |               | thick), thin laye                 | s at 30° from borehole      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                      | DC-12        |                       | 94              | 0         |          |       |         |         |         |            |           |             |               |                            |                    |
|         |               | axis. Pyrite in j                 | pints.                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | DC-13        |                       | 89              | 35        |          |       |         |         |         |            |           |             |               |                            |                    |
| 9       |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | 10           | ┝╋                    |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
|         |               |                                   |                             | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
| - 10    |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c c}         D \\         D \\         D \\         $                                      | DC-14        |                       | 59              | 12        |          | _     | _       | _       |         |            | $\vdash$  | +           |               | +                          | ⊢┤                 |
|         |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |
|         | 64.87         |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | DC-15        |                       | 85              | 100       |          |       |         |         |         |            |           |             |               |                            |                    |
| 11<br>1 | 10.00         | ⊢air quality red<br>grey mudstone | muastone, 20% greenish      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |              |                       |                 |           |          |       | $\top$  |         |         |            |           | $\top$      |               |                            |                    |
|         |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | DC-16        |                       | 100             | 72        |          |       |         |         |         |            |           |             |               |                            |                    |
| 2       |               |                                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                            |              |                       |                 |           |          |       |         |         |         |            |           |             |               |                            |                    |

|           |                               |                                     |                                                        | PR  | OJECT                                                                                              | : Raba       | ska P           | roject (           | Phase 2  | ), Levis,      | Quebe | ec           | B                 | OREH                | IOLE :       | BH           | 1-104          | 1-05        |     |
|-----------|-------------------------------|-------------------------------------|--------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------|--------------|-----------------|--------------------|----------|----------------|-------|--------------|-------------------|---------------------|--------------|--------------|----------------|-------------|-----|
|           |                               | То                                  | matach                                                 | SIT | Έ:                                                                                                 | West         | Optio           | n Site             |          |                |       |              | P                 | AGE :               | 2            | _ (          | DF_            | 3           | _   |
|           | ▼                             |                                     | rratech                                                | FIL | E NO :                                                                                             | <u>T-105</u> | 0-B             | (60333             | 33-KELL  | )              |       |              | c                 | ASINC               | 3: <u>⊬</u>  | w            |                |             |     |
|           | •                             |                                     |                                                        | во  | RING D                                                                                             | DATE :       |                 | 2005-              | 03-17    | т              | ۰_    | 2005-03-     | 20 C              | ORE E               | BARRI        | EL :         | HQ             |             |     |
|           | ]                             | BORIN                               | G LOG                                                  | DA  | TUM :                                                                                              |              | Geod            | detic              |          |                | coo   | RDINATES     | <b>3</b> : _ 5180 | 6802.1 <sub>-</sub> | 4 N          | 26           | 31894          | .45 E       |     |
| SAN       |                               | NDITION                             | TYPE OF SAMPLER                                        |     |                                                                                                    | LABO         | RATO            | RY AN              | ND IN SI | TU TEST        | Г     |              | Field Var         | ne                  | (Su          | ) 🔿          | inta           | ict         |     |
|           | Remo                          | oulded<br>sturbed                   | SS Split spoon<br>ST Thin walled Shelby tub            | e   |                                                                                                    | GS G<br>C C  | rain s<br>onsol | ize ana<br>idation | alysis   |                |       |              | Swedish           | cone                | (Su          | r) 🔶         | rem            | 10ulde      | эd  |
|           | Lost                          |                                     | PS Piston sampler                                      |     |                                                                                                    | D U          | nit we          | eight (k           | N/m³)    |                |       |              |                   | Conc                | (Cu          | ) ∨<br>r) ▼  | ren            | noulde      | ed  |
|           | Rock                          | core                                | DC Diamond core barrel                                 |     |                                                                                                    | CP C         | ompro           | essive             | strength | (MPa)          |       |              | Dyn. Cor          | ie Pen.             | . Test       | <u>× -</u>   | <u> </u>       | <u> ×</u>   | (   |
| _         | <u>ا</u>                      | 0110                                |                                                        |     | ۲<br>-                                                                                             |              |                 |                    |          | WAT            | ER CO | ONTENT       | 3                 | D<br>D              | 'YN. (<br>(! | CONE<br>blow | 3 PEI<br>s/0.3 | N. TE<br>m) | EST |
|           | NOI - H                       |                                     |                                                        | Ы   | EVEI                                                                                               | UN R         | NOI.            | RY %               | gD       | and            | LIMI  | TS (%)       | ATOI<br>d         | TES                 |              | 50           | 10             | 00          |     |
| Ľ.        | VATI<br>EPTI                  |                                     |                                                        | MB  | R L                                                                                                | PE A<br>JMBI |                 | OVE                | or R(    |                | w/    | \ <b>A</b> / | an<br>an          | <u></u>             | UND          | RAIN         | ED S           | SHEA        | ٩R  |
| □         | DI                            | DE                                  | SCRIPTION                                              | S   | АТЕ                                                                                                | Σĭ           | CO<br>CO        | REC                | z        | <sup>₩</sup> ₽ |       | •••∟<br>——-  | LAB               | S<br>Z              | STF          | RENC         | ЭTН (          | (kPa)       | )   |
|           |                               | Eair to good au                     | ality rad mudatana 20%                                 |     | <b>S</b>                                                                                           |              |                 | -                  |          | 20             | 40    | 60 80        |                   |                     |              | 50           | 10             | 0           |     |
|           |                               | greenish grey r                     | nudstone, layers of light                              |     | $ \begin{array}{c c} D_0 & D_0 \\ \hline D_0 & D_0 \\ \hline D_0 & D_0 \end{array} $               |              |                 | -                  |          |                |       |              |                   |                     |              |              |                |             |     |
| -         |                               | thick). Bedding                     | s at 35° from borehole                                 |     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                              |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| - 13<br>- |                               | axis. Calcile ve                    | amets and pyrite in joints.                            |     |                                                                                                    | DC-17        |                 | 100                | 76       |                |       |              | _                 |                     |              |              |                |             |     |
| -         |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| - 14      |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              | -                 | _                   |              |              | <u> </u>       | $\vdash$    |     |
| _         |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| L 15      | 60.92<br><b>14.80</b>         | Fair to good qu                     | ality greenish grey                                    |     | 00 00<br>Di Di<br>Di Di                                                                            | DC-18        |                 | 100                | 92       |                |       |              |                   |                     |              |              |                |             |     |
|           |                               | mudstone, laye<br>Sedimentary br    | ers of light grey mudstone.<br>reccia at 1.5m.         |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
|           |                               | Slickenside at from borehole a      | 1.5m. Beddings at 40°<br>axis.                         |     | 0 0 0 0 0<br>D 0 0 0<br>D 0 0 0                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| - 16      |                               |                                     |                                                        |     | ·Di Di<br>Di Di Di<br>Di Di Di                                                                     | DC-19        |                 | 100                | 48       |                | _     |              | -                 | _                   |              |              |                |             |     |
|           |                               |                                     |                                                        |     | 00 00<br>100 00<br>00 00                                                                           |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| -<br>- 17 | <u>58.8</u> 8<br><b>16.84</b> | Very poor quali                     | ity greenish grey                                      |     | $   \begin{array}{ccc}     D_{0} & D_{0} \\     D_{0} & D_{0} \\     D_{0} & D_{0}   \end{array} $ | DC-20        |                 | 100                | 0        |                |       |              | _                 |                     |              |              |                |             |     |
| _         |                               | mudstone, 15%<br>Tectonic (?) bre   | 6 of red mudstone layers.<br>eccia from 18.5 to 20.0m. |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| _         |                               | Veinlets of calc                    | are.                                                   |     |                                                                                                    | DC-21        |                 | 52                 | 8        |                |       |              |                   |                     |              |              |                |             |     |
| - 18      |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   | _                   |              |              |                |             |     |
|           |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| - 19      |                               |                                     |                                                        |     |                                                                                                    | DC-22        |                 | 51                 | 0        |                |       |              | _                 | _                   | _            |              | <u> </u>       | $\vdash$    |     |
|           |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| Ē.        | 55.73                         |                                     |                                                        |     |                                                                                                    | DC-23        | I               | 76                 | 0        |                |       |              |                   |                     |              |              |                |             |     |
| E 20      | 19.99                         | Poor quality red<br>greenish grey r | d mudstone, 20-25%<br>mudstone layers, and             |     |                                                                                                    |              |                 | $\left \right $    |          |                |       |              | 1                 |                     |              |              |                |             |     |
| Ē         |                               | layers of light g<br>(5-10mm thick) | rey calcareous mudstone<br>. Beddings at 55° from      |     |                                                                                                    | DC-24        |                 | 91                 | 28       |                |       |              |                   |                     |              |              |                |             |     |
| - 21      |                               | borehole axis.                      | Calcite veinlets and veins.                            |     |                                                                                                    |              |                 |                    |          |                | _     | + $+$        | -                 | ┝                   | —            | +            | +              | $\vdash$    |     |
|           |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| -<br>_ "  |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| ŧ "       |                               |                                     |                                                        |     |                                                                                                    | DC-25        |                 | 100                | 30       |                |       |              |                   |                     |              |              |                |             |     |
| Ē         |                               |                                     |                                                        |     |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |
| - 23      |                               |                                     |                                                        |     |                                                                                                    |              | ┝╋              | $\left  \right $   |          |                |       | +            | -                 | -                   |              | +            | +              | $\vdash$    |     |
|           |                               |                                     |                                                        |     |                                                                                                    | DC-26        |                 | 84                 | 10       |                |       |              |                   |                     |              |              |                |             |     |
| Ē         |                               |                                     |                                                        | ××  |                                                                                                    |              |                 |                    |          |                |       |              |                   |                     |              |              |                |             |     |

|           |                |                   |                         | PF   | ROJECT  | : Rabas      | ska Pr            | oject            | Phase 2   | ), Levi | is, Qu | ebec   | :     |       |            | BORE    | HOL       | E: /           | BH-             | 104                 | -05          |         |
|-----------|----------------|-------------------|-------------------------|------|---------|--------------|-------------------|------------------|-----------|---------|--------|--------|-------|-------|------------|---------|-----------|----------------|-----------------|---------------------|--------------|---------|
|           |                | То                | matach                  | sr   | TE :    | West         | Optior            | n Site           |           |         |        |        |       |       |            | PAGE    | :: _      | 3              | _ 0             | F _                 | 3            |         |
|           | ▼              |                   | rratech                 | FI   | LE NO : | <u>T-105</u> | 0-B (             | (60333           | 33-KELL)  |         |        |        |       |       |            | CASI    | NG :      | нw             | /               |                     |              |         |
|           | •              |                   |                         | в    |         | DATE :       |                   | 2005-            | 03-17     |         | то     |        | 2005  | -03-2 | 20         | CORE    | BAF       | ₹REL           | .: <u>t</u>     | łQ                  |              |         |
|           |                | BORIN             | G LOG                   | DA   | TUM :   |              | Geod              | letic            |           |         | с      | OOR    |       | TES   | : _51      | 86802   | .14 N     | 1              | 261             | 1894.               | 45 E         |         |
| SAN       | IPLE C         | ONDITION          | TYPE OF SAMPLER         |      |         | LABOF        | RATO              | RY AI            | ND IN SIT | ΓU ΤΕ   | ST     |        |       |       | Field V    | ane     | (;        | Su)            | $\diamond$      | inta                | ct           |         |
|           | Ren            | noulded           | SS Split spoon          | P    |         | GS G         | rain si<br>onsoli | ize an<br>dation | alysis    |         |        |        |       |       | Curadia    | h conc  | (         | Sur)           | •               | rem                 | oulde        | эd      |
|           | Los            | t                 | PS Piston sampler       | 0    |         | D Ui         | nit we            | ight (k          | N/m³)     |         |        |        |       |       | Sweuis     | in cone | · ()      | Cur)           | V               | inta<br>rem         | ct<br>Ioulde | əd      |
|           | Roc            | k core            | DC Diamond core barrel  |      | 1       | CP C         | ompre             | essive           | strength  | (MPa)   | )      |        |       |       | Dyn. C     | one Pe  | n. Te     | st             | <u>×</u>        |                     | >            | <       |
|           | ۶I             | SIR               | ATIGRAPHY               |      | ε       |              |                   | PLES             | 5         | \A/ A   | TED    |        |       | лт    | ~          | 6       | DYN       | I. CC          | )NE             | PE                  | ₹. TE        | EST     |
| ε         | Ξ<br>z<br>z    |                   |                         | _    | Ē       | <u> </u>     | z                 | Υ%               | 0         | a       | nd Ll  |        | S (%) | )     | <b>TOR</b> | EST     | ĺ         | (blo<br>5(     | ows.<br>0       | / <b>0.3r</b><br>10 | n)<br>10     |         |
| H         | ATIO<br>TH     |                   |                         | IBOI | Ē       | E AN         | E                 | /ER              | RQI       |         |        |        | •     | ,     | RAT        | II D    |           |                |                 |                     |              |         |
| Ë         |                | DE                | SCRIPTION               | sγn  | TER     | NUN PE       | ONE               | CO!              | N or      | N       | P      | w      | w     | L     | ABO        | I SIT   | UN        |                | AINE<br>Eng     | ED S<br>TH (        | HEA<br>kPa   | AR<br>) |
|           | Π              |                   |                         |      | MA      |              | 0                 | RE               |           | 20      | 0 40   | )<br>6 | 0 80  | )     | 1          | 2       | ĺ         | 50             | D               | 10                  | 0            |         |
| Ē         |                | Poor quality ree  | d mudstone, 20-25%      |      |         |              |                   |                  |           | - 1     |        |        |       |       |            |         |           | -              |                 |                     |              |         |
| Ē         |                | layers of light g | rey calcareous mudstone |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 25      |                | (5-10mm thick)    |                         |      |         | DC-27        |                   | 80               | 0         |         |        |        |       |       |            |         |           | $\square$      | _               |                     |              |         |
| Ē         | 50.47<br>25.25 | END OF BORE       | EHOLE                   |      | :::⊟::: |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 26      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | -              |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 27      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | $ \rightarrow$ | _               | _                   |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 28      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | $\neg$         |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 29      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | $\square$      | $ \rightarrow $ | $\square$           |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 30      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | $\neg$         |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 31      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | $\rightarrow$  | $ \rightarrow$  | $ \rightarrow $     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| Ē         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 32      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           | +              |                 |                     |              |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| 33        |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         | $\vdash$  | $\dashv$       | $\neg$          | $\dashv$            |              |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 34<br>- |                |                   |                         |      |         |              |                   |                  |           |         | $\neg$ |        |       |       |            |         |           | +              | $\neg$          | $\neg$              |              |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| - 35      |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         | $\square$ | $\dashv$       | $\dashv$        | $\dashv$            | -+           |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
|           |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         |           |                |                 |                     |              |         |
| -         |                |                   |                         |      |         |              |                   |                  |           |         |        |        |       |       |            |         | ╘━━━┥     |                |                 |                     |              |         |

|            |                       | 、                                   |                                                     | PR           | OJECT    | : Rabas       | ka Pr                 | oject           | (Phase 2)   | ), Levis,      | Quebe     | ec    |         |         | BORE     | HOL    | E: /          | BH-                              | 105         | -05         |     |
|------------|-----------------------|-------------------------------------|-----------------------------------------------------|--------------|----------|---------------|-----------------------|-----------------|-------------|----------------|-----------|-------|---------|---------|----------|--------|---------------|----------------------------------|-------------|-------------|-----|
|            |                       | Т                                   | matash                                              | SIT          | Е:       | West          | Optior                | n Site          |             |                |           |       |         |         | PAGE     | :      | 1             | _ 0                              | F_          | 3           |     |
|            | ✓                     |                                     | Tratech                                             | FIL          | E NO :   | <u>T-105</u>  | )-В (                 | 6033            | 33-KELL)    |                |           |       |         |         | CASI     | NG :   | NW            | <u> </u>                         |             |             |     |
|            | •                     |                                     |                                                     | во           | RING     | DATE :        |                       | 2005            | -03-23      | т              | o _       | 200   | 5-04-(  | 05      | CORE     | EBAF   | REL           | .: <u>^</u>                      | 1Q3         |             |     |
|            | ]                     | BORIN                               | G LOG                                               | DA           | TUM :    |               | Geod                  | etic            |             |                | coo       | RDIN  | ATES    | : _5    | 186770   | .94 N  | 1             | 261                              | 1880.       | 10 E        |     |
| SAN        | IPLE CO               | NDITION                             | TYPE OF SAMPLER                                     |              |          | LABOR         | ATO                   | RY A            | ND IN SIT   | TU TES         | Г         |       |         | Field \ | /ane     | (      | Su)           | $\diamond$                       | inta        | ct          |     |
|            | Remo                  | oulded<br>sturbed                   | SS Split spoon<br>ST Thin walled Shelby tub         | e            |          | GS GI<br>C Co | ain si<br>onsolio     | ze an<br>datior | alysis<br>1 |                |           |       |         | Swedi   | sh cone  | ()<br> | Sur)          | <ul> <li>♦</li> <li>□</li> </ul> | rem         | oulde       | əd  |
|            | Lost                  |                                     | PS Piston sampler                                   |              |          | D Ur          | nit wei               | ght (I          | ⟨N/m³)      |                |           |       |         | onou    |          | (      | Cur)          | ▼                                | rem         | oulde       | ed  |
|            | Rock                  | core                                | DC Diamond core barrel                              |              |          | CP Co         | ompre                 | ssive           | strength    | (MPa)          |           |       |         | Dyn. C  | Cone Pe  | en. Te | st            | <u>×</u>                         |             | >           | <   |
|            | 8                     | 0110                                |                                                     |              | ۳<br>:   |               |                       |                 |             | WAT            | ER C      | ΟΝΤΕ  | INT     | ۲۲      | ึง       | DYN    | i. CC<br>(ble | )NE<br>ows                       | PEN<br>/0.3 | √. TE<br>m) | EST |
| а<br>-     | - N<br>- H            |                                     |                                                     | Ч            | SVEL     | D K           | NOI                   | ۲۶ %            | a           | and            | I LIMI    | тѕ (% | 6)      | TOF     | r<br>ES1 |        | 5(            | 0                                | 10          | 0           |     |
| E.         | PTH                   |                                     |                                                     | MBC          | R LE     | NBE           | IDIT                  | OVEF            | or RC       |                |           |       |         | ORA     | and      | UN     |               |                                  | -0.5        |             | AR  |
|            | DE                    | DE                                  | SCRIPTION                                           | SΥ           | АТЕ      | ξŊ            | CON                   | RECO            | N           | ₩ <sub>P</sub> | , w<br>—⊙ |       | ∾∟<br>⊣ | LAB     | IN SI    | S      | TRE           | ING                              | TH (        | kPa         | )   |
|            | 75.41                 | GROUND SUR                          | RFACE                                               |              | 3        |               |                       | <u> </u>        |             | 20             | 40        | 60 E  | 80      |         |          |        | 50            | 0                                | 10          | 0           |     |
| Ē          | 0.00<br>75.26<br>0.15 | Sandy topsoil, t<br>Compact to der  | trace of silt (frozen).                             | 0.0          | <u>م</u> | SS-1          | $\mid$                | 58              | 22          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          |                       | gravel, some si                     | lt.                                                 | 6 . 6        | 5-04-1   |               | X                     |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
|            |                       |                                     |                                                     | a 6          | on 200   | SS-2          |                       | 21              | 41          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          | 73.89<br><b>1.52</b>  | Compact grey s                      | sand, trace of gravel,                              | i je         | 21m c    |               | $\times$              |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| É 2        |                       | cobbles.                            | -                                                   | Q            | v. 75.   | SS-3          |                       | 17              | 25          |                | _         |       |         |         |          |        |               | _                                |             |             |     |
| Ē          | 73.12<br>2.29         | Very dense red                      | ldish brown sand and silt,                          |              | l at ele | SS 4          | $\mathbf{\mathbf{x}}$ | 64              | 55          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē,         |                       | trace of gravel,                    | cobbles.                                            |              | r leve   | 33-4          |                       | 04              | 55          |                |           |       |         |         |          |        |               |                                  |             |             |     |
|            |                       |                                     |                                                     |              | Wate     | SS-5          | X                     | 100             | 50/10cm     |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          | 71.60                 |                                     |                                                     |              |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| <b>⊨</b> 4 | 3.81                  | Very dense red<br>some gravel, co   | ldish brown sandy silt,<br>obbles.                  | 0.0          |          | SS-6          | $\times$              | 71              | 63          |                |           |       |         |         |          |        |               | _                                | -           |             |     |
| Ē          |                       |                                     |                                                     |              |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| 5          |                       |                                     |                                                     |              |          | SS-7          | imes                  | 50              | 55          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          | 70.00                 |                                     | ldich harve couch silf                              | • • •        |          | SS-8          |                       | 0               | 50/8cm      |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          | 5.41                  | some gravel, co                     | bbles and boulders.                                 | . <b>5</b> . |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| 6          |                       |                                     |                                                     | > 🖓 o        |          | SS-9          |                       | 0               | 50/0cm      |                | -         | -     |         |         |          |        |               |                                  |             |             |     |
| Ē          |                       |                                     |                                                     | 0.0<br>.0.0  |          | SS-10         |                       | 0               | 50/0cm      |                |           |       |         |         |          |        |               |                                  |             |             |     |
| - 7        |                       |                                     |                                                     |              |          | SS-11         |                       | 0               | 50/5cm      |                | _         |       |         |         |          |        |               | _                                | _           |             |     |
| Ē          |                       |                                     |                                                     | •<br>• ©•    |          | 33-12         |                       | 0               | 50/0Cm      |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē,         |                       |                                     |                                                     |              |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| 8          |                       |                                     |                                                     | 1 e . e      |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| E          | 66.82<br><b>8.59</b>  | Bedrock: Very                       | poor quality red                                    |              |          | SS-13         |                       | 0               | 50/2cm      |                |           |       |         |         |          |        |               |                                  |             |             |     |
| - 9        |                       | mudstone, lave<br>calcareous san    | rs of grey mudstone and dstone, beds of black       |              |          | DC-14         |                       | 38              | 0           |                |           | +     | -       |         |          |        | $\rightarrow$ | $\dashv$                         | $\dashv$    | -+          |     |
| ŧ          | 65.78                 | shale.                              |                                                     |              |          | DC-15         |                       | 86              | 0           |                |           |       |         |         |          |        |               |                                  |             |             |     |
| E<br>10    | 9.63                  | Poor to excelle<br>layers of grey n | nt quality red mudstone,<br>nudstone and sandstone. |              |          | DC 16         |                       | 100             | 85          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          |                       |                                     |                                                     |              |          | 00-10         |                       | 100             | 00          |                |           |       |         |         |          |        |               |                                  |             |             |     |
| Ē          |                       |                                     |                                                     |              |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| - 11       |                       |                                     |                                                     |              |          | DC-17         |                       | 100             | 34          |                |           |       | -       |         |          |        | $\neg$        | $\dashv$                         | $\neg$      |             |     |
| Ē          |                       |                                     |                                                     |              |          |               |                       |                 |             |                |           |       |         |         |          |        |               |                                  |             |             |     |
| E          |                       |                                     |                                                     |              |          | DC-18         |                       | 100             | 100         |                |           |       |         |         |          |        |               |                                  |             |             |     |

|           |                       |                  |                                             | PR   | OJECT  | : Rabas      | ka Pi      | oject ( | Phase 2  | ), Levis              | , Quet       | bec     |          |         | BORE    | EHOLI      | E: <b>/</b>  | BH-                              | 105           | -05           | _        |
|-----------|-----------------------|------------------|---------------------------------------------|------|--------|--------------|------------|---------|----------|-----------------------|--------------|---------|----------|---------|---------|------------|--------------|----------------------------------|---------------|---------------|----------|
|           |                       | То               | matach                                      | SIT  | Έ:     | West         | Optio      | n Site  |          |                       |              |         |          |         | PAGE    | £: _       | 2            | 0                                |               | 3             | _        |
|           | ✓                     |                  | Tratech                                     | FIL  | E NO : | <u>T-105</u> | )-В        | (60333  | 3-KELL)  | )                     |              |         |          |         | CASI    | NG :       | NW           |                                  |               |               | _        |
|           | •                     |                  |                                             | во   | RING I | DATE :       |            | 2005-   | 03-23    | 1                     | r <b>o</b> _ | 200     | 5-04-    | 05      | CORE    | E BAR      | REL          | : <u>N</u>                       | Q3            |               |          |
|           |                       | BORIN            | G LOG                                       | DA   | TUM :  |              | Geoc       | letic   |          |                       | со           | ORDIN   | ATES     | : 5     | 186770  | .94 N      |              | 261                              | 880.          | 10 E          |          |
| SAN       | IPLE CO               | NDITION          |                                             | 1    |        |              | ATO        | RY AN   | ID IN SI | TU TES                | т            |         |          | Field \ | /ane    | (\$        | Su)          | $\diamond$                       | intac         | ct            |          |
|           | Remo                  | sturbed          | SS Split spoon<br>ST Thin walled Shelby tub | e    |        | C C          | onsoli     | dation  | aiysis   |                       |              |         |          | Swedi   | sh cone | 3)<br>)) e | Sur)<br>Cu)  | <ul> <li>♦</li> <li>□</li> </ul> | remo          | oulde         | ۶d       |
|           | Lost                  |                  | PS Piston sampler                           |      |        | D Ur         | nit we     | ight (k | N/m³)    |                       |              |         |          |         |         | ((         | Cur)         | Ť                                | remo          | oulde         | эd       |
|           | Rock                  | core<br>STR/     | ATIGRAPHY                                   |      |        | CP Co        | SAM        | PLES    | strength | (мРа)                 |              |         |          | Dyn. C  | Cone Pe | en. Te     | st :         | <u>×</u>                         | <u> </u>      | <u>×</u>      | <u>:</u> |
| _         | ٤                     |                  |                                             |      | Е      |              |            |         |          | WAT                   | ER C         | ONTI    | ENT      | ž       | IS      | DYN        | . CO<br>blc) | )NE<br>ows/                      | PEN<br>'0.3r  | i. TE<br>n)   | ST       |
| а<br>-    | NO T                  |                  |                                             | Ч    | IN     | QN RI        | NO         | RY %    | g        | an                    | d LIN        | IITS (% | %)       | TOF     | TES'    |            | 50           | )                                | 10            | 0             |          |
| Ē         | ITATI<br>EPTF         |                  |                                             | 'MB( | R LE   | PE A         | <b>TDI</b> | OVEI    | or R(    |                       |              |         |          | OR      | E       | UN         | DRA          |                                  | DS            | HEA           |          |
| ā         |                       | DE               | SCRIPTION                                   | Ś    | ATE    | Σĭ           | 5<br>C     | RECO    | ž        | <sup>₩</sup>  <br>  ⊢ | P V          | •<br>•  | ""∟<br>⊣ | LAB     | S N     | S          | TRE          | NG                               | Γ <b>Η</b> (Ι | kPa)          | )        |
|           |                       | Eair to availlan | at quality rad mudatana                     |      | 3      |              |            | -       |          | 20                    | 40           | 60      | B0       |         |         |            | 50           | )<br>                            | 10            | 0             |          |
| Ē         |                       | layers of grey r | mudstone and sandstone.                     |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       | Beddings at 50   | -40 Irom borehole axis.                     |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 13      |                       |                  |                                             |      |        | DC-19        |            | 100     | 93       |                       |              |         |          |         |         |            |              |                                  |               |               | _        |
| Ē         |                       |                  |                                             |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 14      |                       |                  |                                             |      |        |              |            | -       |          |                       | _            |         |          |         |         |            |              | $\rightarrow$                    |               |               | _        |
| Ē         |                       |                  |                                             |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
|           |                       |                  |                                             |      |        | DC-20        |            | 98      | 65       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       |                  |                                             |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       |                  |                                             |      |        | DC-21        |            | 100     | 89       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 16      |                       |                  |                                             |      |        |              |            |         |          |                       | -            |         |          |         |         |            |              | +                                |               | -             | _        |
| Ē         |                       |                  |                                             |      |        | DC-22        |            | 100     | 75       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| E 17      |                       |                  |                                             |      |        | 00 22        |            | 100     | 70       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       |                  |                                             |      |        | DC-23        |            | 100     | 66       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       |                  |                                             |      |        | 00 20        |            | 100     | 00       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 18<br>- |                       |                  |                                             |      |        | DC-24        |            | 100     | 54       |                       |              |         |          |         |         |            | -            | +                                | _             | -             | -        |
| Ē         |                       |                  |                                             |      |        |              | _          |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 19      |                       |                  |                                             |      |        |              |            |         |          |                       | _            |         |          |         |         |            |              | _                                | _             | _             |          |
| Ē         |                       |                  |                                             |      |        | DC-25        |            | 100     | 71       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| ŧ.        | 55.42                 |                  |                                             |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 20      | <b>19.99</b><br>54.99 | Very poor qual   | ity red mudstone.                           |      |        | DC-26        |            | 100     | 23       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
|           | 20.42                 | Fair to good qu  | ality red mudstone, layers                  |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| 21        |                       | sandstone, bec   | ds of black shale.                          |      |        | DC-27        |            | 100     | 84       |                       | _            |         |          |         |         |            |              | +                                | $\rightarrow$ | $\rightarrow$ |          |
| Ē         |                       |                  |                                             |      |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē "       |                       |                  |                                             |      |        | DC-28        |            | 100     | 55       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| ŧ "       |                       |                  |                                             |      |        |              | ┝╋╋        |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| Ē         |                       |                  |                                             |      |        | DC-29        |            | 100     | 79       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| - 23      | 52.42<br>22.99        | Poor quality red | d mudstone.                                 |      |        |              | ┝╋╋        |         |          | $\vdash$              |              |         |          |         |         | $\vdash$   | +            | +                                | +             | +             | $\neg$   |
|           |                       | -                |                                             |      |        | DC-30        |            | 70      | 35       |                       |              |         |          |         |         |            |              |                                  |               |               |          |
| E         |                       |                  |                                             | XX   |        |              |            |         |          |                       |              |         |          |         |         |            |              |                                  |               |               |          |

|                  |             |                                 |                                                  | PR  | OJECT       | : Rabas      | ska Pi            | roject  | Phase 2  | ), Levi   | s, Que | ebec |          | В                      | OREH                | OLE :       | BH          | -105          | i-05          |
|------------------|-------------|---------------------------------|--------------------------------------------------|-----|-------------|--------------|-------------------|---------|----------|-----------|--------|------|----------|------------------------|---------------------|-------------|-------------|---------------|---------------|
|                  |             | Т                               | matach                                           | SIT | ſE :        | West         | Optio             | n Site  |          |           |        |      |          | P.                     | AGE :               | 3           | _ (         | )F _          |               |
|                  | ▼           |                                 | rratech                                          | FIL | E NO :      | <u>T-105</u> | 0-B               | (6033   | 33-KELL) | )         |        |      |          | c                      | ASINC               | 3: <u>N</u> | w           |               |               |
|                  | •           |                                 |                                                  | вс  | RING I      | DATE :       |                   | 2005    | 03-23    |           | то     | 2    | 2005-04- | 05 <b>c</b>            | ORE F               | 3ARRF       | 5L :        | NQ3           |               |
|                  | ]           | BORIN                           | G LOG                                            | DA  | TUM :       |              | Geoc              | letic   |          |           | СС     | OORD | INATES   | : 5186                 | 5770.9 <sup>.</sup> | 4 N         | 26          | 1880.         | .10 E         |
| SAM              | PLE CC      | NDITION                         | TYPE OF SAMPLER                                  |     |             | LABOF        | RATO              | RY AI   | ND IN SI | τυ τε:    | ѕт     |      |          | Field Van              | e                   | (Su)        | ) 🔷         | inta          | ct            |
|                  | Rem<br>Indi | oulded                          | SS Split spoon<br>ST Thin walled Shelby tub      | e   |             | GS GI        | rain si<br>onsoli | ze an   | alysis   |           |        |      |          | Swodiab                |                     | (Sur        | ·) 🔶        | rem           | oulded        |
|                  | Lost        | Starbea                         | PS Piston sampler                                |     |             | D Ur         | nit we            | ight (k | N/m³)    |           |        |      |          | Sweuisn                | Solie               | (Cu)<br>(Cu | ) ∨<br>1) ▼ | inta<br>rem   | ct<br>noulded |
|                  | Rock        | core                            | DC Diamond core barrel                           |     |             | CP Co        | ompre             | ssive   | strength | (MPa)     | )      |      |          | Dyn. Con               | e Pen.              | . Test      | × -         |               | ×             |
|                  | ε           | 316                             |                                                  |     | E           | •            |                   | PLES    | )        | wa        | TFR    | CON  | ITENT    | ~                      | o م                 | YN. C       | ONE         |               | N. TEST       |
| E                | - W-        |                                 |                                                  | _   | VEL         | ₽∝           | N                 | ۲ %     | Δ        | ar        | nd Ll  | MITS | 5 (%)    | TOR                    | ESI                 | (1          | 50          | 5/U.31<br>1(  | т)<br>)0      |
| РТН              | ATIC<br>PTH |                                 |                                                  | ABO | L E         | e an<br>Mbe  | DITIO             | VER     | RQ       |           |        |      |          | RA <sup>-</sup><br>and | 2                   |             |             |               |               |
| DEI              | DEI         | DE                              | SCRIPTION                                        | SYN | TER         | NUΝ          | NOX               | СО<br>Ш | IO N     | w         | P      | W    | wL       | ABC                    |                     | UNDE        | RAIN        | ED S<br>STH ( | HEAR<br>(kPa) |
|                  | ш           |                                 |                                                  |     | đΜ          |              |                   | 8       |          | 20        | 40     | 60   | 80       |                        | -                   |             | 50          | 10            | 00            |
| -                |             | Poor quality re<br>mudstone and | d mudstone, layers of grey calcareous sandstone, |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| -                |             | beds of black s                 | shale.                                           |     |             | DC-31        |                   | 100     | 76       |           |        |      |          |                        |                     |             |             |               |               |
| - 25             |             |                                 |                                                  |     | $\boxtimes$ |              |                   | -       |          |           |        | _    |          |                        | -                   | —           | +           |               |               |
| -                | 19 75       |                                 |                                                  |     |             | DC-32        |                   | 100     | 41       |           |        |      |          |                        |                     |             |             |               |               |
| 26               | 25.66       | END OF BORE                     | EHOLE                                            |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 20             |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 27             |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      | _        |                        | ⊢                   | —           | +           | -             |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 28             |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| _ 20             |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| -                |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 29             |             |                                 |                                                  |     |             |              |                   |         |          |           |        | -    |          |                        | -                   |             |             |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 30             |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      | _        |                        | L                   |             |             |               |               |
| Ē                |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| Ē                |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 31             |             |                                 |                                                  |     |             |              |                   |         |          | $\vdash$  |        | +    |          |                        | ⊢                   | +           | +           |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| 32               |             |                                 |                                                  |     |             |              |                   |         |          | $\square$ |        |      |          |                        | L                   |             | $\perp$     |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 33             |             |                                 |                                                  |     |             |              |                   |         |          | $\vdash$  | +      | +    |          |                        | ╞                   |             | +           |               |               |
| -<br>-<br>-<br>- |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| 34               |             |                                 |                                                  |     |             |              |                   |         |          | $\square$ |        |      |          |                        | L                   |             | _           |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
| - 35             |             |                                 |                                                  |     |             |              |                   |         |          | $\vdash$  |        | +    |          |                        | ┢                   | +           | +           |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |
|                  |             |                                 |                                                  |     |             |              |                   |         |          |           |        |      |          |                        |                     |             |             |               |               |

|            |                     |                                    |                                                 | PF           | ROJECT                  | : Rabas      | ska Pr           | oject (           | Phase 2  | !), Levis, | Queb | ес    |       |         | BORE       | HOLE       | : <b>B</b>  | H-10   | 6-05                | _  |
|------------|---------------------|------------------------------------|-------------------------------------------------|--------------|-------------------------|--------------|------------------|-------------------|----------|------------|------|-------|-------|---------|------------|------------|-------------|--------|---------------------|----|
|            |                     | Т                                  | matach                                          | sr           | ГΕ:                     | West         | Optior           | n Site            |          |            |      |       |       |         | PAGE       | :          | 1           | OF     | 3                   |    |
|            |                     |                                    | rratecn                                         | FII          | E NO :                  | <u>T-105</u> | 0-B (            | 60333             | 3-KELL   | )          |      |       |       |         | CASIN      | IG:        | HW          |        |                     |    |
|            | •                   |                                    |                                                 | во           | ORING I                 | DATE :       |                  | 2005-             | 02-10    | т          | o _  | 200   | 5-02- | 22      | CORE       | BAR        | REL :       | HQ     |                     |    |
|            |                     | BORIN                              | G LOG                                           | DA           | TUM :                   |              | Geod             | etic              |          |            | coc  |       | ATES  | : 5     | 186973.    | 53 N       |             | 26196  | 2.58 E              | _  |
| SAN        |                     | ONDITION                           | TYPE OF SAMPLER                                 |              |                         | LABOR        | RATO             | RY AN             | ND IN SI | TU TES     | r    |       |       | Field V | /ane       | (S         | u) 4        |        | act                 | _  |
| $\geq$     | Re                  | moulded                            | SS Split spoon                                  |              |                         | GS G         | rain si          | ze ana            | alysis   |            |      |       |       |         | uno        | (S         | ur)         | ♦ rei  | moulde              | d  |
|            | ∭ Un<br>∎ Lo:       | disturbed                          | ST Thin walled Shelby tub                       | be           |                         |              | onsoli<br>nit we | dation<br>iaht (k | N/m³)    |            |      |       |       | Swedi   | sh cone    | (C         | u)          | ⊘ int  | act                 |    |
|            | Ro                  | ck core                            | DC Diamond core barrel                          |              |                         | CP C         | ompre            | essive            | strength | (MPa)      |      |       |       | Dyn. C  | one Pe     | n. Tes     | ur)<br>t ,× | ▼ rei  | moulde              | d  |
|            |                     | STR                                | ATIGRAPHY                                       | 1            | F                       |              | SAM              | PLES              | 5        | _          |      |       |       |         |            | DYN.       | col         |        | N. TE               | ST |
| Γ          | E _ 8               |                                    |                                                 |              | -<br>                   |              | -                | %                 |          | WAT        | ER C | ONTE  | ENT   | JRΥ     | STS        |            | (blo        | ws/0.3 | 3m)                 | -  |
| Ē          |                     |                                    |                                                 | ğ            | E A                     | AND<br>SER   | 10               | RΥ                | gD       | and        |      | TS (% | %)    | ATC     | ΤĘ         |            | 50          | 1      | 00                  |    |
| EPT        | VAT                 |                                    |                                                 | ΥMB          | R L                     | PE /         | .iq              | OVE               | or R     | w_         | w    | , I   | w.    | 30R     | ar<br>SITU | UNE        | RA          | NED    | SHEA                | R  |
| <b>^</b>   |                     |                                    |                                                 | Ś            | ATE                     | Żź           | ပ္ပ              | RC                | z        |            |      |       | 4     | LAB     | N          | ST         | REN         | IGTH   | (kPa)               |    |
|            | 76.2                | GROUND SUF                         | RFACE                                           |              | 5                       |              |                  | _                 |          | 20         | 40   | 60 8  | BO    |         |            |            | 50          | 1<br>  | 00                  |    |
| Ē          | 0.00                | Topsoil.                           |                                                 |              |                         | SS-1         | $\sim$           | 33                | 2        |            |      |       |       |         |            |            |             |        |                     |    |
| Ē          | 75.34               | L                                  |                                                 |              | 150 0 0                 |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| ₽ 1        | 0.91                | Compact to de                      | nse grey gravelly sand,                         |              | 5-04-                   | SS-2         | $\bowtie$        | 67                | 13       | $\vdash$   | +    | +     | -     |         |            | +          | +           | +      | +                   |    |
| Ē          |                     | some sit.                          |                                                 | 0<br>0       | 0. 200                  | 2            |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| ŧ,         |                     |                                    |                                                 | •            | 4m 0                    | SS-3         | $\frown$         | 29                | 60       | $\odot$    |      |       |       |         |            |            |             |        |                     |    |
| Ē          | 73.9                | 3                                  |                                                 |              | . 75.7                  |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| -          | 73.5                | Compact grey                       | gravelly silt and sand.                         | •• ••        | t elev                  | SS-4         | $\mid$           | 58                | 29       |            |      |       |       |         |            |            |             |        |                     |    |
| - 3        | 2.74                | Stiff to very stif                 | f silt, some clay.                              | K            | evel a                  | 2            |                  |                   |          |            | _    | _     | -     |         |            |            | _           | _      | +                   |    |
| Ē          |                     |                                    |                                                 | K,           | ater                    | SS-5         | $\mid$           | 75                | 28       | 0          | 1    |       |       |         |            |            |             |        |                     |    |
| Ē          |                     |                                    |                                                 | K            | DD DR<br>DD DR<br>DD DR |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| <b>4</b>   |                     |                                    |                                                 | K            |                         | SS-6         | $\boxtimes$      | 75                | 44       |            |      |       |       |         |            |            |             | +      |                     |    |
| Ē          | 71.6                | }                                  | own and grow growelly                           |              |                         | *            |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| - 5        | 4.07                | sand, some sil                     | t, occasional cobbles.                          | 0<br>0 0     |                         | SS-7         | $\bowtie$        | 50                | 68       |            |      | _     |       |         |            |            |             |        | $\square$           |    |
| Ē          |                     |                                    |                                                 | * (<br>*     |                         |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| -          |                     |                                    |                                                 | a .a .       |                         | SS-8         | $\bowtie$        | 67                | 46       | $\odot$    |      |       |       |         |            |            |             |        |                     |    |
| F 6        | 70.1                | Bedrock: Very                      | poor quality grey to dark                       | • 0<br>\//\/ |                         |              |                  |                   |          | $\vdash$   | +    | -     |       |         |            | +          | +           | +      | +                   |    |
| Ē          |                     | grey shale, sm<br>traces of pyrite | all veinlets of calcite, local                  |              |                         | DC-9         |                  | 79                | 0        |            |      |       |       |         |            |            |             |        |                     |    |
| Ė,         |                     |                                    |                                                 |              | D 0 0 0                 |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| ŧ '        |                     |                                    |                                                 |              |                         | DC-10        |                  | 69                | 20       |            |      |       |       |         |            |            |             |        |                     |    |
| ŧ          | 68.5                |                                    | ity grou obele with 40.45%                      |              |                         |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| - 8        | 1.12                | of black shale                     | layers (5-30mm thick),                          |              |                         | DC-11        |                  | 83                | 0        |            | -    | -     | -     |         |            |            |             | _      | +                   |    |
|            |                     | occasional thin<br>undulating laye | i (1-3mm thick) and<br>ers of dark shale, small |              |                         | >            | T                |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
|            |                     | occasional veir                    | nlets of calcite.                               |              |                         | DC-12        |                  | 100               | 12       |            |      |       |       |         |            |            |             |        |                     |    |
| 9          |                     |                                    |                                                 |              |                         | 2            |                  |                   |          |            |      |       |       | 1       |            | $\uparrow$ |             | 1      | $\uparrow \uparrow$ |    |
|            |                     |                                    |                                                 |              |                         | DC-13        |                  | 100               | 0        |            |      |       |       |         |            |            |             |        |                     |    |
| 10         |                     |                                    |                                                 |              |                         |              | ┝╋               |                   |          |            |      |       |       |         |            |            |             |        | +                   |    |
|            |                     |                                    |                                                 |              |                         | DC-14        |                  | 100               | 0        |            |      |       |       |         |            |            |             |        |                     |    |
|            | 65.5<br><b>10.7</b> | Very poor qual                     | ity black shale.                                |              |                         |              |                  |                   |          |            |      |       |       |         |            |            |             |        |                     |    |
| - 11<br> - |                     | Sedimentary b                      | reccia (100-150mm thick)                        |              |                         | DC-15        |                  | 100               | 20       | $\vdash$   | +    | +     |       |         |            | +          |             | +      | +                   |    |
|            |                     |                                    |                                                 |              |                         | DC 40        | ╞╋╋              |                   | ~        |            |      |       |       |         |            |            |             |        |                     |    |
|            |                     |                                    |                                                 | XX           |                         | DC-16        |                  | 93                | U        |            |      |       |       |         |            |            |             |        |                     |    |

|           |                       |                    |                                                         | PR         | OJECT  | : Rabas      | ska Pr            | oject (           | Phase 2  | ), Levis, C    | Quebeo | C       |               | BORE        | HOLI      | E: <b>B</b> | 3H-10         | 6-05         | ;        |
|-----------|-----------------------|--------------------|---------------------------------------------------------|------------|--------|--------------|-------------------|-------------------|----------|----------------|--------|---------|---------------|-------------|-----------|-------------|---------------|--------------|----------|
|           |                       | То                 | matach                                                  | SIT        | Έ:     | West         | Optio             | n Site            |          |                |        |         |               | PAGE        | :: _      | 2           | OF            | 3            |          |
|           | ▼                     |                    | rratech                                                 | FIL        | E NO : | <u>T-105</u> | 0-B (             | (60333            | 3-KELL)  |                |        |         |               | CASI        | NG :      | HW          |               |              |          |
|           | •                     |                    |                                                         | во         | RING   | DATE :       |                   | 2005-             | 02-10    | то             |        | 2005-02 | -22           | CORE        | BAR       | REL :       | HQ            |              |          |
|           | ]                     | BORIN              | G LOG                                                   | DA         | TUM :  |              | Geod              | letic             |          |                | COOF   |         | <b>S</b> : _5 | 186973      | .53 N     |             | 26196         | 2.58 E       | :        |
| SAN       | IPLE CO               | NDITION            | TYPE OF SAMPLER                                         |            |        | LABOF        | RATO              | RY AN             | ID IN SI | TU TEST        |        |         | Field         | Vane        | (5        | Su)         |               | act          |          |
|           | Remo                  | bulded             | SS Split spoon<br>ST Thin walled Shelby tub             | )e         |        | GS G         | rain si<br>onsoli | ize ana<br>dation | alysis   |                |        |         | Swodi         | ich conc    | (8        | Sur)        | ♦ re          | mould        | ed       |
|           | Lost                  | suibeu             | PS Piston sampler                                       |            |        | D U          | nit we            | ight (k           | N/m³)    |                |        |         | Sweu          | ISH CONE    | )) ÷      | Su)<br>Sur) | ∨ int<br>▼ re | act<br>mould | ed       |
|           | Rock                  | core               | DC Diamond core barrel                                  |            |        | CP C         | ompre             | essive            | strength | (MPa)          |        |         | Dyn. (        | Cone Pe     | en. Te    | st ×        | <u> </u>      | >            | ×        |
|           | <b>E</b>              | 518/               | AIIGRAPHY                                               |            | E      | ;            |                   | PLES              | •        | WATE           | RCC    | NTENT   | ≻             | S           | DYN       | . CO        | NE PE         | :N. TI       | EST      |
| ε         | - E                   |                    |                                                         | _          | ÆL     | ₽₩           | N                 | γ %               | ۵        | and            |        | S (%)   | <b>TOR</b>    | EST         |           | (DIO)<br>50 | ws/0.         | sm)<br>100   |          |
| E         | ATIC<br>PTH           |                    |                                                         | <b>IBO</b> | Ē      | E AN         | Ĕ                 | VER               | RQ       |                |        |         | RA            | and<br>'U T |           |             |               | <u> </u>     | L        |
| E         |                       | DE                 | SCRIPTION                                               | SYN        | TER    | NUN          | NO:               | í<br>C<br>C       | N or     | w <sub>P</sub> | W      | wL      | ABC           | LIS N       | UN        | DRA<br>TREI |               | SHE/<br>(kPa | AR<br>I) |
|           | Π                     |                    |                                                         |            | M      | •            |                   | R                 |          | 20             | 40 6   | 50 80   |               | =           |           | 50          | ſ             | 1 <b>00</b>  |          |
| E         |                       | Very poor quali    | ity black shale, 10% of                                 |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
|           |                       | 45° from boreh     | ole axis.                                               |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| - 13      |                       |                    |                                                         |            |        | DC-17        |                   | 75                | 19       |                |        |         |               |             |           |             |               | +            |          |
| Ē         |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| Ē.        | 62 25                 |                    |                                                         |            |        | DC-18        |                   | 90                | 0        |                |        |         |               |             |           |             |               |              |          |
| - 14      | 14.00                 | Very poor quali    | ity grey shale, occasional                              |            |        | DC 10        | Т                 | 100               | 15       |                |        |         |               |             |           |             |               |              |          |
| Ē         |                       | thick), at 45° fro | om borehole axis, veilets                               |            |        | DC-19        |                   | 100               | 15       |                |        |         |               |             |           |             |               |              |          |
| - 15      |                       | or calcite.        |                                                         |            |        | DC-20        |                   | 100               | 0        |                |        |         | _             |             |           |             |               | +            |          |
| _         |                       |                    |                                                         | X          |        | DC-20        |                   | 100               | U        |                |        |         |               |             |           |             |               |              |          |
| _         |                       |                    |                                                         |            |        | DO 04        |                   |                   | 20       |                |        |         |               |             |           |             |               |              |          |
| - 16      | 60.10<br><b>16.15</b> | Layers of poor     | to locally good grey shale,                             |            |        | DC-21        |                   | 90                | 20       |                | -      |         |               |             |           |             | -             |              |          |
| Ē         |                       | with calcareous    | s light grey mudstone,<br>k shale lavers, occasional    |            |        | DC-22        |                   | 100               | 83       |                |        |         |               |             |           |             |               |              |          |
| - 17      |                       | sandstone bed      | s (10-100mm thick), at 45°<br>axis. Veinlets of calcite |            |        | 00 22        |                   |                   | 00       |                | -      |         | _             |             |           |             |               | +            |          |
| Ē         |                       | local trace of p   | yrite.                                                  |            |        | DC-23        |                   | 100               | 24       |                |        |         |               |             |           |             |               |              |          |
| Ē         |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| - 18<br>- |                       |                    |                                                         |            |        | DC-24        |                   | 100               | 31       |                |        |         |               |             |           |             | +             |              |          |
| Ē         |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| - 19      |                       |                    |                                                         |            |        | DC-25        |                   | 100               | 40       |                |        |         | -             |             |           | -+          | —             | +            |          |
| Ē         |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| Ē         |                       |                    |                                                         |            |        | DC-26        |                   | 100               | 88       |                |        |         |               |             |           |             |               |              |          |
| - 20      |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             | +             |              |          |
| Ē         |                       |                    |                                                         |            |        | DC 6=        |                   | 105               | ~~       |                |        |         |               |             |           |             |               |              |          |
| - 21      |                       |                    |                                                         |            |        | DC-27        |                   | 100               | 28       |                |        |         | -             |             | $\square$ | -+          |               | +            |          |
| Ē         | 54.84<br>21 41        |                    |                                                         |            |        |              | ┝┛┫               | 100               | 50       |                |        |         |               |             |           |             |               |              |          |
| Ē         | 21.41                 | calcareous mu      | dstone, with 15-20% of                                  |            |        | 00-20        | ╞╋╋               | 100               | 52       |                |        |         |               |             |           |             |               |              |          |
| - 22<br>- |                       | sandstone bed      | s (3-5mm thick).                                        |            |        |              |                   |                   |          |                |        |         | 1             |             |           |             | +             | +            |          |
| Ē         |                       |                    |                                                         |            |        | DC-29        |                   | 100               | 80       |                |        |         |               |             |           |             |               |              |          |
| 23        |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         | -             |             | $\square$ | $\square$   |               | $\square$    |          |
| ŧ         |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         |               |             |           |             |               |              |          |
| ŧ         |                       |                    |                                                         |            |        | DC-30        |                   | 100               | 77       |                |        |         |               |             |           |             |               |              |          |
| <b></b>   |                       |                    |                                                         |            |        |              |                   |                   |          |                |        |         | 1             |             |           |             |               |              |          |

|            |                | _                |                        | PF  | ROJECT | : Rabas      | ska Pi  | oject   | Phase 2  | ), Levi | is, Qu         | ebec   |                |             | BORE     | HOL        | E:/           | BH-         | 106                   | -05          |
|------------|----------------|------------------|------------------------|-----|--------|--------------|---------|---------|----------|---------|----------------|--------|----------------|-------------|----------|------------|---------------|-------------|-----------------------|--------------|
|            |                |                  | manata alla            | sr  | TE :   | West         | Optio   | n Site  |          |         |                |        |                |             | PAGE     | :: _       | 3             | _ 0         | F_                    | 3            |
|            |                |                  | rratecn                | FIL | E NO : | <u>T-105</u> | 0-B     | (60333  | 33-KELL) | )       |                |        |                |             | CASI     | NG :       | HW            | 1           |                       |              |
|            | •              |                  |                        | во  |        | DATE :       |         | 2005-   | 02-10    |         | то             |        | 2005-02        | -22         | CORE     |            | REL           | +           | łQ                    |              |
|            |                | BORIN            | G LOG                  | DA  | TUM :  |              | Geoc    | letic   |          |         | C              | OOR    | DINATE         | s: _5       | 5186973  | .53 N      | I             | 261         | 962.                  | 58 E         |
| SAM        | IPLE C         | ONDITION         | TYPE OF SAMPLER        |     |        | LABOF        | RATO    | RY AI   | ND IN SI | TU TE   | ST             |        |                | Field       | Vane     | (!         | Su)           | $\diamond$  | inta                  |              |
|            | Rem            | ioulded          | SS Split spoon         | 0   |        | GS G         | rain si | ize an  | alysis   |         |                |        |                |             | •        | (\$        | Sur)          | ٠           | rem                   | oulded       |
|            | Lost           | Isturbed         | PS Piston sampler      | C   |        | D Ur         | nit we  | ight (k | N/m³)    |         |                |        |                | Swed        | isn cone | )) (<br>() | Cur)          | ▽           | intao<br>rem          | :t<br>oulded |
|            | Roc            | k core           | DC Diamond core barrel |     |        | CP Co        | ompre   | essive  | strength | (MPa)   | )              |        |                | Dyn. (      | Cone Pe  | en. Te     | st            | <u>×</u>    |                       | <u>×</u>     |
|            | ۶ı             | STR/             | ATIGRAPHY              |     | ε      |              | SAM     | PLES    | 5        |         | TED            | ~~~    |                |             | ~        | DYN        | i. CC         | )NE         | PEN                   | I. TEST      |
| E          | žε             |                  |                        |     | EL     |              | z       | ۲ %     | 0        | ar      | nd Ll          | MITS   | NIENI<br>S (%) | OR)         | ESTS     |            | (blo<br>5(    | ows<br>0    | / <b>0.3r</b> /<br>10 | n)<br>0      |
| TH         | ET .           |                  | BOL                    | ГЦ  | E AN   | DITIC        | /ER     | RQI     |          |         |                | - (/-) | RAT            | and<br>U TE | 1        |            |               |             |                       |              |
| DEP        | DEP            | DE               | SCRIPTION              | SYM | TER    | YPE<br>NUN   | OND     | co      | N or     | v       | V <sub>P</sub> | w      | wL             | ABO         |          | UN<br>S    |               | AINE<br>ENG | :DS<br>TH(            | HEAR<br>kPa) |
|            | Щ              |                  |                        |     | .WM    | F -          | U<br>U  | RE      |          | 20      | 0 40           |        |                | L 1         | Z        |            | 50            | 0           | 10                    | 0            |
| -          |                | Layers of fair q | uality grey shale.     |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 25       |                |                  |                        |     |        | DC-31        |         | 100     | 57       |         |                |        |                | _           |          |            |               |             | _                     |              |
|            | 51.03<br>25.22 | END OF BORE      | EHOLE                  |     |        |              |         | -       |          |         |                |        |                |             |          |            |               |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 26       |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            | -             |             |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 27       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | _           |          |            | $\square$     |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 28       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | -           |          |            | +             |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 29       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | _           |          |            | $\square$     | $\square$   | $\square$             |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 30       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | -           |          |            | $\rightarrow$ |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 31       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | _           |          |            | $\square$     | _           | $\square$             |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| -          |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 32       |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            | $\neg$        |             |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| 33         |                |                  |                        |     |        |              |         |         |          |         |                |        |                | _           |          | $\square$  | $\square$     | $\square$   |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 34       |                |                  |                        |     |        |              |         |         |          |         | +              | +      |                | -           |          | $\vdash$   | +             | $\dashv$    | $\neg$                |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| - 35       |                |                  |                        |     |        |              |         |         |          |         |                |        |                | _           |          | $\square$  | $\downarrow$  | $\square$   |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
|            |                |                  |                        |     |        |              |         |         |          |         |                |        |                |             |          |            |               |             |                       |              |
| · <b>E</b> |                | L                |                        |     | I      |              |         | L       |          |         |                |        |                |             |          | لمسط       |               |             |                       |              |

|            |                      |                        |                             | PR               | OJECT                | : Rabas      | ska Pr             | oject   | (Phase 2)   | ), Lev  | is, Qı         | uebec        | 5                |          |         | BORE    | HOL              | .E : _ | BH-         | .107        | -05        | _   |
|------------|----------------------|------------------------|-----------------------------|------------------|----------------------|--------------|--------------------|---------|-------------|---------|----------------|--------------|------------------|----------|---------|---------|------------------|--------|-------------|-------------|------------|-----|
|            |                      | Т                      | matach                      | SIT              | E :                  | West         | Optior             | n Site  |             |         |                |              |                  |          |         | PAGE    | £: _             | 1      | _ 0         | F_          | 3          | _   |
|            |                      |                        | rratech                     | FIL              | E NO :               | <u>T-105</u> | 0-B (              | 6033    | 33-KELL)    |         |                |              |                  |          |         | CASI    | NG :             | HW     | 1           |             |            |     |
|            | •                    |                        |                             | вс               | RING                 | DATE :       |                    | 2005    | -02-08      |         | то             |              | 2005             | -02-1    | 16      | CORE    | E BAF            | REL    | .: ١        | NQ3         |            |     |
|            |                      | BORIN                  | G LOG                       | DA               | TUM :                |              | Geod               | etic    |             |         | c              | :00F         |                  | TES      | : _5    | 186941  | .02 1            | ١      | 26          | 1948.       | .72 E      | :   |
| SAN        | IPLE C               | ONDITION               | TYPE OF SAMPLER             |                  |                      | LABOF        | RATO               | RY A    | ND IN SIT   | TU TE   | ST             |              |                  |          | Field \ | /ane    | (                | Su)    | $\diamond$  | inta        | ct         |     |
|            | Rer                  | moulded                | SS Split spoon              |                  |                      | GS G         | rain si            | ze an   | alysis      |         |                |              |                  |          |         |         | (                | Sur)   | •           | rem         | ould       | ed  |
|            | Los                  | t                      | PS Piston sampler           | e                |                      |              | nit wei            | ight (k | ı<br>xN/m³) |         |                |              |                  |          | Swedi   | sh cone | ) (<br>(         | Cu)    | $\nabla$    | inta<br>rem | ct<br>ould | ed  |
|            | Ro                   | ck core                | DC Diamond core barrel      |                  |                      | CP C         | ompre              | ssive   | strength    | (MPa    | )              |              |                  |          | Dyn. (  | Cone Pe | en. Te           | est.   | × -         |             | >          | ×   |
|            | C                    | STR                    | ATIGRAPHY                   |                  | ε                    |              | SAMI               | PLES    | 6           |         |                |              |                  |          |         |         | DYN              | I. CC  | ONE         | PE          | N. TI      | EST |
| ε          |                      |                        |                             |                  | Ľ                    | <u>م</u> م   | Z                  | ر %     | •           | WA      | AIEF<br>nd I   | K CO<br>IMIT | NIE<br>S (%      | N I<br>) | ORY     | STS     |                  | (ble   | ows         | /0.3i       | m)         |     |
| Ξ          | I H                  |                        |                             | BOL              | ГĘ                   | AN           | ITIO               | ER)     | RQL         | u       |                |              | 0(/0             | ,        | RAT     |         | 1                |        |             |             |            |     |
| ШШ         | EVA<br>DEP           | DE                     | SCRIPTION                   | SYM              | <b>LER</b>           | YPE          |                    | SOV     | l or        | v       | v <sub>P</sub> | w            | v                | ′L       | BOI     | SIT     | UN               |        | AINE<br>=NG | ED S        | HE/        | AR  |
|            |                      |                        |                             | ••               | MA                   | ⊢ <b>~</b>   | Ŭ                  | R       | ~           | 2       |                |              |                  | )        | Ľ       | Z       |                  | 5      | 0           | 10          | )0         | ,   |
|            | 75.79<br><b>0.00</b> | GROUND SUF<br>Topsoil. | RFACE                       | $\sum_{i=1}^{n}$ |                      |              | $\times$           |         |             |         |                |              | $\left  \right $ |          |         |         |                  |        |             |             | -          |     |
| Ē          | 75.33<br><b>0.46</b> | Compact brow           | n and reddish sand some     | <br>R( 1         | 04-15                | SS-1         |                    | 25      | 2/46cm      |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ė,         |                      | silt and gravel.       |                             |                  | 2005-                |              | $\bigtriangledown$ |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| ŧ'         | 74.07                |                        |                             | 0 0              | 0                    | SS-2         | $\leq$             | 67      | 13          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          | 1.52                 | Loose to comp          | act grey clayey silt, trace |                  | 75.72                |              | $\ge$              | 50      | -           |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| ÷ 2        |                      | or sand and gra        | avei.                       |                  | elev.                | 55-3         |                    | 50      | /           |         |                |              |                  |          |         |         |                  |        |             |             |            | _   |
| Ē          |                      |                        |                             |                  | vel at               | SS 4         | $\boxtimes$        | E0      | 24          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē,         |                      |                        |                             |                  | ter le               | 33-4         |                    | 50      | 24          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             | Ŷ                | Ma                   | SS-5         | $\boxtimes$        | 67      | 21          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          | 72.13                | O arrest to us         |                             |                  | $\Im [c]$            | 000          |                    | 01      | 21          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 4        | 3.00                 | silty and grave        | lly sand.                   | о<br>а. ь        |                      | SS-6         | $\bigtriangledown$ | 75      | 55          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             |                  |                      |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē.         |                      |                        |                             | P                |                      | SS-7         | $\boxtimes$        | 67      | 48          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| 5          |                      |                        |                             | 0                |                      |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             | ø                |                      | SS-8         | $\bowtie$          | 67      | 21          | $\odot$ |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 6        |                      |                        |                             | 0.0              |                      |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             | \$• • •          |                      | SS-9         | $\frown$           | 55      | 50/8cm      |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          | 68 78                |                        |                             | .0<br>           |                      | SS 10        |                    | 0       | 100/12om    |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 7<br>- 7 | 7.01                 | Bedrock: Succ          | ession of very poor quality |                  |                      | DC-11        |                    | 58      | 0           |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      | at 45° from bor        | rehole axis.                |                  |                      | DC-12        |                    | 65      | 0           |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 8        |                      |                        |                             |                  |                      | DC-13        |                    | 100     | 0           |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             |                  |                      | DC-14        |                    | 96      | 30          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      |                        |                             |                  |                      | DC-15        |                    | 100     | 48          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 9        | <u> </u>             | Layers of poor         | quality grey and dark grey  |                  |                      | 50.40        |                    |         | 0.5         |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| Ē          |                      | thick) at 45° fro      | om borehole axis,           |                  |                      | DC-16        |                    | 100     | 25          |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| E 10       |                      | occasional veir        | nlets of calcite.           |                  | 38                   |              |                    |         | _           |         |                |              |                  |          |         |         |                  |        |             | $\vdash$    |            |     |
| Ē          |                      |                        |                             |                  |                      | DC-17        |                    | 100     | 0           |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| ŧ          |                      |                        |                             |                  | $\exists \mathbb{R}$ |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| - 11<br>   |                      |                        |                             |                  | 38                   | DC-18        |                    | 94      | 46          |         |                |              |                  |          |         |         | $\left  \right $ |        |             |             |            |     |
| E          |                      |                        |                             |                  |                      |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |
| E          |                      |                        |                             | N.               | 2110                 |              |                    |         |             |         |                |              |                  |          |         |         |                  |        |             |             |            |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       |                                      |                                                        | PF          | ROJEC         | T: Raba        | ska Pr            | oject (           | Phase 2    | ), Levis       | , Quel     | bec                        |         |                 | _ во     | REHO        | LE :          | BH                    | -107              | '-0 <u>5</u>  |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------|--------------------------------------|--------------------------------------------------------|-------------|---------------|----------------|-------------------|-------------------|------------|----------------|------------|----------------------------|---------|-----------------|----------|-------------|---------------|-----------------------|-------------------|---------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       | То                                   | matach                                                 | SI          | TE :          | West           | Optio             | n Site            |            |                |            |                            |         |                 | _ PA     | GE:         | 2             | _ C                   | )F _              | 3             | _  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ◄                     |                                      | rratech                                                | FI          | LE NO         | : <u>T-105</u> | 0-В (             | (60333            | 33-KELL)   |                |            |                            |         |                 | _ CA     | SING        | : <u>HV</u>   | v                     |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | •                     |                                      |                                                        | в           | ORING         | DATE :         |                   | 2005-             | 02-08      | 1              | <b>o</b> _ | 2                          | 2005-0  | 2-16            | _ co     | RE BA       | RRE           | L: ļ                  | NQ3               |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | ]                     | BORIN                                | G LOG                                                  | DA          | атим          | :              | Geod              | letic             |            |                | со         | ORE                        | DINATI  | S :             | 51869    | 41.02       | N             | 26                    | 1948.             | .72 E         |    |
| SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M  | PLE CO                | NDITION                              | TYPE OF SAMPLER                                        |             |               | LABO           | RATO              | RY AN             | ND IN SI   | TU TES         | т          |                            |         | Fiel            | d Vane   |             | (Su)          | $\diamond$            | inta              | ct            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <  | Remo                  | oulded                               | SS Split spoon                                         |             |               | GS G           | rain si<br>onsoli | ize ana<br>dation | alysis     |                |            |                            |         | 0               |          |             | (Sur)         | •                     | rem               | ioulde        | эd |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | Lost                  | sturbeu                              | PS Piston sampler                                      |             |               |                | nit we            | ight (k           | N/m³)      |                |            |                            |         | Swe             | eaisn co | ne          | (Cu)<br>(Cur) | $\nabla$              | inta<br>rem       | .ct<br>1ould€ | ed |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ  | Rock                  | core                                 | DC Diamond core barrel                                 |             | r –           | CP C           | ompre             | essive            | strength   | (MPa)          |            |                            |         | Dyn             | . Cone   | Pen. T      | Test          | × -                   |                   | ×             | :  |
| PTH - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | ATION - m<br>PTH - m  | SIRA                                 | MBOL                                                   | s LEVEL - m | E AND<br>MBER |                | VERY %            | r RQD             | WAT<br>and | ER (<br>d LIN  |            | ITEN <sup>-</sup><br>6 (%) | DRATORY | and<br>TU TESTS | DY       | N. C<br>(bl | ONE<br>lows   | : PEN<br>;/0.3i<br>10 | N. TE<br>m)<br>)0 | ST            |    |
| 造                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  |                       | DE                                   | SCRIPTION                                              | SΥΙ         | ATE!          | T<br>₹P        | CON               | ECO               | o<br>N     | w <sub>i</sub> | P V        | N<br>                      |         | AB(             | S N      |             | STR           | ENG                   | iTH (             | (kPa)         | )  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       |                                      |                                                        |             | Ś             |                |                   | 8                 |            | 20             | 40         | 60                         | 80      |                 |          |             | 5             | 50<br>                | 10                | 0             |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       | Layers of poor shale, 5% of sa       | quality grey and dark grey<br>Indstone layers (5-50mm  |             |               | DC-19          |                   | 65                | 12         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       | thick) at 45° fro<br>occasional vein | m borehole axis,<br>llets of calcite.                  |             |               | ]              |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 |                       |                                      |                                                        |             |               |                |                   | 59                | 31         |                |            | +                          |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               | DC-20          |                   | 50                | 51         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14 |                       |                                      |                                                        |             |               | DC-21          |                   | 100               | 0          |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               | DC-22          |                   | 100               | 0          |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| E 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5  |                       |                                      |                                                        |             |               | DC-23          |                   | 92                | 22         |                |            | +                          |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 | 59.89<br><b>15.90</b> | Lavers of verv                       | poor to poor quality grey                              |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                       | shale and light                      | grey calcareous                                        |             |               | DC-24          |                   | 100               | 15         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       | veinlets of calci                    | ite at 16.7m. Sedimentary                              |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 |                       |                                      | 7.0 to 17.5mj.                                         |             |               |                |                   |                   |            |                |            | +                          |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               | DC-25          |                   | 92                | 48         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 56.97                 |                                      |                                                        |             |               | DC-26          |                   | 100               | 15         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9  | 18.82                 | Layers of very<br>shale, 25% of c    | poor to poor quality grey<br>lark shale (1-20mm thick) |             |               |                |                   | 100               | 58         |                |            | +                          |         |                 |          |             | +             |                       |                   |               |    |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                       | at 40° from bor                      | ehole axis.                                            |             |               | DC-27          |                   | 100               | 56         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| office in the second se |    |                       |                                      |                                                        |             |               | DC-28          |                   | 100               | 12         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| 23 08:5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                       |                                      |                                                        |             |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 |                       |                                      |                                                        |             |               | DC-29          |                   | 100               | 18         |                |            | +                          |         |                 |          |             | +             | $\vdash$              |                   |               |    |
| TTED: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 54.15                 |                                      |                                                        |             |               | DC-30          |                   | 98                | 0          |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22 | 21.64                 | Layers of poor shale, with 25%       | quality grey and black<br>of sandstone layers          |             |               | DC-31          |                   | 96                | 46         |                |            |                            |         | _               |          |             | <u> </u>      |                       |                   | ⊢             |    |
| -BH.st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                       | (5-50mm thick)<br>axis, local trace  | , at 40° from borehole<br>e of pyrite.                 |             |               |                | ┢╋╋               |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| -1050-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                       |                                      |                                                        |             |               | DC-32          |                   | 76                | 22         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| AStyle T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23 |                       |                                      |                                                        |             |               | 1              |                   |                   |            |                |            | +                          |         |                 |          |             | +             | $\vdash$              |                   |               |    |
| sotec74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |                       |                                      |                                                        |             |               | DC-33          |                   | 100               | 33         |                |            |                            |         |                 |          |             |               |                       |                   |               |    |
| V:/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                       |                                      |                                                        | XX          |               |                |                   |                   |            |                |            |                            |         |                 |          |             |               |                       |                   |               |    |

|      |            | _                     |                         | PR  | ROJECT  | : Rabas      | ska Pr   | oject   | Phase 2  | ), Levis | s, Que | ebec    |          |          | BORE   | HOLI                         | E: /          | BH-           | 107          | -05          |         |
|------|------------|-----------------------|-------------------------|-----|---------|--------------|----------|---------|----------|----------|--------|---------|----------|----------|--------|------------------------------|---------------|---------------|--------------|--------------|---------|
|      |            | Т                     | manata alla             | sn  | TE :    | West         | Optio    | n Site  |          |          |        |         |          |          | PAGE   | : _                          | 3             | _ 0           | F _          | 3            |         |
|      |            | jj ie                 | rratech                 | FIL | E NO :  | <u>T-105</u> | 0-B (    | (6033:  | 33-KELL) |          |        |         |          |          | CASIN  | NG :                         | HW            |               |              |              | _       |
|      | •          |                       |                         | вс  |         | DATE :       |          | 2005    | 02-08    |          | то     | 2       | 2005-02- | 16       | CORE   | BAR                          |               | .: N          | 1Q3          |              |         |
|      |            | BORIN                 | G LOG                   | DA  | TUM :   |              | Geod     | letic   |          |          | СС     | DORD    | INATES   | : 51     | 86941  | .02 N                        | I             | 261           | 1948.        | 72 E         |         |
| SAN  | IPLE CO    | ONDITION              | TYPE OF SAMPLER         |     |         | LABOF        | RATO     | RY AI   | ND IN SI |          | ST     |         |          | Field Va | ane    | (5                           | Su)           | $\diamond$    | inta         | ct           |         |
|      | Rem        | oulded                | SS Split spoon          |     |         | GS G         | rain si  | ize an  | alysis   |          |        |         |          |          |        | (5                           | Sur)          | ٠             | rem          | oulde        | эd      |
|      | Lost       | sturbed               | PS Piston sampler       | e   |         | D Ur         | nit we   | ight (k | N/m³)    |          |        |         |          | Swedis   | n cone | · (0                         | Cur)          | $\nabla$      | intao<br>rem | ct<br>oulde  | he      |
|      | Rocl       | < core                | DC Diamond core barrel  |     | -       | CP Co        | ompre    | essive  | strength | (MPa)    |        |         |          | Dyn. Co  | one Pe | n. Te                        | st            | × - ·         |              | ×            | ,u<br>( |
|      |            | STR                   | ATIGRAPHY               |     | ε       |              | SAM      | PLES    | 6        |          |        |         |          |          |        | DYN                          | . CC          | )NE           | PEN          | <b>1.</b> ТЕ | ST      |
| ε    | Ξ<br>- Ε   |                       |                         | -   | н.<br>Ш | 0.4          | z        | %       | -        | WA       |        |         |          | оку      | STS    |                              | (blo          | ows/          | /0.3r        | n)           |         |
| Ξ    | Θ.Η        |                       |                         | BOL |         | ANI          | E        | ERY     | RQD      | a        |        | WII 1 3 | ( /0)    | RAT      | Ë      |                              | 50            | ,             |              | <u> </u>     |         |
| DEP  | EVA<br>DEP | DE                    | SCRIPTION               | УM  | ËR      | YPE          | <b>D</b> | SOV     | lor      | w        | Р      | w       | wL       | BOF      | SITI   | UN                           |               |               | ED S         |              | ١R      |
|      | -⊒         |                       |                         |     | MAI     | ⊢ <u>~</u>   | ŭ        | RE      | 2        | <br>20   | ) 40   | ⊙<br>60 |          | LA       | Z      | J                            | 50            | )             | 10           | KF a)        | '       |
|      |            | Layers of fair o      | uality calcareous       | XX  |         |              |          |         |          |          |        | ++      | ++++     |          |        |                              | $\dashv$      |               | $\neg$       | -            |         |
| Ē    |            | mudstone and calcite. | dark shale, veinlets of |     | R       | 50.04        |          | 100     | -7       |          |        |         |          |          |        |                              |               |               |              |              |         |
| Ē    | 50.77      |                       |                         |     |         | DC-34        |          | 100     | 57       |          |        |         |          |          |        |                              |               |               |              |              |         |
| F 29 | 25.02      | END OF BORE           | EHOLE                   |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 26 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        | $\vdash$                     | _             |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 27 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        |                              |               |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 28 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        | $\vdash$                     | $\rightarrow$ | $\rightarrow$ |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 29 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        |                              | -             |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 30 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        | ┝──┼                         | $\rightarrow$ | _             |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 31 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        |                              | -             |               |              |              |         |
| Ē    |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 32 |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        | $\vdash$                     | $\downarrow$  | $\square$     | $\square$    | $\square$    |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 33 |            |                       |                         |     |         |              |          |         |          |          |        | +       |          | -        |        |                              | +             | -             | $\neg$       | +            |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 34 |            |                       |                         |     |         |              |          |         |          |          |        |         |          | -        |        | $\mid \downarrow \downarrow$ | $\square$     |               |              | $\square$    |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
| - 35 |            |                       |                         |     |         |              |          |         |          | $\vdash$ |        | +       |          | -        |        |                              | +             | +             | $\dashv$     | +            |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |
|      |            |                       |                         |     |         |              |          |         |          |          |        |         |          |          |        |                              |               |               |              |              |         |

|           |                      |                                      |                                                        | PR                   | OJECT                | : Rabas        | ska Pr                 | oject     | (Phase 2)            | ), Levis | s, Qu | iebec | :      |      |         | BORE    | HOL         | E: /       | BH-                | 108    | -05         | - |
|-----------|----------------------|--------------------------------------|--------------------------------------------------------|----------------------|----------------------|----------------|------------------------|-----------|----------------------|----------|-------|-------|--------|------|---------|---------|-------------|------------|--------------------|--------|-------------|---|
|           |                      |                                      | matach                                                 | SIT                  | E:                   | West           | Optior                 | n Site    |                      |          |       |       |        |      |         | PAGE    | :: _        | 1          | _ 0                | F _    | 7           | _ |
|           | ▼                    |                                      | rratecn                                                | FIL                  | E NO :               | <u>T-105</u>   | 0-B (                  | 6033      | 33-KELL)             |          |       |       |        |      |         | CASI    | NG :        | NW         | 1                  |        |             | _ |
|           | •                    |                                      |                                                        | вс                   | RING                 | DATE :         |                        | 2005      | -02-16               |          | то    |       | 2005-0 | )2-2 | 5       | CORE    | E BAF       | REL        | ١                  | 1Q3    |             |   |
|           | ]                    | BORIN                                | G LOG                                                  | DA                   | TUM :                |                | Geod                   | etic      |                      |          | с     | OOR   |        | ES : | 51      | 86938   | .62 N       | 1          | 261                | 1994.  | 91 E        | - |
| SAN       | IPLE CO              | NDITION                              | TYPE OF SAMPLER                                        |                      |                      | LABOR          | RATO                   | RY A      | ND IN SIT            |          | ST    |       |        |      | Field V | 'ane    | (           | Su)        | $\wedge$           | inta   | ct          | - |
| $\geq$    | Rem                  | oulded                               | SS Split spoon                                         |                      |                      | GS G           | rain si                | ze an     | alysis               |          | -     |       |        |      |         |         | (           | Sur)       | <b>♦</b>           | rem    | oulded      |   |
|           | Undis                | sturbed                              | ST Thin walled Shelby tub                              | be                   |                      |                | onsolio<br>nit wei     | datior    | N/m³)                |          |       |       |        |      | Swedis  | sh cone | ; ((        | Cu)        | $\bigtriangledown$ | inta   | ct          |   |
|           | Rock                 | core                                 | DC Diamond core barrel                                 |                      |                      | CP C           | ompre                  | ssive     | strength             | (MPa)    |       |       |        |      | Dyn. C  | one Pe  | )<br>n. Te؛ | cur)<br>st | ▼<br>×             | rem    | oulded<br>× |   |
|           |                      | STR                                  | ATIGRAPHY                                              |                      | F                    | :              | SAMI                   | PLE       | 3                    |          |       |       |        |      |         |         |             |            | )NF                | PEN    |             | т |
| _<br>ح    | ۳<br>۲               |                                      |                                                        |                      |                      |                | _                      | %         |                      | WA       | TER   | co    | NTEN   | т    | RY      | ŝTS     |             | (bl        | ows                | /0.3r  | n)          |   |
| L T       | NOI<br>H - H         |                                      |                                                        | Ъ                    | EVE                  | AND<br>ER      | LION                   | RΥ        | g                    | an       | nd Ll | іміт  | S (%)  |      | ATO     | ΞĔ      |             | 5          | )                  | 10     | 0           |   |
| EPT       | VAT<br>EPT           | DE                                   | SCRIPTION                                              | /MB                  | R L                  | PE /<br>JMB    | IDN                    | OVE       | or R                 | w        |       | w     | w      |      | NOR.    | IT U    | UN          | IDR/       | AINE               | ED S   | HEAR        | 2 |
|           | D                    | DE                                   | SCRIPTION                                              | Ś                    | ATE                  | ∑ ĭ            | CO                     | SEC       | z                    |          | Р     |       | —      | -    | LAE     | N<br>N  | S           | TRE        | :NG                | TH (   | kPa)        |   |
|           | 76.19                | GROUND SUR                           | RFACE                                                  |                      | 3                    |                |                        |           |                      | 20       | ) 4(  | 0 6   | 0 80   |      |         |         | L_          | 5          | )<br>              | 10     | 0           |   |
| Ē         | 0.00                 | Peat and topso                       | il.                                                    |                      |                      | SS-1           | $\ge$                  | 62        | 1/15cm               |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         | 75.58<br><b>0.61</b> | Compact browr                        | n sand, some silt and                                  | $\tilde{\mathbf{G}}$ | 4-15                 |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 1       |                      | gravel.                              |                                                        | <b>a</b>             | 005-0                | SS-2           | $\ge$                  | 67        | 12                   |          |       |       |        |      |         |         |             |            | $\rightarrow$      | -      |             |   |
| -         |                      |                                      |                                                        |                      | 0                    |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         |                      |                                      |                                                        | ¢                    | .86m                 | SS-3           | $\left  \right\rangle$ | 71        | 16                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 2       |                      |                                      |                                                        | ۵<br>٥               | ev. 75               |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         | 73.75<br><b>2.44</b> | Compact grey s                       | silt, traces of sand and                               |                      | atel                 | SS-4           |                        | 12        | 17                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 3       |                      | clay, occasiona                      | al gravel.                                             |                      | level                |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
|           |                      |                                      |                                                        | ۰.                   | Water                | SS-5           | $\mathbb{N}$           | 75        | 22                   | •        | 4     |       |        |      |         |         |             |            |                    |        |             |   |
| -         |                      |                                      |                                                        | .9                   | 38                   |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 4       |                      |                                      |                                                        |                      |                      | SS-6           |                        | 8         | 29                   |          |       |       |        | _    |         |         |             |            | $\rightarrow$      | —      |             |   |
| -         |                      |                                      |                                                        |                      |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| Ē.        | 71.31                |                                      |                                                        |                      |                      | SS-7           | $\ge$                  | 72        | 82                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 5       | 4.00                 | Dense to very of<br>and gravel, to g | dense grey sand, some silt<br>gravel and sand trace of | Ø 0                  |                      | SS-8           | $\times$               | 80        | 25/13cm              |          |       |       |        |      |         |         |             |            |                    |        |             |   |
|           |                      | SIII.                                |                                                        | .0                   |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 6       |                      |                                      |                                                        | .0 . 0<br>. 6        |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            | $ \rightarrow $    |        |             |   |
| Ē         |                      |                                      |                                                        | 00                   |                      | SS-9           | $\bigtriangleup$       | 89        | 86                   | $\odot$  |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         |                      |                                      |                                                        | 0                    |                      | SS-10          | $\frown$               | 82        | 60/13cm              |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 7       | 68 88                |                                      |                                                        | 0<br>0               |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            | -                  |        |             |   |
| -         | 7.32                 | Bedrock: Layer                       | s of fair to poor quality                              |                      |                      | SS-11<br>DC-12 | $\geq$                 | 80<br>100 | 100/13cm<br><i>0</i> |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| È e       |                      | grey mudstone                        | , with 10-15% undulated                                |                      |                      | 20.2           |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| Ē         |                      | Beddings at 40                       | ° from borehole axis.                                  |                      |                      | DC-13          |                        | 100       | 49                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         |                      | pyrite. Slikensio                    | des from 11.7 to 12.0m                                 |                      |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 9       |                      | depth.                               |                                                        |                      |                      | DC-14          |                        | 100       | 13                   |          |       |       |        |      |         |         |             |            | _                  |        |             |   |
| Ē         |                      |                                      |                                                        |                      |                      | 00-14          |                        | 100       | 15                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| Ē         |                      |                                      |                                                        |                      | $\exists \mathbb{R}$ |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| - 10<br>- |                      |                                      |                                                        |                      | $\langle   \rangle$  | DC-15          |                        | 90        | 59                   |          |       |       |        |      |         |         |             |            | $\dashv$           | $\neg$ |             | _ |
| -         |                      |                                      |                                                        |                      |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| E 11      |                      |                                      |                                                        |                      | $\exists \mathbb{R}$ |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| ŧ ''      |                      |                                      |                                                        |                      | $\Im \mathbb{R}$     | DC-16          |                        | 91        | 26                   |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| ŧ         |                      |                                      |                                                        |                      |                      |                |                        |           |                      |          |       |       |        |      |         |         |             |            |                    |        |             |   |
| -         |                      |                                      |                                                        | XX                   | 2110                 | DC-17          |                        | 100       | 0                    |          |       |       |        |      |         |         |             |            |                    |        |             |   |

|            |            |                                      |                                                        | PR  | OJECT                             | : Rabas      | ska Pr  | oject (  | Phase 2  | ), Levis | s, Que         | ebec    |         |         | BORE    | HOL    | E: /        | BH-                | 108          | -05         |     |
|------------|------------|--------------------------------------|--------------------------------------------------------|-----|-----------------------------------|--------------|---------|----------|----------|----------|----------------|---------|---------|---------|---------|--------|-------------|--------------------|--------------|-------------|-----|
|            |            | Т                                    | matach                                                 | SIT | Έ:                                | West         | Optio   | n Site   |          |          |                |         |         |         | PAGE    | : _    | 2           | _ 0                | F_           | 7           | _   |
|            | ▼          |                                      | rratech                                                | FIL | E NO :                            | <u>T-105</u> | 0-B (   | 60333    | 3-KELL)  | )        |                |         |         |         | CASI    | NG :   | NW          |                    |              |             |     |
|            | •          |                                      |                                                        | во  | RING D                            | OATE :       |         | 2005-    | 02-16    |          | то             | 20      | 005-02- | 25      | CORE    | EBAF   | REL         | .: N               | IQ3          |             |     |
|            |            | BORIN                                | G LOG                                                  | DA  | TUM :                             |              | Geod    | etic     |          |          | СС             | DORD    | NATES   | : 5     | 186938  | .62 N  | I           | 261                | 994.         | 91 E        |     |
| SAN        | IPLE CO    | NDITION                              | TYPE OF SAMPLER                                        |     |                                   | LABOF        | RATO    | RY AN    | ID IN SI | TU TES   | ST             |         |         | Field \ | /ane    | (      | Su)         | $\diamond$         | inta         | ct          |     |
|            | Remo       | bulded                               | SS Split spoon                                         |     |                                   | GS G         | rain si | ze ana   | alysis   |          |                |         |         |         |         | (      | Sur)        | ٠                  | rem          | oulde       | ed  |
|            | Lost       | luibea                               | PS Piston sampler                                      |     |                                   | D U          | nit we  | ight (k  | N/m³)    |          |                |         |         | Swedi   | sh cone | e (    | Cu)<br>Cur) | ▽                  | intao<br>rem | ct<br>oulde | ed  |
|            | Rock       | core                                 | DC Diamond core barrel                                 |     |                                   | CP C         | ompre   | essive   | strength | (MPa)    |                |         |         | Dyn. C  | Cone Pe | en. Te | st          | <u>×</u>           |              | <u>×</u>    | <   |
|            |            | STR                                  | ATIGRAPHY                                              |     | ε                                 | :            | SAM     | PLES     | ;        |          |                |         |         |         |         | DYN    | I. CC       | )NE                | PEN          | N. TE       | EST |
| ε          | ΪE         |                                      |                                                        |     | ĒĽ.                               | ۵~           | z       | % /      | •        | WA<br>an | IER<br>Id I II |         | (%)     | OR      | STS     |        | (blo        | ว <b>พร</b> /<br>า | 0.3r         | n)          |     |
| Ē          | TIO<br>TH- |                                      |                                                        | BOL | LEV                               | BEF          | DE      | 'ER)     | RQL      |          |                |         | (70)    | RAT     |         |        |             |                    |              |             |     |
| Ш          | DEP        | DE                                   | SCRIPTION                                              | SΥM | rer                               | YPE          |         | co<br>Co | N or     | w        | Р              | w       | wL      | ABO     | SIT     | UN     |             |                    | DS           | HEA<br>kPa` | ۱R  |
|            |            |                                      |                                                        | •   | WAJ                               | ⊢ ~          | Ŭ       | RE       | 2        | ⊢<br>20  | 40             | ⊖<br>60 |         | Ľ       | Z       |        | 50          | )                  | 10           | in a,       | '   |
| -          | 12 12      | Succession of y                      | very poor to fair quality red                          | XX  | 30                                |              |         |          |          |          |                |         |         |         |         |        |             | +                  | +            | -           |     |
| Ē          | 12.12      | and greenish g                       | rey mudstone layers at                                 |     | 38                                | DC-18        |         | 100      | 40       |          |                |         |         |         |         |        |             |                    |              |             |     |
| E 13       |            | 45° from boren                       | ole axis.                                              |     | $\langle \rangle \langle \rangle$ |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          |            |                                      |                                                        |     | 38                                | DC-19        |         | 96       | 16       |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          |            |                                      |                                                        |     | $\exists \mathbb{N}$              |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| F 14       |            |                                      |                                                        |     | 38                                |              |         |          |          |          |                |         | _       | -       |         |        |             | $\dashv$           | _            |             |     |
| Ē          |            |                                      |                                                        |     |                                   | DC-20        |         | 62       | 0        |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē.         |            |                                      |                                                        |     | 38                                |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 15       |            |                                      |                                                        |     | $\exists \mathbb{N}$              |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          |            |                                      |                                                        |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 16       |            |                                      |                                                        |     |                                   | DC-21        |         | 96       | 56       |          |                |         | _       | -       |         |        |             | $\dashv$           | $\dashv$     | _           |     |
| Ē          |            |                                      |                                                        |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          |            |                                      |                                                        |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 17<br> - |            |                                      |                                                        |     |                                   | DC-22        |         | 100      | 49       |          |                |         |         |         |         |        |             | +                  |              |             |     |
| Ē          |            |                                      |                                                        | XX  | $\langle \rangle \langle \rangle$ |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 18       |            |                                      |                                                        | X   | $\langle   \rangle$               |              |         |          |          |          |                |         | _       | -       |         |        |             | $\rightarrow$      | _            |             |     |
| Ē          | 57.69      |                                      |                                                        | XX  | $\exists \mathbb{N}$              |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          | 18.50      | Succession of f<br>and red mudsto    | fair quality greenish grey<br>one layers at 45° from   |     |                                   | DC-23        |         | 96       | 72       |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 19<br>-  |            | borehole axis, v<br>shale layers, th | with light grey calcareous<br>in layers of black shale |     | $\mathbb{X}$                      |              |         |          |          |          |                |         |         |         |         |        |             | +                  |              |             |     |
| Ē          |            | (1-5mm thick),                       | Clacite veinlets.                                      |     | 38                                |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| -<br>20    |            |                                      |                                                        |     | $\langle   \rangle$               |              |         |          |          |          |                |         | _       | -       |         |        |             | _                  |              | _           |     |
| Ē          | 55.79      |                                      |                                                        |     | $\exists \mathbb{N}$              | DC-24        |         | 98       | 49       |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          | 20.40      | Layers of fair to<br>grey mudstone   | poor quality greenish<br>, with 10-15% of light grey   |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 21       |            | of dark shale. E                     | Beddings at 45° from                                   |     | $\langle \rangle \langle \rangle$ |              |         |          |          |          |                |         |         |         |         |        |             | +                  | $\neg$       |             |     |
| Ē          |            | pyrite.                              | Laichte venniets, trace of                             |     |                                   | DC-25        |         | 95       | 46       |          |                |         |         |         |         |        |             |                    |              |             |     |
| E ,,       |            |                                      |                                                        |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| ŧ "        |            |                                      |                                                        |     |                                   |              | ┝╋╸     |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |
| Ē          | 53.49      | Succession of                        | availant quality rad and                               |     |                                   | DC-26        |         | 100      | 26       |          |                |         |         |         |         |        |             |                    |              |             |     |
| - 23       | 22.70      | greenish grey r                      | nudstone layers, with 15%                              |     |                                   |              |         |          |          | $\vdash$ |                | _       | +       |         |         |        | -+          | +                  | +            | $\dashv$    |     |
| E          |            | thick). Bedding                      | s at 45° from borehole<br>nlets, local traces of       |     | 38                                | DC-27        |         | 96       | 78       |          |                |         |         |         |         |        |             |                    |              |             |     |
|            |            | pyrite.                              |                                                        |     |                                   |              |         |          |          |          |                |         |         |         |         |        |             |                    |              |             |     |

|           |                 |                                    |                                                          | PR  | OJECT                             | : Rabas      | ska Pi           | roject ( | Phase 2  | ), Levis | s, Quet | bec     |         |         | BORE    | HOL      | E: /          | BH-                | 108      | -05        |         |
|-----------|-----------------|------------------------------------|----------------------------------------------------------|-----|-----------------------------------|--------------|------------------|----------|----------|----------|---------|---------|---------|---------|---------|----------|---------------|--------------------|----------|------------|---------|
|           |                 | Т                                  | matach                                                   | SIT | Έ:                                | West         | Optio            | n Site   |          |          |         |         |         |         | PAGE    | :: _     | 3             | _ 0                | F _      | 7          |         |
|           |                 |                                    | rratech                                                  | FIL | E NO :                            | <u>T-105</u> | 0-B              | (60333   | 33-KELL  | )        |         |         |         |         | CASI    | NG :     | NW            | ·                  |          |            |         |
|           | •               |                                    |                                                          | во  | RING [                            | DATE :       |                  | 2005-    | 02-16    | 1        | то      | 200     | 5-02-2  | 25      | CORE    | BAF      | ₹REL          | .: N               | IQ3      |            |         |
|           |                 | BORIN                              | G LOG                                                    | DA  | TUM :                             |              | Geoc             | letic    |          |          | со      | ORDIN   | ATES    | : 5     | 186938  | .62 N    | 1             | 261                | 994.     | 91 E       |         |
| SAN       | IPLE C          |                                    | TYPE OF SAMPLER                                          |     |                                   | LABOF        | RATO             | RY AN    | ND IN SI | TU TES   | ST      |         |         | Field \ | /ane    | (        | Su)           | $\diamond$         | inta     | ct         |         |
| $\geq$    | Ren             | oulded                             | SS Split spoon                                           |     |                                   | GS G         | rain s           | ize ana  | alysis   |          |         |         |         |         |         | (*       | Sur)          | ٠                  | rem      | oulde      | ed      |
|           | ∬ Und<br>∎ Lost | isturbed                           | ST Thin walled Shelby tub<br>PS Piston sampler           | be  |                                   |              | onsoli<br>nit we | idation  | N/m³)    |          |         |         |         | Swedi   | sh cone | ; ((     | Cu)           | $\bigtriangledown$ | inta     | ct         | od      |
|           | Roc             | k core                             | DC Diamond core barrel                                   |     |                                   | CP C         | ompre            | essive   | strength | (MPa)    |         |         |         | Dyn. C  | Cone Pe | en. Te   | st            | ▼<br>×-·           | rem<br>  |            | эа<br>< |
|           |                 | STR                                | ATIGRAPHY                                                |     | Ľ                                 | 1            | SAM              | PLES     | 5        |          |         |         |         |         |         | DYN      | I. CC         | DNE                | PE       | N. TE      | EST     |
| F         | ے <sup>اع</sup> |                                    |                                                          |     | Ē                                 |              | _                | %        |          | WAT      | TER C   | CONTE   | NT      | RY      | STS     | _ · · ·  | (blo          | ows                | /0.3r    | n)         |         |
| Ē         | NO! - H         |                                    |                                                          | Ъ   | EVE                               | AND          | 0                | RY       | g        | an       | d LIN   | IITS (% | 6)      | ATC     | ¤≚      |          | 50            | )                  | 10       | ' <b>0</b> |         |
| T T       | VAT             |                                    |                                                          | MB  | R L                               | PE /         | IQ               | OVE      | or R     | w        | v       | w 1     | N       | NOR.    |         | UN       | IDR/          | AINE               | D S      | HE         | ٩R      |
|           |                 | DE                                 | SCRIPTION                                                | Ś   | ATE                               | Σ<br>Σ       | 0<br>C           | SEC.     | z        | H        | P •     |         | ۰L<br>۱ | LAE     | N<br>Z  | S        | TRE           | NG                 | TH (     | kPa)       | )       |
|           |                 |                                    |                                                          |     | 3                                 |              |                  |          |          | 20       | 40      | 60 8    | 0<br>   |         |         |          | 50            | )                  | 10       | 0          |         |
| -         |                 | Succession of e<br>greenish grey r | excellent quality red and<br>mudstone layers, with 15%   |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
|           |                 | of thin layers of thick). Bedding  | f black shale (1-10mm<br>s at 45° from borehole          |     | 38                                |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 25      |                 | axis, calcite vei                  | inlets, local traces of                                  |     |                                   | DC-28        |                  | 100      | 100      |          |         |         |         |         |         |          | $\rightarrow$ | -                  | _        |            |         |
| -         |                 | pynte.                             |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| -         |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 26      |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          | -             | -                  |          |            |         |
| -         |                 |                                    |                                                          |     |                                   | DC-29        |                  | 100      | 92       |          |         |         |         |         |         |          |               |                    |          |            |         |
| 27        |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
|           | 48.81           |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| -         | 27.38           | Succession of f<br>greenish grey r | fair to good red and<br>mudstone, with calcareous        |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 28      |                 | layers (5-50mm<br>layers of black  | n thick) and 5-10% of shale (1-10mm thick)               |     |                                   | DC-30        |                  | 100      | 72       |          |         | _       |         |         |         |          | $\rightarrow$ | -                  | _        |            |         |
| -         |                 | Beddings at 45                     | <sup>°</sup> from borehole axis.                         |     |                                   | DC-30        |                  | 100      | 72       |          |         |         |         |         |         |          |               |                    |          |            |         |
|           |                 |                                    |                                                          |     | 38                                |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 29      |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               | -                  |          |            |         |
| -         |                 |                                    |                                                          |     |                                   | DC 21        |                  | 100      | 79       |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 30      |                 |                                    |                                                          |     |                                   | DC-31        |                  | 100      | 70       |          |         |         |         |         |         |          |               |                    |          |            |         |
|           |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| -         |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 31      |                 |                                    |                                                          |     |                                   | DC 22        |                  | 100      | 77       |          |         |         |         |         |         |          | $\rightarrow$ |                    | _        |            |         |
| -         |                 |                                    |                                                          |     |                                   | DC-32        |                  | 100      | //       |          |         |         |         |         |         |          |               |                    |          |            |         |
| Ē         |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 32      |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| _         |                 |                                    |                                                          |     |                                   | 50.00        |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 33      |                 |                                    |                                                          |     |                                   | DC-33        |                  | 100      | 70       |          |         |         |         |         |         |          |               |                    |          |            |         |
|           | 42 71           |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| Ē         | 33.48           | Succession of e                    | excellent to good quality                                |     |                                   |              |                  | 1        |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 34      |                 | calcareous mu                      | dstone (10 to 80mm thick)                                |     | $\left  \right  \right $          |              |                  |          |          | $\vdash$ |         |         |         |         |         | $\vdash$ | $\dashv$      | _                  | $\dashv$ |            |         |
|           |                 | and 5-10% of the Disseminated p    | nin layers of black shale.<br>byrite, occasional calcite |     |                                   | DC-34        |                  | 100      | 86       |          |         |         |         |         |         |          |               |                    |          |            |         |
| Ē         |                 | veinlets.<br>Beddings at 40        | ° from borehole axis.                                    |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |
| - 35<br>- |                 |                                    |                                                          |     | $\langle \rangle \rangle \langle$ |              |                  | 1        |          |          |         |         |         |         |         |          | +             | -                  | $\neg$   |            |         |
| Ē         |                 |                                    |                                                          |     |                                   | DC-35        |                  | 100      | 91       |          |         |         |         |         |         |          |               |                    |          |            |         |
| -         |                 |                                    |                                                          |     |                                   |              |                  |          |          |          |         |         |         |         |         |          |               |                    |          |            |         |

|          |                | _                                  |                                                      | PF | ROJECT  | : Rabas      | ska Pr  | oject ( | Phase 2        | ), Levis, Q | luebec        |                | B           | OREHC         | )LE :         | BH-        | 108                 | -05          |     |
|----------|----------------|------------------------------------|------------------------------------------------------|----|---------|--------------|---------|---------|----------------|-------------|---------------|----------------|-------------|---------------|---------------|------------|---------------------|--------------|-----|
|          |                | Т                                  | matach                                               | sr | TE :    | West         | Optio   | n Site  |                |             |               |                | P/          | AGE :         | 4             | _ 0        | F _                 | 7            |     |
|          | ▼              |                                    | rratech                                              | FI | LE NO : | <u>T-105</u> | 0-B (   | (60333  | 3-KELL         |             |               |                | C.          | ASING         | : <u>NV</u>   | v          |                     |              |     |
|          | •              |                                    |                                                      | вс |         | DATE :       |         | 2005-   | 02-16          | то          |               | 2005-02-       | 25 <b>C</b> | ORE B/        | ARREI         | ∟: ַ       | VQ3                 |              |     |
|          | ]              | BORIN                              | G LOG                                                | DA | TUM :   |              | Geod    | letic   |                |             | COOR          | DINATES        | : 5186      | 938.62        | N             | 26         | 1994.               | .91 E        |     |
| SAN      | PLE CO         | NDITION                            | TYPE OF SAMPLER                                      |    |         | LABOF        | RATO    | RY AN   | ID IN SI       | TU TEST     |               |                | Field Van   | e             | (Su)          | $\diamond$ | inta                | ct           |     |
|          | Remo           | oulded                             | SS Split spoon                                       |    |         | GS G         | rain si | ze ana  | alysis         |             |               |                |             |               | (Sur)         | ٠          | rem                 | oulde        | əd  |
|          | Lost           | sluibea                            | PS Piston sampler                                    |    |         | D Ui         | nit we  | ight (k | N/m³)          |             |               |                | Swedish     | cone          | (Cu)<br>(Cur) | $\nabla$   | inta<br>rem         | ct<br>ioulde | ed  |
|          | Rock           | core                               | DC Diamond core barrel                               | _  | 1       | CP Co        | ompre   | essive  | strength       | (MPa)       |               |                | Dyn. Con    | e Pen.        | Test          | <u>×-</u>  |                     | >            | <   |
|          | c I            | STR/                               | ATIGRAPHY                                            | 1  | ε       |              | SAM     | PLES    |                |             |               |                |             | DY            | N. CO         | ONE        | PE                  | N. TE        | EST |
| ε        | -<br>N<br>E    |                                    |                                                      | Ι. | Ľ.      | <u>م</u> م   | z       | ۲ %     | ~              | and I       |               | NIENI<br>S (%) | OR          | i Si Si       | (bl<br>5      | iows       | / <b>0.3r</b><br>10 | m)<br>10     |     |
| Ē        | TH -           |                                    | BOL                                                  |    | BEF     | E E          | ER)     | RQI     | unu            |             | <b>c</b> (70) | RAT            | -           |               | Ľ             |            |                     |              |     |
| DEP      | DEP            | DE                                 | SYM                                                  | ER | YPE     |              | co/     | N or    | w <sub>P</sub> | w           | wL            | ABO<br>012     | ຼົ່         | INDR.<br>STRI |               | EDS        | HEA                 | ۹R           |     |
|          | ЩI             |                                    |                                                      |    | .YM     | F -          | U<br>U  | RE      |                | 20 4        |               |                | יכ          | ≤             | 5             | ;0         | 10                  | 00           | ,   |
| <u> </u> |                | Succession of I                    | ayers of good quality red                            |    |         |              |         |         |                |             | +             |                |             |               |               |            |                     |              |     |
| Ē        | 39.67<br>36.52 | and greenish gr<br>calcareous laye | rey mudstone, some<br>ers.                           |    |         |              |         |         |                |             |               |                |             |               |               |            | 1                   | 1            |     |
| 37       | 00.02          | Succession of l<br>quality red and | ayers of good to poor greenish grey mudstone,        |    |         |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |
| Ē        |                | occasional light<br>mudstone and   | t grey calcareous<br>sandstone layers                |    |         | DC-36        |         | 100     | 63             |             |               |                |             |               |               |            |                     | 1            |     |
| Ē        |                | (5-20mm thick)<br>(1-10mm thick)   | , 5% of black shale layers<br>. Beddings at 45° from |    |         |              |         |         |                |             |               |                |             |               |               |            | 1                   | 1            |     |
| - 38     |                | borenole axis.                     |                                                      |    |         |              |         |         |                |             |               | _              |             |               | +             |            |                     |              |     |
| Ē        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            | 1                   | 1            |     |
| - 39     |                |                                    |                                                      |    |         | DC-37        |         | 100     | 81             |             |               |                |             |               |               |            |                     |              |     |
| Ē        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            | 1                   | 1            |     |
| Ē        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            | 1                   | 1            |     |
| <u></u>  |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |
| Ē        |                |                                    |                                                      |    |         | DC-38        |         | 100     | 31             |             |               |                |             |               |               |            |                     |              |     |
| E 41     |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |
| Ē        |                |                                    |                                                      |    |         | DC-39        |         | 96      | 48             |             |               |                |             |               |               |            |                     |              |     |
| Ē        | 34.43          |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |
| - 42     | 41.70          | and greenish g                     | ayers of good quality red<br>rey mudstone, some      |    |         | DC-40        |         | 100     | 88             |             |               |                | -           |               |               |            |                     |              |     |
| Ē        |                | shale (1-5mm ti                    | hick), occasional beds of<br>dstone (5-50mm thick)   |    |         |              |         |         |                |             |               |                |             |               |               |            |                     | 1            |     |
| 43       |                | Occasional to fi                   | requent slikenside                                   |    |         |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |
| Ē        |                | Beddings at 50                     | ° from borehole axis.                                |    |         | DC-41        |         | 100     | 71             |             |               |                |             |               |               |            |                     | 1            |     |
| Ē        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     | 1            |     |
| - 44     |                |                                    |                                                      |    |         |              |         |         |                |             |               |                | -           |               |               |            |                     |              |     |
| -        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     | 1            |     |
| 45       |                |                                    |                                                      |    |         | DC-42        |         | 100     | 73             |             |               |                |             |               |               |            |                     |              |     |
| -        |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               |            |                     | 1            |     |
|          |                |                                    |                                                      |    |         |              | ┝╋      |         |                |             |               |                |             |               |               |            |                     |              |     |
| - 46     |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             | $\vdash$      |               |            |                     |              |     |
| Ē        |                |                                    |                                                      |    |         | DC-43        |         | 100     | 82             |             |               |                |             |               |               |            |                     |              |     |
| 47       |                |                                    |                                                      |    |         |              |         |         |                |             |               |                |             |               |               | Щ          |                     |              |     |
|          |                |                                    |                                                      |    |         |              | ╞╋╋     |         |                |             |               |                |             |               |               |            |                     |              |     |
|          |                |                                    |                                                      |    |         | DC-44        |         | 97      | 84             |             |               |                |             |               |               |            |                     |              |     |
| t        |                |                                    |                                                      |    | V///    |              |         |         |                |             |               |                |             |               |               |            |                     |              |     |

|      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | PR  | ROJECT  | : Rabas      | ska Pi | roject ( | Phase 2  | ), Levis | s, Qu        | ebec                                   |               |      | E       | ORE        | HOL       | E:          | BH-        | 108         | -05             |         |
|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----|---------|--------------|--------|----------|----------|----------|--------------|----------------------------------------|---------------|------|---------|------------|-----------|-------------|------------|-------------|-----------------|---------|
|      |                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | matach                                                  | sr  | TE :    | West         | Optio  | n Site   |          |          |              |                                        |               |      | P       | AGE        | : _       | 5           | _ 0        | F _         | 7               |         |
|      | ▼                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rratech                                                 | FIL | E NO :  | <u>T-105</u> | 0-B    | (60333   | 3-KELL   | )        |              |                                        |               |      | c       | ASIN       | IG :      | NW          | <u> </u>   |             |                 |         |
|      | •                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | вс  | ORING [ | DATE :       |        | 2005-    | 02-16    |          | то           |                                        | 2005-0        | 2-25 | c       | ORE        | BAF       | REL         | . : 1      | 1Q3         |                 |         |
|      | ]                     | BORIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G LOG                                                   | DA  | TUM :   |              | Geoc   | letic    |          |          | C            | OOR                                    | DINAT         | ES : | 518     | 6938.      | 62 N      | 1           | 261        | 1994.       | .91 E           |         |
| SAM  | PLE CO                | NDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TYPE OF SAMPLER                                         |     |         | LABOR        | RATO   | RY AN    | ID IN SI | TU TES   | ST           |                                        |               | Fi   | eld Var | пе         | (!        | Su)         | $\diamond$ | inta        | ct              |         |
|      | Remo                  | oulded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS Split spoon                                          |     |         | GS G         | rain s | ize ana  | alysis   |          |              |                                        |               |      |         |            | (\$       | Sur)        | ٠          | rem         | oulde           | ed      |
|      | Lost                  | sluibea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PS Piston sampler                                       |     |         | D Ui         | nit we | ight (k  | N/m³)    |          |              |                                        |               | SI   | vedish  | cone       | ()<br>()  | Cu)<br>Cur) | ▽          | inta<br>rem | ct<br>ould      | ed      |
|      | Rock                  | core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DC Diamond core barrel                                  |     | -       | CP Co        | ompre  | essive   | strength | (MPa)    |              |                                        |               | D    | /n. Cor | ie Pe      | n. Te     | st          | <u>×</u>   |             | >               | ×       |
|      | <u>c</u> ı            | STRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATIGRAPHY                                               |     | ε       | :            | SAM    | PLES     | 5        |          |              | ~~                                     |               | _    | _       | <i>(</i> ) | DYN       | i. CC       | )NE        | PE          | N. TE           | EST     |
| ε    | ΣE                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     | Ľ<br>Ľ  |              | z      | ۲ %      | ~        | an       | ier<br>nd Ll | MIT                                    | NTEN<br>S (%) |      | OR      | ESTS       |           | (ble<br>5(  | ows<br>0   | /0.3r<br>10 | m)<br>10        |         |
| TH . | THO.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         | BOL |         | BEF          | DE     | ER)      | RQI      |          |              |                                        | - (///        |      | RAT     | Π          |           |             |            |             |                 |         |
| DEP  | EVA<br>DEP            | DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCRIPTION                                               | SΥM | TER     | YPE<br>NUN   |        | co/      | N or     | w        | Р            | w                                      | wL            |      | ABO     | SIT        | UN<br>S   |             |            | EDS<br>TH(  | HE/             | AR<br>) |
|      | ЩI                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     | .WM     | н –          | ပ      | RE       | -        | ⊢<br>20  | 40           | ······································ |               |      | ב       | Z          | -         | 5(          | 0          | 10          | )0              | ,       |
| -    |                       | Succession of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ayers good quality red                                  |     |         |              |        |          |          |          | -+           |                                        |               |      |         |            |           | _           | $\neg$     | $\neg$      |                 |         |
| -    |                       | and greenish g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rey mudstone.                                           |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 49 | 27.28<br><b>48.91</b> | Poor quality are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | enish arev mudstone                                     |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
|      |                       | some light grey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | calcareous layers,<br>kenside surfaces and fault        |     |         | DO 15        |        | 100      | 00       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| -    |                       | striations in join borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nts. Layers at 50° from                                 |     |         | DC-45        |        | 100      | 20       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 50 | 25.95                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          | -            |                                        |               |      |         | -          |           |             | -          |             |                 |         |
| -    | 50.24                 | Very poor quali<br>thin layers of da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ty grey shale, with some ark shale (1-15mm thick).      |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 51 |                       | Frequent slicke<br>along joints. Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nsides and fault striations alcite veinlets and veins.  |     |         | DC-46        |        | 100      | 7        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
|      |                       | Local presence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of pyrite. Layers at 50°                                |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
|      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 52 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-47        |        | 92       | 0        |          | _            |                                        |               |      |         | -          | -         |             | -          | -           | _               |         |
|      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 53 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-48        |        | 100      | 0        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-49        |        | 100      | 0        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 54 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-50        |        | 53       | 0        |          | -            |                                        |               |      |         | F          | -         |             | -          | _           |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-51        |        | 48       | 0        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 55 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         | r          | $\square$ |             |            |             |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-52        |        | 100      | 0        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-53        |        | 84       | 0        |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 56 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         | -          |           |             | -          |             |                 |         |
| -    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-54        |        | 100      | 18       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 57 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         | ļ          | $\square$ | $\square$   | $\square$  | $\square$   | $ \rightarrow $ |         |
|      | 18.94<br><b>57.25</b> | Layers of very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | poor to poor quality grey                               |     |         |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| Ē    |                       | shale, 10% of the shale, 10% of the shale | hin layers of black shale.<br>beccias. Slickensides and |     |         | DC-55        |        | 82       | 22       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 58 |                       | fault striations a<br>from borehole a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | along joints. Layers at 50°<br>axis. Frequent calcite   |     |         |              |        |          |          | $\vdash$ |              |                                        |               |      |         | -          | $\dashv$  |             | $\neg$     | $\neg$      |                 |         |
|      |                       | veinlets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |     |         | DC-56        |        | 100      | 36       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| - 59 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         |              |        |          |          |          |              |                                        |               |      |         | ļ          | $\square$ | $\square$   | $\square$  | $\square$   | $ \square$      |         |
| Ē    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC 77        | ╞╋     | 100      |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
|      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     |         | DC-57        |        | 100      | 41       |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |
| t i  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                         |     | V///    |              |        |          |          |          |              |                                        |               |      |         |            |           |             |            |             |                 |         |

|          |    |                  | _                                    |                                                       | PF  | ROJECT                | : Rabas       | ka Pr            | oject (          | Phase 2  | ), Levis, (    | Quebe      | с     |        |         | BORE    | HOL   | E:             | BH-        | 108          | -05         |    |
|----------|----|------------------|--------------------------------------|-------------------------------------------------------|-----|-----------------------|---------------|------------------|------------------|----------|----------------|------------|-------|--------|---------|---------|-------|----------------|------------|--------------|-------------|----|
|          |    |                  | То                                   | matach                                                | sr  | TE :                  | West          | Optior           | n Site           |          |                |            |       |        |         | PAGE    | : _   | 6              | 0          | F_           | 7           | _  |
|          |    | ▼                |                                      | rratecii                                              | FIL | LE NO :               | <u>T-105</u>  | )-В (            | 60333            | 3-KELL)  | )              |            |       |        |         | CASI    | NG :  | NW             |            |              |             |    |
|          |    | •                |                                      |                                                       | вс  | DRING D               | DATE :        |                  | 2005-            | 02-16    | т              | <b>)</b> _ | 2005  | 5-02-2 | 25      | CORE    | BAR   | REL            | : 1        | IQ3          |             |    |
|          |    | ]                | BORIN                                | G LOG                                                 | DA  | TUM :                 |               | Geod             | etic             |          |                | coo        | RDINA | TES    | : _5    | 186938  | .62 N |                | 261        | 994.         | 91 E        |    |
| s        | AM | PLE CO           | NDITION                              | TYPE OF SAMPLER                                       |     |                       | LABOR         | ATO              | RY AN            | ID IN SI | TU TEST        |            |       |        | Field \ | /ane    | (\$   | Su)            | $\diamond$ | inta         | ct          |    |
|          | ×  | Remo             | oulded<br>sturbed                    | SS Split spoon<br>ST Thin walled Shelby tub           | e   |                       | GS GI<br>C Co | ain si<br>onsoli | ze ana<br>dation | alysis   |                |            |       |        | Swedi   | sh cone | ()    | Sur)           | <b>♦</b>   | rem          | oulde<br>ot | эd |
|          |    | Lost             |                                      | PS Piston sampler                                     |     |                       | D Ur          | nit wei          | ight (k          | N/m³)    |                |            |       |        | owear   |         | . ((  | Sur)           | ▼          | rem          | oulde       | эd |
|          |    | Rock             | core                                 | DC Diamond core barrel                                | -   |                       | CP Co         |                  | ssive            | strength | (MPa)          |            |       |        | Dyn. C  | Cone Pe | n. Te | st             | <u>×</u>   | <u> </u>     | ×           | :  |
|          | Ē  | <b>E</b>         | 0117                                 |                                                       |     | Ē                     | ````          |                  |                  |          | WATE           | ER CO      | ONTE  | NT     | ¥       | Ś       | DYN   | . CO           | )NE        | PEN<br>/0 31 | 1. TE<br>m) | ST |
|          | E  | - <sup>M</sup> - |                                      |                                                       | ۲.  | VEL                   | 9 8           | NO               | ۲%               | ē        | and            | LIMI       | rs (% | )      | TOR     | 'EST    |       | 50             | )          | 10           | 0           |    |
|          | 2  | PTH              |                                      |                                                       | MBC | S LE                  | E AI<br>MBE   | DITI             | VEF              | r RG     |                |            |       |        | DRA     |         |       |                |            |              |             |    |
|          | 5  |                  | DE                                   | SCRIPTION                                             | SΥ  | ATEI                  | ΝU            | CON              | ECC              | N        | ₩ <sub>P</sub> | ₩<br>—⊙    | v     | ′L     | LAB     | IS N    | S     | TRE            | NG         | TH (         | kPa)        | ,  |
|          |    |                  |                                      |                                                       |     | Ś                     |               |                  | œ                |          | 20             | 40         | 50 8  | 0      |         |         |       | 50             | )          | 10           | 0           |    |
| Ē        |    |                  | Layers of very p<br>shale, 10-15% of | ooor to poor quality grey<br>of dark shale layers     |     |                       | DC-58         |                  | 98               | 13       |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        |    |                  | (1-10mm thick).<br>62m. Frequent     | . Probable fault breccia at<br>calcite veins (20-30mm |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| F        | 61 |                  | thick). Layers a<br>Local presence   | t 50° from borehole axis. of pyrite.                  | X   |                       |               |                  |                  |          |                |            |       |        |         |         |       | -              |            |              |             |    |
| Ē        |    |                  |                                      |                                                       |     |                       | DC-59         |                  | 100              | 45       |                |            |       |        |         |         |       |                |            |              |             |    |
| F        | 62 |                  |                                      |                                                       |     |                       | 2000          |                  |                  |          |                | _          |       |        |         |         |       | $ \rightarrow$ | -          | _            |             |    |
| Ē        |    |                  |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        |    |                  |                                      |                                                       |     |                       | DC-60         |                  | 100              | 52       |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        | 63 |                  |                                      |                                                       |     |                       | 2000          |                  |                  |          |                |            |       |        |         |         |       | 1              |            |              |             |    |
| Ē        |    |                  |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| F        | 64 |                  |                                      |                                                       |     |                       | DC-61         |                  | 100              | 0        |                | _          |       |        |         |         |       | _              | _          |              | _           |    |
| Ē        |    | 11.70            | <u> </u>                             |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        |    | 04.49            | Good to excelle<br>10-15% of dark    | shale layers (5-10mm                                  |     |                       | DC 62         |                  | 100              | 77       |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        | 65 |                  | mudstone layer                       | s (10-20mm thick). Local<br>ite. calcite veinlets.    |     |                       | DC-02         |                  | 100              | //       |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        |    |                  | , , <b>,</b> ,                       |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| F        | 66 |                  |                                      |                                                       |     |                       |               |                  | 07               | 100      |                |            |       |        |         |         |       | -              | _          |              |             |    |
| Ē        |    | 9.49             |                                      |                                                       |     |                       | DC-03         |                  | 97               | 100      |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        | 67 | 66.70            | Good quality gr<br>25-30% of red r   | eenish grey mudstone,<br>mudstone lavers.             |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                | $\square$  |              |             |    |
| Ē        |    |                  | Beddings at 50°                      | ° from borehole axis.                                 |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| Ē        |    |                  |                                      |                                                       |     |                       | DC-64         |                  | 100              | 70       |                |            |       |        |         |         |       |                |            |              |             |    |
| rs<br>I  | 68 |                  |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       | 1              |            |              |             |    |
| 8 08:57h |    |                  |                                      |                                                       |     |                       |               | _                |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| 111-23   | 69 |                  |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       | _              | _          |              |             |    |
| ED: 200  |    |                  |                                      |                                                       |     |                       | DC-65         |                  | 92               | 77       |                |            |       |        |         |         |       |                |            |              |             |    |
| PLOTT    | 70 | 6 14             |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| BH.stv   | 10 | 70.05            | Good to excelle                      | ent quality red mudstone                              |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| 1050-A-  |    |                  | grey mudstone<br>Beddings at 45°     | layers (5-10mm thick).<br>° from borehole axis.       |     |                       |               |                  | 100              | 75       |                |            |       |        |         |         |       |                |            |              |             |    |
| Style T- | 71 |                  | Pyrite in joints.                    |                                                       |     |                       | 00-00         |                  | 100              | 70       | $\vdash$       |            |       |        |         |         |       | +              | $\dashv$   | $\dashv$     | $\dashv$    | _  |
| otec74\. |    |                  |                                      |                                                       |     |                       |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |
| V:\Ge    |    |                  |                                      |                                                       |     | $\langle     \rangle$ |               |                  |                  |          |                |            |       |        |         |         |       |                |            |              |             |    |

|        |         |                                                                               | PRO           | JECT                      | : Rabas       | ka Pr   | oject  | Phase 2           | ), Levis, Q | uebec | ;        | BORI              | EHOLE       | : B           | H-10        | 8-05          |          |
|--------|---------|-------------------------------------------------------------------------------|---------------|---------------------------|---------------|---------|--------|-------------------|-------------|-------|----------|-------------------|-------------|---------------|-------------|---------------|----------|
|        |         | Torratach                                                                     | SITE          | ≣:                        | West 0        | Optior  | n Site |                   |             |       |          | PAGI              | ≣:          | 7             | OF          | 7             | _        |
|        | ◄       | Terratech                                                                     | FILE          | NO :                      | <u>T-1050</u> | )-В (   | 60333  | 3-KELL)           |             |       |          | CASI              | NG :        | NW            |             |               |          |
|        | •       |                                                                               | BOR           | RING D                    | ATE :         |         | 2005-  | 02-16             | то          |       | 2005-02- | 25 CORI           | E BARI      | REL :         | NQ          | 5             |          |
|        | -       | BORING LOG                                                                    | DAT           | -UM :                     |               | Geod    | etic   |                   |             | COOR  |          | 5186938           | .62 N       |               | 26199       | 4.91 E        |          |
| SAN    |         | ONDITION TYPE OF SAMPLER                                                      |               |                           |               | ATO     | RY AI  | ND IN SIT         | U TEST      |       |          | Field Vane        | (S          | ju)           | ♦ int       | act           |          |
|        | Undi    | sturbed ST Thin walled Shelby tube                                            |               |                           | C Co          | onsoli  | dation | aryoio            |             |       |          | Swedish cone      | (S<br>e (C  | Sur)<br>Su)   | ♦ rei ∇ inf | moulde<br>act | эd       |
|        | Lost    | PS Piston sampler                                                             |               |                           | D Ur          | iit wei | ght (k | N/m³)<br>strength | (MPa)       |       |          | Dun Cono D        | (C          | Cur)          | ▼ re        | moulde        | ed       |
|        |         | STRATIGRAPHY                                                                  |               | _                         | 50 100        | SAM     | PLES   |                   | (ivii a)    |       |          | Dyn. Cone Po      | en. res     |               |             | ×             | <u>(</u> |
|        | ٤ ـ     |                                                                               |               | <br>-                     |               | _       | %      |                   | WATE        | R CO  | NTENT    | RY                | DTN.        | (blo          | ws/0.       | :n. 16<br>3m) | :51      |
| -<br>H | NOI - H |                                                                               | 5             | EVE                       | AND           | TION    | ERY "  | ð                 | and I       |       | S (%)    | ATO<br>Id<br>TES  |             | 50            | 1           | 00            |          |
| EPT    | EPT     | DESCRIPTION                                                                   | ΥMB           | ERL                       | 'PE /<br>UMB  | .IQN    | OVE    | or R              | w           | w     | w,       | BOR<br>ar<br>SITU | UNI         | DRA           | INED        | SHEA          | ٩R       |
|        |         |                                                                               | S             | VAT                       | Γz            | ö       | REC    | z                 |             |       |          | IN LA             | S           | IREN          | IGTH        | (kPa)         | )        |
| -      |         | Good to excellent quality red mudstone                                        |               |                           |               |         |        |                   |             | +0 0  |          |                   | +           |               |             |               |          |
| Ē      |         | layers, 5% of green mudstone beds, light grey mudstone layers (5-10mm thick). |               |                           | DC-67         | L       | 100    | 88                |             |       |          |                   |             |               |             |               |          |
| - 73   |         | Beddings at 45° from borehole axis.<br>Pyrite in joints.                      |               |                           |               | L       |        |                   |             |       |          | _                 |             |               |             |               |          |
| Ē      |         |                                                                               |               |                           |               | T       |        |                   |             |       |          |                   |             |               |             |               |          |
|        |         |                                                                               |               |                           |               | L       | 07     | 07                |             |       |          |                   |             |               |             |               |          |
| - 74   |         |                                                                               |               |                           | 00-00         | L       | 51     | 57                |             |       |          | -                 |             |               |             |               |          |
| Ē      |         |                                                                               |               |                           |               | ╇       |        |                   |             |       |          |                   |             |               |             |               |          |
| - 75   |         |                                                                               |               |                           |               | L       |        |                   |             |       |          | -                 |             | $\rightarrow$ |             |               |          |
| Ē      |         |                                                                               |               |                           | DC-69         |         | 76     | 49                |             |       |          |                   |             |               |             |               |          |
| Ē      |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| - 76   |         |                                                                               |               | $\left  \right  \right $  |               | L       |        |                   |             |       |          |                   |             |               |             |               |          |
| Ē      |         |                                                                               |               | $\left  \right  \right $  | DC-70         | L       | 97     | 70                |             |       |          |                   |             |               |             |               |          |
| - 77   |         |                                                                               |               | $\langle \rangle \rangle$ |               | L       |        |                   |             |       |          | -                 |             |               |             |               |          |
| Ē      |         |                                                                               |               |                           |               | T       |        |                   |             |       |          |                   |             |               |             |               |          |
| - 78   |         |                                                                               |               | $\langle \rangle \rangle$ | DC-71         | L       | 100    | 04                |             |       |          | -                 |             | $\perp$       |             |               |          |
| -      |         |                                                                               |               |                           | DC-11         | L       | 100    | 34                |             |       |          |                   |             |               |             |               |          |
| Ē      |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| - 79   | _3.24   |                                                                               |               | $\langle \rangle \rangle$ | DC-72         |         | 0      | -                 |             |       |          | -                 |             | +             |             |               |          |
| Ē      | 79.42   | END OF BOREHOLE                                                               | <u>, 7117</u> |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| E 80   |         |                                                                               |               |                           |               |         |        |                   |             |       |          | -                 | $\vdash$    | +             |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| 81     |         |                                                                               |               |                           |               |         |        |                   |             |       |          | _                 |             |               |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| - 82   |         |                                                                               |               |                           |               |         |        |                   |             |       |          | -                 | $\vdash$    | +             |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
| 83     |         |                                                                               |               |                           |               |         |        |                   |             |       |          | -                 | $\mid \mid$ |               |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |
|        |         |                                                                               |               |                           |               |         |        |                   |             |       |          |                   |             |               |             |               |          |

|            |                         |                  |                                     |                                                  | PR                 | OJECT  | : Rabas      | ska Pr                | oject  | (Phase 2)   | ), Levis | , Que | ebec    |          |            | BORE       | HOL      | E: /          | BH-         | 109                 | -05           | _  |
|------------|-------------------------|------------------|-------------------------------------|--------------------------------------------------|--------------------|--------|--------------|-----------------------|--------|-------------|----------|-------|---------|----------|------------|------------|----------|---------------|-------------|---------------------|---------------|----|
|            |                         |                  | То                                  | matach                                           | SIT                | Έ:     | West         | Optior                | n Site |             |          |       |         |          |            | PAGE       | :: _     | 1             | _ 0         | F _                 | 3             | _  |
|            |                         |                  |                                     | rratech                                          | FIL                | E NO : | <u>T-105</u> | 0-B (                 | 6033   | 33-KELL)    |          |       |         |          |            | CASI       | NG :     | PW            | ·           |                     |               | _  |
|            |                         |                  |                                     |                                                  | во                 | RING   | DATE :       |                       | 2005   | -02-28      |          | го    | 2       | 2005-03- | 07         | CORE       | E BAF    | REL           | .: <u>F</u> | ۶Q                  |               |    |
|            |                         | F                | BORIN                               | G LOG                                            | DA                 | TUM :  |              | Geod                  | etic   |             |          | С     | DORE    | INATES   | : <u>5</u> | 5186941    | .04 N    | 1             | 262         | 2038.               | 73 E          |    |
| SAN        | IPLE                    | COI              | NDITION                             | TYPE OF SAMPLER                                  |                    |        | LABOF        | RATO                  | RY A   | ND IN SIT   | TU TES   | ST    |         |          | Field      | Vane       | (*       | Su)           | $\diamond$  | inta                | ct            |    |
|            | ] R                     | emo              | ulded                               | SS Split spoon                                   |                    |        | GS G         | rain si               | ze an  | alysis      |          |       |         |          |            |            | (        | Sur)          | ٠           | rem                 | oulde         | ۶d |
|            | Lu<br>Lu                | naisi<br>ost     | lurbed                              | PS Piston sampler                                | e                  |        |              | nit wei               | ght (k | ı<br>xN/m³) |          |       |         |          | Swed       | ish cone   | ; (i     | Cu)<br>Cur)   | $\nabla$    | inta<br>rem         | ct<br>Ioulde  | be |
|            | R                       | ock              | core                                | DC Diamond core barrel                           |                    |        | CP C         | ompre                 | ssive  | strength    | (MPa)    |       |         |          | Dyn.       | Cone Pe    | n. Te    | st:           | <u>× -</u>  |                     | X             |    |
|            | L I                     |                  | STRA                                | ATIGRAPHY                                        |                    | Ε      | :            | SAMI                  | PLES   | 6           |          |       | 001     |          |            | (0         | DYN      | I. CC         | )NE         | PEN                 | ۱. TE         | ST |
| ε          | - N                     | ε                |                                     | ION ANGLE: <u>90°</u>                            |                    | ĒĽ.    | <u>م</u> م   | N                     | ۲ %    | 0           | an       | d Ll  |         | (%)      | OR         | ESTS       |          | (blo<br>50    | ows<br>0    | / <b>0.3r</b><br>10 | n)<br>10      |    |
| Ē          | TI0                     | Ē                | AZIMOTT                             | · <u>·</u>                                       | BOL                | ΓE     | AN           | ITIC                  | ER)    | RQI         |          |       |         | (,,,,)   | RAT        | u TE       |          |               |             |                     |               |    |
| DEP        | ¶<br>A B                | DEP              | DE                                  | SCRIPTION                                        | SΥM                | TER    | YPE<br>VUN   |                       | cov    | N or        | w        | Р     | w       | wL       | ABO        | SIT        | UN       |               | AINE<br>Eng | EDS                 | HEA           | R  |
|            | Щ                       |                  |                                     |                                                  |                    | -MA    |              | Ū                     | RE     | -           | ⊢<br>20  | 40    | ⊙<br>60 | <br>80   | 2          | Z          |          | 50            | 0           | 10                  |               |    |
| <u> </u>   | 76.4<br><b>0.0</b>      | 43<br>90         | Topsoil.                            | FACE                                             | $\widetilde{\sim}$ |        |              | $\times$              |        |             |          | +     |         |          |            |            |          |               |             |                     | -             |    |
| Ē          | 75 /                    | ~7               |                                     |                                                  |                    |        | SS-1         |                       | 25     | 1           |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē,         | 75.6<br><b>0.7</b>      | 07<br>76         | Compact to loo                      | se brown gravelly and                            |                    |        |              | $\mathbf{\mathbf{x}}$ | -0     | 10          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          |                         |                  | slity sand.                         |                                                  | o p                |        | 55-2         |                       | 58     | 10          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          | 74.7                    | 75<br>5 <b>8</b> | Compact grey s                      | and and silt trace of                            | 0<br>0             |        | <b>66</b> 2  | $\bigtriangledown$    | 75     | 0           |          |       |         |          | <u></u>    |            |          |               |             |                     |               |    |
| - 2        | -                       |                  | gravel.                             |                                                  |                    |        | 33-3         |                       | 75     | 9           | 0        |       | -       |          | 63         |            |          |               |             |                     |               |    |
| Ē          |                         |                  |                                     |                                                  | a                  |        | SS-4         | $\bigtriangledown$    | 75     | 24          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ė,         |                         |                  |                                     |                                                  | ₽                  |        | 001          |                       | 10     |             |          |       |         |          | _          |            |          |               |             |                     |               |    |
| Ē          | 73.0                    | 08               |                                     |                                                  |                    |        | SS-5         | $\boxtimes$           | 58     | 18          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          | 3.3                     | 5                | Dense to very d<br>silt and gravel. | lense brown sand, some                           | <u>а</u> о         |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               |    |
| <b>₽</b> 4 |                         |                  |                                     |                                                  | 0.0                |        | SS-6         | $\boxtimes$           | 58     | 36          | 0        |       | -       | _        | GS         |            |          | $\rightarrow$ |             |                     | $\rightarrow$ | -  |
| Ē          |                         |                  |                                     |                                                  | 6 0                |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē,         | 71 3                    | 35               |                                     |                                                  | о. р               |        | SS-7         | $\ge$                 | 62     | 50          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          | 5.0                     | 8                | Bedrock: Very s                     | severely fractured                               |                    |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          |                         |                  | (weathered) ree                     |                                                  |                    |        | SS-8         | $\bowtie$             | 50     | 33          |          |       |         |          |            |            |          |               |             |                     |               |    |
| - 6        |                         |                  |                                     |                                                  |                    |        |              |                       |        |             |          |       | -       |          | -          |            |          |               |             | _                   |               |    |
| Ē          |                         |                  |                                     |                                                  |                    |        | SS-9         | $\frown$              | 38     | 24          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ė,         |                         |                  |                                     |                                                  |                    |        | SS-10        |                       | 0      | 60/5cm      |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          | 69. <sup>-</sup><br>7.2 | 17<br>26         | Lavers of fair to                   |                                                  |                    |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          |                         |                  | mudstone, occa<br>mudstone and o    | asional greenish grey<br>dark shale lavers       |                    |        | DC-11        |                       | 92     | 58          |          |       |         |          |            |            |          |               |             |                     |               |    |
| - 8        |                         |                  | (10-60mm thick calcareous light     | ), 5-10% slightly<br>t grey mudstone layers      |                    |        |              |                       |        |             |          |       | -       | _        | Pyrite     | •          |          | $\rightarrow$ |             |                     | $\rightarrow$ |    |
| _          |                         |                  | (1-10mm thick).<br>borehole axis.   | . Beddings at 50° from                           |                    |        |              |                       |        |             |          |       |         |          | detec      | tion<br>14 |          |               |             |                     |               |    |
| Ē.         |                         |                  |                                     |                                                  |                    |        | DC-12        |                       | 97     | 62          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē          |                         |                  |                                     |                                                  |                    |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               | _  |
|            |                         |                  | NOTE:                               | n the herebole was                               |                    |        |              |                       |        |             |          |       |         |          | CP=5       | .1         |          |               |             |                     |               |    |
| - 10       |                         |                  | provided with a                     | bottom capped 63.5mm                             |                    |        | DC-13        |                       | 80     | 70          | $\vdash$ | -     |         |          | -          |            | $\vdash$ | $\rightarrow$ |             | -                   | +             |    |
| Ē          |                         |                  | diameter PVC t<br>cement bentoni    | upe grouted in place with te, to allow down-hole |                    |        | 00-13        |                       | 09     | 19          |          |       |         |          |            |            |          |               |             |                     |               |    |
| Ē,         |                         |                  | seismicity tests                    |                                                  |                    |        |              |                       |        |             |          |       |         |          |            |            |          |               |             |                     |               |    |
| E 11       |                         |                  |                                     |                                                  |                    |        |              |                       |        |             |          |       |         |          | ]          |            |          |               |             |                     |               |    |
| Ē          |                         |                  |                                     |                                                  |                    |        | DC-14        |                       | 90     | 83          |          |       |         |          | Pyrite     | ;<br>tion  |          |               |             |                     |               |    |
| Ł          |                         |                  |                                     |                                                  |                    |        |              |                       |        |             |          |       |         |          | uetec      | u011       |          |               |             |                     |               |    |

|           |                       |                                       |                                                          | PR  | OJECT      | : Rabas      | ska Pi | oject ( | Phase 2  | ), Levis | , Que | bec      |           |         | BORE    | HOL      | E: /        | BH-           | 109           | -05           |     |
|-----------|-----------------------|---------------------------------------|----------------------------------------------------------|-----|------------|--------------|--------|---------|----------|----------|-------|----------|-----------|---------|---------|----------|-------------|---------------|---------------|---------------|-----|
|           |                       | Т                                     | matach                                                   | SIT | Е:         | West         | Optio  | n Site  |          |          |       |          |           |         | PAGE    | :: _     | 2           | OF            |               | 3             |     |
|           | ▼                     | <i>j</i>                              | rratech                                                  | FIL | E NO :     | <u>T-105</u> | 0-B    | (60333  | 3-KELL)  |          |       |          |           |         | CASI    | NG :     | PW          |               |               |               |     |
|           | •                     |                                       |                                                          | во  | RING       | DATE :       |        | 2005-   | 02-28    | 1        | o.    | 20       | 05-03-    | 07      | CORE    | E BAF    | REL         | : P           | Q             |               |     |
|           | ]                     | BORIN                                 | G LOG                                                    | DA  | TUM :      |              | Geod   | letic   |          |          | со    | ORDI     | NATES     | : 5     | 186941  | .04 N    | 1           | 262           | 038.          | 73 E          |     |
| SAN       | IPLE CO               | NDITION                               | TYPE OF SAMPLER                                          |     |            | LABOR        | RATO   | RY AN   | ID IN SI | TU TES   | т     |          |           | Field \ | /ane    | (        | Su)         | $\diamond$    | intac         | ct            |     |
|           | Remo                  | oulded                                | SS Split spoon                                           |     |            | GS G         | rain s | ize ana | alysis   |          |       |          |           |         |         | (        | Sur)        | ٠             | rem           | oulde         | ed  |
|           | Lost                  | sturbed                               | PS Piston sampler                                        | e   |            |              | nit we | ight (k | N/m³)    |          |       |          |           | Swedi   | sh cone | ) (<br>( | Cu)<br>Cur) | $\nabla$      | intao<br>rem  | ct<br>oulde   | ed  |
|           | Rock                  | core                                  | DC Diamond core barrel                                   |     |            | CP C         | ompre  | essive  | strength | (MPa)    |       |          |           | Dyn. C  | Cone Pe | n. Te    | st          | <u>×</u>      |               | ×             | <   |
|           | C I                   | STR/                                  | ATIGRAPHY                                                |     | ε          |              | SAM    | PLES    | 6        |          |       |          |           |         |         | DYN      | I. CC       | NE            | PEN           | I. TE         | EST |
| ε         | -<br>N<br>N           |                                       |                                                          |     | Ę          | <u>م</u>     | z      | % /     | •        | WAI      |       | CON I    | ENI<br>%) | ORY     | STS     |          | (blo        | ງws/<br>າ     | 0.3n          | n)<br>^       |     |
| Ξ         | THOI                  |                                       |                                                          | BOL | ΓE         | ANI          | E E    | ĒRY     | RQD      | an       |       |          | 70)       | RAT     |         |          |             | ,<br>         |               |               |     |
| ШШ        | EVA<br>DEP            | DE                                    | SCRIPTION                                                | SYM | <b>TER</b> | YPE          |        | cov     | l or     | w        | Ρ١    | N        | wL        | BOI     | SITI    | UN       |             |               | DS<br>TH (    | HEA<br>kPaì   | ۱R  |
|           |                       |                                       |                                                          | ••  | MA         |              | ŭ      | RE      | 2        | ⊢<br>20  | 40    | €<br>60  | <br>80    | Ľ       | Z       |          | 50          | )             | 10            | 0 U           | ,   |
|           |                       | Succession of                         | layers of fair quality red                               |     |            |              |        |         |          |          | -     | <u> </u> | Ť         |         |         |          |             | -             | +             | +             |     |
| Ē         |                       | mudstone and<br>local traces of       | greenish grey mudstone,<br>pyrite.                       |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ė 12      |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
|           | 62.02                 |                                       |                                                          |     |            | DC-15        |        | 87      | 69       |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         | 13.50                 | Layers of fair q                      | uality red mudstone,                                     |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| - 14      |                       | (10-30mm thick                        | <) at 45° from borehole                                  |     |            |              |        |         |          |          | _     | _        | -         |         |         |          |             | $\rightarrow$ | $\rightarrow$ | —             |     |
| Ē         |                       | axis.                                 |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         |                       |                                       |                                                          |     |            | DC-16        |        | 100     | 86       |          |       |          |           |         |         |          |             |               |               |               |     |
| - 15<br>- |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         | 60.89<br><b>15.54</b> | Layers of fair to                     | excellent quality red and                                |     |            | DC-17        |        | 100     | 100      |          |       |          |           |         |         |          |             |               |               |               |     |
| - 16      |                       | greenish muds<br>(1-5mm thick) a      | tone, layers black shale<br>at 50° from borehole axis.   |     |            |              |        |         |          |          |       | _        | -         | -       |         |          |             | $\rightarrow$ | $\dashv$      | $\rightarrow$ |     |
| Ē         |                       |                                       |                                                          |     |            | DC-18        |        | 97      | 70       |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| E 17      |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| - 18      |                       |                                       |                                                          |     |            | DC-19        |        | 100     | 100      |          |       | _        | _         | -       |         |          |             | $\rightarrow$ | $\dashv$      | -             |     |
| Ē         | <u>57.9</u> 3         |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē.        | 18.50                 | Layers of fair q<br>layers of black   | uality grey shale, 5% of shale (5-25mm thick) at         |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| - 19      |                       | 45° from boreh<br>and fault striation | ole axis, with slickensides<br>ons. Pyrite in joints and |     |            | DC 20        |        | 100     | E 4      |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         |                       | beddings, calci                       | te veinlets.                                             |     |            | DC-20        |        | 100     | 51       |          |       |          |           |         |         |          |             |               |               |               |     |
| - 20      |                       |                                       |                                                          |     |            |              |        |         |          |          |       | _        | _         | -       |         |          |             | _             | $\dashv$      | -             |     |
| Ē         |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         |                       |                                       |                                                          |     |            | DC-21        |        | 97      | 61       |          |       |          |           |         |         |          |             |               |               |               |     |
| - 21      |                       |                                       |                                                          |     |            |              |        |         |          |          |       | -        | -         |         |         |          |             | -             | +             |               |     |
| Ē         |                       |                                       |                                                          |     |            |              | ╢      |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| - 22      |                       |                                       |                                                          |     |            |              |        |         |          |          |       |          | _         |         |         |          |             | -+            | $\dashv$      | $\downarrow$  |     |
| Ē         | 54.17<br>22.26        | Layers of red a                       | nd grey shale.                                           |     |            | DC-22        |        | 95      | 71       |          |       |          |           |         |         |          |             |               |               |               |     |
| Ē         | 22.49<br>22.49        | Good quality gr<br>shale (1-5mm t     | rey shale, 5-10% black                                   |     |            |              |        |         |          |          |       |          |           |         |         |          |             |               |               |               |     |
| 23        |                       |                                       |                                                          |     |            |              | ┝╋     |         |          |          | +     | +        | +         |         |         |          | $\neg$      | +             | +             | $\dashv$      |     |
| Ē         |                       |                                       |                                                          |     |            | DC-23        |        | 90      | 65       |          |       |          |           |         |         |          |             |               |               |               |     |
|           |                       |                                       |                                                          |     |            |              |        | -       |          |          |       |          |           |         |         |          |             |               |               |               |     |

|      |                       |                                    |                                                   | PR   | OJECT  | : Rabas      | ska Pr            | oject            | Phase 2   | ), Levi | s, Que | ebec |          | В           | OREH     | IOLE       | Bŀ            | 1-109              | <b>∂-05</b>     |
|------|-----------------------|------------------------------------|---------------------------------------------------|------|--------|--------------|-------------------|------------------|-----------|---------|--------|------|----------|-------------|----------|------------|---------------|--------------------|-----------------|
|      |                       |                                    | matach                                            | SIT  | ſE :   | West         | Optior            | n Site           |           |         |        |      |          | P           | AGE :    | 3          | <u> </u>      | OF _               | 3               |
|      | ▼                     |                                    | rratech                                           | FIL  | E NO : | <u>T-105</u> | 0-B (             | (60333           | 3-KELL)   |         |        |      |          | c           | ASING    | G: <u></u> | w             |                    |                 |
|      | •                     |                                    |                                                   | вс   | RING   | DATE :       |                   | 2005-            | 02-28     |         | то     | 2    | 2005-03- | 07 <b>c</b> | ORE      | BARR       | EL :          | PQ                 |                 |
|      | ]                     | BORIN                              | G LOG                                             | DA   | TUM :  |              | Geod              | letic            |           |         | С      | DORD | INATES   | : 5186      | 3941.0   | 4 N        | 2             | 62038              | .73 E           |
| SAM  | IPLE CC               | NDITION                            | TYPE OF SAMPLER                                   |      |        | LABOF        | RATO              | RY AI            | ND IN SIT | TU TE   | ST     |      |          | Field Var   | e        | (Sı        | i) 🗘          | , inta             | act             |
|      | Rem                   | oulded                             | SS Split spoon                                    | ρ    |        | GS GI        | rain si<br>onsoli | ize an<br>dation | alysis    |         |        |      |          | Quadiab     |          | (Su        | ir) 🔶         | ren                | noulded         |
|      | Lost                  | sturbed                            | PS Piston sampler                                 | •    |        | D Ur         | nit we            | ight (k          | N/m³)     |         |        |      |          | Swedish     | cone     | (CL<br>(Cl | ı) ∨<br>ır) ▼ | ren                | noulded         |
|      | Rock                  | core                               | DC Diamond core barrel                            | - 1  |        | CP Co        | ompre             | essive           | strength  | (MPa)   | )      |      |          | Dyn. Con    | e Pen    | . Test     | × -           |                    | ×               |
|      | <b>E</b>              | 518/                               |                                                   |      | E      |              | SAM               | PLES             | )         | wv      | TED    | CON  |          | <b>&gt;</b> | ω L      | )YN.       | CON           |                    | N. TEST         |
| ε    | - u<br>N              |                                    |                                                   |      | /EL    | <u> </u>     | z                 | Υ%               | 0         | ar      |        | MITS | 5 (%)    | <b>O</b> R' | EST      | (          | 50 blow       | <b>s/0.3</b><br>1( | <b>m)</b><br>00 |
| TH   | ATIO<br>TH.           |                                    |                                                   | IBOI | LE/    | AN           | DEC               | /ER              | RQI       |         |        |      | ( )      | RAT         | ⊢  <br>  |            |               |                    |                 |
| DEF  | DEF                   | DE                                 | SCRIPTION                                         | SYN  | TER    | NUN          | ONE               | CO!              | N or      | w       | P      | w    | wL       | ABO         | ISI      | UND<br>ST  | RAIN          | IED S<br>GTH (     | 3HEAR<br>(kPa)  |
|      | Ш                     |                                    |                                                   |      | MA     |              | 0<br>U            | RE               |           | 20      | 0 40   |      | <br>80   |             | ≤        |            | 5 <u>0</u>    | 10                 | <b>00</b>       |
|      | 52.17                 |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          | +          |               | +                  |                 |
| Ē    | 24.26                 | Layers of good<br>shale, thin laye | quality red and grey<br>ers of black shale (1-3mm |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 25 |                       | thick)                             |                                                   |      |        | DC-24        |                   | 100              | 87        |         |        |      |          |             | _        | _          |               |                    |                 |
|      | 51.13<br><b>25.30</b> | END OF BORE                        | EHOLE                                             |      |        |              |                   | -                |           |         |        |      |          |             |          |            |               |                    |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 26 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        | -    |          |             |          | -          |               | +                  |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 27 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
| Ē    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 28 |                       |                                    |                                                   |      |        |              |                   |                  |           |         | -      |      |          |             |          |            |               | +                  |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 29 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 30 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        | -    | _        |             |          | -          |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 31 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 32 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          | _          |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 33 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 34 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      | _        |             | $\vdash$ | +          | -             | +                  |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 35 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| Ł    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |

|      |                       |                                    |                                                   | PR   | OJECT  | : Rabas      | ska Pr            | oject            | Phase 2   | ), Levi | s, Que | ebec |          | В           | OREH     | IOLE       | Bŀ            | 1-109              | <b>∂-05</b>     |
|------|-----------------------|------------------------------------|---------------------------------------------------|------|--------|--------------|-------------------|------------------|-----------|---------|--------|------|----------|-------------|----------|------------|---------------|--------------------|-----------------|
|      |                       |                                    | matach                                            | SIT  | ſE :   | West         | Optior            | n Site           |           |         |        |      |          | P           | AGE :    | 3          | <u> </u>      | OF _               | 3               |
|      | ▼                     |                                    | rratech                                           | FIL  | E NO : | <u>T-105</u> | 0-B (             | (60333           | 3-KELL)   |         |        |      |          | c           | ASING    | G: <u></u> | w             |                    |                 |
|      | •                     |                                    |                                                   | вс   | RING   | DATE :       |                   | 2005-            | 02-28     |         | то     | 2    | 2005-03- | 07 <b>c</b> | ORE      | BARR       | EL :          | PQ                 |                 |
|      | ]                     | BORIN                              | G LOG                                             | DA   | TUM :  |              | Geod              | letic            |           |         | С      | DORD | INATES   | : 5186      | 3941.0   | 4 N        | 2             | 62038              | .73 E           |
| SAM  | IPLE CC               | NDITION                            | TYPE OF SAMPLER                                   |      |        | LABOF        | RATO              | RY AI            | ND IN SIT | TU TE   | ST     |      |          | Field Var   | e        | (Sı        | i) 🗘          | , inta             | act             |
|      | Rem                   | oulded                             | SS Split spoon                                    | ρ    |        | GS GI        | rain si<br>onsoli | ize an<br>dation | alysis    |         |        |      |          | Quadiab     |          | (Su        | r) ♦          | ren                | noulded         |
|      | Lost                  | sluibed                            | PS Piston sampler                                 | •    |        | D Ur         | nit we            | ight (k          | N/m³)     |         |        |      |          | Swedish     | cone     | (CL<br>(Cl | ı) ∨<br>ır) ▼ | ren                | noulded         |
|      | Rock                  | core                               | DC Diamond core barrel                            | - 1  |        | CP Co        | ompre             | essive           | strength  | (MPa)   | )      |      |          | Dyn. Con    | e Pen    | . Test     | × -           |                    | ×               |
|      | <b>E</b>              | 518/                               |                                                   |      | E      |              | SAM               | PLES             | )         | wv      | TED    | CON  |          | <b>&gt;</b> | ω L      | )YN.       | CON           |                    | N. TEST         |
| ε    | - u<br>N              |                                    |                                                   |      | /EL    | <u> </u>     | z                 | Υ%               | 0         | ar      |        | MITS | 5 (%)    | <b>O</b> R' | EST      | (          | 50 blow       | <b>s/0.3</b><br>1( | <b>m)</b><br>00 |
| TH   | ATIO<br>TH.           |                                    |                                                   | IBOI | LE/    | AN           | DEC               | /ER              | RQI       |         |        |      | ( )      | RAT         | ⊢  <br>  |            |               |                    |                 |
| DEF  | DEF                   | DE                                 | SCRIPTION                                         | SYN  | TER    | NUN          | ONE               | CO!              | N or      | w       | P      | w    | wL       | ABO         | ISI      | UND<br>ST  | RAIN          | IED S<br>GTH (     | 3HEAR<br>(kPa)  |
|      | Ш                     |                                    |                                                   |      | MA     |              | 0<br>U            | RE               |           | 20      | 0 40   |      | <br>80   |             | ≤        |            | 5 <u>0</u>    | 10                 | <b>00</b>       |
|      | 52.17                 |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          | +          |               | +                  |                 |
| Ē    | 24.26                 | Layers of good<br>shale, thin laye | quality red and grey<br>ers of black shale (1-3mm |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 25 |                       | thick)                             |                                                   |      |        | DC-24        |                   | 100              | 87        |         |        |      |          |             | _        | _          |               |                    |                 |
|      | 51.13<br><b>25.30</b> | END OF BORE                        | EHOLE                                             |      |        |              |                   | -                |           |         |        |      |          |             |          |            |               |                    |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 26 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        | -    |          |             |          | -          |               | +                  |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 27 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
| Ē    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 28 |                       |                                    |                                                   |      |        |              |                   |                  |           |         | -      |      |          |             |          |            |               | +                  |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 29 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 30 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        | -    | _        |             |          | -          |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 31 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             | _        |            |               |                    |                 |
| -    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 32 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          | _          |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 33 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 34 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      | _        |             | $\vdash$ | +          | -             | +                  |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| - 35 |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
|      |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |
| Ł    |                       |                                    |                                                   |      |        |              |                   |                  |           |         |        |      |          |             |          |            |               |                    |                 |

|             |                      |                                |                                 | PR              | OJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | : Raba       | ska Pr      | oject       | (Phase 2) | ), Levi | is, Qu | ebec         |       |      |                 | BORE    | EHOL          | E: <u></u>      | 3 <i>H-</i>   | 110-          | -05         |    |
|-------------|----------------------|--------------------------------|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-----------|---------|--------|--------------|-------|------|-----------------|---------|---------------|-----------------|---------------|---------------|-------------|----|
|             |                      | Т                              | matach                          | SIT             | ΓE :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | West         | Optior      | n Site      |           |         |        |              |       |      |                 | PAGE    | E: _          | 1               | OF            |               | 3           | _  |
|             | ▼                    |                                | rratech                         | FIL             | E NO :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>T-105</u> | 0-В (       | 6033        | 33-KELL)  | )       |        |              |       |      |                 | CASI    | NG :          | HW              |               |               |             |    |
|             | •                    |                                |                                 | вс              | RING [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE :       |             | 2005        | -02-22    |         | то     |              | 2005  | 02-2 | 25              | CORE    | E BAF         | REL             | : <u>H</u>    | Q             |             |    |
|             |                      | BORIN                          | G LOG                           | DA              | TUM :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Geod        | etic        |           |         | C      | OOR          | DINA  | TES  | : 5             | 186908  | .14 N         | 1               | 262           | 022.8         | 31 E        |    |
| SAN         | IPLE C               | ONDITION                       | TYPE OF SAMPLER                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LABO         | RATO        | RY A        | ND IN SIT | TU TE   | ST     |              |       |      | Field           | /ane    | (             | Su)             | $\diamond$    | intac         | ct          |    |
|             | Rer                  | noulded                        | SS Split spoon                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GS G         | rain si     | ze an       | alysis    |         |        |              |       |      |                 |         | (             | Sur)            | ٠             | remo          | oulde       | :d |
|             | Los                  | t                              | PS Piston sampler               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DU           | nit wei     | ight (k     | N/m³)     |         |        |              |       |      | Swedi           | sn cone | ) (<br>)      | Cu)<br>Cur)     | ▼             | intac<br>remo | ∶t<br>oulde | ed |
|             | Roc                  | k core                         | DC Diamond core barrel          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CP C         | ompre       | ssive       | strength  | (MPa)   | )      |              |       |      | Dyn. (          | Cone Pe | <u>en. Te</u> | st ;            | <u>+</u>      |               | <u> x</u>   |    |
|             | <u>ج</u>             | STR                            | ATIGRAPHY                       |                 | Ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             | PLES        | 5         | \A/A    | TED    | <u> </u>     | NTE   | лт   | ~               | 6       | DYN           | I. CO           | NE            | PEN           | I. TE       | ST |
| ε           |                      |                                |                                 | _               | /EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ≘∝           | Z           | γ %         | ۵         | ar      | nd Ll  | міт          | S (%) |      | lor,            | EST     |               | (DIC)<br>50     | ws/           | 0.3n<br>10(   | л)<br>0     |    |
| E           | ATIC<br>TH           |                                |                                 | 1BO             | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E AN         | I           | VER         | RQ        |         |        |              |       |      | RA <sup>-</sup> |         | '             |                 |               |               |             |    |
| Ē           |                      | DE                             | SCRIPTION                       | SYN             | TER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IΥΡΙ         | INO:        | í<br>C<br>C | N or      | N N     | P      | W            | w     | L    | ABC             | N SIT   | UN            | IDRA            | INE<br>NG1    | D SI<br>TH (I | HEA<br>kPa) | R  |
|             | <b>፲</b>             |                                | REACE                           |                 | MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •            |             | R           |           | 20      | 0 40   | ) 6 <u> </u> | 0 80  |      |                 | =       |               | 50              |               | 10            | 0           |    |
| Ē           | 0.00                 | Topsoil.                       |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-1         | >           | 12          | 2         |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           |                      |                                |                                 |                 | 12°0<br>15°0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 001          | $\sim$      | 12          | 2         |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| È 1         | 75.29<br><b>0.91</b> | Compact brow                   | n gravelly sand, some silt.     | <br>۲: ه        | 0.04-<br>0.04-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SS-2         | $\square$   | 54          | 21        |         |        | _            |       |      |                 |         |               |                 | +             |               | _           |    |
| Ē           |                      |                                |                                 | 0. 0<br>.d      | 00 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55-3         | $\boxtimes$ | 50          | 15        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           |                      |                                |                                 | 6 0<br>0        | 81m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00-0         |             | 50          | 15        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| 2<br>  2    | 74.07<br><b>2.13</b> | Dense grey sa                  | ndy silt.                       | 0 . A           | 0 0 0<br>9 0 0<br>9 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS-4         | $\square$   | 50          | 34        |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           | 73.46                |                                |                                 |                 | at ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |             |             | •         |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| - 3         | 2.74                 | Compact to de<br>some gravel.  | nse brown sand and silt,        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-5         | $\square$   | 50          | 45        | 0       |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           |                      |                                |                                 | . 0             | Vater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           |                      |                                |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-6         |             | 58          | 27        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| <b>4</b>    | 71.93                |                                |                                 | 0               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           | 4.27                 | Very dense bro<br>silt.        | own sandy gravel, some          | 0.0             | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS-7         | $\times$    | 50          | 52        | $\odot$ |        |              |       |      |                 |         |               |                 |               |               |             |    |
| - 5         |                      |                                |                                 |                 | 0,0,00<br>0,0,0,0,0<br>0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |             |             |           |         |        |              |       |      |                 |         |               |                 | +             | _             |             |    |
| Ē           | 70.82<br>5.38        | Bedrock: Verv                  | severely fractured              | : • • •<br>**** | $ \begin{array}{c c}         D_{4} & P_{4} \\         P_{4} & P_{4} \\         D_{4} & P_{4$ | SS-8         |             | 50          | 35        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           |                      | (weathered) re                 | d mudstone.                     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS-9         |             | 0           | 25/0cm    |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| 6           |                      |                                |                                 |                 | . Da - Da<br>Da - D. D<br>. Da - Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 000          |             | Ū           | 20/00     |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           |                      |                                |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| - 7         | 69.27<br><b>6.93</b> | Very poor qual                 | ity dark grey shale.            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           |                      | Beddings at 30                 | )° from borehole axis.          |                 | P P. P. P.<br>D A D P<br>D A D P<br>D A D P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DC-10        |             | 59          | 19        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           | 68.45<br><b>7.75</b> | Succession of                  | very poor quality red and       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| - 8         |                      | dark grey mud<br>from borehole | stone. Beddings at 50°<br>axis. |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 | +             |               |             |    |
| Ē           |                      |                                |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DC-11        |             | 32          | 0         |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| <b>–</b> 9  | 67.00                |                                |                                 |                 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |             |           |         |        |              |       |      |                 |         |               |                 | $\rightarrow$ | _             | _           |    |
| Ē           | 9.20                 | Good quality re                | ed mudstone, occasional         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           |                      | layers (5-10mn                 | n thick) at 50° from            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| 10          |                      |                                |                                 |                 | PR PP<br>PR PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC-12        |             | 100         | 79        |         | +      |              | +     |      |                 |         |               | $\square$       | +             | $\uparrow$    | +           |    |
| Ē           |                      |                                |                                 |                 | PR P.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| <b>E</b> 11 |                      |                                |                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |             |           |         |        |              | _     |      |                 |         |               | $ \rightarrow $ | $\downarrow$  | $\dashv$      | $\dashv$    |    |
| Ē           |                      |                                |                                 |                 | V.D. R.P.<br>.D. D. D. D.<br>D. D. D. D. D.<br>D. D. D. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC-13        |             | 97          | 84        |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| Ē           |                      |                                |                                 |                 | . DA . D.D<br>R. D. D. D. D.<br>P. A D. D.<br>D. D. D. D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |             |             |           |         |        |              |       |      |                 |         |               |                 |               |               |             |    |
| ſ           |                      |                                |                                 | K/////          | RRIDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Ĺ           |             |           |         |        |              |       |      |                 |         | ┶──┥          |                 |               |               |             |    |

|      |                       |                                    |                                                                             | PR   | OJECT                                                                   | : Rabas      | ska P           | roject (           | Phase 2  | ), Levis | , Quet | Dec     |                |         | BORE        | HOL    | E: /       | BH-         | 110        | -05             |         |
|------|-----------------------|------------------------------------|-----------------------------------------------------------------------------|------|-------------------------------------------------------------------------|--------------|-----------------|--------------------|----------|----------|--------|---------|----------------|---------|-------------|--------|------------|-------------|------------|-----------------|---------|
|      |                       | То                                 | matach                                                                      | SIT  | E :                                                                     | West         | Optio           | n Site             |          |          |        |         |                |         | PAGE        | :: _   | 2          | _ 0         | F_         | 3               |         |
|      | ▼                     |                                    | rratech                                                                     | FIL  | E NO :                                                                  | <u>T-105</u> | 0-B             | (60333             | 3-KELL)  | )        |        |         |                |         | CASI        | NG :   | HW         | /           |            |                 |         |
|      | •                     |                                    |                                                                             | во   | RING                                                                    | DATE :       |                 | 2005-              | 02-22    | 1        | го _   | 200     | 5-02-2         | 25      | CORE        | BAF    | REL        | .: <u>+</u> | IQ         |                 |         |
|      | ]                     | BORIN                              | G LOG                                                                       | DA   | TUM :                                                                   |              | Geod            | detic              |          |          | co     | ORDIN   | ATES           | : _5    | 186908      | .14 N  | 1          | 262         | 2022.      | 81 E            |         |
| SAN  | PLE CO                | NDITION                            | TYPE OF SAMPLER                                                             |      |                                                                         | LABOR        | RATO            | RY AN              | ID IN SI | TU TES   | т      |         |                | Field \ | /ane        | (      | Su)        | $\diamond$  | inta       | ct              |         |
|      | Remo                  | oulded                             | SS Split spoon<br>ST Thin walled Shelby tub                                 | be   |                                                                         | GS G<br>C C  | rain s<br>onsol | ize ana<br>idation | alysis   |          |        |         |                | Swodi   | sh conc     | (      | Sur)       | •           | rem        | oulde           | ed      |
|      | Lost                  | Juibeu                             | PS Piston sampler                                                           |      |                                                                         | D U          | nit we          | eight (k           | N/m³)    |          |        |         |                | Sweul   |             | ; (    | Cur)       | V           | rem        | ct<br>oulde     | ed      |
|      | Rock                  | core                               | DC Diamond core barrel                                                      |      |                                                                         | CP C         | ompre           | essive             | strength | (MPa)    |        |         |                | Dyn. C  | Cone Pe     | en. Te | st         | <u>×</u>    |            | <u>×</u>        | <       |
|      | εı                    | 5184                               | AIIGRAPHI                                                                   |      | Ε                                                                       |              |                 | PLES               | •        | WAT      |        |         | NT             | ×       | S           | DYN    | I. CC      | )NE         | PEN        | 4. TE           | EST     |
| ε    | - E                   |                                    |                                                                             | _    | ΈL                                                                      | ≘∝           | z               | ۲ %                | ۵        | an       | d LIM  | IITS (% | 6)             | ror     | EST         |        | (Die<br>5) | )<br>J      | 10.3r      | n)<br>10        |         |
| E    | ATIC<br>PTH           |                                    |                                                                             | 1BO  | Ē                                                                       | E AN         | DITIC           | VER                | RQ       |          |        |         |                | RA      | ana<br>-U T |        |            |             |            |                 |         |
| E    |                       | DE                                 | SCRIPTION                                                                   | SYN  | TER                                                                     | NUN          |                 | í<br>C<br>C        | N or     | w        | P V    | v v     | ۷ <sub>L</sub> | ABC     | LIS N       |        | IDR/       | AINE<br>NG  | :DS<br>TH( | HEA<br>kPa      | AR<br>) |
|      | Ш                     |                                    |                                                                             |      | M                                                                       |              |                 | R                  |          | 20       | 40     | 60 E    | 1<br>80        |         | =           |        | 5(         | )           | 10         | 0               |         |
| _    |                       | Good quality re                    | ed mudstone, occasional                                                     |      | Po Ro<br>Ro Po                                                          |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
|      |                       | layers (5-10mm                     | n thick) at 50° from                                                        |      | PA PA<br>R. P. P. P<br>PA D. P                                          |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 13 |                       | DOLETIOIE AXIS.                    |                                                                             |      | D.D.<br>D.D.<br>D.D.<br>D.D.<br>D.D.<br>D.D.<br>D.D.<br>D.D             | DC-14        |                 | 97                 | 92       |          | _      | _       |                |         |             |        |            | _           |            |                 |         |
| Ē    |                       |                                    |                                                                             |      | PA . Dp<br>P P. P.P<br>P.A . Dp                                         |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| Ē    | 62.51<br><b>13.69</b> | Very poor to fai                   | ir quality red mudstone,                                                    |      | 0 0 0 0 0<br>0 0 0 0<br>0 0 0 0                                         |              | ┢               |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 14 |                       | some slightly ca<br>mudstone layer | alcareous light grey<br>rs (5-10mm thick) at 50°                            |      | $ \begin{array}{c c} P \\ P \\$ | DC-15        |                 | 100                | 26       |          |        |         |                |         |             |        |            |             |            |                 |         |
|      |                       | from borenole a                    | axis.                                                                       |      | D                                                                       | 2010         |                 | 100                |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 15 |                       |                                    |                                                                             |      | . Da D. D<br>D D. D<br>D D D. D<br>D D D D                              | DC-16        |                 | 100                | 55       |          | _      | _       |                |         |             |        |            | _           |            |                 |         |
|      | 60.89<br><b>15.31</b> | Poor quality rec                   | and grey mudstone                                                           |      | DR D.D.<br>DA DR<br>DR D.D.                                             |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| _    |                       | layers, some ca thick).            | alcareous layers (1-3mm                                                     |      | . Da Da<br>D.a. R.a.<br>. Da Da                                         | DC-17        |                 | 100                | 15       |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 16 |                       |                                    |                                                                             |      | D.D P.D<br>Ra .Da<br>D.D P.D                                            |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| _    |                       |                                    |                                                                             |      | 00.00<br>00.00<br>00.00                                                 | DC-18        |                 | 100                | 37       |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 17 |                       |                                    |                                                                             |      | D D D D D<br>D D D D D<br>D D D D D<br>D D D D D                        |              |                 |                    |          |          |        | _       |                |         |             |        |            |             |            |                 |         |
| -    |                       |                                    |                                                                             |      | PA DO<br>DD DD<br>PA DO<br>DD DD                                        | DC-19        |                 | 100                | 48       |          |        |         |                |         |             |        |            |             |            |                 |         |
|      |                       |                                    |                                                                             |      | D.D. D.R<br>.D. D.R<br>D.D D.R<br>D.D D.R                               |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 18 | <u>57.9</u> 0         |                                    |                                                                             |      |                                                                         | DC-20        |                 | 90                 | 68       |          |        |         |                |         |             |        |            |             |            |                 |         |
|      | 18.30                 | Layers of poor<br>30-40% greenis   | quality red mudstone,<br>sh grey shale layers                               |      |                                                                         |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 19 |                       | (1-10mm thick)<br>axis.            | at 50° from borehole                                                        |      |                                                                         | DC-21        |                 | 97                 | 32       |          |        | _       |                |         |             |        |            |             |            |                 |         |
|      |                       |                                    |                                                                             |      |                                                                         |              | ┝╋              |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| Ē    | 56.30                 |                                    |                                                                             |      |                                                                         | DC-22        |                 | 100                | 23       |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 20 | 19.90                 | Very poor to fai<br>mudstone layer | ir quality red and grey<br>rs. Beddings at 60° from                         |      |                                                                         |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| Ē    |                       | borehole axis.                     |                                                                             |      |                                                                         | DC-23        |                 | 100                | 19       |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 21 |                       |                                    |                                                                             |      |                                                                         |              |                 |                    |          |          | _      | _       |                |         |             |        |            |             | _          |                 |         |
| Ē    | 54.79<br>21 41        |                                    | t quality rad mudators                                                      |      |                                                                         | DC-24        |                 | 100                | 75       |          |        |         |                |         |             |        |            |             |            |                 |         |
|      | 21.71                 | occasional laye                    | n quality red mudstone,<br>ers of greenish grey<br>Jmm thick) lavers at 60° |      |                                                                         |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| - 22 |                       | from borehole a                    | axis.                                                                       |      |                                                                         | DC-25        |                 | 95                 | 70       |          |        | +       |                |         |             |        |            | +           | $\neg$     |                 |         |
| Ē    |                       |                                    |                                                                             |      |                                                                         |              |                 |                    |          |          |        |         |                |         |             |        |            |             |            |                 |         |
| 23   |                       |                                    |                                                                             |      |                                                                         |              | ╞╋╋             |                    |          | $\vdash$ |        | _       | -              |         |             |        |            | -+          | $\dashv$   | $ \rightarrow $ |         |
| Ē    |                       |                                    |                                                                             |      |                                                                         | DC-26        |                 | 100                | 93       |          |        |         |                |         |             |        |            |             |            |                 |         |
| É    |                       |                                    |                                                                             |      |                                                                         | 2020         |                 |                    | 50       |          |        |         |                |         |             |        |            |             |            |                 |         |
| -    |                       |                                    |                                                                             | KIKK |                                                                         | 1            |                 | 1                  |          |          |        |         |                |         |             |        |            |             |            |                 |         |

|      |                |                  |                           | PF  | ROJECT  | : Rabas      | ska Pi            | roject   | Phase 2  | ), Levi | is, Qu         | ebec    |          |               | BORE    | HOLE    | E: [           | BH-        | 110          | -05           |         |
|------|----------------|------------------|---------------------------|-----|---------|--------------|-------------------|----------|----------|---------|----------------|---------|----------|---------------|---------|---------|----------------|------------|--------------|---------------|---------|
|      |                | Т                | matach                    | SI  | TE :    | West         | Optio             | n Site   |          |         |                |         |          |               | PAGE    | : _     | 3              | _ 0        | F _          | 3             |         |
|      | ▼              |                  | rratech                   | FI  | LE NO : | <u>T-105</u> | 0-B               | (6033    | 33-KELL) |         |                |         |          |               | CASI    | NG :    | HW             |            |              |               |         |
|      | •              |                  |                           | в   |         | DATE :       |                   | 2005     | 02-22    |         | то             |         | 2005-02- | 25            | CORE    | BAR     | REL            | : <u>H</u> | IQ           |               |         |
|      | ]              | BORIN            | G LOG                     | DA  | TUM :   |              | Geoc              | letic    |          |         | C              | OORI    | DINATES  | <b>5:</b> _51 | 86908   | .14 N   |                | 262        | 2022.        | 81 E          |         |
| SAM  | PLE CC         | NDITION          | TYPE OF SAMPLER           |     |         | LABOF        | RATO              | RY AI    | ND IN SI | ΓU ΤΕ   | ST             |         |          | Field V       | ane     | (5      | Su)            | $\diamond$ | inta         | ct            |         |
|      | Rem            | oulded           | SS Split spoon            | ē   |         | GS GI        | rain si<br>onsoli | ize an   | alysis   |         |                |         |          | Curedia       | h conc  | (8      | Sur)           | •          | rem          | oulde         | эd      |
|      | Lost           | sluibed          | PS Piston sampler         |     |         | D Ui         | nit we            | ight (k  | N/m³)    |         |                |         |          | Swedis        | sn cone | · ((    | Su)<br>Sur)    | V          | intao<br>rem | ct<br>Ioulde  | ed      |
|      | Rock           | core             | DC Diamond core barrel    |     | 1       | CP Co        | ompre             | ssive    | strength | (MPa)   | )              |         |          | Dyn. C        | one Pe  | n. Tes  | st             | <u>×</u>   |              | ×             | :       |
|      | <b>E</b> 1     | 518/             | ATIGRAPHY                 |     | Ε       |              | SAM               | PLES     | )        | w.^     | TED            | col     |          | ~             | S       | DYN     | . CC           | )NE        | PEN          | ۹. TE         | ST      |
| ε    | - E            |                  |                           | _   | Ē       | <u> </u>     | z                 | ۲ %      | 0        | a       | nd Ll          | MITS    | S (%)    | OR            | EST(    |         | (blc<br>5(     | )<br>)     | 0.3r/<br>10  | n)<br>10      |         |
| TH   | ATIO<br>PTH    |                  |                           | IBO | Ē       | E AN         | DITIC             | VER      | RQ       |         |                |         |          | RAT           |         |         |                |            |              | I             |         |
| DEF  | DEF            | DE               | SCRIPTION                 | sγn | TER     | NUN          | ONI               | ico<br>i | N or     | N.      | V <sub>P</sub> | W       | wL       | ABO           | N SIT   | UN<br>S | DRA<br>TRE     | AINE<br>NG | :DS<br>TH(   | HEA<br>kPa)   | ۱R<br>) |
|      | ΠI             |                  |                           |     | M       | •            |                   | R        |          | 20      | 0 40           | )<br>60 | 80       |               | 2       |         | 50             | )          | 10           | 0             |         |
| -    |                | Excellent qualit | ty greenish grey and dark |     |         |              |                   |          |          |         |                |         |          |               |         |         | _              |            |              |               |         |
|      |                | borehole axis.   |                           |     |         |              |                   | -        |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 25 |                |                  |                           |     |         | DC-27        |                   | 100      | 90       |         |                | _       |          | -             |         |         | $ \rightarrow$ |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      | 50.52<br>25.68 | END OF BORE      | EHOLE                     |     | :.:⊟::: |              |                   | -        |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 26 |                |                  |                           |     |         |              |                   |          |          |         |                |         |          | -             |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 27 |                |                  |                           |     |         |              |                   |          |          |         |                |         |          | _             |         |         | _              |            |              | $\rightarrow$ |         |
| -    |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 28 |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| -    |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 29 |                |                  |                           |     |         |              |                   |          |          |         |                | _       |          | _             |         |         | $\rightarrow$  |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 30 |                |                  |                           |     |         |              |                   |          |          |         |                |         |          | -             |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 31 |                |                  |                           |     |         |              |                   |          |          |         |                | _       |          | _             |         |         | _              |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 32 |                |                  |                           |     |         |              |                   |          |          |         |                | +       |          | 1             |         |         | $\uparrow$     | +          | $\neg$       | +             | _       |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 33 |                |                  |                           |     |         |              |                   |          |          |         |                | _       |          | -             |         |         | $\dashv$       | $\dashv$   | $\dashv$     | $\dashv$      |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 34 |                |                  |                           |     |         |              |                   |          |          |         |                | +       |          | 1             |         |         | +              | +          | $\neg$       | +             |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| - 35 |                |                  |                           |     |         |              |                   |          |          |         |                | _       |          |               |         |         | $\dashv$       | $\dashv$   | $\dashv$     | $\dashv$      |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
|      |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |
| -    |                |                  |                           |     |         |              |                   |          |          |         |                |         |          |               |         |         |                |            |              |               |         |

|         |                       |                   |                                             | PR         | OJECT                                                                                                           | : Raba       | ska Pr             | oject (          | Phase 2  | ), Levis,      | Quebe | ec     |                |        | BORE        | EHOL               | E : <i>E</i> | 3 <b>H-</b> 1 | 111/         | 4-05             | 5       |
|---------|-----------------------|-------------------|---------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|----------|----------------|-------|--------|----------------|--------|-------------|--------------------|--------------|---------------|--------------|------------------|---------|
|         |                       | То                | matach                                      | sr         | ΓE :                                                                                                            | West         | Optior             | n Site           |          |                |       |        |                |        | PAGE        | £: _               | 1            | _ 0           | F_           | 2                |         |
|         | ▼                     |                   | rratecii                                    | FIL        | E NO :                                                                                                          | <u>T-105</u> | 0-В (              | 60333            | 3-KELL)  |                |       |        |                |        | CASI        | NG :               | HW           | 1             |              |                  |         |
|         | •                     |                   |                                             | вс         | RING [                                                                                                          | DATE :       |                    | 2005-            | 03-07    | т              | o _   | 200    | 5-03-          | 14     | CORE        | E BAF              | REL          | .: <u>+</u>   | łQ           |                  |         |
|         | ]                     | BORIN             | G LOG                                       | DA         | TUM :                                                                                                           |              | Geod               | etic             |          |                | coo   | RDIN   | ATES           | : 5    | 186872      | .61 N              | 1            | 261           | 1927.        | .58 E            |         |
| SAN     | PLE CO                | ONDITION          | TYPE OF SAMPLER                             |            |                                                                                                                 | LABO         | RATO               | RY AN            | ID IN SI | TU TEST        | 7     |        |                | Field  | Vane        | (;                 | Su)          | $\diamond$    | inta         | ct               |         |
|         | ] Rem                 | oulded<br>sturbed | SS Split spoon<br>ST Thin walled Shelby tub | )e         |                                                                                                                 | GS G<br>C C  | rain si<br>onsoli  | ze ana<br>dation | alysis   |                |       |        |                | Swodi  | ob oon      | ()                 | Sur)         | •             | rem          | oulde            | ed      |
|         | Lost                  |                   | PS Piston sampler                           | -          |                                                                                                                 | D U          | nit wei            | ght (k           | N/m³)    |                |       |        |                | Sweul  |             | ; ((<br>()         | Cur)         | ▼             | rem          | ct<br>Iould#     | ed      |
|         | Rock                  | core              | DC Diamond core barrel                      |            |                                                                                                                 | CP C         | ompre              | ssive            | strength | (MPa)          |       |        |                | Dyn. ( | Cone Pe     | en. Te             | st           | ×             |              | >                | <       |
|         | <b>E</b>              | 5164              |                                             |            | E                                                                                                               |              |                    | FLE3             | )        | WAT            | ER C  | ONTE   | INT            | ≻      | S           | DYN                | l. CC        | )NE           | PEN          | N. TE            | EST     |
| ε       | z ε                   |                   |                                             | _          | VEL                                                                                                             | ₽₩           | NO                 | ۲ %              | 0        | and            | LIMI  | TS (%  | 6)             | TOR    | EST         |                    | (Did<br>5(   | 0             | 10.31        | <b>11)</b><br>)0 |         |
| PTH     | PTH                   |                   |                                             | MBO        | S LE                                                                                                            | e ar<br>Mbe  | DITIO              | VER              | r RQ     |                |       |        |                | DRA.   | and<br>TU T |                    |              |               |              |                  |         |
| B       |                       | DE                | SCRIPTION                                   | SΥΙ        | <b>TEF</b>                                                                                                      | TΥΡ<br>NUI   | CON                | ECO              | o<br>N   | W <sub>P</sub> | w     | ۱<br>۱ | ∧ <sub>L</sub> | -AB(   | IS N        | S                  | TRE          |               | :D S<br>TH ( | kPa              | лк<br>) |
|         | <b>ш</b> т<br>75.74   | GROUND SUR        | FACE                                        |            | ŕM                                                                                                              |              |                    | R                |          | 20             | 40    | 60 E   | 30             | _      | -           |                    | 50           | ט י           | 10           | 0                |         |
| -       | <b>0.00</b><br>75.28  | Topsoil.          |                                             |            |                                                                                                                 | SS-1         | $\times$           | 25               | 17       |                |       |        |                |        |             |                    |              |               |              |                  |         |
|         | 0.46                  | Compact brown     | gravelly and silty sand.                    |            | 04-1                                                                                                            | <u> </u>     | $\succ$            | FO               | 20       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 1     |                       |                   |                                             | \$<br>9 9  | 0 4 0<br>1 2005                                                                                                 | 55-2         |                    | 50               | 28       |                |       | _      |                | -      |             |                    |              | _             | _            |                  |         |
|         |                       |                   |                                             | 0<br>0     | D D D D D D D D D D D D D D D D D D D                                                                           | SS-3         | $\ge$              | 50               | 20       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| Ļ,      | 73.86<br><b>1.88</b>  | Compact brown     | a aravelly sand some silt                   |            | 75.5                                                                                                            |              |                    |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| Ē       |                       | Compact brown     | gravely band, borne bit.                    | 0.0        | at elev                                                                                                         | SS-4         | $\sim$             | 25               | 16       |                |       |        |                |        |             |                    |              |               |              |                  |         |
|         | 73.00                 | O anno at anno a  | :14                                         |            | P P P                                                                                                           |              |                    |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 3     | 2.74                  | sand and grave    | l.                                          | 1.         | Vater                                                                                                           | SS-5         | $\bowtie$          | 50               | 15       |                |       |        |                | -      |             |                    |              | -             | -            |                  |         |
| -       |                       |                   |                                             | •          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           |              |                    |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| 4       |                       |                   |                                             |            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           | SS-6         | $\square$          | 50               | 23       | •              |       |        |                | -      |             |                    |              |               |              |                  |         |
| _       |                       |                   |                                             |            | $ \begin{array}{c c} D \\ D \\ \hline \end{array} $             |              | $\bigtriangledown$ |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| _       |                       |                   |                                             |            |                                                                                                                 | SS-7         |                    | 58               | 21       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 5     | 70.71<br><b>5.03</b>  | Dense to very d   | lense brown gravelly sand                   | 000        |                                                                                                                 |              | $\bigtriangledown$ | 50               |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
|         |                       | and slit.         |                                             | 0          |                                                                                                                 | 55-8         |                    | 58               | 55       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 6     |                       |                   |                                             | 8          |                                                                                                                 | SS-9         | $\boxtimes$        | 54               | 62       |                | _     |        |                | -      |             |                    | _            | _             | $\square$    |                  |         |
| Ē       |                       |                   |                                             |            | $D_{0}$ $D_{1}$<br>$D_{0}$ $D_{1}$<br>$D_{0}$ $D_{1}$                                                           |              |                    | 0.               | 02       |                |       |        |                |        |             |                    |              |               |              |                  |         |
|         |                       |                   |                                             | 6 0        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                           | SS-10        | $\boxtimes$        | 50               | 37       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 7     |                       |                   |                                             | e<br>e     | DA .DE<br>D'D D A<br>DA DE                                                                                      |              |                    |                  |          |                |       |        |                | -      |             |                    |              |               |              |                  |         |
| Ē       |                       |                   |                                             | 0          |                                                                                                                 | SS-11        | $\geq$             | 29               | 101      |                |       |        |                |        |             |                    |              |               |              |                  |         |
| - 8     |                       |                   |                                             | ه. ه<br>ه  | DA .DA<br>D-D D D<br>DA DA                                                                                      |              |                    |                  |          |                |       |        |                | -      |             |                    | _            | _             | -            |                  |         |
| -       |                       |                   |                                             | 0          | 8                                                                                                               | SS-12        | $\leq$             | 56               | 42       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| Ē       |                       |                   |                                             | 0<br>      | $\begin{array}{ccc} D_{A} & D_{A} \\ D & D & D_{A} \\ \hline D & D & D_{A} \\ \hline D & D & D_{A} \end{array}$ |              |                    |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| F 9     |                       |                   |                                             | 6          |                                                                                                                 | SS-13        | $\bowtie$          | 50               | 61       |                |       |        |                | 1      |             |                    |              |               |              |                  |         |
| Ē       | 66.14<br><b>9.60</b>  | Verv dense arev   | y silt, some sand.                          |            |                                                                                                                 |              | $\bigtriangledown$ |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| -<br>10 |                       | ,                 |                                             |            |                                                                                                                 | SS-14        | $\bowtie$          | 75               | 57       |                | _     |        |                | -      |             | $\left  - \right $ | $\dashv$     | $\dashv$      | $\neg$       |                  |         |
| Ē       | 65.38<br><b>10.36</b> | Dense to very d   | lense brown gravelly sand                   |            |                                                                                                                 |              | $\bigtriangledown$ |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |
| È 11    |                       | and silt.         |                                             |            |                                                                                                                 | SS-15        |                    | 62               | 41       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| ŧ ''    |                       |                   |                                             | ₽ 0<br>> 4 |                                                                                                                 | QQ 46        | $\bigtriangledown$ | 75               | 00       |                |       |        |                |        |             |                    | Ţ            |               | Ī            |                  | _       |
| Ē       |                       |                   |                                             | 0.0        |                                                                                                                 | 33-10        | $\vdash$           | 15               | 90       |                |       |        |                |        |             |                    |              |               |              |                  |         |
| -       |                       |                   |                                             |            | DD DD                                                                                                           |              | $\succ$            |                  |          |                |       |        |                |        |             |                    |              |               |              |                  |         |

|            |                               |                                                                                | PRO   | JECT                                                                              | : Rabas      | ska Pr | oject   | (Phase 2)     | , Levis, C | Quebe | 0        | B                 | OREH    | IOLE :        | BH-         | 111/             | 4-05          |
|------------|-------------------------------|--------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|--------------|--------|---------|---------------|------------|-------|----------|-------------------|---------|---------------|-------------|------------------|---------------|
|            |                               | Torratoch                                                                      | SITE  | :                                                                                 | West         | Optio  | n Site  |               |            |       |          | Р                 | AGE :   | 2             | _ c         | )F _             | 2             |
|            | ◄                             | Terratech                                                                      | FILE  | NO :                                                                              | <u>T-105</u> | 0-В    | 6033    | 33-KELL)      |            |       |          | c                 | ASINC   | 3: <u>H</u> \ | N           |                  |               |
|            | •                             |                                                                                | BOR   | RING E                                                                            | OATE :       |        | 2005    | -03-07        | то         |       | 2005-03- | - <u>14</u> C     | ORE E   | <b>3ARRE</b>  | L: !        | HQ               |               |
|            | ]                             | BORING LOG                                                                     | DAT   | UM :                                                                              |              | Geod   | etic    |               |            | COOF  | RDINATES | <b>3</b> : _ 5186 | 3872.6  | 1 N           | 26          | 1927.            | 58 E          |
| SAN        |                               | NDITION TYPE OF SAMPLER                                                        | 1     |                                                                                   |              | RATO   | RY A    | ND IN SIT     | U TEST     |       |          | Field Var         | ie      | (Su)          | $\diamond$  | inta             | ct            |
|            | Undis                         | sturbed ST Thin walled Shelby tube                                             | e     |                                                                                   | C C          | onsoli | datior  | aiysis<br>I   |            |       |          | Swedish           | cone    | (Sur)<br>(Cu) | / ◆<br>▽    | rem<br>inta      | oulded<br>ct  |
|            | Lost                          | PS Piston sampler                                                              |       |                                                                                   | D U          | nit we | ight (k | (N/m³)        |            |       |          |                   | _       | (Cur          | ) 🔻         | rem              | oulded        |
|            |                               | STRATIGRAPHY                                                                   |       | _                                                                                 |              | SAM    |         | Strength<br>S | (MPa)      |       |          | Dyn. Cor          | le Pen. | . Test        | <u>× -</u>  |                  | <u>×</u>      |
|            | ٤                             |                                                                                |       | ш<br>-                                                                            |              |        | Ŷ       |               | WATE       | RCC   | NTENT    | ۲                 | TS<br>D | YN. C)<br>(b) | ONE<br>lows | PEN<br>5/0.3     | I. TEST<br>n) |
|            | NO - H                        |                                                                                | Ы     | EVEI                                                                              | UN H         | NOI.   | RY %    | ap            | and        | LIMIT | S (%)    | ATOI<br>d         | TES     |               | 50          | 10               | 0             |
| EPT        | VATI<br>EPTI                  | DECODIDITION                                                                   | MB    | R LI                                                                              | PE A<br>JMBI | NDIT   | OVE     | or R(         | w          | w     | w        | sor/<br>an        | E       | UNDF          |             | ED S             | HEAR          |
| □          |                               | DESCRIPTION                                                                    | S     | ΙATE                                                                              | Γ<br>N       | CO     | REC     | z             | ••Р<br>⊢   |       | "L<br>—⊣ | LAE               | N<br>N  | STR           | ENG         | TH (             | kPa)          |
|            |                               | le l                                       | - Al  | <b>×</b>                                                                          | <u>SS-17</u> |        | 100     | 4/10cm        | 20         | 40 6  | 60 80    |                   |         | ;<br>         | 50          | 10               | 0             |
|            | 63.22                         | Very dense gravelly sand and silt.                                             | 0 0 P | >1 Da<br>a D.D<br>>1 Da                                                           | 00-17        |        | 100     | +/ TOCIN      |            |       |          |                   |         |               |             |                  |               |
| Ē          | 12.52                         | Bedrock: Succession of layers of very<br>poor quality red and greenish grey    |       | 0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | SS-18        |        | 50      | 50/5cm        |            |       |          |                   |         |               |             |                  |               |
| - 13       |                               | mudstone, layers of black shale (1-10mm thick) at 50° from borehole axis.      |       |                                                                                   | DC-19        |        | 67      | 0             |            |       |          | -                 | _       |               |             |                  |               |
| Ē          | 61.00                         |                                                                                |       | 4 #4                                                                              |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 14       | 13.84                         | Succession of fair quality red and                                             |       |                                                                                   |              | Т      |         |               |            | _     |          | _                 | _       |               | <u> </u>    |                  |               |
| Ē          |                               | grey calcareous mudstone (10-20mm<br>thick). Reddings, at 40,50° from boroholo |       |                                                                                   | DC-20        |        | 77      | 0             |            |       |          |                   |         |               |             |                  |               |
| Ē , 6      |                               | axis.                                                                          |       |                                                                                   | DC-20        |        |         | Ū             |            |       |          |                   |         |               |             |                  |               |
| Ē          | 60.45                         |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| Ē          | 10.25                         | calcareous mudstone layers, 50-55%                                             |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 16       | <u>59.7</u> 9<br><b>15.95</b> | from borehole axis.                                                            |       |                                                                                   |              |        |         |               |            |       |          | _                 | _       |               |             |                  |               |
| Ē          |                               | mudstone and greenish grey mudstone,                                           |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| Ē 17       |                               | Beddings at 45° from borehole axis.                                            |       |                                                                                   | DC-21        |        | 100     | 21            |            |       |          | _                 |         |               |             |                  |               |
| Ē          |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| Ē          |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 18<br>-  |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          | _                 |         |               |             |                  |               |
| Ē          |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 19       |                               |                                                                                |       |                                                                                   | DC-22        |        | 100     | 57            |            |       |          | _                 |         |               |             |                  |               |
| Ē          |                               |                                                                                |       |                                                                                   | 00 22        |        | 100     | 0,            |            |       |          |                   |         |               |             |                  |               |
| Ē.         | 55.88                         |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 20       | 19.00                         | END OF BOREHOLE                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
|            |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 21       |                               |                                                                                |       |                                                                                   |              |        |         |               |            | -     |          | -                 | ┝       |               | +           | $\left  \right $ |               |
| E          |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| -<br>      |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| <b>f</b> " |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
|            |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| - 23       |                               |                                                                                |       |                                                                                   |              |        |         |               |            | +     |          | -                 | ┝       |               | +           | $\left  \right $ |               |
|            |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
| Ē          |                               |                                                                                |       |                                                                                   |              |        |         |               |            |       |          |                   |         |               |             |                  |               |
|        |                             |                               |                                                                        | PR                | OJECT  | : Rabas      | ska Pr          | oject             | Phase 2  | ), Levis | , Quebe | ec      | BO                           | REHOL   | .E_: <u></u> | <b>3H-</b> 1       | 116/       | 4-05      | ;       |
|--------|-----------------------------|-------------------------------|------------------------------------------------------------------------|-------------------|--------|--------------|-----------------|-------------------|----------|----------|---------|---------|------------------------------|---------|--------------|--------------------|------------|-----------|---------|
|        |                             | Т                             | matach                                                                 | SIT               | Έ:     | West         | Optior          | n Site            |          |          |         |         | PAG                          | €:_     | 1            | _ 0                | F _        | 5         |         |
|        | ▼                           |                               | rratecn                                                                | FIL               | E NO : | <u>T-105</u> | )-В (           | 6033              | 3-KELL)  |          |         |         | CAS                          | SING :  | NN           | /                  |            |           |         |
|        |                             |                               |                                                                        | во                | RING [ | DATE :       |                 | 2005-             | 03-19    | г        | ю       | 2005-03 | - <u>22</u> co               | RE BA   | RREL         | _: N               | VQ3        |           |         |
|        |                             | BORIN                         | G LOG                                                                  | DA                | TUM :  |              | Geod            | etic              |          |          | coo     | RDINATE | <b>S:</b> 51869 <sup>-</sup> | 14.80   | N            | 261                | 1894.      | 79 E      |         |
| SAN    | IPLE CO                     | ONDITION                      | TYPE OF SAMPLER                                                        |                   |        | LABOR        | ATO             | RY AI             |          | TU TES   | т       |         | Field Vane                   |         | (Su)         | $\diamond$         | inta       | ct        | _       |
| $\geq$ | Rem                         | oulded                        | SS Split spoon                                                         |                   |        | GS G         | ain si          | ze an             | alysis   |          |         |         |                              | í       | (Sur)        | ٠                  | rem        | oulde     | d       |
|        | Undi                        | sturbed                       | PS Piston sampler                                                      | e                 |        | D Ur         | nsoii<br>nit we | dation<br>ight (k | N/m³)    |          |         |         | Swedish co                   | ne      | (Cur)        | $\bigtriangledown$ | inta       | ct        | b.d     |
|        | Rocl                        | < core                        | DC Diamond core barrel                                                 |                   |        | CP Co        | ompre           | essive            | strength | (MPa)    |         |         | Dyn. Cone                    | Pen. To | est          | ×                  |            | <u>×</u>  | ;u<br>( |
|        | _                           | STR                           | ATIGRAPHY                                                              |                   | ε      |              | SAM             | PLES              | ;        |          |         |         |                              | DYI     | N. C(        | ONE                | PE         | I. TE     | ST      |
| ε      | μ<br>- Ε                    |                               |                                                                        |                   | Ľ.     |              | z               | %                 | _        | WAT      |         |         | DRY<br>STS                   |         | (bl          | ows                | /0.3r      | n)        |         |
| Ξ      | θΞ-Ξ                        |                               |                                                                        | ЗÖГ               | Ш      | ANC          | 0E              | ERΥ               | gD       | an       |         | 13 (%)  | RAT(<br>nd<br>J TE           | _       | 5            | U                  | 10         | 0         |         |
| Ē      | EP'                         | DE                            | SCRIPTION                                                              | Μ                 | ĒR     | YPE          | QN              | NOC               | or       | w        | 5 W     | wL      | BOF<br>a                     | U       |              |                    | ED S       |           | R       |
| Γ      |                             |                               |                                                                        | 0                 | NAT    | μz           | ö               | REC               | z        | ⊢<br>20  |         |         | Ľ Ľ                          |         | 5            | - NG               | іп (<br>10 | кга)<br>0 | 1       |
|        | 75.44<br><b>0.00</b>        | GROUND SUR<br>Topsoil (see Bl | RFACE<br>H-116B-05).                                                   | ~~                | -      |              |                 |                   |          |          | +0      |         |                              | _       |              |                    |            |           |         |
|        | <u>75.26</u><br><b>0.23</b> | Compact brown                 | n sand, some silt to silty,                                            |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| Ξ.     |                             | Some graver (S                | ee bii-110b-03).                                                       | 7<br>             |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        | 0.0               |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        | 9<br>             |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 2    |                             |                               |                                                                        | 9                 |        |              |                 |                   |          |          |         |         | _                            | _       |              | ⊢                  |            |           |         |
| Ē      |                             |                               |                                                                        | е                 |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 3    | 73.00                       | Compact grove                 | silt trace of sand and                                                 |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             | gravel (see BH                | -116B-05).                                                             | о.<br>с 1 а       |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 4    |                             |                               |                                                                        | •                 |        |              |                 |                   |          |          |         |         | _                            |         |              |                    |            |           | _       |
| Ē      |                             |                               |                                                                        | 000               |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| Ē      | 71.78                       | Donso to vonu                 | donso roddish and grov                                                 |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 5    | 4.70                        | sand, some silt               | and gravel, occasional and gravel, occasional outline (see BH-116B-05) | <b>0</b> .        |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            | -         |         |
|        |                             |                               |                                                                        | о <i>в</i>        |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 6    |                             |                               |                                                                        | ଟ. ଏ<br>ପ୍ରି<br>ଅ |        |              |                 |                   |          |          |         |         | _                            |         |              | ⊢                  |            |           |         |
|        |                             |                               |                                                                        | °.                |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| Ē      |                             |                               |                                                                        | Q                 |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 7    |                             |                               |                                                                        | ÷ .               |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 8    |                             |                               |                                                                        | •                 |        |              |                 |                   |          |          |         |         | _                            |         |              |                    |            |           | _       |
|        |                             |                               |                                                                        | ≷¶.∘<br>7         |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| 9      |                             |                               |                                                                        | •<br>•            |        |              |                 |                   |          |          |         |         | 1                            |         |              |                    |            | +         |         |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| 10     |                             |                               |                                                                        | 5                 |        |              |                 |                   |          |          |         |         | _                            |         | $\square$    | ⊢                  | -          | $\square$ | _       |
|        |                             |                               |                                                                        | P<br>O<br>O       |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
| - 11   |                             |                               |                                                                        |                   |        |              |                 |                   |          | $\vdash$ |         |         | 1                            |         |              |                    |            | +         | $\neg$  |
|        |                             |                               |                                                                        |                   |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |
|        |                             |                               |                                                                        | 0                 |        |              |                 |                   |          |          |         |         |                              |         |              |                    |            |           |         |

|                  |    |                        |                                  |                                                   | PR  | OJECI       | : Rabas      | ska Pr           | oject ( | Phase 2            | ), Levis,      | Quebe      | с     |            |         | BORE    | HOL         | E : <i>B</i> | 3H-1               | 116/                  | 4-0          | 5          |
|------------------|----|------------------------|----------------------------------|---------------------------------------------------|-----|-------------|--------------|------------------|---------|--------------------|----------------|------------|-------|------------|---------|---------|-------------|--------------|--------------------|-----------------------|--------------|------------|
|                  |    |                        |                                  | matach                                            | SIT | Е:          | West         | Optio            | n Site  |                    |                |            |       |            |         | PAGE    | : _         | 2            | _ 0                | F_                    | 5            |            |
|                  |    | ▼                      |                                  | rratech                                           | FIL | E NO :      | <u>T-105</u> | )-В (            | (60333  | 3-KELL)            | )              |            |       |            |         | CASI    | NG :        | NW           |                    |                       |              |            |
|                  |    | •                      |                                  |                                                   | во  | RING        | DATE :       |                  | 2005-   | 03-19              | т              | <b>)</b> _ | 2005  | 5-03-2     | 22      | CORE    | BAR         |              | .: N               | 1Q3                   |              |            |
|                  |    | ]                      | BORIN                            | G LOG                                             | DA  | TUM :       |              | Geod             | letic   |                    |                | cool       |       | TES        | : 5     | 186914  | .80 N       |              | 261                | 1894.                 | .79 E        | :          |
| SA               | MF | PLE CC                 | NDITION                          | TYPE OF SAMPLER                                   |     |             | LABOF        | ATO              | RY AN   | ID IN SI           | TU TEST        |            |       | -          | Field \ | /ane    | ()          | Su)          | <u> </u>           | inta                  | loct         |            |
| $\triangleright$ | <  | Rem                    | oulded                           | SS Split spoon                                    |     |             | GS G         | ain si           | ze ana  | alysis             |                |            |       |            |         | ano     | (           | Sur)         | <b>\</b>           | rem                   | nould        | ed         |
|                  |    | Undi                   | sturbed                          | ST Thin walled Shelby tub                         | e   |             |              | onsoli<br>nit wa | dation  | N/m <sup>3</sup> ) |                |            |       |            | Swedi   | sh cone | • ((        | Cu)          | $\bigtriangledown$ | inta                  | ct           |            |
|                  |    | Rock                   | core                             | DC Diamond core barrel                            |     |             | CP Co        | ompre            | essive  | strength           | (MPa)          |            |       |            | Dyn. C  | Cone Pe | ))<br>n. Te | Cur)<br>st   | ▼<br>×             | rem                   | ioulde       | ed<br>×    |
|                  |    |                        | STR                              | ATIGRAPHY                                         |     | c           |              | SAM              | PLES    | i                  |                |            |       |            |         |         |             |              |                    | DEI                   |              | Бет        |
| _                |    | ۲<br>- ۲               | INCLINAT                         | FION ANGLE: 50°                                   |     | ÷           |              |                  | %       |                    | WATE           | ER CO      | ONTE  | NT         | RY      | TS      |             | blo)         | ows                | /0.3                  | m)           | -51        |
|                  |    | NON-                   | AZIMUTH                          | l: <u>315°</u>                                    | Ч   | Ň           | dr R         | NO               | RY      | B                  | and            | LIMI       | rs (% | <b>b</b> ) | ATO     | TES     |             | 50           | י                  | 10                    | 0            |            |
| ١ <u>Ē</u>       |    | PTF                    |                                  |                                                   | MB  | R<br>L      | A BI         | 1<br>I<br>I<br>I | NE      | r R(               |                |            |       |            | OR/     | ITU     |             |              |                    | -<br>-<br>-<br>-<br>- | SHE/         | ΔR         |
| ۱ä               |    |                        | DE                               | SCRIPTION                                         | sγ  | <b>A</b> TE | ΣN           | 0<br>S           | ECC     | z                  | ₩ <sub>P</sub> |            | v     | VL         | AB      | N<br>N  | S           | TRE          | NG                 | TH (                  | kPa          | i)         |
|                  |    |                        |                                  |                                                   |     | Š           |              | -                | 2       |                    | 20             | 40 6       | 50 8  | 0          | _       | -       |             | 50           | , נ                | 10                    | 0            |            |
| Ē                |    | 12.12                  | Bedrock: Very                    | poor to poor quality                              |     |             | DC-1         |                  | 57      | 0                  |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        | greenish grey r<br>mudstone laye | mudstone, few dark<br>rs (1-10mm thick), 5% red   | X   |             | DC-2         |                  | 75      | 28                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| E 1:             | 3  |                        | mudstone beds<br>Beddings at 85  | s (max. 30mm thick).<br>s° from borehole axis.    |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              | _                  |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    | 04 70                  |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| <b>1</b>         | 4  | <u>64.7</u> 2<br>13.99 | Layers of poor                   | to fair quality red                               |     |             | DC-3         |                  | 100     | 63                 |                |            |       |            |         |         |             |              |                    | _                     |              |            |
| Ē                |    |                        | mudstone, 10-1<br>mudstone layer | 15% of greenish grey<br>rs, light grey calcareous |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| ŧ.               | _  |                        | mudstone beds                    | s. Beddings at 85° from                           |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                | 5  |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             | DC-4         |                  | 100     | 54                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| - 1              | 6  |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| - 1'             | 7  |                        |                                  |                                                   |     |             | DC-5         |                  | 94      | 60                 |                |            |       |            |         |         |             |              | _                  |                       |              | <u> </u>   |
| Ē                |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē.               |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| E 1              | 8  |                        |                                  |                                                   |     |             | DC-6         |                  | 100     | 57                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             | 000          |                  | 100     | 0,                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| - 19             | 9  |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| Ē                |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| 53hrs            |    |                        |                                  |                                                   |     |             |              |                  | 08      | 27                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
|                  | 0  |                        |                                  |                                                   |     |             | 00-7         |                  | 90      | 27                 |                |            |       |            |         |         |             | ו            | [ropa<br>inc       | ıri at<br>linati      | 19.8<br>on = | 1m:<br>48° |
| 005-11           |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| 1 ED: 2          |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| 2<br>1<br>1      | 1  |                        |                                  |                                                   |     |             | DC-8         |                  | 100     | 47                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
|                  |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
| 94-P9            | 2  |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
|                  |    |                        |                                  |                                                   |     |             | DC-9         |                  | 100     | 63                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| 1050-B           |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |
|                  | 3  |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              | $\dashv$           | -                     |              |            |
| tec74\S          |    |                        |                                  |                                                   |     |             | DC 40        |                  |         | 20                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| V:\Geo           |    |                        |                                  |                                                   |     |             | DC-10        |                  | 98      | 38                 |                |            |       |            |         |         |             |              |                    |                       |              |            |
| >-               |    |                        |                                  |                                                   |     |             |              |                  |         |                    |                |            |       |            |         |         |             |              |                    |                       |              |            |

|       |                |                                   |                                                        | PR  | OJECT  | : Rabas       | ska P           | roject (           | Phase 2  | ), Levis, C        | luebeo   | <b>c</b> |               | BORE      | EHOL     | E : <i>B</i>  | H-1           | 16A          | -05           | _  |
|-------|----------------|-----------------------------------|--------------------------------------------------------|-----|--------|---------------|-----------------|--------------------|----------|--------------------|----------|----------|---------------|-----------|----------|---------------|---------------|--------------|---------------|----|
|       |                | То                                | matach                                                 | SIT | Έ:     | West          | Optio           | n Site             |          |                    |          |          |               | PAGE      | : _      | 3             | OF            | :            | 5             | _  |
|       | ✓              |                                   | Tratech                                                | FIL | E NO : | <u>T-105</u>  | 0-B             | (60333             | 3-KELL   | )                  |          |          |               | CASI      | NG :     | NW            |               |              |               |    |
|       | •              |                                   |                                                        | во  | RING I | DATE :        |                 | 2005-              | 03-19    | то                 |          | 2005-03  | -22           | CORE      | EBAF     | REL           | : <u>N</u>    | Q3           |               |    |
|       | ]              | BORIN                             | G LOG                                                  | DA  | TUM :  |               | Geod            | detic              |          |                    | COOF     |          | <b>S</b> : _5 | 186914    | .80 N    | 1             | 2618          | 394.7        | 79 E          | _  |
| SAN   | IPLE CO        | NDITION                           | TYPE OF SAMPLER                                        |     |        | LABOR         | RATO            | RY AN              | ID IN SI | TU TEST            |          |          | Field         | Vane      | (        | Su)           | $\diamond$    | intac        | xt            |    |
|       | Remo           | oulded<br>sturbed                 | SS Split spoon<br>ST Thin walled Shelby tub            | e   |        | GS GI<br>C Co | rain s<br>onsol | ize ana<br>idation | alysis   |                    |          |          | Swedi         | ish cone  | )<br>= ( | Sur)<br>Cui)  |               | remo         | oulde         | d  |
|       | Lost           |                                   | PS Piston sampler                                      |     |        | D Ur          | nit we          | eight (k           | N/m³)    |                    |          |          |               |           | (        | Cur)          | ▼             | remo         | ,r<br>oulde   | d: |
|       | Rock           | core                              | DC Diamond core barrel                                 |     |        | CP Co         | ompro           | essive             | strength | (MPa)              |          |          | Dyn. (        | Cone Pe   | en. Te   | st :          | <u> </u>      |              | <u>x</u>      |    |
|       | E              | 0110                              |                                                        |     | ۲<br>: |               |                 |                    |          | WATE               | R CC     | NTENT    | ≿             | പ         | DYN      | i. CO<br>(blc | NE F          | PEN<br>0.3n  | i. TE<br>n)   | ST |
| а<br> | - <sup>m</sup> |                                   |                                                        | Ч   | VEL    | Q K           | NO              | ۲ %                | Ð        | and                | LIMIT    | 'S (%)   | TOF.          | I<br>TEST |          | 50            | )             | 100          | 0             |    |
| PTH   | ATI            |                                   |                                                        | MBC | RLE    | E AI<br>MBE   | IDIT            | VEF                | r RG     |                    |          |          | ORA           | and       |          |               |               |              |               | P  |
|       | DE             | DE                                | SCRIPTION                                              | SΥ  | ATEI   | TYF<br>NU     | CON             | ECC                | N<br>N   | ₩ <sub>P</sub><br> | ₩<br>—⊙- |          | LAB           | IS N      | S        | TRE           | NGT           | Ή (ዞ         | (Pa)          |    |
|       |                |                                   |                                                        |     | Š      |               |                 | œ                  |          | 20                 | 40 6     | 0 80     |               |           |          | 50            | )<br>         | 100          | 0             |    |
| Ē     | 56.68          |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| Ē     | 24.49          | Poor to good que layers of reddis | uality red mudstone,<br>sh green-grey mudstone,        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 25  |                | 5% of thin layer<br>mudstone beds | rs of light grey calcareous<br>s. Beddings at 80° from |     |        | DC-11         |                 | 100                | 46       |                    |          |          |               |           |          |               | -             | _            | -             |    |
| Ē     |                | borehole axis.                    |                                                        |     |        | DO-TT         |                 | 100                | 40       |                    |          |          |               |           |          |               |               |              |               |    |
| - 26  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          | _             |           |          |               | _             | _            | _             |    |
| Ē     |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| Ē     |                |                                   |                                                        |     |        | DC-12         |                 | 100                | 85       |                    |          |          |               |           |          |               |               |              |               |    |
| - 27  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              | -             |    |
| Ē     | 54.29<br>27.61 |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 28  | 27.07          | mudstone, few                     | black mudstone beds,                                   |     |        |               |                 |                    |          |                    |          |          | _             |           |          |               | $\rightarrow$ | _            | $\rightarrow$ |    |
| Ē     |                | mudstone beds<br>borehole axis. S | s. Beddings at 85° from<br>Scarce calcite veinlets.    |     |        | DC-13         |                 | 100                | 72       |                    |          |          |               |           |          |               |               |              |               |    |
| Ē.    |                | Local presence<br>pyrite.         | of finely disseminated                                 |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 29  |                |                                   |                                                        |     |        |               |                 | -                  |          |                    |          |          | -             |           |          |               |               |              |               |    |
| Ē     |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 30  |                |                                   |                                                        |     |        | DC-14         |                 | 100                | 57       |                    |          |          | _             |           |          |               | +             | +            | +             |    |
| Ē     |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| E ,,  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| Ē     |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| Ē     |                |                                   |                                                        |     |        | DC-15         |                 | 100                | 41       |                    |          |          |               |           |          |               |               |              |               |    |
| - 32  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          | _             |           |          |               | -             | -            | -             |    |
|       |                |                                   |                                                        |     |        |               |                 | 1                  |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 33  |                |                                   |                                                        |     |        | DC 40         |                 | 100                | 70       |                    |          |          |               |           |          | $\square$     |               | $\square$    | $\downarrow$  |    |
| Ē     |                |                                   |                                                        |     |        | 00-16         |                 | 100                | 13       |                    |          |          |               |           |          |               |               |              |               |    |
|       |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| - 34  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          | -             |           |          | +             | +             | +            | +             | _  |
| Ē     |                |                                   |                                                        |     |        | DC-17         |                 | 100                | 27       |                    |          |          |               |           |          |               |               |              |               |    |
| - 35  |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          | _             |           |          | $\square$     |               | $\downarrow$ | $\downarrow$  |    |
|       |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
|       |                |                                   |                                                        |     |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |
| -     |                |                                   |                                                        | XX  |        |               |                 |                    |          |                    |          |          |               |           |          |               |               |              |               |    |

|             |                       |                                     |                                                    | PR  | OJECT  | : Rabas      | ska Pr            | oject (          | Phase 2  | ), Levis, C    | Quebeo | 2              |            | BORE        | HOLE    | : <b>BH</b> | -116      | A-05             | 5               |
|-------------|-----------------------|-------------------------------------|----------------------------------------------------|-----|--------|--------------|-------------------|------------------|----------|----------------|--------|----------------|------------|-------------|---------|-------------|-----------|------------------|-----------------|
|             |                       | То                                  | matach                                             | SIT | Έ:     | West         | Optio             | n Site           |          |                |        |                |            | PAGE        | :       | <u>+</u>    | OF _      | 5                | _               |
|             | ▼                     |                                     | rratech                                            | FIL | E NO : | <u>T-105</u> | 0-В (             | 60333            | 3-KELL)  | )              |        |                |            | CASIN       | IG : _! | NW          |           |                  |                 |
|             | •                     |                                     |                                                    | во  | RING   | DATE :       |                   | 2005-            | 03-19    | то             |        | 2005-03-       | 22         | CORE        | BARR    | EL :        | NQ3       |                  |                 |
|             | ]                     | BORIN                               | G LOG                                              | DA  | TUM :  |              | Geod              | etic             |          |                | COOF   | RDINATES       | : <u>5</u> | 186914.     | 80 N    | 2           | :61894    | .79 E            |                 |
| SAN         | IPLE CO               | NDITION                             | TYPE OF SAMPLER                                    |     |        | LABO         | RATO              | RY AN            | ID IN SI | TU TEST        |        |                | Field      | /ane        | (Sı     | ې (۲        | > inta    | act              |                 |
|             | ☐ Remo Ø Undis        | oulded<br>sturbed                   | SS Split spoon<br>ST Thin walled Shelby tub        | e   |        | GS G<br>C C  | rain si<br>onsoli | ze ana<br>dation | alysis   |                |        |                | Swedi      | sh cone     | (Su     | ● (n.       | rem       | noulde           | əd              |
|             | Lost                  |                                     | PS Piston sampler                                  |     |        | D U          | nit we            | ight (k          | N/m³)    |                |        |                |            | Sil conc    | (Ci     | ur) 🗸       | ren       | noulde           | ed              |
|             | Rock                  | core                                | DC Diamond core barrel                             |     |        | CP C         | ompre             | ssive            | strength | (MPa)          |        |                | Dyn. (     | Cone Pe     | n. Test | ×           | <u></u>   | >                | <               |
|             | <b>E</b>              | 5117                                |                                                    |     | Ē      |              |                   |                  | •        | WATE           | RCO    | NTENT          | ≿          | Ś           | DYN.    |             | E PE      | N. TE            | EST             |
| Ę           | × ×                   |                                     |                                                    | Ļ   | VEL    | ₽∝           | N                 | ۲ %              | Q        | and            | LIMIT  | S (%)          | TOR        | EST         |         | 50          | 10.3<br>1 | , п,<br>ро       |                 |
| PTH         | ATIC<br>PTH           |                                     |                                                    | MBO | S LE   | e ar<br>Mbe  | E                 | VER              | r RQ     |                |        |                | DRA.       | anu<br>TU T |         |             |           |                  |                 |
| B           | БĽ                    | DE                                  | SCRIPTION                                          | SΥΙ | LEF    | TΥΡ          | NOS               | С<br>С<br>С      | o<br>N   | W <sub>P</sub> | W      | w <sub>L</sub> | ABC        | .IS N       | ST      | REN         | GTH       | (kPa             | лк<br>)         |
|             | ш                     |                                     |                                                    |     | Ň      |              |                   | R                |          | 20             | 40 6   | 0 80           |            | -           |         | 50          | 1(        | <b>30</b>        |                 |
| Ē           |                       | Poor to fair qua<br>mudstone, few   | lity red and greenish grey<br>black mudstone beds, |     |        | DC-18        |                   | 100              | 46       |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       | some thin layer<br>mudstone beds    | s light green calcareous<br>. Beddings at 85° from |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 37        |                       | borehole axis. S                    | Scarce calcite veinlets.                           |     |        |              |                   |                  |          |                | -      |                |            |             |         |             | +         |                  |                 |
| Ē           |                       | pyrite.                             |                                                    | XX  |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 38        |                       |                                     |                                                    |     |        | DC-19        |                   | 100              | 21       |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 39        |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē           | 45.21<br><b>39.46</b> | Succession of p                     | poor to fair quality                               |     |        | DC-20        |                   | 100              | 44       |                |        |                |            |             |         |             |           |                  |                 |
| -<br>40     |                       | greenish grey a<br>of calcareous s  | nd black mudstone, 5%<br>andstone beds (max.       |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       | 80mm thick). Be<br>borehole axis. F | eddings at 85° from<br>Presence of pyrite in       |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       | fractures. Occa                     | sional calcite veinlets.                           |     |        | 50.04        |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 41<br>-   |                       |                                     |                                                    |     |        | DC-21        |                   | 98               | 62       |                |        |                |            |             |         |             | pari at   | 41 1             | 5m <sup>.</sup> |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         | ir          | nclinati  | ion =            | 48°             |
| 42          |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             | <u> </u>  |                  |                 |
| Ē           |                       |                                     |                                                    |     |        | DC-22        |                   | 100              | 38       |                |        |                |            |             |         |             |           |                  |                 |
| Ē           |                       |                                     |                                                    |     |        | 00 22        |                   | 100              | 00       |                |        |                |            |             |         |             |           |                  |                 |
| - 43        |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             | +         |                  | _               |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 44        |                       |                                     |                                                    |     |        | DC-23        |                   | 100              | 30       |                |        |                |            |             |         |             | —         |                  |                 |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē.,         |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| - 45        |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| E           |                       |                                     |                                                    |     |        | DC-24        |                   | 100              | 63       |                |        |                |            |             |         |             |           |                  |                 |
| - 46        |                       |                                     |                                                    |     |        |              |                   |                  |          |                | -      |                | -          |             |         | +           | +         | $\left  \right $ |                 |
| E           | 39.91<br><b>46.38</b> | Layers of fair qu                   | uality greenish grey                               |     |        |              | ╞╢╋               |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| Ē 47        |                       | mudstone, laye<br>mudstone. Bed     | rs of red and light grey<br>dings at 85° from      |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| <b>€</b> *′ |                       | borehole axis.                      |                                                    |     |        | DC-25        |                   | 100              | 56       |                |        |                | ]          |             |         |             |           |                  |                 |
| Ē           |                       |                                     |                                                    |     |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |
| E           |                       |                                     |                                                    | ŔŔ  |        |              |                   |                  |          |                |        |                |            |             |         |             |           |                  |                 |

|              |        | _                |                         |                                               | PR     | OJECT   | : Rabas      | ska Pi  | oject            | Phase 2        | ), Levi  | is, Qu | ebec          |               |      | BORI       | EHOL             | E : <b>B</b>    | 3 <b>H-</b> 1 | 116/         | 4-05         | ;   |
|--------------|--------|------------------|-------------------------|-----------------------------------------------|--------|---------|--------------|---------|------------------|----------------|----------|--------|---------------|---------------|------|------------|------------------|-----------------|---------------|--------------|--------------|-----|
|              |        |                  | T                       | nnata a <b>l</b> a                            | si     | ſE :    | West         | Optio   | n Site           |                |          |        |               |               |      | PAGE       | =: _             | 5               | _ 0           | F _          | 5            |     |
|              | ▼      | //               | le                      | rratecn                                       | FIL    | .E NO : | <u>T-105</u> | 0-B     | (6033:           | 33-KELL)       | )        |        |               |               |      | CASI       | NG :             | NW              |               |              |              |     |
|              | •      |                  |                         |                                               | вс     | RING I  | DATE :       |         | 2005-            | 03-19          |          | то     |               | 2005-0        | 3-22 | _ CORI     | E BAF            | REL             | .: •          | 1Q3          |              |     |
|              |        | BOR              | RIN(                    | G LOG                                         | DA     | TUM :   |              | Geoc    | letic            |                |          | с      | OOR           | DINATI        | S :  | 5186914    | .80 N            | 1               | 261           | 1894.        | 79 E         |     |
| SAN          | IPLE C | ONDITION         |                         | TYPE OF SAMPLER                               |        |         | LABOF        | RATO    | RY AI            |                | TU TE    | ST     |               |               | Fiel | d Vane     | (*               | Su)             | $\diamond$    | inta         | ct           |     |
|              | Rei    | noulded          |                         | SS Split spoon                                | 0      |         | GS G         | rain si | ize an<br>dation | alysis         |          |        |               |               |      |            | (                | Sur)            | ٠             | rem          | oulde        | эd  |
|              | Los    | it               |                         | PS Piston sampler                             | C      |         | D Ur         | nit we  | ight (k          | N/m³)          |          |        |               |               | Swe  | edish cone | ) é              | Cu)<br>Cur)     | ▽             | intao<br>rem | ct<br>ioulde | ed  |
|              | Ro     | ck core          |                         | DC Diamond core barrel                        |        |         | CP Co        | ompre   | essive           | strength       | (MPa)    | )      |               |               | Dyr  | 1. Cone Pe | en. Te           | st              | <u>×</u>      |              | ×            | (   |
|              | C      |                  | STRA                    | TIGRAPHY                                      |        | Ε       |              | SAM     | PLES             | 6              |          |        |               |               |      |            | DYN              | i. co           | )NE           | PEN          | N. TE        | EST |
| ε            |        |                  |                         |                                               |        | בר      | <u>م</u>     | z       | % /              | •              | WA       | ndII   |               | NIEN<br>S (%) | a C  | STS        |                  | (blo            | ows/<br>1     | /0.3r<br>10  | <b>n)</b>    |     |
| Ξ            |        |                  |                         |                                               | BOL    | LEV     | ANI<br>BER   | OE      | ΈRΥ              | RQD            | a1       |        |               | 0 (70)        | ΔT   | nd .       |                  |                 |               |              | <u> </u>     |     |
| DEP          |        | i                | SΥM                     | rer                                           | YPE    |         | COV          | l or    | v                | V <sub>P</sub> | w        | wL     | BOI           | SITI S        | UN   |            |                  | EDS             | HEA           | ١R           |              |     |
|              |        | -                |                         |                                               | •,     | WAT     |              | Ŭ       | RE               | 2              | 20       | 0 40   |               |               | -    | i Z        |                  | 50              | )             | 10           | ini u)       | ,   |
| -            |        | BLayer           | rs of fair o            | quality greenish grey                         |        |         |              |         |                  |                |          |        |               |               |      |            | $\vdash$         | -               | -             | -            | -            |     |
| Ē            |        | mudsto<br>mudsto | one, layei<br>one. Bedo | rs of red and light grey<br>dings at 85° from |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| Ē 🕫          |        | boreho           | le axis.                |                                               |        |         | DC-26        |         | 100              | 63             |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - <b>4</b> 3 | 37.5/  |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| Ē            | 49.48  | END O            | F BORE                  | HOLE                                          | 11/217 |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 50         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               | _             |      |            |                  |                 | -             | _            |              |     |
| -            |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| Ē            |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 51         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               | -            |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 52         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 | _             |              |              | _   |
| Ē            |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 53         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 | -             |              |              |     |
| Ē            |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 54         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 | _             |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 55         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 | _             |              |              |     |
| -            |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| - 56         |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| 57           |        |                  |                         |                                               |        |         |              |         |                  |                | $\vdash$ | -+     | $\rightarrow$ |               | _    |            | $\vdash$         | +               | +             | $\dashv$     | $\dashv$     |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| 58           |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              | $\neg$       |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
| 59           |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               | _    |            | $\left  \right $ | $ \rightarrow $ | $\square$     | $\dashv$     | $\dashv$     |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        |                  |                         |                                               |        |         |              |         |                  |                |          |        |               |               |      |            |                  |                 |               |              |              |     |
|              |        | 1                |                         |                                               |        |         | 1            |         | 1                |                |          |        |               |               | 1    |            |                  |                 |               |              |              |     |

|               |                      |                                                      |                                                                                     | PR             | OJECT     | : Rabas      | ska Pr             | oject (          | Phase 2  | ), Levi  | s, Qu          | ebec |                |        | BOR           | EHOL               | .E : <i>E</i>       | 3 <b>H-</b> 1    | 1161         | 3-05              | ;    |
|---------------|----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|-----------|--------------|--------------------|------------------|----------|----------|----------------|------|----------------|--------|---------------|--------------------|---------------------|------------------|--------------|-------------------|------|
|               |                      | То                                                   | matach                                                                              | SIT            | Έ:        | West         | Optior             | n Site           |          |          |                |      |                |        | PAGE          | E: _               | 1                   | _ 0              | F _          | 5                 | _    |
|               | ▼                    |                                                      | rratech                                                                             | FIL            | E NO :    | <u>T-105</u> | 0-B (              | 60333            | 3-KELL)  |          |                |      |                |        | CASI          | NG :               | NW                  | 1                |              |                   |      |
|               | •                    |                                                      |                                                                                     | во             | RING [    | DATE :       |                    | 2005-            | 02-25    |          | то             |      | 2005-03        | 8-04   |               | E BAF              | REL                 | .: <u>۱</u>      | 1Q3          |                   |      |
|               | ]                    | BORIN                                                | G LOG                                                                               | DA             | TUM :     |              | Geod               | etic             |          |          | с              | OOR  | DINATE         | s: _   | 5186914       | .80 1              | ١                   | 261              | 1897.        | .19 E             |      |
| SAN           | IPLE CO              | NDITION                                              | TYPE OF SAMPLER                                                                     |                |           | LABOR        | RATO               | RY AN            | ND IN SI | ΓU ΤΕ    | ST             |      |                | Field  | d Vane        | (                  | Su)                 | $\diamond$       | inta         | ct                |      |
|               | Remo                 | oulded                                               | SS Split spoon<br>ST Thin walled Shelby tub                                         | e              |           | GS GI        | rain si<br>onsoli  | ze ana<br>dation | alysis   |          |                |      |                | Sura   | dich con      | (                  | Sur)                | •                | rem          | oulde             | ed . |
|               | Lost                 |                                                      | PS Piston sampler                                                                   |                |           | D Ui         | nit wei            | ight (k          | N/m³)    |          |                |      |                | Swe    |               | ) ء<br>(           | Cu)<br>Cur)         | V                | inta<br>rem  | ct<br>Ioulde      | ed   |
|               | Rock                 | core                                                 | DC Diamond core barrel                                                              |                |           | CP Co        | ompre              | ssive            | strength | (MPa)    | )              |      |                | Dyn.   | Cone Pe       | en. Te             | st                  | <u>×</u>         |              | ×                 |      |
| H- m          | TION - m<br>TH - m   | 5184                                                 |                                                                                     | 30L            | -EVEL - m | AND<br>BER   | NOIT               | ERY %            | sap      | WA<br>ar | TER            | COI  | NTEN1<br>S (%) | RATORY | nd<br>J TESTS | DYN                | I. CC<br>(blo<br>50 | )NE<br>ows/<br>0 | PEN<br>/0.3i | 1. TE<br>m)<br>)0 | ST   |
| EP            | EVA.                 | DE                                                   | SCRIPTION                                                                           | ЗYМЕ           | ER I      | YPE          |                    |                  | lor      | v        | / <sub>P</sub> | w    | wL             | BOF    | a<br>SITL     | UN                 |                     |                  | ED S         |                   | R    |
| -             |                      |                                                      |                                                                                     | 0,             | WAT       | μz           | ö                  | RE(              | Z        | 20       | 0 40           |      |                | LA     | Z             |                    | 5                   |                  | іп (<br>10   | кга)<br>10        | !    |
| <u> </u>      | 75.44<br><b>0.00</b> | GROUND SUR<br>Topsoil.                               | FACE                                                                                | é ré           |           |              |                    |                  |          |          |                |      |                |        |               |                    |                     | -                |              |                   |      |
| -             | 0.18                 | Compact brown some gravel.                           | а 5<br>0 б                                                                          |                | SS-1      |              | 71                 | 13               |          |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 1           |                      |                                                      |                                                                                     | 0              |           | SS-2         | $\square$          | 62               | 11       |          |                |      |                | _      |               |                    |                     |                  |              |                   |      |
| 2             |                      |                                                      | РА<br>                                                                              |                | SS-3      | $\ge$        | 54                 | 22               | $\odot$  |          |                |      |                |        |               |                    | _                   |                  |              |                   |      |
|               | 73.00<br><b>2.44</b> | Compact grey s<br>gravel.                            | silt, trace of sand and                                                             | स              |           | SS-4         |                    | 0                | 15       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 3           |                      |                                                      | •<br>•<br>•<br>•                                                                    |                | SS-5      | $\times$     | 67                 | 23               |          |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| -<br>-<br>- 4 | 71.78<br><b>3.66</b> | Dense to very c<br>sand, some silt                   |                                                                                     |                | SS-6      | $\times$     | 33                 | 76               |          |          |                |      |                |        |               |                    | _                   |                  |              |                   |      |
| -             |                      |                                                      |                                                                                     |                |           |              | $\bigtriangledown$ |                  |          |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 5           |                      |                                                      |                                                                                     | °.             |           | SS-7         |                    | 71               | 33       |          |                |      |                |        |               |                    |                     | -                |              |                   |      |
| -<br>-<br>- 6 |                      | NOTE ON WAT<br>Water level at 7<br>2005-04-15.       | FER LEVEL:<br>75.79m (artesian) on                                                  | • €<br>∢<br>¢  |           | SS-8         |                    | 71               | 27       |          |                |      |                |        |               |                    |                     | _                |              |                   |      |
| -             |                      |                                                      |                                                                                     | 0<br>0<br>0    |           | SS-9         | $\times$           | 58               | 49       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 7<br>-      |                      |                                                      |                                                                                     | 0000           |           | SS-10        | $\left \right $    | 75               | 36       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 8           |                      |                                                      |                                                                                     | 0              |           | SS-11        | X                  | 75               | 62       |          |                |      |                |        |               |                    |                     | _                |              |                   |      |
|               | 67.11<br>8.33        | Bedrock: Very p<br>and dark grey n                   | poor quality greenish grey<br>nudstone, 15-20% light                                | . <u>r.</u> 1. |           |              |                    |                  |          |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 9<br>-      |                      | grey calcareous<br>(5-25mm thick)<br>(5mm thick). Be | s mudstone beds<br>, some sandstone beds<br>eddings at 50° from<br>Calcite veinlets |                |           | DC-12        |                    | 74               | 26       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| E             |                      |                                                      |                                                                                     |                |           | DC-13        |                    | 100              | 0        |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| - 10          |                      |                                                      |                                                                                     |                |           | DC-14        |                    | 100              | 0        |          | -              | -+   |                | -      |               | $\left  - \right $ |                     | $\dashv$         | -            | $\rightarrow$     | —    |
|               |                      |                                                      |                                                                                     |                |           | DC-15        |                    | 100              | 46       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |
| -<br>- 11     |                      |                                                      |                                                                                     |                |           | DC-16        |                    | 100              | 0        |          |                |      |                | -      |               |                    |                     | _                |              |                   |      |
|               |                      |                                                      |                                                                                     |                |           | DC-17        |                    | 100              | 15       |          |                |      |                |        |               |                    |                     |                  |              |                   |      |

| Γ        |        |                       |                                    |                                                   | PR  | OJECI  | r: <u>Rabas</u> | ska Pr | oject (           | Phase 2  | ), Levis, (    | Quebe    | с     |          |         | BORE        | HOLE    | : <b>B</b> | H-1           | 16B                | -05          |
|----------|--------|-----------------------|------------------------------------|---------------------------------------------------|-----|--------|-----------------|--------|-------------------|----------|----------------|----------|-------|----------|---------|-------------|---------|------------|---------------|--------------------|--------------|
| I        |        |                       | То                                 | matach                                            | SIT | Е:     | West            | Optior | n Site            |          |                |          |       |          |         | PAGE        | : _     | 2          | OF            |                    | 5            |
| I        | •      | ▼                     |                                    | rratech                                           | FIL | E NO : | T-105           | )-В (  | (60333            | 3-KELL)  |                |          |       |          |         | CASI        | IG :    | NW         |               |                    |              |
| I        |        | •                     |                                    |                                                   | вс  | RING   | DATE :          |        | 2005-             | 02-25    | т              | <b>)</b> | 2005  | 5-03-0   | )4      | CORE        | BAR     | REL        | : <u>N</u>    | 23                 |              |
| I        |        | ]                     | BORIN                              | G LOG                                             | DA  | TUM :  |                 | Geod   | letic             |          |                | cool     |       | TES      | : 5     | 186914.     | 80 N    |            | 2618          | 397.1              | 9 E          |
| E        | SAM    | PLE CO                | NDITION                            | TYPE OF SAMPLER                                   |     |        | LABOR           | RATO   | RY AN             | ND IN SI | IU TEST        |          |       |          | Field V | /ane        | (5      | Su)        | $\diamond$    | intact             | t            |
| I        | $\geq$ | ] Remo                | oulded                             | SS Split spoon                                    | he  |        | GS GI           | ain si | ize ana<br>dation | alysis   |                |          |       |          | Swadi   |             | (8      | Sur)       | •             | remo               | ulded        |
|          |        | Lost                  | sturbeu                            | PS Piston sampler                                 |     |        | D Ur            | nit we | ight (k           | N/m³)    |                |          |       |          | Sweak   | sn cone     | (0      | Cur)       |               | intact<br>remo     | :<br>ulded   |
| ┟        |        | Rock                  | core                               | DC Diamond core barrel                            |     |        | CP Co           | ompre  | essive            | strength | (MPa)          |          |       |          | Dyn. C  | Cone Pe     | n. Te   | st ;       | <u> </u>      |                    | ×            |
| I        |        | ۶ı                    | STR/                               | ATIGRAPHY                                         |     | ε      |                 | SAM    | PLES              | <b>i</b> | 14/A T         |          | NITE  |          | ~       | (0          | DYN     | . co       | NE            | PEN.               | TEST         |
| I        | ε      | žε                    |                                    |                                                   |     | ĒĽ     | <u>م</u> م      | z      | ۲ %               | 0        | and            |          | TS (% | ын<br>") | OR)     | EST(        |         | (blc<br>50 | ws/(          | <b>).3m</b><br>100 | i)           |
| I        | Η      | THO                   |                                    |                                                   | BOI | ΓĒ     | E AN            | DITIO  | /ER               | RQI      |                |          |       | ,        | RAT     | ana<br>U TE | I       | Ĩ          |               |                    |              |
| I        | БЩ     | DEF<br>DEF            | DE                                 | SCRIPTION                                         | SYN | TER    | NUN             | ONE    | CO.               | N or     | w <sub>P</sub> | w        | v     | 'L       | ABO     | I SIT       | UN<br>S | DRA<br>TRE |               | D SH<br>H (k       | IEAR<br>(Pa) |
| I        |        | ШI                    |                                    |                                                   |     | M      |                 | 0      | RE                |          | 20             | 40 e     | 50 8  | 0        | Ĺ       | 2           |         | 50         | )             | 100                | )            |
| Ē        |        |                       | Very poor quali                    | ity greenish grey and dark                        |     |        | DC-18           |        | 100               | 0        |                |          |       |          |         |             |         |            | +             | 1                  |              |
| Ē        |        |                       | calcareous mu                      | dstone beds (5-25mm                               |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| E        | - 13   |                       | thick), some sa thick). Bedding    | ndstone beds (5mm<br>s at 50° from borehole       |     |        | DC-19           |        | 100               | 18       |                | _        |       |          |         |             |         |            | $\rightarrow$ | $\perp$            |              |
| Ē        |        |                       | axis, Calcite ve                   | inlets.                                           |     |        | DC-20           |        | 100               | 0        |                |          |       |          |         |             |         |            |               |                    |              |
| ŧ        |        |                       |                                    |                                                   |     |        | DC-21           |        | 100               | 0        |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        | - 14   |                       |                                    |                                                   |     |        | DC-22           |        | 91                | 14       |                |          |       |          |         |             |         |            | -             |                    |              |
| Ē        |        |                       |                                    |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| E        | - 15   | 60.34                 |                                    |                                                   |     |        | DC-23           |        | 100               | 43       |                |          |       |          |         |             |         |            | _             | $\perp$            |              |
| Ē        |        | 15.10                 | Very poor quali<br>greenish grey   | ity red mudstone and mudstone. Beddings at        |     |        | DC-24           |        | 100               | 0        |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        |        |                       | 50° from boreh                     | ole axis.                                         |     |        | DC-25           |        | 100               | 0        |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        | - 16   |                       |                                    |                                                   |     |        |                 |        |                   |          |                | +        |       |          |         |             |         |            |               |                    |              |
| Ē        |        | <u>58.7</u> 5         |                                    |                                                   |     |        | DC-26           |        | 100               | 20       |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        | - 17   | 16.69                 | Very poor to fai<br>and greenish g | ir quality red mudstone<br>rey mudstone. Beddings |     |        | DC-27           |        | 100               | 45       |                | _        |       |          |         |             |         |            | $\rightarrow$ | $\perp$            |              |
| Ē        |        |                       | at 50° from bor                    | ehole axis.                                       |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        |        |                       |                                    |                                                   | XX  |        | DC-28           |        | 100               | 57       |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        | - 18   |                       |                                    |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            | -             |                    |              |
| Ē        |        | 56.90<br><b>18.54</b> | Fair to good qu                    | ality red mudstone and                            |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        | - 19   |                       | greenish grey r                    | nudstone, beds of light<br>s mudstone (1-3mm      |     |        | DC-29           |        | 78                | 53       |                |          |       |          |         |             |         |            | _             | _                  |              |
| Ē        |        |                       | thick), thin beds                  | s of black shale. Beddings                        |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| Ē        |        |                       | at 50 nom bor                      |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| s        | - 20   |                       |                                    |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            | -             | -                  |              |
| 08:57h   |        |                       |                                    |                                                   |     |        | DC-30           |        | 100               | 38       |                |          |       |          |         |             |         |            |               |                    |              |
| 5-11-23  | - 21   |                       |                                    |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            | +             | _                  |              |
| D: 200   |        |                       |                                    |                                                   |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| LOTTE    |        |                       |                                    |                                                   |     |        | DC-31           |        | 100               | 26       |                |          |       |          |         |             |         |            |               |                    |              |
| H.stv F  | - 22   |                       |                                    |                                                   |     |        |                 |        |                   | -        |                | +        |       |          |         |             | $\neg$  | $\square$  | +             | +                  | +            |
| 50-A-B   |        |                       |                                    |                                                   |     |        | DC 33           | ╞╋╋    | 06                | 20       |                |          |       |          |         |             |         |            |               |                    |              |
| vleT-10  | - 23   |                       |                                    |                                                   |     |        | 00-32           | ┝╋     | 90                | 28       |                | _        |       |          |         |             | _       |            | $\perp$       | $\downarrow$       |              |
| ec74/St  |        |                       |                                    |                                                   |     |        | DC-33           |        | 100               | 67       |                |          |       |          |         |             |         |            |               |                    |              |
| /:\Geote |        | 51.77<br><b>23.67</b> | (see next page                     | )                                                 |     |        |                 | ┝╋╋    |                   |          |                |          |       |          |         |             |         |            |               |                    |              |
| >E       |        |                       | \ I 0                              | ,                                                 |     |        |                 |        |                   |          |                |          |       |          |         |             |         |            |               |                    |              |

|             |         |                                   |                                                  | PR  | OJECI  | : Rabas      | ska Pr           | oject (           | Phase 2  | ), Levis | s, Que | ebec     |         |              | BORE      | HOL         | E : <b>B</b>  | H-1                   | 16B        | -05    |
|-------------|---------|-----------------------------------|--------------------------------------------------|-----|--------|--------------|------------------|-------------------|----------|----------|--------|----------|---------|--------------|-----------|-------------|---------------|-----------------------|------------|--------|
|             |         |                                   | matach                                           | SIT | E :    | West         | Optio            | n Site            |          |          |        |          |         |              | PAGE      | : _         | 3             | OF                    | : _        | 5      |
|             | ▼       |                                   | rratech                                          | FIL | E NO : | <u>T-105</u> | )-В              | 60333             | 3-KELL)  |          |        |          |         |              | CASI      | NG :        | NW            |                       |            |        |
|             | •       |                                   |                                                  | во  | RING   | DATE :       |                  | 2005-             | 02-25    |          | то     |          | 2005-03 | -04          | CORE      | E BAF       | REL           | : N                   | Q3         |        |
|             | ]       | BORIN                             | G LOG                                            | DA  | TUM :  |              | Geod             | etic              |          |          | СС     | DOR      |         | <b>3</b> : 5 | 186914    | .80 N       | 1             | 2618                  | 897.1      | 19 E   |
| SAM         | IPLE CO | NDITION                           | TYPE OF SAMPLER                                  |     |        | LABOF        | RATO             | RY AN             | ID IN SI | TU TES   | эт     |          |         | Field        | /ane      | (;          | Su)           | $\overline{\diamond}$ | intac      |        |
| $\boxtimes$ | Remo    | oulded                            | SS Split spoon                                   |     |        | GS G         | ain si           | ze ana            | alysis   |          |        |          |         | 1            |           | (?          | Sur)          | ٠                     | remo       | oulded |
|             | Undis   | sturbed                           | ST Thin walled Shelby tub                        | е   |        |              | onsoli<br>nit we | dation<br>ight (k | N/m³)    |          |        |          |         | Swedi        | sh cone   | ) (         | Cu)           | $\bigtriangledown$    | intac      | ,t     |
|             | Rock    | core                              | DC Diamond core barrel                           |     |        | CP C         | ompre            | ssive             | strength | (MPa)    |        |          |         | Dyn. 0       | Cone Pe   | )<br>n. Teء | Sur)<br>st    | ▼                     | remo       | ×      |
|             |         | STR/                              | ATIGRAPHY                                        |     | E      |              | SAM              | PLES              | ;        |          |        |          |         |              |           |             |               |                       | PFN        | TEST   |
|             | ۲<br>۲  |                                   |                                                  |     | ÷      |              |                  | %                 |          | WA       | TER    | CON      | NTENT   | RY           | TS        | 5           | (blc          | ws/                   | 0.3n       | n)     |
|             |         |                                   |                                                  | Ы   | Ň      | S R          |                  | RY °              | B        | an       | d Lll  | MITS     | S (%)   | ATO          | TES       |             | 50            | )<br>                 | 100        | )      |
| ΕPT         | /AT     |                                   |                                                  | MB  | R      | PE A         |                  | OVE               | л<br>В   |          |        |          |         | OR/          | an<br>ITU | UN          |               |                       | D SI       | HEAR   |
| ā           | ELE,    | DE                                | SCRIPTION                                        | S   | ATE    | Σĭ           | 0<br>S           | EC(               | ž        | - VV     | Р      | ••<br>⊙— |         | LAB          | N S       | S           | TRE           | NGT                   | Ή (k       | (Pa)   |
|             |         |                                   |                                                  |     | 3      |              |                  | Ľ.                |          | 20       | 40     | 60       | 80      |              |           |             | 50            | )                     | 100        | )      |
| Ē           |         | Good to fair qu<br>5% of greenish | ality red mudstone with<br>grey mudstone layers, |     |        | 50.04        |                  | 100               | 00       |          |        |          |         |              |           |             |               |                       |            |        |
| Ē           |         | and thin dark g<br>Bedddings at 4 | rey shale (2-10mm thick).                        |     |        | DC-34        |                  | 100               | 93       |          |        |          |         |              |           |             |               |                       |            |        |
| - 25        |         | Doddanigo at 1                    |                                                  |     |        |              |                  |                   |          |          |        | -        |         | -            |           |             | $\rightarrow$ | +                     | _          |        |
| Ē           |         |                                   |                                                  |     |        | D0 05        |                  |                   | 70       |          |        |          |         |              |           |             |               |                       |            |        |
|             |         |                                   |                                                  |     |        | DC-35        |                  | 84                | 78       |          |        |          |         |              |           |             |               |                       |            |        |
| - 26        |         |                                   |                                                  |     |        |              |                  |                   |          |          |        | -        |         |              |           |             |               | +                     | -          |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| 27          |         |                                   |                                                  |     |        | DC-36        |                  | 97                | 80       |          |        |          |         |              |           |             |               |                       |            |        |
| Ē           |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| Ē           |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| - 28        |         |                                   |                                                  |     |        |              |                  |                   |          |          |        | _        |         | -            |           |             | $\rightarrow$ | +                     | _          |        |
|             |         |                                   |                                                  |     |        | DC-37        |                  | 100               | 86       |          |        |          |         |              |           |             |               |                       |            |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| - 29        |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               | +                     | +          |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| -<br>30     |         |                                   |                                                  |     | ×      | DC-38        |                  | 94                | 69       |          |        |          |         |              |           |             |               |                       |            |        |
|             | 44.01   |                                   |                                                  |     | X      |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| Ē           | 30.53   | Layers of fair to                 | o good quality red                               |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| - 31        |         | mudstone, 15-2<br>mudstone beds   | 20% greenish grey<br>s and 5% light grey         |     |        |              |                  |                   |          |          |        | -        |         | -            |           |             | $\rightarrow$ | +                     | _          |        |
|             |         | calcareous mue<br>40° from boreh  | dstone beds. Beddings at<br>ole axis. Occasional |     |        | DC-39        |                  | 100               | 66       |          |        |          |         |              |           |             |               |                       |            |        |
| Ē           |         | calcite veinlets                  |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| - 32        |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               | -                     | +          |        |
| -           |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| 33          |         |                                   |                                                  |     |        | DC-40        |                  | 100               | 78       |          |        |          |         |              |           |             |               | $\square$             | $\square$  |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
|             |         |                                   |                                                  |     |        |              | ╞╋╋              |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| - 34        |         |                                   |                                                  |     |        |              |                  |                   |          | $\vdash$ | +      | +        |         | -            |           | $\vdash$    | +             | +                     | +          | +      |
|             |         |                                   |                                                  |     |        | DC-41        |                  | 100               | 64       |          |        |          |         |              |           |             |               |                       |            |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |
| 35          |         |                                   |                                                  |     |        |              | ╞╋╋              |                   |          |          |        |          |         |              |           |             | $\top$        | $\top$                | $\uparrow$ |        |
|             |         |                                   |                                                  |     |        | DC-42        |                  | 93                | 76       |          |        |          |         |              |           |             |               |                       |            |        |
|             |         |                                   |                                                  |     |        |              |                  |                   |          |          |        |          |         |              |           |             |               |                       |            |        |

|         |              |                         |                           | PR       | OJECT  | : Rabas      | ska Pi   | roject ( | Phase 2  | ), Levis, C | Quebeo | 0           |                | BORE           | HOLI       | E : <b>B</b>  | 3H-1        | 16E          | 3-05        | ;                                            |
|---------|--------------|-------------------------|---------------------------|----------|--------|--------------|----------|----------|----------|-------------|--------|-------------|----------------|----------------|------------|---------------|-------------|--------------|-------------|----------------------------------------------|
|         |              | То                      | matach                    | SIT      | Е:     | West         | Optio    | n Site   |          |             |        |             |                | PAGE           | : _        | 4             | _ 0         | F_           | 5           | _                                            |
|         | ▼            |                         | rratech                   | FIL      | E NO : | <u>T-105</u> | 0-B      | (60333   | 3-KELL)  |             |        |             |                | CASI           | 1G :       | NW            | I           |              |             | _                                            |
|         | •            |                         |                           | во       | RING   | DATE :       |          | 2005-    | 02-25    | то          |        | 2005-03     | -04            | CORE           | BAR        |               | .: <u>N</u> | IQ3          |             |                                              |
|         | ]            | BORIN                   | G LOG                     | DA       | TUM :  |              | Geod     | letic    |          |             | COOF   | RDINATE     | <b>S</b> : _51 | 86914.         | .80 N      |               | 261         | 897.         | 19 E        |                                              |
| SAM     | PLE CC       | NDITION                 | TYPE OF SAMPLER           |          |        |              | RATO     | RY AN    |          | TU TEST     |        |             | Field V        | ane            | (\$        | Su)           | $\diamond$  | intac        | ct          |                                              |
|         | Undi:        | sturbed                 | ST Thin walled Shelby tub | e        |        | C C          | onsoli   | dation   | aiysis   |             |        |             | Swedis         | sh cone        | ?)<br>)) : | Sur)<br>Cu)   | ◆<br>▽      | rem<br>inta  | oulde<br>ct | эd                                           |
|         | Lost         |                         | PS Piston sampler         |          |        | D Ur         | nit we   | ight (k  | N/m³)    |             |        |             |                | _              | (0         | Cur)          | V           | rem          | oulde       | ed                                           |
|         | Rock         | core STR                | ATIGRAPHY                 |          |        |              | SAM      | PLES     | strengtn | (MPa)       |        |             | Dyn. C         | one Pe         | n. Te      | st            | <u>×</u>    |              | ×           | <u>.                                    </u> |
|         | E            |                         |                           |          | Е      |              |          | %        |          | WATE        | RCC    | NTENT       | 2              | TS             | DYN        | . CO<br>(blc) | )NE<br>ows/ | PEN<br>/0.3r | J. TE<br>n) | EST                                          |
| μ-<br>- | NON-H        |                         |                           | Ы        | EVEI   | N R          | NOI.     | RY %     | g        | and         | LIMIT  | ſS (%)      | ATO            | TES            |            | 50            | 3           | 10           | 0           |                                              |
| EPT     | VATI<br>EPTI |                         |                           | MB       | R L    | PE A<br>JMBI |          | DVE      | or R(    | w/          | w/     | \A/         | OR/            | <sup>3</sup> L | UN         | DR/           | AINE        | D S          | HE          | ٩R                                           |
| □       | ELE          | DE                      | SCRIPTION                 | S        | ATE    | Σĭ           | CO<br>CO | REC      | z        | •••P<br>⊢   |        | •••∟<br>——I | LAB            | S NI           | S          | TRE           | :NG         | TH (         | kPa)        | )                                            |
|         |              | Lavors of good          | quality rod mudstono      | (1)((1)( | \$     |              |          | _        |          | 20          | 40 6   | 50 80<br>   |                |                |            | 50            | )<br>—+     | 10           | 0           |                                              |
|         |              | 15-20% greeni           | sh grey mudstone beds     |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              | beds. Beddings          | s at 40° from borehole    |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 37    |              | axis. Occasion          | al calcite veiniets.      |          |        | DC 42        |          | 100      | 70       |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        | DC-43        |          | 100      | 70       |             |        |             |                |                |            |               |             |              |             |                                              |
| - 38    | 37.32        |                         |                           |          |        |              |          |          |          |             |        |             | _              |                |            | _             |             |              |             |                                              |
| Ē       | 38.12        | mudstone, 15-2          | 20% greenish grey         |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 39    |              | calcareous mu           | dstone beds. Beddings at  |          |        | DC-44        |          | 100      | 100      |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              | 40° from boreh          | ole axis.                 |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| Ē       |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 40    |              |                         |                           |          |        |              |          |          |          |             |        |             | _              |                |            | -             |             | _            |             |                                              |
|         |              |                         |                           |          |        | DC-45        |          | 100      | 90       |             |        |             |                |                |            |               |             |              |             |                                              |
| - 41    |              |                         |                           |          |        |              |          |          |          |             |        |             | _              |                |            |               |             | _            |             |                                              |
| Ē       |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 42    |              |                         |                           |          |        | DC-46        |          | 100      | 92       |             |        |             | _              |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 43    |              |                         |                           |          |        |              |          |          |          |             |        |             | _              |                |            | $\rightarrow$ |             | _            | _           |                                              |
| Ē       |              |                         |                           |          |        | DC-47        |          | 100      | 66       |             |        |             |                |                |            |               |             |              |             |                                              |
| - 44    |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        |              |          | -        |          |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| - 45    |              |                         |                           |          |        | DC-48        |          | 100      | 80       |             |        |             | _              |                |            | -             |             | _            |             |                                              |
|         |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |
| 46      |              |                         |                           |          |        |              |          |          |          |             |        |             | _              |                | $\mid$     | $\dashv$      | $\square$   | $\square$    | $\square$   |                                              |
|         |              |                         |                           |          |        |              |          | 400      | 00       |             |        |             |                |                |            |               |             |              |             |                                              |
|         |              |                         |                           |          |        | DC-49        |          | 100      | 82       |             |        |             |                |                |            |               |             |              |             |                                              |
| 47      | 28.12        |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            | $\dashv$      |             |              | $\neg$      | _                                            |
|         | 47.32        | Fractured layer (cont.) | rs of red mudstone        |          |        | DC-50        |          | 100      | 48       |             |        |             |                |                |            |               |             |              |             |                                              |
| E       |              |                         |                           |          |        |              |          |          |          |             |        |             |                |                |            |               |             |              |             |                                              |

|           |               |                |                                             | PR      | OJECT  | : Rabas      | ska Pi           | roject (   | Phase 2  | ), Levis, C    | Quebeo     | 0                  | B <sup>.</sup>    | OREH   | OLE :         | BH-         | 116            | B-05          | ;                                            |
|-----------|---------------|----------------|---------------------------------------------|---------|--------|--------------|------------------|------------|----------|----------------|------------|--------------------|-------------------|--------|---------------|-------------|----------------|---------------|----------------------------------------------|
|           |               | Т              | matach                                      | si      | ſE :   | West         | Optio            | n Site     |          |                |            |                    | P/                | AGE :  | 5             | _ c         | )F _           | 5             |                                              |
|           | ▼             |                | rratech                                     | FIL     | E NO : | <u>T-105</u> | 0-B              | (60333     | 33-KELL) |                |            |                    | C.                | ASING  | : <u>N</u>    | N           |                |               | _                                            |
|           | •             |                |                                             | вс      | RING I | DATE :       |                  | 2005-      | 02-25    | то             |            | 2005-03            | -04 <b>c</b>      | ORE B  | ARRE          | :L: [       | NQ3            |               |                                              |
|           |               | BORIN          | G LOG                                       | DA      | TUM :  |              | Geoc             | letic      |          |                | COOF       |                    | <b>S</b> : _ 5186 | 914.80 | ) N           | 26          | 1897.          | .19 E         |                                              |
| SAM       | IPLE C        | ONDITION       |                                             |         |        |              | RATO             | RY A       |          | IU TEST        |            |                    | Field Van         | е      | (Su)          | $\diamond$  | inta           | ıct           |                                              |
|           | Rem<br>Und    | isturbed       | SS Split spoon<br>ST Thin walled Shelby tub | e       |        | C C          | rain s<br>onsoli | dation     | aiysis   |                |            |                    | Swedish           | cone   | (Sur)<br>(Cu) | ) 🔶         | rem<br>inta    | ioulde<br>act | эd                                           |
|           | Lost          |                | PS Piston sampler                           |         |        | D Ur         | nit we           | ight (k    | N/m³)    |                |            |                    |                   |        | (Cur          | ) 🔻         | rem            | noulde        | эd                                           |
|           |               | k core         | ATIGRAPHY                                   |         |        |              | ompre<br>SAM     | PLES       | strengtn | (мРа)          |            |                    | Dyn. Con          | e Pen. | Test          | × -         |                | <u>×</u>      | <u>.                                    </u> |
|           | ε             |                |                                             |         | е<br>- |              |                  | <b>、</b> 。 |          | WATE           | RCO        | NTENT              | 2                 | מ מ    | YN. C<br>(Ե   | ONE<br>lows | : PEI<br>5/0.3 | N. TE<br>m)   | ST                                           |
| - u       | NO<br>T-<br>M |                |                                             | ЭL      | EVEI   | QN R         | NOI              | RY %       | B        | and            | LIMIT      | <sup>-</sup> S (%) |                   | 2<br>E | , ,           | 50          | 10             | 00            |                                              |
| EPT       | VATI<br>EPTI  |                |                                             | /MB(    | R LE   | PE A<br>JMBI | <b>VDIT</b>      | OVE        | or R(    | .w/            | w          | \w/                | an an             |        | UNDF          | RAIN        | ED S           | HEA           | AR                                           |
| Ē         |               | DE             | SCRIPTION                                   | ۶       | ATE    | Σĭ           | CO               | RECO       | ž        | <sup>₩</sup> ₽ | •••<br>—⊙– | ""∟<br>——-         |                   | 2<br>Z | STR           | ENG         | iTH (          | (kPa)         | )                                            |
|           |               |                | uplity rod mudatana with                    | (11/11/ | 3      |              |                  | _          |          | 20             | 40 6       | 0 80               |                   |        | ;<br>         | 50          | 10             | )0<br> +      |                                              |
| Ē         |               | some greenish  | grey mudstone beds and                      |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               | (5-40mm thick) | ).                                          |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 49      |               |                |                                             |         |        | DC-51        |                  | 100        | 34       |                |            |                    |                   |        | +             | 1           |                |               |                                              |
| -         |               |                |                                             |         |        | 0001         |                  | 100        | 0,       |                |            |                    |                   |        |               |             |                |               |                                              |
| - 50      | 25.32         |                |                                             |         |        |              |                  |            |          |                |            |                    | -                 | _      | —             | <u> </u>    |                |               |                                              |
| -         | 50.12         | END OF BORE    | EHOLE                                       |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| 51        |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 52      |               |                |                                             |         |        |              |                  |            |          |                |            |                    | _                 |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 53      |               |                |                                             |         |        |              |                  |            |          |                |            |                    | _                 |        | _             | <u> </u>    |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 54      |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        | +             | +           |                |               |                                              |
| -         |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 55      |               |                |                                             |         |        |              |                  |            |          |                |            |                    | _                 | _      | <u> </u>      | <u> </u>    |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 56      |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                | T             | _                                            |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| 57        |               |                |                                             |         |        |              |                  |            |          |                | -          |                    |                   | ┢      | +             | +           |                |               |                                              |
| 1         |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| 58        |               |                |                                             |         |        |              |                  |            |          |                | _          |                    | _                 |        |               | _           |                | $\vdash$      |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
| - 59<br>- |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   | F      | +             | 1           |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |
|           |               |                |                                             |         |        |              |                  |            |          |                |            |                    |                   |        |               |             |                |               |                                              |

|      |                       |                                     |                                                           | PR               | OJECT      | : Rabas      | ska Pr  | oject ( | Phase 2        | ), Levis,    | Quebe | C              |          |         | BORE    | HOL      | E : <i>B</i>  | 3H-1       | 117/         | 4-05            | 5   |
|------|-----------------------|-------------------------------------|-----------------------------------------------------------|------------------|------------|--------------|---------|---------|----------------|--------------|-------|----------------|----------|---------|---------|----------|---------------|------------|--------------|-----------------|-----|
|      |                       | Т                                   | matach                                                    | SIT              | Έ:         | West         | Optior  | n Site  |                |              |       |                |          |         | PAGE    | :: _     | 1             | _ 0        | F _          | 5               | _   |
|      | ▼                     |                                     | rratech                                                   | FIL              | E NO :     | <u>T-105</u> | 0-B (   | 60333   | 3-KELL)        |              |       |                |          |         | CASI    | NG :     | NW            |            |              |                 |     |
|      | •                     |                                     |                                                           | во               | RING [     | DATE :       |         | 2005-   | 03-15          | т            | o _   | 2005           | -03-1    | 19      | CORE    | E BAF    | REL           | .: N       | 1Q3          |                 |     |
|      | ]                     | BORIN                               | G LOG                                                     | DA               | TUM :      |              | Geod    | etic    |                |              | coo   | RDINA          | TES      | : 51    | 87110   | .81 N    | 1             | 262        | 2036.        | .32 E           |     |
| SAN  | IPLE CO               | NDITION                             | TYPE OF SAMPLER                                           |                  |            | LABOR        | RATO    |         |                |              | -     |                |          | Field V | ane     | (        | Su)           | $\diamond$ | inta         | ct              |     |
|      | Remo                  | oulded                              | SS Split spoon                                            |                  |            | GS G         | rain si | ze ana  | alysis         |              |       |                |          |         |         | (        | Sur)          | •          | rem          | oulde           | əd  |
|      | Lost                  | sturbea                             | PS Piston sampler                                         | e                |            |              | nit wei | ght (k  | N/m³)          |              |       |                |          | Swedis  | sh cone | ; (      | Cur)          | $\nabla$   | inta<br>rem  | ct              | hed |
|      | Rock                  | core                                | DC Diamond core barrel                                    |                  |            | CP Co        | ompre   | ssive   | strength       | (MPa)        |       |                |          | Dyn. C  | one Pe  | n. Te    | st.           | <u>×</u>   |              | >               | <   |
|      | c I                   | STR/                                | ATIGRAPHY                                                 |                  | Ε          | :            | SAMI    | PLES    | 5              |              |       |                |          |         |         | DYN      | I. CC         | ONE        | PE           | N. TE           | EST |
| ε    | ν<br>Ζ                |                                     |                                                           |                  | ĨĽ.        | <u>م</u> م   | z       | ۲ %     | 0              | and          |       | JNTEI<br>TS (% | N I<br>) | OR)     | ESTS    |          | (blo<br>5(    | ows<br>0   | 10.3r/<br>10 | m)<br>10        |     |
| Ē    | THO.                  |                                     | BOL                                                       | ΓE               | : AN       | DITIO        | /ER)    | RQI     |                |              |       | ,              | RAT      |         |         |          |               |            |              |                 |     |
| DEP  | EV/                   | DE                                  | SYM                                                       | TER              | YPE<br>NUN |              | CO/     | N or    | w <sub>P</sub> | w            | W     | L              | ABO      | SIT     | UN      |          |               | :DS<br>TH( | HEA          | AR<br>)         |     |
|      | Щ                     |                                     |                                                           | .WM              | <b>F</b> - | U<br>U       | RE      | _       | ⊢<br>20        | <del>0</del> |       | )              | ב        | Z       |         | 5(       | 5             | 10         | 00           | ,               |     |
| -    | 77.38<br><b>0.00</b>  | Fill: Grey silt, so                 | FACE                                                      | $\boxtimes$      |            |              |         |         |                |              |       | +              |          |         |         |          |               |            | -            |                 |     |
| Ē    |                       | BH-117B-05).                        |                                                           | $\bigotimes$     |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ē 1  | 76.77<br><b>0.80</b>  | Brown peat (se                      | e BH-117B-05).                                            | $\sum_{i=1}^{n}$ |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              |                 |     |
| Ē    |                       |                                     |                                                           |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ē    | 76.16<br><b>1.59</b>  | Light brown pea                     | at, wood, small roots (see                                |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| - 2  |                       | BH-117B-05).                        |                                                           |                  |            |              |         |         |                |              |       |                |          |         |         |          | $\rightarrow$ | _          |              |                 | _   |
| Ē    |                       |                                     |                                                           |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ė,   | 75.25<br><b>2.78</b>  | Dense grey sar                      | nd, some silt and gravel                                  |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              |                 |     |
| Ē    |                       | (see BH-117B-0                      | 05).                                                      | в.               |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ē    | 74.64<br><b>3.58</b>  | Compact to der                      | nse grey silt, trace of clay                              | ¢                |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| - 4  |                       | (see BH-117B-0                      | 05).                                                      |                  |            |              |         |         |                |              |       |                |          |         |         |          | $\rightarrow$ |            |              |                 | -   |
| Ē    |                       |                                     |                                                           |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| 5    |                       |                                     |                                                           | $\mathbb{M}$     |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              |                 |     |
| Ē    | 73.29                 |                                     |                                                           | <b>B</b>         |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ē    | 5.54                  | Dense to very c<br>and gravel, occ  | asional cobbles and                                       |                  |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| - 6  |                       | boulders (see E                     | л-тт <i>в</i> -0э).                                       | 0 . V            |            |              |         |         |                |              | _     |                |          |         |         |          | -             |            | -            |                 | _   |
| Ē    |                       |                                     |                                                           | •                |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ę,   |                       |                                     |                                                           | 0<br>0           |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              |                 |     |
| Ē    |                       |                                     |                                                           | 0<br>0           |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| Ē    |                       |                                     |                                                           | > 0°.            |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              | 1               |     |
| - 8  | 71.23<br><b>8.03</b>  | Bedrock: Very                       | poor to poor quality light                                |                  |            | DC-1         |         | 61      | 0              |              |       |                |          |         |         |          | -             |            | _            |                 |     |
|      |                       | grey mudstone,<br>shale. Calcite v  | , thin layers of dark grey<br>einlets. Joints filled with |                  |            |              | T       |         | -              |              |       |                |          |         |         |          |               |            |              |                 |     |
|      |                       | silt and gravel                     |                                                           |                  |            | DC-2         |         | 83      | 0              |              |       |                |          |         |         |          |               |            |              |                 |     |
| . 9  |                       |                                     |                                                           |                  |            | DC-3         |         | 38      | 0              |              |       |                |          |         |         |          |               |            |              |                 |     |
|      |                       |                                     |                                                           |                  |            | DC-4         |         | 77      | 29             |              |       |                |          |         |         |          |               |            |              |                 |     |
| - 10 |                       |                                     |                                                           |                  |            |              |         | 20      | 0              |              | +     | +              |          |         |         | $\vdash$ | $\dashv$      | -+         | $\dashv$     | $ \rightarrow $ |     |
|      |                       |                                     |                                                           |                  |            | DC-5         |         | 38      | 0              |              |       |                |          |         |         |          |               |            |              |                 |     |
|      | 69.13<br><b>10.77</b> | Very poor quali                     | ty grey mudstone and                                      |                  |            | DC-6         | ┝╋╸     | 79      | 57             |              |       |                |          |         |         |          |               |            |              |                 |     |
| 11   |                       | dark grey shale<br>Calcite veinlets | . Sedimentary breccia.                                    |                  |            | DC-7         | ┝╋╸     | 89      | 39             |              |       |                |          |         |         |          |               |            |              |                 |     |
|      |                       |                                     |                                                           |                  |            | DC-8         |         | 86      | 0              |              |       |                |          |         |         |          |               |            |              |                 |     |
|      |                       |                                     |                                                           | XX               |            |              |         |         |                |              |       |                |          |         |         |          |               |            |              |                 |     |

|           |                       |                                     |                                          | PR       | OJECI  | : Rabas      | ska Pr           | oject ( | Phase 2  | ), Levis, C | Quebeo | <b>b</b> |       | BORE      | HOL                | E : <i>E</i> | <b>3H-</b> 1       | 117/   | 4-0:  | 5       |
|-----------|-----------------------|-------------------------------------|------------------------------------------|----------|--------|--------------|------------------|---------|----------|-------------|--------|----------|-------|-----------|--------------------|--------------|--------------------|--------|-------|---------|
|           |                       | Т                                   | matash                                   | SIT      | Е:     | West         | Optio            | n Site  |          |             |        |          |       | PAGE      | : _                | 2            | _ 0                | F _    | 5     |         |
|           | ▼                     |                                     | rratech                                  | FIL      | E NO : | <u>T-105</u> | )-В (            | (60333  | 3-KELL)  |             |        |          |       | CASI      | NG :               | NW           | 1                  |        |       |         |
|           | •                     |                                     |                                          | во       | RING   | DATE :       |                  | 2005-   | 03-15    | то          |        | 2005-03  | -19   | CORE      | E BAF              | RREL         | ١                  | VQ3    |       |         |
|           | ]                     | BORIN                               | G LOG                                    | DA       | TUM :  |              | Geod             | letic   |          |             | COOF   |          | s:    | 5187110   | .81 1              | 1            | 262                | 2036.  | .32 E |         |
| SAN       | IPLE CO               | NDITION                             | TYPE OF SAMPLER                          |          |        | LABOR        | RATO             | RY AN   | ID IN SI | TU TEST     |        |          | Field | Vane      | (                  | Su)          | $\wedge$           | inta   | ct    |         |
| $\geq$    | Remo                  | oulded                              | SS Split spoon                           |          |        | GS G         | ain si           | ze ana  | alysis   |             |        |          |       | Vano      | (                  | Sur)         | •                  | rem    | iould | ed      |
|           | Undis                 | sturbed                             | ST Thin walled Shelby tub                | е        |        |              | onsoli<br>nit we | dation  | N/m³)    |             |        |          | Swed  | lish cone | ) (                | Cu)          | $\bigtriangledown$ | inta   | ct    |         |
|           | Rock                  | core                                | DC Diamond core barrel                   |          |        | CP Co        | ompre            | essive  | strength | (MPa)       |        |          | Dyn.  | Cone Pe   | )<br>en. Te        | Cur)<br>est  | ▼<br>× -           | rem    | ould: | ed<br>× |
|           |                       | STRA                                | ATIGRAPHY                                |          | F      |              | SAM              | PLES    | ;        |             |        |          |       |           |                    |              |                    | PFI    |       | FST     |
| ۶         | ۲<br>۲                |                                     |                                          |          | Ē      |              | _                | %       |          | WATE        | RCC    | NTENT    | RY    | ŝTS       |                    | (bl          | ows                | /0.3   | m)    |         |
| ι.<br>Ξ   | NON-                  |                                     |                                          | Ы        | ШŇ     | UN<br>ER     | NOL N            | RY      | gD       | and         | LIMIT  | 'S (%)   | ATO   | TES       |                    | 5            | 0                  | 10     | 0     |         |
| I I I     | VAT<br>EPT            |                                     |                                          | МВ       | R      | PE 4<br>JMB  | <b>F</b>         | ЭVЕ     | or R     | w           | w      | \w/      | OR.   | an<br>ITU | UN                 | IDR/         | AINE               | ED S   | HE/   | AR      |
| □         |                       | DE                                  | SCRIPTION                                | S        | ATE    | ∑ ĭ          | 0<br>S           | SEC(    | z        | •*•P<br>  ⊢ |        |          | LAE   | N<br>N    | S                  | TRE          | ING                | TH (   | kPa   | 1)      |
|           |                       |                                     |                                          |          | 3      |              |                  | "       |          | 20          | 40 6   | 0 80     |       |           |                    | 5            | 0                  | 10     | 0     |         |
| -         | 67 70                 | Very poor quali<br>Sedimentary br   | ity calcareous mudstone.<br>reccia.      |          |        | DC-9         |                  | 42      | 0        |             |        |          |       |           |                    |              |                    |        |       |         |
| -         | 12.52                 | Poor quality cal                    | Icareous grey mudstone,                  | XX       |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| - 13      |                       | Beddings at 70-                     | -90° from borehole axis.                 |          |        |              |                  |         |          |             |        |          | _     |           |                    |              | _                  |        |       | -       |
| -         |                       | Calcite veinlets                    |                                          |          |        | DC-10        |                  | 100     | 25       |             |        |          |       |           |                    |              |                    |        |       |         |
| -         | 66.75                 |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| - 14      | 13.87                 | Very poor to po<br>layers of calcar | eous mudstone and                        |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| -         |                       | sandstone, darl<br>Presence of mi   | k grey shale beds.<br>crofolds and minor |          |        | DC-11        |                  | 99      | 15       |             |        |          |       |           |                    |              |                    |        |       |         |
| - 15      |                       | discontinuity in                    | the beddings. Calcite                    |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         |                       | vennets.                            |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         |                       |                                     |                                          |          |        | DC-12        |                  | 100     | 27       |             |        |          |       |           |                    |              |                    |        |       |         |
| - 16      |                       |                                     |                                          |          |        | 00 12        |                  | 100     | 27       |             |        |          | _     |           |                    |              | _                  | _      |       |         |
| -         |                       |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         |                       |                                     |                                          |          |        | DC-13        |                  | 70      | 15       |             |        |          |       |           |                    |              |                    |        |       |         |
| - 17<br>- |                       |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| _         |                       |                                     |                                          |          |        | DC-14        |                  | 100     | 36       |             |        |          |       |           |                    |              |                    |        |       |         |
| -<br>- 18 |                       |                                     |                                          |          |        | DC-15        |                  | 87      | 0        |             |        |          | _     |           |                    |              |                    |        |       |         |
|           |                       |                                     |                                          |          |        | DC-16        |                  | 85      | 0        |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         | 63.06<br>18.69        | Very poor to po                     | por quality grev mudstone                |          |        | DC-17        | ┝╋               | 91      | 0        |             |        |          |       |           |                    |              |                    |        |       |         |
| - 19      | . 5.00                | layers of calcar                    | reous mudstone and dark                  |          |        | DC-18        | ┝╋               | 100     | 0        |             | -      |          | _     |           | $\vdash$           |              | _                  | $\neg$ |       |         |
|           |                       | grey shale. Bec<br>borehole axis.   | ddings at 70-90° from                    |          |        | DC-19        |                  | 100     | 0        |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         |                       |                                     |                                          |          |        | 0020         |                  | 100     | Ū        |             |        |          |       |           |                    |              |                    |        |       |         |
| - 20<br>- |                       |                                     |                                          |          |        | DC-21        |                  | 90      | 11       |             |        |          | -     |           |                    |              |                    |        |       |         |
| -         |                       |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| -<br>21   |                       |                                     |                                          |          |        | DC-22        |                  | 97      | 40       |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         | 60.98                 |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         | 21.41                 | Good quality gr                     | ey mudstone.                             |          |        | DC-23        |                  | 100     | 84       |             |        |          |       |           |                    |              | <br>Tropa          | ari at | 21.6  | 4m:     |
| - 22      | 60.49<br><b>22.05</b> | Very noor to no                     |                                          |          |        |              | ┝╋               |         |          |             |        |          | _     |           | $\left  - \right $ | -            | _inc               | linati | on =  | 50°_    |
| Ē         |                       | layers of calcar                    | eous mudstone and dark                   |          |        | DC-24        |                  | 100     | 0        |             |        |          |       |           |                    |              | <br>Tropa          | ari at | 22.4  | 0m:     |
| Ē         |                       | borehole axis.                      | 20                                       |          |        |              |                  |         |          |             |        |          |       |           |                    |              | inc                | linati | on =  | 50°     |
| - 23      |                       |                                     |                                          |          |        | DC-25        |                  | 100     | 45       |             |        |          |       |           |                    |              |                    |        |       |         |
| É         |                       |                                     |                                          |          |        |              |                  |         |          |             |        |          |       |           |                    |              |                    |        |       |         |
| Ē         |                       |                                     |                                          | XX<br>XX |        |              | $\vdash$         |         |          |             |        |          |       |           |                    |              |                    |        |       |         |

|      |                               |                                    |                                       | PR  | OJECI  | r: <u>Rabas</u> | ska Pr            | oject (           | Phase 2  | ), Levis, C    | Quebec   | >        |            | BORE    | HOLI      | E : <i>B</i> | 3 <b>H-1</b> | 117/         | 4-05        | :  |
|------|-------------------------------|------------------------------------|---------------------------------------|-----|--------|-----------------|-------------------|-------------------|----------|----------------|----------|----------|------------|---------|-----------|--------------|--------------|--------------|-------------|----|
|      |                               | То                                 | matach                                | SIT | Е:     | West            | Optio             | n Site            |          |                |          |          |            | PAGE    | :: _      | 3            | _ 0          | F _          | 5           | _  |
|      | ▼                             |                                    | rratech                               | FIL | E NO : | <u>T-105</u>    | 0-B (             | (60333            | 3-KELL)  |                |          |          |            | CASI    | NG :      | NW           |              |              |             | _  |
|      | •                             |                                    |                                       | во  | RING   | DATE :          |                   | 2005-             | 03-15    | то             |          | 2005-03- | 19         | CORE    | BAR       | REL          | .: <u>۱</u>  | 1Q3          |             | _  |
|      | ]                             | BORIN                              | G LOG                                 | DA  | TUM :  |                 | Geod              | letic             |          |                | COOF     |          | : 5        | 187110  | .81 N     | 1            | 262          | 2036.        | 32 E        | _  |
| SAM  | IPLE CO                       | NDITION                            | TYPE OF SAMPLER                       |     |        | LABOF           | RATO              | RY AN             | ND IN SI | TU TEST        |          |          | Field V    | /ane    | (\$       | Su)          | $\diamond$   | inta         | ct          |    |
|      | Remo                          | oulded                             | SS Split spoon                        | ۵   |        | GS G            | rain si<br>onsoli | ize ana<br>dation | alysis   |                |          |          | Ourselin   |         | (8        | Sur)         | ٠            | rem          | oulde       | d  |
|      | Lost                          | suideu                             | PS Piston sampler                     | C   |        | D Ur            | nit we            | ight (k           | N/m³)    |                |          |          | Swedis     | sn cone | ) :<br>(( | Cur)         | ▽            | intao<br>rem | ct<br>oulde | ed |
|      | Rock                          | core                               | DC Diamond core barrel                |     |        | CP Co           | ompre             | essive            | strength | (MPa)          |          |          | Dyn. C     | one Pe  | n. Te     | st           | <u>×-·</u>   |              | ×           | -  |
|      | ۶                             | STR/                               | ATIGRAPHY                             |     | ε      |                 | SAM               | PLES              | <b>i</b> |                |          |          | ~          | (0      | DYN       | I. CC        | )NE          | PEN          | 1. TE       | ST |
| ε    | ΞE                            |                                    |                                       |     | ĒĽ     | <u> </u>        | z                 | ۲ %               | 0        | and            |          | S (%)    | <b>TOR</b> | EST(    |           | (blo<br>5(   | ows:<br>)    | /0.3r/<br>10 | n)<br>/0    |    |
| H    | THO                           |                                    |                                       | BOI | Ē      | E AN            | E                 | /ER               | RQI      |                |          | - ()     | RAT        |         |           | î            |              |              |             |    |
| DEF  | EV/                           | DE                                 | SCRIPTION                             | SYN | TER    | ΥPE<br>NUN      | ONE               | CO.               | N or     | w <sub>P</sub> | w        | wL       | <b>ABO</b> |         | UN        | DR/          |              | ED S         | HEA<br>kPa) | R  |
|      | Щ                             |                                    |                                       |     | MA     |                 | U<br>U            | RE                |          | <br>20         | <br>40 6 | 0 80     | ב          | Z       |           | 5(           | J            | 10           | 0           |    |
| -    |                               | Very poor to po                    | oor quality grey mudstone.            |     |        | DC-26           |                   | 91                | 0        |                | + -      |          |            |         |           | $\neg$       | $\neg$       |              | -           | _  |
| -    | 58.51                         | from borehole a                    | axis and with signs of                |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| 25   | 24.63                         | displacement of Poor to fair qua   | f beds.<br>lity grey mudstone, layers |     |        |                 |                   |                   |          |                |          |          | -          |         |           |              |              |              |             |    |
|      |                               | of calcareous m<br>70-90° from bor | nudstone. Beddings at rehole axis.    |     |        | DC-27           |                   | 100               | 57       |                |          |          |            |         |           |              |              |              |             |    |
| -    |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 26 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           | -            |              |              |             | _  |
|      |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 27 |                               |                                    |                                       |     |        | DC-28           |                   | 97                | 40       |                |          |          | -          |         |           |              |              |              |             |    |
| -    |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
|      |                               |                                    |                                       |     |        | DC-29           |                   | 100               | 0        |                |          |          |            |         |           |              |              |              |             |    |
| - 28 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           | +            | _            | _            | -           | _  |
|      |                               |                                    |                                       |     |        | DC-30           |                   | 89                | 38       |                |          |          |            |         |           |              |              |              |             |    |
| - 29 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          | -          |         |           |              |              |              |             |    |
|      | <u>55.0</u> 3<br><b>29.18</b> | Excellent qualit                   | y grey mudstone, layers               |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
|      |                               | of calcareous m<br>70-90° from bol | rehole axis.                          |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 30 |                               |                                    |                                       |     |        | DC-31           |                   | 100               | 96       |                |          |          |            |         |           | $\neg$       | _            |              |             | _  |
|      |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 31 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          | -          |         |           |              |              |              |             |    |
| -    |                               |                                    |                                       |     |        | DC-32           |                   | 100               | 100      |                |          |          |            |         |           |              |              |              |             |    |
|      | 52.00                         |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 32 | <u>31.95</u>                  | Fair to excellen                   | t quality dark grey                   |     |        |                 |                   |                   |          |                |          |          | -          |         |           | +            | _            | _            |             | -  |
|      |                               | breccia texture.                   |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 33 |                               |                                    |                                       |     |        | DC-33           |                   | 100               | 68       |                |          |          | -          |         |           |              |              |              |             |    |
|      |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| Ē    |                               |                                    |                                       |     |        |                 | ┝╋                |                   |          |                |          |          |            |         |           |              |              |              |             |    |
| - 34 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          | -          |         | $\vdash$  | +            | $\dashv$     | $\dashv$     | +           | -  |
| Ē    |                               |                                    |                                       |     |        | DC-34           |                   | 100               | 99       |                |          |          |            |         |           |              |              |              |             |    |
| - 35 |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |
|      |                               |                                    |                                       |     |        |                 | ┝╋╋               |                   |          |                |          |          |            |         |           | T            |              | T            |             |    |
|      |                               |                                    |                                       |     |        | DC-35           |                   | 100               | 84       |                |          |          |            |         |           |              |              |              |             |    |
| Ē    |                               |                                    |                                       |     |        |                 |                   |                   |          |                |          |          |            |         |           |              |              |              |             |    |

|           |               |                                   |                                                    | PR  | OJECT   | : Rabas      | ska Pi           | roject (   | Phase 2  | ), Levis, C | Quebeo     | 0         |              | BORE      | HOLE         | : BI         | H-11      | 7A-0    | 5        |
|-----------|---------------|-----------------------------------|----------------------------------------------------|-----|---------|--------------|------------------|------------|----------|-------------|------------|-----------|--------------|-----------|--------------|--------------|-----------|---------|----------|
|           |               | Т                                 | matach                                             | SIT | E :     | West         | Optio            | n Site     |          |             |            |           |              | PAGE      | ::           | 4            | OF        | 5       |          |
|           | ▼             |                                   | rratech                                            | FIL | .E NO : | <u>T-105</u> | 0-B              | (60333     | 33-KELL) |             |            |           |              | CASI      | NG :         | NW           |           |         |          |
|           | •             |                                   |                                                    | во  | RING    | DATE :       |                  | 2005-      | 03-15    | то          |            | 2005-03   | -19          | CORE      | BAR          | REL :        | NQ        | 3       |          |
|           |               | BORIN                             | G LOG                                              | DA  | TUM :   |              | Geod             | letic      |          |             | COOF       |           | <b>S</b> : 5 | 187110    | .81 N        |              | 26203     | 6.32 E  | Ξ        |
| SAN       | IPLE C        |                                   | TYPE OF SAMPLER                                    |     |         | LABOR        | RATO             | RY AN      | ND IN SI | TU TEST     |            |           | Field        | Vane      | (S           | Su)          | <br>∧ in  | tact    |          |
| $\geq$    | Ren           | noulded                           | SS Split spoon                                     |     |         | GS G         | rain s           | ize ana    | alysis   |             |            |           |              |           | (S           | sur)         | ♦ re      | mould   | bed      |
|           | Und Und       | isturbed                          | ST Thin walled Shelby tube                         | е   |         |              | onsoli<br>nit we | idation    | N/m³)    |             |            |           | Swedi        | ish cone  | ; (C         | u) '         |           | act     |          |
|           | Roc           | k core                            | DC Diamond core barrel                             |     |         | CP C         | ompre            | essive     | strength | (MPa)       |            |           | Dyn. (       | Cone Pe   | U)<br>n. Tes | str)<br>st × | ▼ re<br>÷ | mould   | ied<br>× |
|           |               | STR                               | ATIGRAPHY                                          |     | ۶       |              | SAM              | PLES       | 6        |             |            |           |              |           |              | coi          |           | -м т    | FST      |
| 2         | <u>ء</u> '    |                                   |                                                    |     | ÷       |              | _                | %          |          | WATE        | R CO       | NTENT     | RY           | STS       |              | (blo         | ws/0.     | 3m)     | _0.      |
| Ι÷.       | NOI - H       |                                   |                                                    | Ь   | ĒVĒ     | AND<br>ER    | NOI              | RY         | gD       | and         | LIMIT      | 'S (%)    | ATO .        | TES       |              | 50           |           | 100     |          |
| I L L     | VAT<br>EPT    |                                   |                                                    | MB  | R       | PE A         | ١<br>٩           | OVE        | or R     | w           | w          | \w/       | OR.          | an<br>ITU | UNI          | DRA          | INED      | SHE     | AR       |
| □         |               | DE                                | SCRIPTION                                          | S   | ATE     | Σĭ           | 0<br>0           | <b>REC</b> | z        | •**P<br>├── | •••<br>—⊙– | "L<br>——∣ | LAB          | N S       | SI           | <b>FREN</b>  | IGTH      | (kPa    | a)       |
|           |               |                                   |                                                    |     | 3       |              |                  | "          |          | 20          | 40 6       | 0 80      |              |           |              | 50           |           | 100     |          |
| Ē         |               | Good quality da                   | ark grey mudstone.                                 |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| Ē         | <u>49.1</u> 9 |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| - 37      | 36.80         | Fair to good qu<br>Beddings at 80 | ality dark grey mudstone.<br>° from borehole axis. |     |         |              |                  |            |          |             | -          |           | -            |           |              | +            | _         | —       |          |
| Ē         |               |                                   |                                                    |     |         | 50.00        |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| Ē         |               |                                   |                                                    |     |         | DC-36        |                  | 100        | 89       |             |            |           |              |           |              |              |           |         |          |
| - 38<br>- |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              | -            | -         |         |          |
| Ē         |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| - 39      | 47.47         |                                   |                                                    |     |         |              |                  |            |          |             |            |           | _            |           |              |              |           |         |          |
| Ē         | 39.04         | Good quality da<br>sedimentary br | ark grey mudstone,<br>eccia texture, numerous      |     |         | DC-37        |                  | 100        | 65       |             |            |           |              |           |              |              |           |         |          |
| Ē         |               | calcite veinlets.                 |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| - 40      |               |                                   |                                                    |     |         |              |                  |            |          |             | -          |           | -            |           |              | Tr           | opari a   | it 39.9 | )3m:-    |
| Ē         |               |                                   |                                                    |     |         | DC-38        |                  | 100        | 78       |             |            |           |              |           |              |              |           |         | . 51     |
| Ē.,       |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| - 41      |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| Ē         |               |                                   |                                                    |     |         | 50.00        |                  | 400        | 05       |             |            |           |              |           |              |              |           |         |          |
| - 42      | 45.10         |                                   |                                                    |     |         | DC-39        |                  | 100        | 85       |             |            |           | _            |           |              |              |           |         | _        |
| Ē         | 42.14         | Good to excelle<br>mudstone, lave | ent quality dark grey                              |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| Ē         |               | borehole axis.                    |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| - 43      |               |                                   |                                                    |     |         | DO 40        |                  | 100        | 70       |             |            |           | -            |           |              | -            |           |         |          |
| Ē         |               |                                   |                                                    |     |         | DC-40        |                  | 100        | 78       |             |            |           |              |           |              |              |           |         |          |
| Ē 44      |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
|           |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
| -         |               |                                   |                                                    |     |         | 50.44        |                  | 400        | 100      |             |            |           |              |           |              |              |           |         |          |
| - 45      |               |                                   |                                                    |     |         | DC-41        |                  | 100        | 100      |             | -          |           | _            |           |              | +            | —         | +       |          |
|           |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
|           |               |                                   |                                                    |     |         |              |                  | 1          |          |             |            |           |              |           |              |              |           |         |          |
| - 46      |               |                                   |                                                    |     |         |              |                  |            |          |             | +          |           | 1            |           |              | +            | +         | 1       |          |
|           |               |                                   |                                                    |     |         | DC-42        |                  | 100        | 93       |             |            |           |              |           |              |              |           |         |          |
| 47        |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           | _            |           |              | $\perp$      |           |         |          |
| Ē         |               |                                   |                                                    |     |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |
|           |               |                                   |                                                    |     |         | DC-43        |                  | 100        | 100      |             |            |           |              |           |              |              |           |         |          |
| E         |               |                                   |                                                    | XX  |         |              |                  |            |          |             |            |           |              |           |              |              |           |         |          |

|             |         |                                     | PR   | OJECT  | : Rabas      | ska Pr | oject   | (Phase 2)     | ), Lev  | ris, Qu | iebec |        |          | BORE       | HOLI       | E : <b>B</b> | 3H-1          | 17/          | 4-05            | ;           |
|-------------|---------|-------------------------------------|------|--------|--------------|--------|---------|---------------|---------|---------|-------|--------|----------|------------|------------|--------------|---------------|--------------|-----------------|-------------|
|             |         | Torretoch                           | SIT  | Έ:     | West 0       | Optior | n Site  |               |         |         |       |        |          | PAGE       | :: _       | 5            | _ 01          | F_           | 5               | _           |
|             | ▼       | Terratech                           | FIL  | E NO : | <u>T-105</u> | D-B (  | (6033   | 33-KELL)      |         |         |       |        |          | CASI       | NG :       | NW           |               |              |                 | _           |
|             | •       |                                     | во   | RING   | DATE :       |        | 2005    | 03-15         |         | то      |       | 2005-0 | 3-19     | CORE       | BAR        | REL          | .: <u>N</u>   | IQ3          |                 | _           |
|             | ]       | BORING LOG                          | DA   | TUM :  |              | Geod   | etic    |               |         | с       | OOR   | DINATI | s: _     | 5187110    | .81 N      | i            | 262           | 2036.        | 32 E            |             |
| SAN         |         | ONDITION TYPE OF SAMPLER            |      |        |              | ATO    | RY A    | ND IN SIT     | Γυ τε   | ST      |       |        | Field    | Vane       | (5         | Su)          | $\diamond$    | intac        | ct              |             |
|             | Undi    | sturbed ST Thin walled Shelby tube  |      |        | C C          | onsoli | dation  | aiysis        |         |         |       |        | Swed     | lish cone  | 3)<br>)) ( | Sur)<br>Cu)  | ◆<br>▽        | rem<br>inta  | oulde<br>ct     | эd          |
|             | Lost    | PS Piston sampler                   |      |        | D Ur         | nit we | ight (k | N/m³)         | (MDa    |         |       |        | Dur      | 0 D-       | ((         | Cur)         | ▼             | rem          | oulde           | əd          |
|             |         | STRATIGRAPHY                        |      | _      |              | SAM    | PLE     | silengin<br>S | (IVIF a | ()      |       |        | Dyn.     | Cone Pe    | n. Tes     | st ;         | <u>×</u>      |              | <u>×</u>        | <u>&lt;</u> |
|             | ۳-<br>۲ |                                     |      | ۲<br>۲ |              |        | %       |               | WA      | ATER    | col   | NTEN   | <b>™</b> | TS         | DYN        | . CO<br>(blc | )NE<br>ows/   | PEN<br>/0.3r | 1. TE<br>n)     | <u>-</u> ST |
| г<br>-<br>т | NOI H   |                                     | Ч    | EVE    | LND<br>ER    | NOI    | RY %    | B             | a       | nd L    | IMIT  | S (%)  | ATO      | d<br>TES   |            | 50           | )             | 10           | 0               |             |
| EPT         | VAT     | DESCRIPTION                         | YMB  | IR L   | PE ∉<br>JMB  | IDN    | OVE     | or R          | v       | N_      | w     | w.     | 30R      | an<br>SITU | UN         | DRA          | AINE          | DS           | HEA             | ١R          |
|             |         | DESCRIPTION                         | Ś    | VATE   | Σ<br>Σ       | 00     | REC     | z             |         | -р<br>  | •     |        | LAE      | N          | S          | TRE          | NG            | <b>FH (</b>  | kPa)            | )           |
| <u> </u>    |         | Good to excellent quality dark grey | 7757 | 5      |              |        |         |               | 2       | 0 40    | 0 60  | 0 80   |          |            | $\vdash$   | 50           | )<br>—†       | 10           | 0               |             |
| Ē           |         | mudstone, layers at 80-90° from     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               | riot         | 10 11           | Grave:      |
| Ē.          |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              | incl          | inatio       | +0.40<br>on = { | 53°         |
| - 49        |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ē           |         |                                     |      |        | DC-44        |        | 100     | 78            |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 50        | 38.89   |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              | +             |              |                 | -           |
| Ē           | 50.24   | END OF BOREHOLE                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 51        |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 52        |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              | +             |              |                 |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 53        |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            | $\vdash$   | _            | $\rightarrow$ | _            |                 | _           |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| E 54        |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 55        |         |                                     |      |        |              |        |         |               |         |         | -     |        | _        |            | $\vdash$   | +            | +             | +            | $\dashv$        |             |
| Ē           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| 56          |         |                                     |      |        |              |        |         |               |         |         |       |        | _        |            |            | $\square$    | $\square$     |              | $\square$       |             |
|             |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
|             |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 57        |         |                                     |      |        |              |        |         |               |         |         |       | +      | _        |            |            | +            | +             | $\neg$       | $\neg$          | _           |
|             |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| - 58        |         |                                     |      |        |              |        |         |               |         |         |       |        | _        |            | $\vdash$   | -+           | $\dashv$      | $\dashv$     | $\dashv$        |             |
|             |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| -<br>       |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| 59          |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
|             |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |
| Ł           |         |                                     |      |        |              |        |         |               |         |         |       |        |          |            |            |              |               |              |                 |             |

|                |                       | _                                 |                                                        | PR                  | OJECI   | : Raba        | ska Pr                | oject             | (Phase 2)   | ), Levis               | s, Qu | ebec |        |      |         | BORE    | HOL         | E : <i>B</i>  | H-1                | 17E          | 3-05      | 5       |
|----------------|-----------------------|-----------------------------------|--------------------------------------------------------|---------------------|---------|---------------|-----------------------|-------------------|-------------|------------------------|-------|------|--------|------|---------|---------|-------------|---------------|--------------------|--------------|-----------|---------|
|                |                       | Т                                 | matach                                                 | SIT                 | Έ:      | West          | Optio                 | n Site            |             |                        |       |      |        |      |         | PAGE    | : _         | 1             | <b>O</b>           | F_           | 5         | _       |
|                | ▼                     | jj ie                             | rratech                                                | FIL                 | E NO :  | <u>T-105</u>  | 0-В (                 | 6033              | 33-KELL)    | )                      |       |      |        |      |         | CASI    | NG :        | NW            |                    |              |           |         |
|                | •                     |                                   |                                                        | во                  | RING I  | DATE :        |                       | 2005              | -03-04      |                        | то    |      | 2005-0 | )3-1 | 4       | CORE    | E BAF       | REL           | : N                | IQ3          |           |         |
|                | ]                     | BORIN                             | G LOG                                                  | DA                  | TUM :   |               | Geod                  | etic              |             |                        | C     | OOR  | DINAT  | ES   | : 5'    | 187110  | .11 N       | 1             | 262                | 2037.        | 03 E      |         |
| SAN            | IPLE CO               | NDITION                           | TYPE OF SAMPLER                                        |                     |         | LABO          | RATO                  | RY A              | ND IN SIT   |                        | ST    |      |        |      | Field V | /ane    | (           | Su)           | $\diamond$         | inta         | ct        |         |
| $\geq$         | Rem                   | oulded                            | SS Split spoon                                         |                     |         | GS G          | rain si               | ze an             | alysis      |                        |       |      |        |      |         |         | (           | Sur)          | ٠                  | rem          | ould      | ed      |
|                | Undis                 | sturbed                           | ST Thin walled Shelby tub                              | e                   |         |               | onsoli<br>nit we      | datior<br>ight (l | N/m³)       |                        |       |      |        |      | Swedis  | sh cone | ) (         | Cu)           | $\bigtriangledown$ | inta         | ct        |         |
|                | Rock                  | core                              | DC Diamond core barrel                                 |                     |         | CP C          | ompre                 | essive            | strength    | (MPa)                  |       |      |        |      | Dyn. C  | Cone Pe | )<br>n. Teء | cur)<br>est   | ▼<br>× - ·         | rem          |           | ed<br>K |
|                |                       | STR/                              | ATIGRAPHY                                              |                     | ۶       |               | SAM                   | PLE               | 3           |                        |       |      |        |      |         |         | DYN         |               | NF                 | PF           | יד ו      | FST     |
| 2              | ۳<br>۲                |                                   |                                                        |                     |         |               | _                     | %                 |             | WA                     | TER   | со   | NTEN   | т    | RY      | STS     | 5           | (blo          | ows                | /0.3r        | n)        | .01     |
|                | NOI<br>H              |                                   |                                                        | Ъ                   | ĒVE     | AND<br>ER     | 0                     | RY                | gD          | an                     | nd Ll | MIT  | S (%)  |      | ATO     | ц       |             | 50            | )                  | 10           | 0         |         |
| EPT            | VAT<br>EPT            | DE                                | SCRIPTION                                              | /MB                 | IR L    | PE /<br>JMB   | IQ                    | OVE               | or R        | w                      |       | w    | w      |      | SOR.    |         | UN          | IDRA          | AINE               | D S          | HE/       | ٩R      |
|                | ELE                   | DE                                | SCRIPTION                                              | Ś                   | ATE     | Żĭ            | S                     | SEC.              | z           |                        | Р     | •    | —–i    | -    | LAE     | N<br>N  | S           | TRE           | NG                 | ГН (         | kPa       | )       |
|                | 77.38                 | GROUND SUR                        | FACE                                                   |                     | 3       |               |                       | -                 |             | 20                     | 40    | ) 6  | 0 80   |      |         |         |             | 50            | ,<br>              | 10           | 0         |         |
| Ē              | 0.00                  | Fill: Grey silt, so               | ome sand and gravel.                                   | $\bigotimes$        |         | SS-1          | $ \times$             | 83                |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              | 76.77<br><b>0.61</b>  | Brown peat.                       |                                                        | $\sum_{i=1}^{n}$    |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| <b>⊨</b> 1     | 76.16                 |                                   |                                                        |                     |         | SS-2          | $\times$              | 38                | 8           |                        | -     |      |        |      |         |         |             | $\rightarrow$ | +                  | _            | _         |         |
| Ē              | 1.22                  | Light brown pea                   | at, wood, small roots.                                 |                     |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       |                                   |                                                        |                     | 4-15    | SS-3          | $\left \right\rangle$ | 79                | 0/46cm      |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| E <sup>2</sup> | 75.25<br><b>2.13</b>  | Dense grev sar                    | nd, some silt and gravel.                              | $\tilde{\tilde{c}}$ | 02-07   |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              | 74.64                 | 0,                                |                                                        | 0<br>0              | on 2(   | SS-4          | $\times$              | 58                | 44          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| - 3            | 2.74                  | Compact to ver                    | y dense grey silty and                                 | ар<br>1             | .88m    |               |                       |                   |             |                        | _     |      |        |      |         |         |             |               | $ \rightarrow$     |              |           |         |
| Ē              |                       | Salidy gravel.                    |                                                        | \$ 8<br>8           | ev. 75. | SS-5          | $\geq$                | 62                | 28          | $\odot$                |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       |                                   |                                                        | 5 8 6<br>8 8        | at ele  |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ê 4            | 73.27                 | Dense to una                      |                                                        | · @ · @             | level   | SS-6          | $\ge$                 | 62                | 45          |                        | -     | _    |        |      |         |         |             |               | -                  |              |           |         |
| Ē              | 4.77                  | and gravel, occ                   | asional cobbles and                                    | 9 9<br>0            | Water   |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| ŧ,             |                       | boulders.                         |                                                        | D. D                |         | SS-7          | $\times$              | 58                | 67          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       |                                   |                                                        |                     |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       |                                   |                                                        | Ø.8                 |         | SS-8          | $\times$              | 57                | 32          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| - 6            | 71.21                 |                                   |                                                        | ۵                   |         |               |                       |                   |             |                        | _     |      |        |      |         |         |             |               | _                  | _            | _         |         |
| Ē              | 6.17                  | Bedrock: Very p<br>mudstone, lave | poor to poor quality grey<br>ers of dark clayey shale. |                     |         | SS-9<br>DC-10 |                       | 33<br>83          | 50/8cm<br>0 |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       | Beddings at 80                    | ° from borehole axis.                                  | XX                  |         | DC-11         |                       | 92                | 0           |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| 7              |                       |                                   |                                                        |                     |         | 2011          |                       |                   | Ū           |                        |       |      |        |      |         |         |             |               | -                  |              |           |         |
| Ē              |                       |                                   |                                                        | X                   |         | DC-12         |                       | 92                | 41          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| - 8            |                       |                                   |                                                        |                     |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
|                |                       |                                   |                                                        |                     |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
|                |                       |                                   |                                                        |                     |         | DC-13         |                       | 100               | 41          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| - 9            |                       |                                   |                                                        |                     |         |               |                       |                   |             | $\vdash$               | -     |      |        |      |         |         | $\vdash$    | $\rightarrow$ | +                  | $\dashv$     | $\dashv$  | —       |
| E              |                       |                                   |                                                        |                     |         |               | ╞╋                    |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē.,            |                       |                                   |                                                        |                     |         | DC-14         |                       | 95                | 15          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| E 10           | 67.25<br><b>10.13</b> | Poor to very po                   | or quality grey mudstone.                              |                     |         |               | ┝╋                    |                   |             |                        |       |      |        |      |         |         |             |               | $\uparrow$         |              |           |         |
|                |                       | Sedimentary br<br>veins.          | eccia structures. Calcite                              |                     |         | DC-15         |                       | 100               | 51          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| <b>–</b> 11    |                       | -                                 |                                                        |                     |         |               | ┝╋┝                   |                   |             | $\mid \downarrow \mid$ | _     |      |        |      |         |         | -           | $\rightarrow$ | $\square$          | $\downarrow$ | $\square$ |         |
|                |                       |                                   |                                                        |                     |         | DC-16         | ┝┻                    | 100               | 72          |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ē              |                       |                                   |                                                        |                     |         | DC-17         |                       | 98                | 0           |                        |       |      |        |      |         |         |             |               |                    |              |           |         |
| Ł              |                       |                                   |                                                        | XXX                 |         |               |                       |                   |             |                        |       |      |        |      |         |         |             |               |                    |              |           |         |

|           |                |                  |                                                  | PR     | OJECT       | : Rabas      | ska Pr           | oject (           | Phase 2  | ), Levi            | is, Qu     | iebec | ;     |       |         | BORE    | HOL         | E: <b>B</b> | 3H-1               | 17E      | 3-05          | 5       |
|-----------|----------------|------------------|--------------------------------------------------|--------|-------------|--------------|------------------|-------------------|----------|--------------------|------------|-------|-------|-------|---------|---------|-------------|-------------|--------------------|----------|---------------|---------|
|           |                |                  | matach                                           | SIT    | Έ:          | West         | Optior           | n Site            |          |                    |            |       |       |       |         | PAGE    | :: _        | 2           | _ <b>O</b> I       | F _      | 5             |         |
|           | ▼              |                  | rratech                                          | FIL    | E NO :      | <u>T-105</u> | 0-B (            | 60333             | 3-KELL   | )                  |            |       |       |       |         | CASI    | NG :        | NW          |                    |          |               |         |
|           | •              |                  |                                                  | во     | RING I      | DATE :       |                  | 2005-             | 03-04    |                    | то         |       | 2005  | -03-1 | 4       | CORE    | E BAF       | REL         | .: N               | IQ3      |               |         |
|           | ]              | BORIN            | G LOG                                            | DA     | тим :       |              | Geod             | etic              |          |                    | с          | OOR   |       | TES   | : 5     | 187110  | .11 N       | I           | 262                | 2037.    | .03 E         |         |
| SAM       | PLE CO         | NDITION          | TYPE OF SAMPLER                                  |        |             | LABOF        | RATO             | RY AN             | ID IN SI | TU TE              | ST         |       |       |       | Field V | /ane    | (;          | Su)         | $\diamond$         | inta     | ct            |         |
| $\geq$    | Rem            | oulded           | SS Split spoon                                   |        |             | GS G         | rain si          | ze ana            | alysis   |                    |            |       |       |       |         |         | (           | Sur)        | ٠                  | rem      | ould          | ed      |
|           | Undis          | sturbed          | ST Thin walled Shelby tub<br>PS Piston sampler   | e      |             |              | onsoli<br>nit we | dation<br>iaht (k | N/m³)    |                    |            |       |       |       | Swedi   | sh cone | ; ((        | Cu)         | $\bigtriangledown$ | inta     | ct            | od      |
|           | Rock           | core             | DC Diamond core barrel                           |        |             | CP Co        | ompre            | essive            | strength | (MPa)              | )          |       |       |       | Dyn. C  | one Pe  | י)<br>n. Te | st          | ▼<br>×-·           | rem<br>  |               | эа<br>× |
|           |                | STR/             | ATIGRAPHY                                        |        | E           |              | SAM              | PLES              | 5        |                    |            |       |       |       |         |         | DYN         | . cc        | )NE                | PE       | N. TI         | EST     |
| ε         | ш<br>          |                  |                                                  |        | -<br>       |              | -                | %                 |          | WA                 | TER        | CO    | NTE   | NT    | JRΥ     | STS     |             | (blo        | ows                | /0.3r    | n)            |         |
| - H       | NOI-<br>H      |                  |                                                  | ğ      | ĒVĒ         | AND          | 10               | RΥ                | gD       | ar                 | nd L       | IMIT  | 'S (% | )     | ATC     | pŭ      |             | 50          | )                  | 10       | 0             |         |
| EPT       | VAT            | DE               |                                                  | ΥMB    | I.<br>R     | JME /        | .iq              | OVE               | or R     | w                  | <b>/</b> _ | w     | v     | 1.    | 30R     |         | UN          | DRA         | ١NE                | D S      | HE/           | ٩R      |
|           | ELE            |                  | SCRIPTION                                        | Ś      | ATE         | , ⊊ z        | <b>S</b>         | REC               | z        | ŀ                  | -р<br>     |       |       | L     | ΓĂΕ     | N<br>N  | S           | TRE         | NG                 | ГН (     | kPa           | )       |
|           |                | Desete           |                                                  |        | <pre></pre> |              |                  | _                 |          | 20                 | 0 40       | 0 6   | 0 8   | )     |         |         |             | 50          | )<br><del></del> + | 10       | 0             |         |
| -         |                | mudstone. Sed    | limentary breccia                                |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -         |                | structures. Cal  | cite veins.                                      |        |             | DC-18        |                  | 100               | 34       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 13      | 64.05          |                  |                                                  |        |             | 00-10        |                  | 100               | 54       |                    |            |       |       |       |         |         |             |             | _                  |          |               |         |
| -         | <u>13.33</u>   | Fair quality gre | y mudstone, beds of                              |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| È .       |                | Beddings at 70   | ustone, shale beds.<br>1-90° from borehole axis. |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 14      |                |                  |                                                  |        |             | DC-19        |                  | 95                | 39       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 15      |                |                  |                                                  | X      |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             | _                  | _        | _             |         |
| -         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -         |                |                  |                                                  |        |             | DC-20        |                  | 100               | 61       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 16      |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             | -                  |          |               |         |
|           |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -<br>- 17 |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - "       |                |                  |                                                  |        |             | DC-21        |                  | 100               | 50       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 18      |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             | _                  |          |               | _       |
| -         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
|           |                |                  |                                                  | X      |             | DC-22        |                  | 100               | 54       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 19<br>- |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| _         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 20      |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| _         | 50.00          |                  |                                                  |        |             | DC-23        |                  | 100               | 69       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -         | 20.58<br>26.58 | Fair quality gre | y mudstone. Breccia                              |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 21      | 20.80          | Fair to very poo | veins<br>or quality grey mudstone                |        |             |              |                  |                   |          |                    | _          |       |       |       |         |         |             |             |                    |          |               |         |
|           |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| -<br>     |                |                  |                                                  |        |             | DC-24        |                  | 100               | 73       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| ŧ "       |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| Ē         |                |                  |                                                  |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| - 23      |                |                  |                                                  |        |             | DC CT        |                  |                   | <i>.</i> | $\left  - \right $ |            |       |       |       |         |         | $\vdash$    | -+          | $\dashv$           | $\dashv$ | $\rightarrow$ |         |
| Ē         | <u>53.8</u> 8  |                  |                                                  |        |             | DC-25        |                  | 69                | 1/       |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| Ē         | 23.50          | (see next page   | ).                                               |        |             |              |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |
| Ľ.        |                |                  |                                                  | K//K/K |             | I            |                  |                   |          |                    |            |       |       |       |         |         |             |             |                    |          |               |         |

|             |                |                            |                                                         | PR  | OJECT        | : Rabas      | ska Pi | oject ( | Phase 2   | ), Levis, (    | Quebe        | с               |       |         | BORE    | HOL      | E : <i>B</i> | 3 <b>H-</b> 1 | 171          | B-05       | 5         |
|-------------|----------------|----------------------------|---------------------------------------------------------|-----|--------------|--------------|--------|---------|-----------|----------------|--------------|-----------------|-------|---------|---------|----------|--------------|---------------|--------------|------------|-----------|
|             |                | Лт                         | 'annatach                                               | SIT | Έ:           | West         | Optio  | n Site  |           |                |              |                 |       |         | PAGE    | :: _     | 3            | 0             | F_           | 5          | _         |
|             |                | // 1                       | erratech                                                | FIL | E NO :       | <u>T-105</u> | 0-B    | (60333  | 33-KELL)  |                |              |                 |       |         | CASI    | NG :     | NW           | /             |              |            |           |
|             | •              |                            |                                                         | во  | RING         | DATE :       |        | 2005-   | 03-04     | тс             | )            | 2005-0          | 03-14 | 4       | CORE    | BAF      | REL          | .: <u>۱</u>   | 1Q3          |            |           |
|             |                | BORI                       | NG LOG                                                  | DA  | TUM :        |              | Geod   | letic   |           |                | cool         | RDINAT          | ES :  | 51      | 87110   | .11 N    | 1            | 262           | 2037.        | .03 E      | :         |
| SAN         | IPLE C         | ONDITION                   | TYPE OF SAMPLER                                         |     |              | LABOR        | RATO   | RY AN   | ND IN SIT | TU TEST        |              |                 |       | Field V | 'ane    | (*       | Su)          | $\diamond$    | inta         | ct         |           |
|             | Rem            | noulded                    | SS Split spoon                                          | 20  |              | GS G         | rain s | ize ana | alysis    |                |              |                 |       | o "     |         | (\$      | Sur)         | ٠             | rem          | oulde      | ed        |
|             | Lost           | isturbed                   | PS Piston sampler                                       |     |              | D Ur         | nit we | ight (k | N/m³)     |                |              |                 |       | Swedis  | sh cone | : ((     | Cu)<br>Cur)  | $\nabla$      | inta<br>rem  | ct<br>ould | ed        |
|             | Roc            | k core                     | DC Diamond core barrel                                  |     |              | CP Co        | ompre  | essive  | strength  | (MPa)          |              |                 |       | Dyn. C  | one Pe  | n. Te    | st           | <u>× - ·</u>  |              | · >        | ×         |
|             | C I            | S'                         | TRATIGRAPHY                                             |     | Ε            | :            | SAM    | PLES    | 6         |                |              |                 | -     |         |         | DYN      | I. CC        | )NE           | PE           | N. TE      | EST       |
| ε           | ΞE             |                            |                                                         |     | ĒĽ           | <u>م</u>     | z      | % /     | •         | and            |              | )NIEN<br>[S (%) | 1     | ORY     | ESTS    | ĺ        | (blo         | ows/<br>n     | 10.3۱/<br>۱۲ | m)<br>10   |           |
| Ē           | E E            |                            |                                                         | BOL | ΓEΛ          | AN<br>BEF    | DITIO  | 'ER)    | RQI       | una            |              |                 |       | RAT     |         |          |              |               |              |            |           |
| DEP         | DEP            |                            | DESCRIPTION                                             | SYM | TER          | YPE          |        | cov     | l or      | w <sub>P</sub> | w            | w               | _     | ABOI    | SITI    | UN       |              |               | EDS          | HE/        | AR        |
|             | Щ              |                            |                                                         |     | MAT          | F -          | Ŭ      | RE      | 2         | ⊢<br>20        | <del>0</del> |                 |       | ב       | Z       |          | 50           | ມ.<br>ບ       | 10           | )0         | ,         |
| -           |                | Good to exe                | cellent quality grey mudstone,                          |     |              |              |        |         |           |                | +            |                 | -     |         |         |          |              |               | -            |            |           |
| Ē           |                | layers of ca<br>beds. Bedd | alcareous mudstone, shale<br>lings at 70° from borehole |     |              | DC-26        |        | 100     | 93        |                |              |                 |       |         |         |          |              |               |              |            |           |
| 25          |                | axis.                      |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 26        |                |                            |                                                         |     |              | DC-27        |        | 100     | 94        |                | -            |                 |       |         |         | $\vdash$ |              | _             | _            |            |           |
| Ē           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 27        |                |                            |                                                         |     |              |              |        | -       |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē 1         |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē           |                |                            |                                                         |     |              | DC-28        |        | 100     | 80        |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 28        |                |                            |                                                         |     |              |              |        |         |           |                | +            |                 | _     |         |         | $\vdash$ | -+           | $\rightarrow$ | _            |            |           |
| Ē           | 49.01<br>28.37 | Excellent q                | uality red mudstone. Beddings                           |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| F           |                | at 60-70° fr               | om borehole axis.                                       |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| <b>F 29</b> |                |                            |                                                         |     |              | DC-29        |        | 98      | 95        |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 30        |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         | $\vdash$ |              | -             |              |            |           |
| Ē           |                |                            |                                                         |     | $\bigotimes$ |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| 24          |                |                            |                                                         |     |              | DC-30        |        | 100     | 100       |                |              |                 |       |         |         |          |              |               |              |            |           |
|             |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| Ē           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 32        |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          | -            |               |              |            | $\square$ |
| -           |                |                            |                                                         |     |              | DC-31        |        | 100     | 89        |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 22        |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| , 33<br>    |                |                            |                                                         |     |              |              |        | 1       |           |                |              |                 |       |         |         |          | Ţ            | T             |              |            |           |
|             |                |                            |                                                         |     |              | D.C.C.       |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 34        |                |                            |                                                         |     |              | DC-32        |        | 100     | 91        |                | -            |                 | -     |         |         | $\vdash$ | +            | $\dashv$      | -            |            | -         |
|             |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 25        |                |                            |                                                         |     |              |              |        | 1       |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| - 35        |                |                            |                                                         |     |              | DC-33        |        | 100     | 100       |                |              |                 |       |         |         |          |              |               |              |            |           |
|             |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |
| E           |                |                            |                                                         |     |              |              |        |         |           |                |              |                 |       |         |         |          |              |               |              |            |           |

|        |                |                                   |                                                | PR  | OJECT   | : Rabas      | ska Pi           | oject (           | Phase 2  | ), Levis, C | Quebec | ;        |              | BORE     | HOL            | E : <b>B</b>    | H-1                | 17B          | -05          | _  |
|--------|----------------|-----------------------------------|------------------------------------------------|-----|---------|--------------|------------------|-------------------|----------|-------------|--------|----------|--------------|----------|----------------|-----------------|--------------------|--------------|--------------|----|
|        |                | Т                                 | matach                                         | si  | E :     | West         | Optio            | n Site            |          |             |        |          |              | PAGE     | : _            | 4               | OF                 | : _          | 5            | _  |
|        | ▼              |                                   | rratecn                                        | FIL | .E NO : | <u>T-105</u> | 0-B              | (60333            | 33-KELL) | )           |        |          |              | CASI     | NG :           | NW              |                    |              |              | _  |
|        | •              |                                   |                                                | вс  | RING    | DATE :       |                  | 2005-             | 03-04    | то          |        | 2005-03- | 14           | CORE     | E BAF          | REL             | : N                | Q3           |              |    |
|        | ]              | BORIN                             | G LOG                                          | DA  | TUM :   |              | Geod             | letic             |          |             | COOF   |          | <b>3:</b> 51 | 187110   | .11 N          | J               | 262(               | 337.0        | )3 E         | _  |
| SAM    | IPLE CO        | NDITION                           | TYPE OF SAMPLER                                |     |         | LABOR        | RATO             | RY AN             |          | TU TEST     |        |          | Field V      | /ane     | (              | Su)             | $\diamond$         | intac        | t            | _  |
| $\geq$ | Rem            | oulded                            | SS Split spoon                                 |     |         | GS G         | rain s           | ize ana           | alysis   |             |        |          |              |          | (\$            | Sur)            | ٠                  | remo         | oulded       | d  |
|        | Undis          | sturbed                           | ST Thin walled Shelby tub<br>PS Piston sampler | be  |         |              | onsoli<br>nit we | dation<br>ight (k | N/m³)    |             |        |          | Swedis       | sh cone  | ) (            | Cu)             | $\bigtriangledown$ | intac        | :t           |    |
|        | Rock           | core                              | DC Diamond core barrel                         |     |         | CP Co        | ompre            | essive            | strength | (MPa)       |        |          | Dyn. C       | one Pe   | י)<br>n. Teء   | st :            | ▼<br>×             | remc         | ouideo<br>×  | נ  |
|        |                | STR                               | ATIGRAPHY                                      |     | E       |              | SAM              | PLES              | 5        |             |        |          |              |          | DYN            | I. CO           | NE I               | PEN          | . TE         | ST |
| ε      | ш<br>          |                                   |                                                |     | L       |              | -                | %                 |          | WATE        | R CO   | NTENT    | JRΥ          | STS      |                | (blc            | )ws/               | 0.3m         | n)           |    |
| -<br>H | NOIT           |                                   |                                                | SOL | Ë       | AND<br>BER   | 10               | RΥ                | gD       | and         | LIMIT  | S (%)    | ATC          | ĭŭ<br>⊐⊑ |                | 50              | ۱<br>              | 100          | )            |    |
| EPT    | VA1<br>EPT     | DE                                |                                                | ΥME | R L     | PE /         | Ĩ                | OVE               | orF      | w_          | w      | w.       | 30R          |          | UN             | IDRA            |                    | D SI         | HEA          | R  |
|        |                |                                   |                                                | Ś   | ĂTI     | ŹŻ           | ပ္ပ              | REC               | z        | ⊢ P         |        | L        | LA           | Z        | S              | TRE             | NGT                | Ή (k         | (Pa)         |    |
|        |                | Excellent queli                   | ty rod mudatopo                                |     | 5       |              |                  | _                 |          | 20          | 40 6   | 0 80     |              |          | $ \rightarrow$ | 50              | ,<br>              | 100          | )<br>        |    |
| -      | 40. <u>9</u> 3 |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
|        | 36.45          | Good quality gi<br>Sedimentary bi | rey mudstone.<br>reccia texture. Calcite       |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| - 37   |                | veins.                            |                                                |     |         | DC-34        |                  | 100               | 86       |             |        |          | -            |          |                |                 | +                  | -            |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| -<br>, |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| - 30   | 39.01          |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
|        | 38.47          | Excellent qualit                  | ty grey calcareous                             |     |         | DC-35        |                  | 100               | 89       |             |        |          |              |          |                |                 |                    |              |              |    |
| - 39   |                | calcareous san                    | ndstone.                                       |     |         |              |                  |                   |          |             |        |          | -            |          |                |                 | +                  | +            |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| -      |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| - 40   |                |                                   |                                                |     |         | DC-36        |                  | 100               | 98       |             |        |          | -            |          |                |                 | +                  | -            |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| 41     |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          | _            |          |                |                 |                    |              |              |    |
| Ē      |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| -      |                |                                   |                                                |     |         | DC-37        |                  | 100               | 94       |             |        |          |              |          |                |                 |                    |              |              |    |
| 42     |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          | -            |          |                |                 | +                  | _            |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| - 43   |                |                                   |                                                |     |         | DC-38        |                  | 100               | 100      |             |        |          | -            |          |                |                 | -                  |              |              |    |
| -      |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| 44     |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    | $\downarrow$ |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| -      |                |                                   |                                                |     |         | DC-39        |                  | 100               | 83       |             |        |          |              |          |                |                 |                    |              |              |    |
| - 45   |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          | -            |          |                |                 | -                  |              |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
|        |                |                                   |                                                |     |         | DC-40        |                  | 100               | 100      |             |        |          |              |          |                |                 |                    |              |              |    |
| 46     |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          | 1            |          |                |                 |                    | $\uparrow$   | $\top$       |    |
|        | 30.77<br>46 61 | Excellent qualit                  | ty grev mudstone                               |     |         |              | ┝╢┫              |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| 47     | -0.01          | Sedimentary b                     | reccia texture. Calcite                        |     |         |              |                  |                   |          |             |        |          | _            |          | -              | $ \rightarrow $ | +                  | $\downarrow$ | $\downarrow$ | _  |
|        |                | veins.                            |                                                |     |         | DC-41        |                  | 100               | 100      |             |        |          |              |          |                |                 |                    |              |              |    |
|        |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |
| Ł      |                |                                   |                                                |     |         |              |                  |                   |          |             |        |          |              |          |                |                 |                    |              |              |    |

|           |                |                                  |                                              | PR  | OJECT       | : Rabas       | ska Pr            | roject            | Phase 2   | ), Levis, C    | Quebeo | 0       |                | BORE    | IOLE_       | : <b>BH</b>   | -117        | B-05             | ;       |
|-----------|----------------|----------------------------------|----------------------------------------------|-----|-------------|---------------|-------------------|-------------------|-----------|----------------|--------|---------|----------------|---------|-------------|---------------|-------------|------------------|---------|
|           |                | Т                                | matach                                       | SI  | ΓE :        | West          | Optio             | n Site            |           |                |        |         | I              | PAGE    | : _5        | <u>;</u>      | OF _        | 5                | _       |
|           | ▼              |                                  | rratech                                      | FIL | E NO :      | <u>T-105</u>  | 0-B (             | (60333            | 3-KELL)   |                |        |         | (              | CASIN   | G: <u>1</u> | ١W            |             |                  | _       |
|           | •              |                                  |                                              | вс  | RING I      | DATE :        |                   | 2005-             | 03-04     | то             |        | 2005-03 | -14            | CORE    | BARR        | EL :          | NQ3         |                  |         |
|           |                | BORIN                            | G LOG                                        | DA  | TUM :       |               | Geod              | letic             |           |                | COOF   | RDINATE | <b>S</b> : 518 | 37110.1 | 1 N         | 20            | 62037       | .03 E            |         |
| SAN       | IPLE C         | ONDITION                         | TYPE OF SAMPLER                              |     |             | LABOR         | RATO              | RY AI             | ND IN SIT | TU TEST        |        |         | Field Va       | ne      | (Sı         | (r            | inta        | act              |         |
|           | ] Ren<br>∅ Und | oulded<br>sturbed                | SS Split spoon<br>ST Thin walled Shelby tub  | e   |             | GS GI<br>C Co | rain si<br>onsoli | ize an:<br>dation | alysis    |                |        |         | Swedish        | cone    | (Su         | ur) ◆         | ren         | noulde           | эd      |
|           | Los            |                                  | PS Piston sampler                            |     |             | D Ur          | nit we            | ight (k           | N/m³)     |                |        |         | Owedian        | COLLE   | (CL<br>(CL  | ע (ג<br>ע (זג | ' ren       | noulde           | ed      |
|           | Roc            | core                             | DC Diamond core barrel                       |     |             | CP Co         | ompre             | essive            | strength  | (MPa)          |        |         | Dyn. Co        | ne Pen  | I. Test     | × -           |             | <u> ×</u>        | :       |
|           | <b>E</b>       | 511                              |                                              |     | E           |               |                   |                   | ,         | WATE           | R CO   | NTENT   | ≻              | ο<br>Γ  | )YN. (      |               | E PE        | N. TE            | EST     |
| ε         | ۲<br>۲         |                                  |                                              | Ļ   | VEL         | ₽₽            | NO                | ۲ %               | Q         | and            | LIMIT  | S (%)   | TOR            | EST     | ſ           | 50            | 5/0.3<br>1( | 00<br>0          |         |
| PTH       | ATIC<br>PTH    |                                  |                                              | MBO | s LĘ        | e an<br>Mbe   | Ĩ                 | VER               | r RQ      |                |        |         | DRA<br>and     | 1<br>1  |             |               |             |                  | -       |
| B         |                | DE                               | SCRIPTION                                    | sγι | <b>LTEF</b> | TΥΡ<br>NUI    | NOC               | ECO               | 0<br>N    | W <sub>P</sub> | W      | wL      | ABC            | IS N    | ST          | REN           | GTH (       | (kPa)            | (R<br>) |
|           | ш              |                                  |                                              |     | Ŵ           |               |                   | R                 |           | 20             | 40 6   | 60 80   |                | -       | I           | 50            | 10          | 00               |         |
| Ē         |                | Excellent quali<br>Sedimentary b | ty grey mudstone.<br>reccia texture. Calcite |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| Ē         |                | veins.                           |                                              |     |             | DC-42         |                   | 100               | 100       |                |        |         |                |         |             |               |             |                  |         |
| - 49      |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              | _       |             | _             | +           |                  |         |
| Ē         |                |                                  |                                              |     |             |               | -                 | -                 |           |                |        |         |                |         |             |               |             |                  |         |
| 50        | 27.26          |                                  |                                              |     |             | DC-43         |                   | 100               | 100       |                |        |         |                |         |             |               |             |                  |         |
| Ē         | 50.12          | END OF BORE                      | EHOLE                                        |     |             | -             |                   | -                 |           |                |        |         |                |         |             |               |             |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 51      |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              | _       |             |               | +           |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| 52        |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              | _       |             |               | <u> </u>    |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 53      |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              |         |             | +             | +           |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 54      |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                | _       |             | _             |             |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| Ē         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 55<br>- |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | 1              | -       |             | +             | +           |                  | —       |
| ŧ         |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 56      |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              | ╞       |             | +             | +           | $\mid \mid \mid$ |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 57      |                |                                  |                                              |     |             |               |                   |                   |           |                | 1      |         |                |         | +           | +             | +           |                  |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| 58        |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         | _              |         |             | +             | –           | $\vdash$         |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
| - 59<br>- |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             | +             | +           |                  |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |
|           |                |                                  |                                              |     |             |               |                   |                   |           |                |        |         |                |         |             |               |             |                  |         |

|      |        |         |                                      |                                          | PR  | OJECT  | : Rabas      | ska Pr           | oject     | (Phase 2)    | , Levi | is, Qu         | lebec |                |               | BORE     | HOLI   | E: [          | BH-           | <u>301</u>   | -05           | _   |
|------|--------|---------|--------------------------------------|------------------------------------------|-----|--------|--------------|------------------|-----------|--------------|--------|----------------|-------|----------------|---------------|----------|--------|---------------|---------------|--------------|---------------|-----|
|      |        |         | To                                   | matach                                   | si  | ſE :   | West         | Optior           | n Site    |              |        |                |       |                |               | PAGE     | : _    | 1             | OF            | F            | 1             |     |
|      | ▼      | ]]      | Ie                                   | rratech                                  | FIL | E NO : | <u>T-105</u> | )-В (            | 6033      | 33-KELL)     |        |                |       |                |               | CASI     | NG :   | NW            | 1             |              |               |     |
|      | •      |         |                                      |                                          | вс  | RING E | DATE :       |                  | 2005      | -04-06       |        | то             |       | 2005-04        | -06           | CORE     | E BAF  | REL           | .: N          | IQ3          |               |     |
|      |        | BO      | RIN                                  | G LOG                                    | DA  | TUM :  |              | Geod             | etic      |              |        | с              | OOR   |                | <b>S</b> : _5 | 5187040  | .50 N  | I             | 261           | 822.:        | 36 E          |     |
| SAN  | IPLE C | ONDIT   | ION                                  | TYPE OF SAMPLER                          |     |        | LABOR        | ATO              | RY A      | ND IN SIT    | UTE    | ST             |       |                | Field         | Vane     | (;     | Su)           | $\diamond$    | intac        | ct            |     |
|      | Re     | moulded | 1                                    | SS Split spoon                           |     |        | GS G         | ain si           | ze an     | alysis       |        |                |       |                |               |          | (\$    | Sur)          | ٠             | remo         | oulde         | эd  |
|      | Los    | sturbe  | a                                    | PS Piston sampler                        | e   |        | D Ur         | nit wei          | ight (l   | ı<br>(N/m³)  |        |                |       |                | Swed          | ish cone | )) (   | Cu)<br>Cur)   | $\nabla$      | intac<br>rem | st<br>oulde   | be  |
|      | Ro     | ck core |                                      | DC Diamond core barrel                   |     |        | CP Co        | ompre            | ssive     | strength     | (MPa)  | )              |       |                | Dyn. (        | Cone Pe  | en. Te | st            | ×             |              | ×             | (   |
|      |        |         | STRA                                 | TIGRAPHY                                 |     | ε      | \$           | SAM              | PLE       | 6            |        |                |       |                |               |          | DYN    | I. CC         | )NE           | PEN          | I. TE         | EST |
| ε    |        |         |                                      |                                          |     | ĒĽ.    | <u>م</u>     | z                | %         |              | WA     | NTER<br>nd I   | IMIT  | NTENT<br>S (%) | ORY           | STS      |        | (blo          | ows/          | 0.3n         | n)<br>^       |     |
| Ξ    |        |         |                                      |                                          | BOL | LEV    | BER          | 0E               | ΈRΥ       | RQD          | a      |                |       | 0(/0)          | RAT           | U TE     |        |               |               |              |               |     |
| E E  |        | i       | DE                                   | SCRIPTION                                | sүм | TER    | YPE          |                  | co<br>Co  | l or         | v      | V <sub>P</sub> | w     | wL             | BOI           | SITI     | UN     |               |               | D S          | HEA<br>kPaì   | ١R  |
|      |        | -       |                                      |                                          | •   | MAT    | ⊢ <b>~</b>   | ŏ                | R         | 2            | <br>20 | 0 40           |       | <br>0 80       | 2             | Z        |        | 50            | 0             | 10           | (1 a)<br>0    | '   |
| -    | 76.79  |         | ROUND SURE<br>psoil.                 | FACE                                     |     | -      |              |                  |           |              |        |                |       |                |               |          |        | Ť             | -             | +            | -             |     |
| Ē    | 0.15   | Stit    | ff to very stiff<br>ne silt to silty | brown and grey clay,<br>, trace of sand. |     | 04-15  | SS-1         | $\bigtriangleup$ | 79        | 5            |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē,   | 75.88  | 3       |                                      | ,<br>                                    |     | 2005-  | SS-2         | $\ge$            | 100       | 50/8cm       |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē    | 0.91   | Be      | drock: very p<br>idstone, layer      | oor quality dark grey                    |     | u ou   |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē    |        | 50°     | ° from boreho                        | ble axis.                                |     | 76.72  | SS-3<br>DC-4 | Î                | 59<br>100 | 80/13cm<br>0 |        |                |       |                |               |          |        |               |               |              |               |     |
| - 2  |        |         |                                      |                                          |     | elev.  | DC-5         |                  | 88        | 0            |        |                |       |                | _             |          |        | $\rightarrow$ | -             | -+           | +             |     |
| -    |        |         |                                      |                                          |     | vel at |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē,   |        |         |                                      |                                          |     | ter le | DC-6         |                  | 100       | 0            |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē    |        |         |                                      |                                          |     | Wa     |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| -    |        |         |                                      |                                          |     |        | DC-7         |                  | 96        | 21           |        |                |       |                |               |          |        |               |               |              |               |     |
| - 4  |        |         |                                      |                                          |     |        | DC-8         |                  | 100       | o            |        |                |       |                |               |          |        | $\rightarrow$ | -             | +            | +             |     |
|      | 72.35  | ;<br>EN |                                      |                                          |     |        |              |                  |           | -            |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē,   |        |         | D OF DOILE                           |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē    |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| -    |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| - 6  |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                | _             |          |        | $\rightarrow$ | $\rightarrow$ | +            | +             |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē,   |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē (  |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| Ē    |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| - 8  |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        | $\rightarrow$ | +             | +            | $\rightarrow$ |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| 9    |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        | $\uparrow$    | $\neg$        | $\neg$       | $\neg$        | _   |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| 10   |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                | -             |          |        | $\dashv$      | -+            | $\dashv$     | $\dashv$      |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| - 11 |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                | 1             |          |        | +             | +             | $\uparrow$   | +             |     |
|      |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |
| 2    |        |         |                                      |                                          |     |        |              |                  |           |              |        |                |       |                |               |          |        |               |               |              |               |     |

|      |                      |                                    |                                                           | PR         | OJECT  | : Raba       | ska Pr             | oject   | Phase 2  | ), Levis, C    | Quebeo | C             | BOF                | EHOLE                     | : Bł          | 1-302          | 2-05          |
|------|----------------------|------------------------------------|-----------------------------------------------------------|------------|--------|--------------|--------------------|---------|----------|----------------|--------|---------------|--------------------|---------------------------|---------------|----------------|---------------|
|      |                      | То                                 | matach                                                    | SIT        | E :    | West         | Optior             | n Site  |          |                |        |               | PAG                | iE:                       | <u>1</u>      | OF _           | _1            |
|      | ▼                    |                                    | rratech                                                   | FIL        | E NO : | <u>T-105</u> | 0-B (              | 60333   | 33-KELL) | )              |        |               | CAS                | ING :                     | NW            |                |               |
|      | •                    |                                    |                                                           | во         | RING   | DATE :       |                    | 2005-   | 04-06    | то             |        | 2005-04-      | 06 COF             | RE BARF                   | REL :         | NQ3            |               |
|      | ]                    | BORIN                              | G LOG                                                     | DA         | TUM :  |              | Geod               | etic    |          |                | COOF   |               | 518728             | 5.22 N                    | 20            | 61760.         | .44 E         |
| SAN  | IPLE CC              | NDITION                            | TYPE OF SAMPLER                                           |            |        | LABO         | RATO               | RY AI   | ND IN SI | TU TEST        |        |               | Field Vane         | (Si                       | u) 🔿          | , inta         | .ct           |
|      | Rem                  | oulded                             | SS Split spoon                                            | 0          |        | GS G         | rain si            | ze an   | alysis   |                |        |               |                    | (Si                       | ur) 🔶         | • rem          | oulded        |
|      | Lost                 | sluibeu                            | PS Piston sampler                                         | C          |        | D U          | nit we             | ight (k | N/m³)    |                |        |               | Swedish col        | 1e (Ci<br>(C <sup>i</sup> | u) ▽<br>ur) ▼ | inta<br>rem    | ct<br>ioulded |
|      | _<br>Rock            | core                               | DC Diamond core barrel                                    |            |        | CP C         | ompre              | essive  | strength | (MPa)          |        |               | Dyn. Cone F        | en. Test                  | t ×-          |                | ×             |
|      | εı                   | STR/                               | ATIGRAPHY                                                 |            | Ε      |              | SAM                | PLES    | 6        |                |        |               |                    | DYN.                      | CON           | E PEI          | N. TEST       |
| ε    | - E                  |                                    |                                                           |            | ĒĽ.    | <u>م</u>     | z                  | % /     | ~        | and            |        | S (%)         | OR                 |                           | (blow<br>50   | s/0.3i         | m)<br>10      |
| Ē    | TH -                 |                                    |                                                           | BOL        | LEV    | AN           | DE                 | ER)     | RQI      | unu            |        | <b>C</b> (70) | RAT<br>and<br>U TE |                           |               | Ĩ              |               |
| DEP  | DEP                  | DE                                 | SCRIPTION                                                 | SYM        | rer    | YPE          |                    | cov     | N or     | w <sub>P</sub> | w      | wL            | ABO<br>SIT         | UNE                       | )RAIN         | IED S<br>GTH ( | HEAR          |
|      | ЩI                   |                                    |                                                           |            | -MA    | F -          | Ō                  | RE      | -        | <br>20         |        |               | N L                |                           | 50            | 10             | )0            |
| -    | 77.19<br>0.00        | GROUND SUR                         | RFACE                                                     | <u>F</u>   |        |              | $\bigtriangledown$ |         |          |                | +      |               |                    |                           | +             | +              |               |
| Ē    | 0.10                 | Loose brown sa                     | and, some silt and gravel.                                | a          |        | SS-1         | $\square$          | 83      | 8        |                |        |               |                    |                           |               |                |               |
| Ē 1  |                      |                                    |                                                           | .0         |        | <u></u>      | $\bigtriangledown$ | 67      | 0        |                |        |               | -                  |                           |               |                |               |
| Ē    | 75.67                |                                    |                                                           | <br>       |        | <u> 33-2</u> |                    | 07      | 9        |                |        |               |                    |                           |               |                |               |
| Ē    | 1.52                 | Very Loose gre                     | y sand, some silt and                                     | 0.0        | 04-15  | <b>CC</b> 3  | $\sim$             | 17      | 3        |                |        |               |                    |                           |               |                |               |
| - 2  |                      | gravei.                            |                                                           | e.         | 2005-  | 33-3         |                    | 17      | 3        |                | -      |               | -                  |                           |               | +              |               |
| Ē    |                      |                                    |                                                           | 0.<br>0    | u ou   | SS-4         | $\ge$              | 42      | 3        |                |        |               |                    |                           |               |                |               |
| Ė,   | 74.14                |                                    |                                                           | •          | 75.91  | 00 1         |                    | .~      | 0        |                |        |               |                    |                           |               |                |               |
| Ē    | 3.05                 | Very dense red<br>silty, some gray | ldish sand, some silt to<br>vel. occasional cobbles.      | Þ          | elev.  | SS-5         | $\square$          | 83      | 67       |                |        |               |                    |                           |               |                |               |
| Ē    |                      | ,, g                               |                                                           | 0 Q        | vel at |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| - 4  |                      |                                    |                                                           | .0<br>5    | ter le | SS-6         | $\mathbb{N}$       | 91      | 72       |                | -      |               |                    |                           | —             | +              |               |
| Ē    | 72.62                |                                    |                                                           | 0 8<br>0 0 | Wa     |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| Ē,   | 4.57                 | Bedrock: Good mudstone, laye       | to excellent quality grey<br>ers of light grey calcareous |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| Ē    |                      | mudstone. Bed<br>borehole axis.    | dings at 30° from                                         |            |        | DC-7         |                    | 90      | 75       |                |        |               |                    |                           |               |                |               |
| Ē    |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| - 6  |                      |                                    |                                                           |            |        | DC-8         |                    | 100     | 100      |                |        |               | _                  |                           |               | -              |               |
| Ē    |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| Ę,   |                      |                                    |                                                           |            |        | DC-9         |                    | 100     | 100      |                |        |               |                    |                           |               |                |               |
| Ē    | 69.93<br><b>7.26</b> |                                    | HOLE                                                      |            | 8      | -            |                    |         |          |                |        |               |                    |                           |               |                |               |
| Ē    |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| - 8  |                      |                                    |                                                           |            |        |              |                    |         |          |                | -      |               | -                  |                           | —             | +              |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| Ē    |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| - 10 |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               | -                  | $\vdash$                  | +             | +              |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
| - 11 |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |
|      |                      |                                    |                                                           |            |        |              |                    |         |          |                |        |               |                    |                           |               |                |               |

|           |          | -                    |                   |                            | PR                     | OJECT       | : Rabas                    | ska Pr             | oject             | (Phase 2           | ), Levi | s, Qu    | lebec | :      |      |         | BORE    | HOLI       | E: [          | 3 <i>H-</i> | 303           | -05          | _ |
|-----------|----------|----------------------|-------------------|----------------------------|------------------------|-------------|----------------------------|--------------------|-------------------|--------------------|---------|----------|-------|--------|------|---------|---------|------------|---------------|-------------|---------------|--------------|---|
| 1         |          |                      | Т-                | matach                     | SIT                    | E :         | West                       | Optior             | n Site            |                    |         |          |       |        |      |         | PAGE    | : _        | 1             | 0           | F_            | 1            | _ |
| 1         |          |                      | jj ie             | rratech                    | FIL                    | E NO :      | <u>T-10</u> 5              | 0-B_(              | (6033             | 33-KELL)           |         |          |       |        |      |         | CASIN   | IG :       | NW            |             |               |              |   |
| 1         |          | -                    |                   |                            | во                     | RING        | DATE :                     |                    | 2005              | -04-11             |         | то       |       | 2005-0 | 04-1 | 1       | CORF    | BAP        |               | . N         | IQ3           |              |   |
| 1         |          | 1                    | BORIN             | G LOG                      |                        | тим ·       | -                          | Geod               | letic             |                    |         | ~        |       |        |      | . 51    | 87430   | 64 N       |               | · <u>·</u>  | 726           | 57 F         | - |
| 644       |          |                      |                   |                            |                        |             |                            |                    |                   | יים או סיי         |         | ст<br>ст | JUR   |        | -3:  | Eicle M | 01-100. |            | <u> </u>      |             |               |              | - |
|           | мР<br>(1 | Rem                  | oulded            | SS Split spoon             |                        |             | GS G                       | rain si            | ze an             | alysis             |         | 51       |       |        |      | Field V | ane     | ()<br>()   | Su)<br>Sur)   | ♦           | intao<br>rem  | ct<br>oulded |   |
|           |          | Undi                 | sturbed           | ST Thin walled Shelby tub  | е                      |             | СС                         | onsoli             | datior            | 1                  |         |          |       |        |      | Swedis  | sh cone | . (0       | Cu)           | $\nabla$    | inta          | ct           |   |
|           |          | Lost                 | core              | PS Piston sampler          |                        |             |                            | nit we<br>ompre    | ight (ł<br>essive | «N/m³)<br>strenath | (MPa)   | )        |       |        |      | Dyn C   | ono Po  | ))<br>n Te | Cur)          | ▼           | rem           | oulded       |   |
|           | Γ        | TUCK                 | STR               | ATIGRAPHY                  |                        |             |                            | SAM                | PLE               | S                  | (       | ,        |       |        |      | Dyn. C  |         | II. IC     | 51 )          | <u>×</u>    |               | x            | _ |
|           |          | E                    |                   |                            |                        | Ē           |                            |                    |                   |                    | WA      | TER      | co    | NTEN   | т    | ž       | LS      | DYN        | . CO<br>(blc  | )NE<br>ows/ | PEN<br>/0.3r  | l. TES<br>n) | Л |
| 3  <br>   |          | - m                  |                   |                            | Ч                      | <u>V</u> EL | Q K                        | NO                 | ۲ %               | Q                  | ar      | nd L     | іміт  | S (%)  |      | jo ,    | LES'    |            | 50            | )           | 10            | 0            |   |
| H         | i        | PTH                  |                   |                            | ИВС                    | 2 LE        | E A<br>MBE                 | E                  | VEF               | r RG               |         |          |       |        |      | DRA     |         |            |               |             |               |              | _ |
| B         | i        |                      | DE                | SCRIPTION                  | SΥΙ                    | Ë           | ΝU                         | NON                |                   | °<br>Z             | w       | P        | W     | w,     | -    | ABC     | N SI    | S          | TRE           |             | :D 5<br>TH (i | hean<br>kPa) |   |
|           |          | <b>Ш</b>  <br>71 50  |                   | REACE                      |                        | Ň           | -                          |                    | 8                 |                    | 20      | ) 4(     | 0 6   | 0 80   |      |         | =       |            | 50            | )           | 10            | 0            |   |
| E         | ľ        | 0.00                 | Probable fill: Br | rown silt, some sand or    | $\bigotimes$           |             | CC 1                       | $\bigtriangledown$ | 07                | 24                 |         |          |       |        |      |         |         |            |               | $\neg$      |               |              | _ |
| Ē         |          |                      | sandy, some gi    | lavel.                     | $\bigotimes$           |             | 55-1                       | $\square$          | 07                | 24                 |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē 1       | Ŀ        | 70.59<br><b>0.91</b> | Compact to loo    | se brown sand some silt    | $\left  \right\rangle$ | ¥.          | ee 0                       | $\bowtie$          | E0                |                    |         |          |       |        |      |         |         |            | $\square$     |             |               |              |   |
| Ē         |          |                      | to silty, gravel. | So srown sand, some sin    | 4<br>6                 | 4-15        | 33-2                       |                    | 50                | 29                 |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            | 0                      | 005-0       |                            | $\boxtimes$        |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| - 2       | 2        |                      |                   |                            | 0.0                    | on 2        | 55-3                       |                    | 46                | 8                  |         |          |       |        |      |         |         |            | $\rightarrow$ | _           | -             |              |   |
| Ē         | 6        | 69.06                | De des els Marson | n an ta fair analita anan  |                        | .54m        | SS-4                       | $\ge$              | 67                | 50/8cm             |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          | 2.77                 | mudstone, light   | t grey calcareous          |                        | ev. 70      |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| - 3       | 3        |                      | 5.0m depth). C    | alcite veins and veinlets. |                        | at ele      | <b>D D D D D D D D D D</b> |                    |                   |                    |         |          |       |        |      |         |         |            | -             | +           |               |              | - |
| Ē         |          |                      |                   |                            |                        | level       | DC-5                       |                    | 100               | 52                 |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            |                        | Vater       |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            |                        |             | DC-6                       |                    | 100               | 0                  |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            |                        |             | 200                        |                    |                   | Ŭ                  |         |          |       |        |      |         |         |            |               |             |               |              |   |
| - 5       | 5        |                      |                   |                            |                        |             | DC-7                       |                    | 100               | 29                 |         | _        |       |        |      |         |         |            | —             | _           | _             |              |   |
| Ē         | 6        | 66.06                |                   |                            | XX                     | $\otimes$   | -                          |                    | -                 |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          | 0.40                 | END OF BORE       | HOLE                       |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| 6         | 5        |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               | +           |               |              | - |
| -         |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ę,        | ,        |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| Ē         |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| - 8       | 3        |                      |                   |                            |                        |             |                            |                    |                   |                    |         | _        |       |        |      |         |         |            | $\rightarrow$ | +           | $\dashv$      |              |   |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| 9         | "        |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            | $\top$        | $\uparrow$  | 1             |              | - |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| -<br>- 10 |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            | $\square$     |             |               |              |   |
| Ē         |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| - 11      |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         | _        |       |        |      |         |         |            | +             | +           | $\dashv$      |              | _ |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
|           |          |                      |                   |                            |                        |             |                            |                    |                   |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |
| L         | 1        |                      |                   |                            |                        |             |                            |                    | I                 |                    |         |          |       |        |      |         |         |            |               |             |               |              |   |

|            |                               |                                 |                                                    | PR        | OJECT   | : Rabas      | ska Pr           | oject             | (Phase 2) | ), Levis | , Queb | ес      |      |            | BORE    | HOLE   | ≡: <b>B</b> | 3H-3 | 04-0    | 15        |
|------------|-------------------------------|---------------------------------|----------------------------------------------------|-----------|---------|--------------|------------------|-------------------|-----------|----------|--------|---------|------|------------|---------|--------|-------------|------|---------|-----------|
|            |                               | Т                               | matach                                             | SIT       | E:      | West         | Optio            | n Site            |           |          |        |         |      |            | PAGE    | : _    | 1           | OF   | 1       | 1         |
| ,          | ▼                             |                                 | rratech                                            | FIL       | .E NO : | <u>T-105</u> | 0-B (            | (6033             | 33-KELL)  |          |        |         |      |            | CASI    | NG :   | NW          |      |         |           |
|            | •                             |                                 |                                                    | во        | RING    | DATE :       |                  | 2005              | -04-07    | T        | ю_     | 2005-   | 04-0 | )7         | CORE    | BAR    | REL         | : NC | 23      |           |
|            |                               | BORIN                           | G LOG                                              | DA        | TUM :   |              | Geod             | letic             |           |          | cod    |         | TES  | : 51       | 187608  | .64 N  |             | 2616 | 85.01   | Е         |
| SAN        | IPLE CO                       | ONDITION                        | TYPE OF SAMPLER                                    |           |         | LABOF        | RATO             | RY A              | ND IN SIT | TU TES   | т      |         |      | Field V    | /ane    | (5     | Su)         |      | ntact   |           |
| $\geq$     | Rem                           | oulded                          | SS Split spoon                                     |           |         | GS G         | rain si          | ze an             | alysis    |          |        |         |      |            | ano     | (5     | Sur)        | ♦ r  | emou    | Ided      |
|            | ∬ Undi<br>∎ Lost              | sturbed                         | ST Thin walled Shelby tub<br>PS Piston sampler     | е         |         |              | onsoli<br>nit we | datior<br>iaht (k | N/m³)     |          |        |         |      | Swedis     | sh cone | e (0   | Cur)        | ⊽ ii | ntact   | Idad      |
|            | Rock                          | core                            | DC Diamond core barrel                             |           |         | CP C         | ompre            | essive            | strength  | (MPa)    |        |         |      | Dyn. C     | one Pe  | n. Tes | st ×        |      |         | -×        |
|            |                               | STRA                            | ATIGRAPHY                                          |           | Ε       | ;            | SAM              | PLES              | 3         |          |        |         |      |            |         | DYN    | . co        | NE P | EN.     | TEST      |
| ε          | μ<br>- Ε                      |                                 |                                                    |           | Ë       |              | z                | %                 |           | WAT      |        |         | IT   | JRY        | STS     |        | (blo        | ws/0 | .3m)    | 1         |
| Ξ          | е -                           |                                 |                                                    | ЗÕГ       | μ       | ANC          | 10<br>E          | ERY               | R         | an       |        | 115 (%) |      | RATC<br>22 |         |        | 50          |      | 100     |           |
| E D        | EVA.                          | DE                              | SCRIPTION                                          | ΥME       | ERI     | PE<br>UMI    | DN               | NOX               | or F      | w,       | - W    | , w     |      | BOF        | SITL    | UN     | DRA         |      | ) SH    | EAR       |
|            |                               |                                 |                                                    | S         | VAT     | μz           | U S              | REC               | z         | ⊢<br>20  |        |         | -    | LA         | Z       | 3      | I REI       | NGII | 1 (KP   | 'a)       |
| -          | 66.06<br><b>0.00</b>          | GROUND SUR                      | RFACE                                              | ~~        |         |              |                  |                   |           |          | 40     |         |      |            |         |        |             |      | +       | +         |
| Ē          | \ <u>65.86</u><br><b>0.20</b> | Compact brown                   | n silt, some sand and                              |           |         | SS-1         | $\boxtimes$      | 83                | 18        |          |        |         |      |            |         |        |             |      |         |           |
| -          |                               | gravei.                         |                                                    | ⊜ •⊽      | ₩.      |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
|            | 64.84                         |                                 |                                                    | وأيا ا    | -04-15  | SS-2         | $\bowtie$        | 67                | 13        |          |        |         |      |            |         |        |             |      | _       |           |
| Ē          | 1.22                          | gravel.                         | n sand, some silt and                              | ي. م      | 2005    |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| - 2        |                               |                                 |                                                    |           | u ou    | SS-3         |                  | 50                | 10        |          |        |         |      |            |         |        | $\square$   |      |         |           |
| Ē          | 63.62                         |                                 |                                                    |           | 65.36   |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          | <b>2.44</b><br><u>63.32</u>   | Very dense bro<br>gravel.       | own sand, some silt and                            | 8<br>12/1 | elev.   | SS-4         | $\bowtie$        | 100               | 48        |          |        |         |      |            |         |        |             |      |         |           |
| - 3        | 2.74                          | Bedrock: Very mudstone, laye    | poor to poor quality grey<br>ers of calcareous     | XX        | vel at  | SS-5         |                  | 0                 | 50/8cm    |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               | mudstone and 60-80° from bo     | dark shale. Beddings at rehole axis.               | XX        | ater le |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    | X         | Ř       | DC-6         |                  | 100               | 44        |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          | 61.41<br><b>4.65</b>          | Fair quality gree               | v mudstone lavers of                               |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| - 5        |                               | calcareous mu<br>Beddings at 60 | dstone and dark shale.<br>-80° from borehole axis. |           |         |              |                  |                   |           |          |        | + +     |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    | XX        |         | DC-7         |                  | 100               | 65        |          |        |         |      |            |         |        |             |      |         |           |
| ŧ,         |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| ǰ          | 59.84<br><b>6.22</b>          | END OF BORE                     | HOLE                                               | ŔŔ        |         |              |                  | -                 |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē 7        |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        | +       |      |            |         |        | +           | +    | +       | +         |
| É          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē,         |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| 8          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| <b>–</b> 9 |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        | +       |      |            |         |        |             | +    | +       | +         |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| ŧ          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| - 10       |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        | +       |      |            |         |        | +           | +    | +       | + -       |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| É<br>11    |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        | $\perp$     |      | $\perp$ | $\square$ |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| Ē          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |
| t          |                               |                                 |                                                    |           |         |              |                  |                   |           |          |        |         |      |            |         |        |             |      |         |           |

|            |         |                      |                                    |                            | PR      | OJECT  | : Rabas      | ska Pr             | oject            | (Phase 2)          | ), Levis, | Queb  | ес     |                    |         | BORE    | HOL         | E: /          | BH-              | 305            | -05         | _    |
|------------|---------|----------------------|------------------------------------|----------------------------|---------|--------|--------------|--------------------|------------------|--------------------|-----------|-------|--------|--------------------|---------|---------|-------------|---------------|------------------|----------------|-------------|------|
|            |         |                      | Т                                  | nnata a <b>l</b> a         | SIT     | Έ:     | West         | Optior             | n Site           |                    |           |       |        |                    |         | PAGE    | :: _        | 1             | _ 0              | F _            | 1           |      |
|            |         |                      | jj ie                              | rratecn                    | FIL     | E NO : | T-105        | 0-B (              | 6033             | 33-KELL)           |           |       |        |                    |         | CASI    | NG :        | NW            | ,                |                |             |      |
|            |         | •                    |                                    |                            | во      | RING [ | DATE :       |                    | 2005             | -04-11             | т         | o     | 2005   | 5-04- <sup>-</sup> | 11      | CORF    | BAF         | REI           | - N              | 103            |             | _    |
|            |         | 1                    | BORINO                             | G LOG                      |         | тим∙   |              | Geod               | etic             |                    |           |       | אוחפר  | TES                | . 51    | 87745   | 35 N        | J             | . <u></u><br>261 | 584            | 61 F        | -    |
| S 4 1      |         | <u> </u>             |                                    |                            |         |        |              |                    |                  |                    |           |       |        | ATE 3              |         | 01140   |             | <u> </u>      |                  |                |             | —    |
|            | 1       | Remo                 | oulded                             | SS Split spoon             |         |        | GS G         | rain si            | ze an            | alysis             | IU IES    | 1     |        |                    | Field V | ane     | (;<br>(;    | Su)<br>Sur)   | $\diamond$       | rem            | ct<br>oulde | ed.  |
|            | 2       | Undis                | sturbed                            | ST Thin walled Shelby tube | е       |        | C C          | onsoli             | datior           | 1                  |           |       |        |                    | Swedis  | sh cone | ÷ ((        | Cu)           | $\nabla$         | intac          | ct          | -    |
|            |         | Lost                 | core                               | PS Piston sampler          |         |        | D UI<br>CP C | nit we             | ight (ł<br>ssive | (N/m³)<br>strenath | (MPa)     |       |        |                    | Dvn C   | ono Pr  | ))<br>T T C | Cur)          |                  | remo           | oulde       | ed . |
|            |         | TUCK                 | STRA                               | ATIGRAPHY                  |         |        |              | SAM                | PLE              | S                  | (ini u)   |       |        |                    | Dyn. C  |         | iii. Te     | 51            | <u>×</u>         |                | x           | :    |
|            | ε       |                      |                                    |                            |         | Е      |              |                    |                  |                    | WAT       | ER C  | ONTE   | NT                 | ≿       | S       | DYN         | i. CC<br>(ble | )NE<br>ows/      | PEN<br>/0.3r   | 1. TE<br>n) | ST   |
| <u>з</u>   | Z       | Ξ <u>Ξ</u>           |                                    |                            | 2       | VEL    | D R          | NO                 | ۲ %              | Q                  | and       | d LIM | ITS (% | )                  | Ď.      | ES]     |             | 50            | )                | 10             | o´          |      |
| PTH        | ATIC    | PTH                  |                                    |                            | MBC     | S LE   | e al<br>Mbe  | E                  | VER              | r RG               |           |       |        |                    | DRA     | 2 E T   |             |               | '                |                |             | _    |
| B          | 2       | ١Ľ                   | DE                                 | SCRIPTION                  | SYI     | Ξ      | T<br>₹<br>NU | NON NO             | S:               | No                 | w,        | , w   | V      | L                  | ABC     | N SI    | S           | TRE           | NG1              | . D S<br>ГН (I | неа<br>kPa) | )    |
|            | LL<br>6 | <b>J</b>             |                                    | FACE                       |         | Ň      |              |                    | В                |                    | 20        | 40    | 60 8   | 0                  |         | =       |             | 50            | )                | 10             | 0           |      |
| -          | 6       | <b>7.00</b><br>4 01  | Asphalt (50mm)                     | ).                         |         |        | SS-1         | $\bigtriangledown$ | 82               | 12                 |           |       |        |                    |         |         |             |               | $\neg$           | $\neg$         |             |      |
| Ē          | Ğ       | 0.05                 | Compact brown<br>to silty, gravel. | and grey sand, some silt   | <i></i> | -      | 33-1         |                    | 02               | 12                 |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē,         |         |                      |                                    | -                          | 5 G     | 04-15  |              | $\bigtriangledown$ |                  | 10                 |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          | 6       | 2.77                 | De dre els Merer                   |                            |         | 5005-( | SS-2         | $\square$          | 83               | 18                 |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          | '       | .23                  | brecciated) gree                   | enish grey mudstone,       | X       | UO UO  | SS-3         | $\geq$             | 67               | 60/15cm            |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē 2        |         |                      | fissile from 2.0                   | to 3.1m).                  | X       | 3.56m  |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  | $\dashv$       |             |      |
| Ē          |         |                      |                                    |                            | ××      | ev. 6  | DC-4         |                    | 73               | 0                  |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          |         |                      |                                    |                            |         | late   |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| - 3        | 6       | 0.94<br>3. <b>12</b> | Fair quality dark                  | k grev mudstone beds of    |         | r leve | DC-5         |                    | 83               | 0                  |           |       |        |                    |         |         |             |               |                  | +              |             |      |
| Ē          |         |                      | greenish grey n                    | nudstone (2-10mm thick).   |         | Wate   |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē,         |         |                      | Beddings at 50°                    | ° from borehole axis.      |         |        | DC-6         |                    | 96               | 50                 |           |       |        |                    |         |         |             |               |                  |                |             |      |
| F 4        |         |                      |                                    |                            | XX      |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| - 5        |         |                      |                                    |                            |         |        | DC-7         |                    | 100              | 67                 |           | _     |        |                    |         |         |             | _             |                  | $ \rightarrow$ |             |      |
| Ē          | 5       | 8.67                 |                                    |                            | XX      |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          |         |                      | END OF BORE                        | nole                       |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| F 6        |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  | +              |             |      |
| Ē          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| ŧ.         |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ḗ          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| - 8        |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  | $\rightarrow$  |             |      |
| -          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| -          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| <b>-</b> 9 |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         | $\vdash$    | $\rightarrow$ | +                | +              | +           |      |
|            |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| E 10       |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    | 1       |         |             |               | $\uparrow$       | $\uparrow$     |             |      |
| Ē          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ē 11       |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         | $\square$   | $\square$     | $\square$        | $\square$      |             |      |
|            |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
|            |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |
| Ł          |         |                      |                                    |                            |         |        |              |                    |                  |                    |           |       |        |                    |         |         |             |               |                  |                |             |      |

|        |                      |             |                                               |                                      | PR        | OJECT   | : Rabas     | ska Pr             | oject                | (Phase 2) | ), Levis, (    | Quebeo | ;       |              | BORE        | HOLE      | : <b>E</b>   | 3H-3         | 06-0          | 05         |
|--------|----------------------|-------------|-----------------------------------------------|--------------------------------------|-----------|---------|-------------|--------------------|----------------------|-----------|----------------|--------|---------|--------------|-------------|-----------|--------------|--------------|---------------|------------|
|        |                      | N           | Т                                             | nnata a <b>l</b> a                   | SIT       | Е:      | West        | Optior             | n Site               |           |                |        |         |              | PAGE        | : _       | 1            | OF           |               | 1          |
|        |                      | 2           |                                               | rratecn                              | FIL       | E NO :  | T-105       | 0-B (              | 6033                 | 33-KELL)  | I              |        |         |              | CASI        | NG :      | NW           |              |               |            |
|        | •                    |             |                                               |                                      | во        |         | DATE :      |                    | 2005                 | -04-08    | тс             | )      | 2005-04 | -08          | CORE        | DAD       | DEI          | • NC         | 23            |            |
|        |                      | B           | ORINO                                         | G LOG                                |           | тим.    |             | Geod               | etic                 | 0100      |                |        |         | <b>e</b> . 5 | 187802      | 27 N      |              | 2615         | 30.86         | 3 F        |
|        |                      |             |                                               |                                      |           | 10M .   |             |                    |                      |           |                | COOF   | RDINATE | <b>5</b> :   | 107002      | 27 11     |              | 2013         | 50.80         | <u> </u>   |
|        |                      | emoul       | Ided                                          | SS Split spoon                       |           |         | GS G        | rain si            | <b>RY A</b><br>ze an | alysis    | IUTEST         |        |         | Field        | /ane        | (S        | Sur)         | ♦ 1          | ntact         | ılded      |
|        | Ur                   | ndistu      | irbed                                         | ST Thin walled Shelby tube           | е         |         | C Co        | onsoli             | datior               | 1         |                |        |         | Swedi        | sh cone     | (C        | Cu)          | v i          | ntact         |            |
|        |                      | st<br>ok or |                                               | PS Piston sampler                    |           |         |             | nit we             | ight (l              | (N/m³)    | (MPa)          |        |         | Dum          |             | (C        | Cur)         | ▼ r          | emou          | ulded      |
|        |                      |             | STRA                                          |                                      |           |         |             | SAM                | PLE                  | Sucingui  |                |        |         | Dyn. C       | Jone Pe     | n. res    | <u>, x</u>   | <            |               | -×         |
|        | ε                    |             |                                               |                                      |           | Е       |             |                    |                      |           | WATE           |        | NTENT   | ≿            | S           | DYN.      | . CO<br>(blo | NE F<br>ws/( | 'EN.<br>).3m` | TEST       |
| В<br>- | NO 1                 | E           |                                               |                                      | Ļ         | VEL     | 9 ¥         | NO                 | ۲ %                  | Q         | and            | LIMIT  | S (%)   | TOF          | ESI         |           | 50           |              | 100           | ,          |
| HH     | ATIC                 |             |                                               |                                      | 1BO       | Ē       |             | E                  | VER                  | RQ        |                |        |         | DRA          | and<br>LU T |           |              |              |               |            |
| Ш      |                      |             | DE                                            | SCRIPTION                            | SYN       | TER     | ΝŪΝ         | NO.                | Ő                    | N ol      | w <sub>P</sub> | W      | wL      | ABC          | IS N        | UN        | DRA<br>TREI  |              | ) SH<br>H (ki | EAR<br>Pa) |
|        |                      | _           |                                               | 5405                                 |           | MA      |             | 0                  | R                    |           | 20             | 40 6   | 0 80    | <b>ن</b> ـ   | 2           |           | 50           |              | 100           | -          |
| -      | 61.4                 | 8           | Topsoil.                                      | FACE                                 | <u> I</u> |         |             |                    |                      |           |                | +      |         |              |             |           | -            | +            | -             |            |
|        | 0.10                 | 2           | Compact to loos to silty, some gr             | se brown sand, some silt             | 0         |         | SS-1        | $\square$          | 79                   | 11        |                |        |         |              |             |           |              |              |               |            |
| Ē,     |                      |             | <i>,,</i> , , , , , , , , , , , , , , , , , , |                                      | \$        | ¥.      |             | $\bigtriangledown$ |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           | -04-1   | SS-2        |                    | 54                   | 9         |                |        |         |              |             |           |              |              |               |            |
|        | 59.9<br><b>1.5</b> 2 | 6<br>2      | Very poor to fair                             | r quality light grey                 |           | 2005    | SS-3        | T                  | 33                   | 60/8cm    |                |        |         |              |             |           |              |              |               |            |
| - 2    |                      |             | mudstone, layer<br>mudstone, few o            | rs of calcareous<br>dark shale beds. | ××        | u ou    | <b>DO</b> 4 |                    | 100                  |           |                |        |         | _            |             |           |              | _            |               |            |
| -      |                      |             | Beddings at 60°                               | ° from borehole axis.                |           | 50.72   | DC-4        |                    | 100                  | 24        |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           | elev. ( |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 3    |                      |             |                                               |                                      |           | el at e |             |                    |                      |           |                |        |         | _            |             |           |              | -            | _             |            |
| -      |                      |             |                                               |                                      |           | er lev  | DC-5        |                    | 100                  | 59        |                |        |         |              |             |           |              |              |               |            |
| -      |                      |             |                                               |                                      |           | Wate    | 200         |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| E 4    | 57.1                 | 6           |                                               |                                      | ××        |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| -      | 4.32                 | 2           | END OF BORE                                   | HOLE                                 |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 5    |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         | _            |             |           | $\square$    |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 6    |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         | -            |             |           | +            | +            | +             |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 7    |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              | -            |               |            |
| Ē      |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 8    |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| 9      |                      |             |                                               |                                      |           |         |             |                    |                      |           | - -            |        |         | -            |             | $\vdash$  | +            | +            | +             |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| - 10   |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         | -            |             | $\square$ | +            | +            | +             |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         | 1            |             |           | $\top$       |              |               |            |
|        |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |
| Ł      |                      |             |                                               |                                      |           |         |             |                    |                      |           |                |        |         |              |             |           |              |              |               |            |

otec74\StyleT-1050-A-BH.sty PLOTTED: 2005-11-23

|         |                      |                        |                           | F         | OJECI      | : Rabas      | ska Pr    | oject   | (Phase 2) | ), Levis | , Que      | ebec        |         |            | BORE     | EHOL     | .E : _/ | BH-                | 307         | -05         | _       |
|---------|----------------------|------------------------|---------------------------|-----------|------------|--------------|-----------|---------|-----------|----------|------------|-------------|---------|------------|----------|----------|---------|--------------------|-------------|-------------|---------|
|         |                      |                        | mataah                    | SIT       | Е:         | West         | Optior    | n Site  |           |          |            |             |         |            | PAGE     | E: _     | 1       | _ 0                | F _         | 1           |         |
|         | ◄                    | j ie                   | rratecn                   | FIL       | E NO :     | <u>T-105</u> | 0-B (     | 6033    | 33-KELL)  |          |            |             |         |            | CASI     | NG :     | NW      | /                  |             |             |         |
|         | •                    |                        |                           | во        | RING       | DATE :       |           | 2005    | -04-08    |          | го         |             | 2005-04 | -08        | CORE     | E BAF    | REL     | .: N               | IQ3         |             |         |
|         | ]                    | BORIN                  | G LOG                     | DA        | TUM :      |              | Geod      | etic    |           |          | С          | DORI        |         | s: _5      | 5187922  | .39 N    | ١       | 261                | 1417.       | 47 E        |         |
| SAMP    | LE CO                | NDITION                | TYPE OF SAMPLER           |           |            | LABOF        | RATO      | RY A    | ND IN SIT | TU TES   | бт         |             |         | Field      | Vane     | (        | Su)     | $\diamond$         | inta        | ct          |         |
|         | Remo                 | oulded                 | SS Split spoon            |           |            | GS G         | rain si   | ze an   | alysis    |          |            |             |         |            |          | (        | Sur)    | •                  | rem         | oulde       | эd      |
|         | Lost                 | sturbed                | PS Piston sampler         | е         |            |              | nit we    | ight (k | N/m³)     |          |            |             |         | Swed       | ish cone | e (      | Cu)     | $\bigtriangledown$ | inta<br>rem | ct<br>oulde | h-      |
|         | Rock                 | core                   | DC Diamond core barrel    |           |            | CP C         | ompre     | essive  | strength  | (MPa)    |            |             |         | Dyn. (     | Cone Pe  | en. Te   | est     | × - ·              |             | ×           | ,u<br>< |
|         | -                    | STR                    | ATIGRAPHY                 |           | ε          | :            | SAM       | PLES    | 3         |          |            |             |         |            |          | DYN      | I. CC   | ONE                | PEN         | I. TE       | EST     |
| ε       | ב<br>2 ב             |                        |                           |           | EL .       | 0 ~          | z         | %       | •         | WA       | TER<br>สาม | COI<br>MITS | NTENT   | ORY        | STS      |          | (bl     | ows                | 10.3r/      | n)<br>^     |         |
| L 두   중 |                      |                        |                           | BOL       | LEV        | ANI<br>Ber   | E E       | ERΥ     | RQD       | an       |            |             | J ( 70) | <b>TAT</b> | л Щ      |          |         |                    |             | U           |         |
|         |                      | DE                     | SCRIPTION                 | MΥS       | <b>TER</b> | YPE          |           | So      | l or      | w        | Р          | w           | wL      | BOI        | SITI     | UN       |         |                    | ED S        | HEA<br>kPa  | ١R      |
| _   ī   | ╝╴                   |                        |                           | "         | MAT        | <u> ۲</u>    | ŏ         | RE      | 2         | ⊢<br>20  | 40         | ⊖<br>60     | 80      | LA         | Z        |          | 5       | 0                  | 10          | n a,<br>0   | ,       |
| 5       | 52.81<br>0.00        | GROUND SUR<br>Topsoil. | FACE                      | <br>7-1-1 | 2          |              |           |         |           |          | +          |             |         |            |          |          | Ĩ       |                    | _           |             |         |
|         | <u>52.66</u><br>0.15 | Loose brown sa         | and, some silt to silty,  |           | 5-04-1     | 55-1         | $\square$ | 85      | 9         |          |            |             |         |            |          |          |         |                    |             |             |         |
|         | 0.61                 | Poor to fair qua       | lity red mudstone, layers |           | n 200      | SS-2         |           | 0       | 30/3cm    |          |            |             |         |            |          |          |         |                    |             |             |         |
| E '     |                      | calcareous silts       | stone. Beddings at 40-70° |           | em o       |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           | . 49.5     | DC-3         |           | 85      | 54        |          |            |             |         |            |          |          |         |                    |             |             |         |
| 2       |                      |                        |                           |           | it elev    |              |           |         |           |          | _          | _           |         | _          |          |          |         |                    |             |             |         |
|         |                      |                        |                           | X         | evel a     |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           | later I    |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 3     |                      |                        |                           |           | Z<br>Z     | DC-4         |           | 100     | 56        |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| 4       |                      |                        |                           |           |            |              |           |         |           |          | _          | _           |         | _          |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            | DC-5         |           | 100     | 43        |          |            |             |         |            |          |          |         |                    |             |             |         |
|         | 48.06<br><b>4.75</b> | END OF BORE            | HOI F                     | ŔŔ        | X          |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 5     |                      |                        |                           |           |            |              |           |         |           |          |            |             |         | -          |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 6     |                      |                        |                           |           |            |              |           |         |           |          |            | _           |         | _          |          |          |         | $\square$          |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 7     |                      |                        |                           |           |            |              |           |         |           |          |            |             |         | -          |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 8     |                      |                        |                           |           |            |              |           |         |           |          |            |             |         | _          |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 9     |                      |                        |                           |           |            |              |           |         |           |          | -          | +           |         | -          |          | $\vdash$ |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          | T          | T           |         |            |          |          |         | $\top$             | Ī           |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
| - 11    |                      |                        |                           |           |            |              |           |         |           |          |            | -+          |         | -          |          | $\vdash$ |         | $ \rightarrow$     |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |
|         |                      |                        |                           |           |            |              |           |         |           |          |            |             |         |            |          |          |         |                    |             |             |         |

otec74\StyleT-1050-A-BH.sty PLOTTED: 2005-11-;

|           |                       | <u> </u>                      |                                             | PR          | OJECI  | : Rabas      | ska Pro             | oject           | (Phase 2)   | ), Levis,             | Quebe   | ес    |                     |         | BORE    | HOL       | E: /                | BH-                              | 401          | -05         | _  |
|-----------|-----------------------|-------------------------------|---------------------------------------------|-------------|--------|--------------|---------------------|-----------------|-------------|-----------------------|---------|-------|---------------------|---------|---------|-----------|---------------------|----------------------------------|--------------|-------------|----|
|           |                       | Т                             | matach                                      | SIT         | Έ:     | West         | Option              | Site            |             |                       |         |       |                     |         | PAGE    | £: _      | 1                   | _ 0                              | F _          | 2           | _  |
|           | ▼                     |                               | rratech                                     | FIL         | E NO : | <u>T-105</u> | 0-B (               | 6033            | 33-KELL)    |                       |         |       |                     |         | CASI    | NG :      | NW                  | !                                |              |             |    |
|           | •                     |                               |                                             | во          | RING I | DATE :       |                     | 2005            | -04-12      | T(                    | o _     | 200   | 5-04-′              | 13      | CORE    | E BAR     | REL                 | .: _                             | <u> </u>     |             |    |
|           |                       | BORIN                         | G LOG                                       | DA          | TUM :  |              | Geod                | etic            |             |                       | coo     | RDIN  | ATES                | : _5    | 186551  | .27 N     | 1                   | 261                              | 610.         | 76 E        |    |
| SAN       | IPLE CO               | ONDITION                      | TYPE OF SAMPLER                             |             |        | LABOR        | RATO                | RY A            | ND IN SIT   | U TEST                | •       |       |                     | Field \ | /ane    | (?        | Su)                 | $\diamond$                       | inta         | ct          |    |
|           | _ Rem<br>∅ Undi       | ioulded<br>isturbed           | SS Split spoon<br>ST Thin walled Shelby tub | be          |        | C C          | rain siz<br>onsolio | ze an<br>Iatior | alysis<br>i |                       |         |       |                     | Swedi   | sh cone | 3)<br>-   | Sur)<br>Cu)         | <ul> <li>♦</li> <li>□</li> </ul> | rem          | oulde<br>ct | эd |
|           | Lost                  |                               | PS Piston sampler                           |             |        | D Ur         | nit wei             | ght (k          | (N/m³)      |                       |         |       |                     |         |         | ((        | Cur)                | ▼                                | rem          | oulde       | ed |
|           | Rocl                  | k core                        | DC Diamond core barrel                      | <u> </u>    |        | CP Co        | ompre<br>SAMF       | ssive           | strength    | (MPa)                 |         |       |                     | Dyn. C  | Cone Pe | ≱n. Te    | st                  | <u>×</u>                         | <u> </u>     | ×           | (  |
|           | E                     |                               |                                             |             | ۲<br>: |              |                     |                 | -           | WAT                   | ER C    | ONTE  | NT                  | ۲۲      | S       | DYN       | <b>CC .</b><br>ble) | )NE<br>ows                       | PEN<br>/0.3r | √. TE<br>m) | ST |
| а<br>Н    | - u<br>NO<br>+        |                               |                                             | Ч           | NEL    | Q K          | NO                  | ۲۶ %            | Q           | and                   | LIMI    | TS (% | 6)                  | TOF     | TESI    |           | 50                  | 0                                | 10           | 0           |    |
|           | E T T                 |                               |                                             | MBC         | R LE   | PE A         | <b>IDIT</b>         | OVE             | or R(       |                       |         |       | •,                  | ORA     | ITU -   | UN        |                     | AINE                             | D S          | HEA         | AR |
|           |                       | DE                            | SCRIPTION                                   | sγ          | ATE    | IYF<br>NU    | co                  | SECC            | Z           | ••• <sub>P</sub><br>⊢ | ₩<br>—⊙ |       | <sup>v</sup> ∟<br>∤ | LAB     | N S     | S         | TRE                 | NG                               | TH (         | kPa)        | )  |
|           | 76.58                 | GROUND SUF                    | RFACE                                       |             | 3      |              |                     | <u> </u>        |             | 20                    | 40      | 60 E  | 0<br>               |         |         |           | 50                  | )<br>—+                          | 10           | 0           |    |
| Ē         | 0.00<br>76.38<br>0.20 | Topsoil.<br>Compact to de     | nse brown sand, some silt                   | 11          |        | SS-1         | $\ge$               | 71              | 3           |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē         |                       | to silty, some g<br>boulders. | ravel, cobbles, occasional                  | o<br>⊙ () o |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
|           |                       |                               |                                             | 0 g         |        | SS-2         | $\wedge$            | 62              | 45          |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē         |                       |                               |                                             | 4.0         |        |              | $\bigtriangledown$  |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| - 2       |                       |                               |                                             |             |        | SS-3         |                     | 62              | 37          |                       |         | -     |                     |         |         |           |                     | _                                |              |             |    |
| Ē         | 74.14                 | Donso to vonu                 | donso roddish grov sandy                    |             |        | SS-4         | $\ge$               | 89              | 50/8cm      |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ę,        |                       | gravel, cobbles               | and boulders.                               |             |        | DC-5         |                     | 43              |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| ǰ         |                       |                               |                                             | · · · · ·   |        | SS-6         | $\times$            | 74              | 82/28cm     |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē         |                       |                               |                                             |             |        | DC-7         |                     | 91              |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| <b>4</b>  |                       |                               |                                             |             |        | SS-8         | $\geq$              | 89              | 50/8cm      |                       |         | -     |                     |         |         |           |                     | _                                |              |             |    |
| Ē         | 72.01                 | Duration                      | 1                                           | •. <b>•</b> |        | DC-9         |                     | 67              |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| 5         | 4.57                  | some silt and g               | ravel, occasional cobbles                   | •<br>•      |        | SS-10        | imes                | 62              | 54          |                       |         | _     |                     |         |         |           |                     |                                  | _            |             |    |
| E         |                       |                               |                                             |             |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē         |                       |                               |                                             | ∘₀℃         |        | SS-11        | imes                | 75              | 38          |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| 6         |                       |                               |                                             | <b>0</b>    |        |              | $\overline{}$       |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē         |                       |                               |                                             |             |        | SS-12        |                     | 62              | 34          |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| - 7       |                       |                               |                                             | Ø ⊲         |        |              |                     |                 |             |                       | _       |       |                     |         |         |           | $\rightarrow$       | -+                               | _            |             |    |
| Ē         |                       |                               |                                             | 1           |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| Ē.        |                       |                               |                                             | 0.0<br>0.0  |        | SS-13        |                     | 8               | 29          |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| ǰ         |                       |                               |                                             | De o        |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
|           |                       |                               |                                             |             |        | DC-14        |                     | 17              |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| - 9       |                       |                               |                                             |             |        | SS-15        |                     | ٥               | 25/0cm      |                       | +       | +     |                     |         |         | $\vdash$  | $\neg$              | +                                | $\dashv$     | -+          | _  |
|           |                       |                               |                                             |             |        | DC-16        |                     | 100             |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| -<br>10   |                       |                               |                                             |             |        | SS-17        |                     | 42              | 31          |                       | _       | _     |                     |         |         | $\square$ | $\square$           | $\square$                        | $\square$    | $\square$   |    |
|           |                       |                               |                                             | a ()        |        | DC-18        |                     | 33              |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
|           | 65.91<br><b>10.67</b> | Compact reddi                 | sh grey silty sand,                         |             |        |              | $\searrow$          |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| - 11<br>- |                       | occasional grav               | vel.                                        |             |        | SS-19        | $\land$             | 67              |             |                       | +       | 1     |                     |         |         | H         | +                   | +                                | $\neg$       | +           |    |
|           |                       |                               |                                             |             |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |
| E         |                       |                               |                                             |             |        |              |                     |                 |             |                       |         |       |                     |         |         |           |                     |                                  |              |             |    |

|           |                     |                    |                                   |                                        | PR     | OJECT  | : Rabas      | ska Pr    | oject ( | Phase 2  | ), Levi  | is, Qu         | iebec |               |      |         | BORE    | HOL       | E: /           | BH-        | 401          | -05         | _       |
|-----------|---------------------|--------------------|-----------------------------------|----------------------------------------|--------|--------|--------------|-----------|---------|----------|----------|----------------|-------|---------------|------|---------|---------|-----------|----------------|------------|--------------|-------------|---------|
|           |                     | M                  | То                                | matach                                 | SIT    | 'E :   | West         | Optior    | 1 Site  |          |          |                |       |               |      |         | PAGE    | :: _      | 2              | _ 0        | F _          | 2           |         |
|           |                     |                    |                                   | rratech                                | FIL    | E NO : | <u>T-105</u> | 0-B (     | 60333   | 3-KELL)  |          |                |       |               |      |         | CASI    | NG :      | NW             | 1          |              |             |         |
|           |                     |                    |                                   |                                        | во     | RING   | DATE :       |           | 2005-   | 04-12    |          | то             |       | 2005-         | 04-1 | 13      | CORE    | E BAF     | REL            | .: :       |              |             |         |
|           |                     | B                  | ORIN                              | G LOG                                  | DA     | TUM :  |              | Geod      | etic    |          |          | с              | OOR   | DINA.         | TES  | : _ 51  | 86551   | .27 N     | 1              | 261        | 1610.        | 76 E        |         |
| SAN       | IPLE                | COND               | ITION                             | TYPE OF SAMPLER                        |        |        | LABOR        | RATO      |         |          | Γυ τε    | ST             |       |               |      | Field V | ane     | (1        | Su)            | $\diamond$ | intar        | ct          |         |
|           | ] Re                | emould             | ed                                | SS Split spoon                         | 0      |        | GS G         | rain si   | ze ana  | alysis   |          |                |       |               |      |         |         | (         | Sur)           | ٠          | rem          | oulde       | ۶d      |
|           | Lc                  | ost                | Jeu                               | PS Piston sampler                      | C      |        |              | nit wei   | ight (k | N/m³)    |          |                |       |               |      | Swedis  | sh cone | ; (i<br>( | Cu)<br>Cur)    | ▽          | intao<br>rem | ct<br>oulde | ed      |
|           | R                   | ock cor            | e                                 | DC Diamond core barrel                 |        |        | CP Co        | ompre     | ssive   | strength | (MPa)    | )              |       |               |      | Dyn. C  | one Pe  | n. Te     | st             | <u>×-·</u> |              | X           | <u></u> |
|           | E                   |                    | STRA                              | ATIGRAPHY                              |        | E      |              | SAM       | PLES    | ;        |          | TEE            |       |               |      | ~       | ~       | DYN       | I. CC          | )NE        | PEN          | 1. TE       | ЗST     |
| ε         | - N                 | ε                  |                                   |                                        |        | ĒĽ.    | <u>م</u>     | z         | % /     | 0        | WA<br>ai | nd L           |       | NIEF<br>S (%) |      | OR)     | ESTS    |           | (blo           | ows:<br>n  | /0.3r/<br>10 | n)<br>10    |         |
| Ē         | I O                 | Ē                  |                                   |                                        | BOL    | LEV    | AN           | OITIO     | ER)     | RQI      | - u      |                |       | • (70)        |      | RAT     |         | ·         |                |            |              |             |         |
| БР        | E V P               | DEP                | DE                                | SCRIPTION                              | SYM    | TER    | ΥΡΕ          |           | S<br>S  | N or     | v        | V <sub>P</sub> | w     | w             | L    | ABO.    | SIT     | UN        |                |            | :DS<br>TH(   | HEA<br>kPa) | R       |
|           | □□□                 |                    |                                   |                                        |        | M      |              | U         | RE      | -        | 20       | 040            |       | <br>D 80      |      | ב       | Z       |           | 5(             | 0          | 10           | 0           |         |
| <u> </u>  |                     | (                  | Compact reddis                    | sh grey silty sand,                    |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              | +           |         |
| Ē         |                     | C                  | occasional grav                   | /el.                                   | ø      |        | SS-20        | $\bowtie$ | 46      | 25       |          |                |       |               |      |         |         |           |                |            |              |             |         |
| -<br>13   |                     |                    |                                   |                                        | 0      |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| Ē         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| Ē         |                     |                    |                                   |                                        | a<br>0 |        |              | $ \sim$   |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| - 14      |                     |                    |                                   |                                        | 9      |        | SS-21        | $\bowtie$ | 58      | 15       |          |                | _     |               |      |         |         |           |                |            |              | -           |         |
| Ē         |                     |                    |                                   |                                        | 6      |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| - 15      |                     |                    |                                   |                                        | -0     |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| Ē         |                     |                    |                                   |                                        |        | 8      |              | $\succ$   |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| Ē         | 60.7                | '3                 |                                   |                                        |        |        | SS-22        |           | 38      | 15       |          |                |       |               |      |         |         |           |                |            |              |             |         |
| - 16      | 15.8                | 85 E               | END OF SAMP<br>DYNAMIC PEN        | LING and start of                      |        |        |              |           |         |          |          |                |       |               |      |         |         | *         | (              | _          | _            | _           |         |
| Ē         |                     | F                  | Probably: Com                     | pact sand.                             |        |        |              |           |         |          |          |                |       |               |      |         |         | × '       |                |            |              |             |         |
| E 17      |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         | *         |                |            |              |             |         |
| Ē         | 59.0                | 8                  |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         | ĺ         | ``*            |            |              |             |         |
| Ē         | 17.5                | 50 F               | Probably: Dens<br>pravel. occasio | e to very dense sand with nal cobbles. |        |        |              |           |         |          |          |                |       |               |      |         |         |           | ×.             |            |              |             |         |
| - 18      |                     |                    | , ,                               |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                | –×         | <u> </u>     | -           |         |
| Ē         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            | ×            |             |         |
| -<br>- 19 |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                | $\square$  | <u>x^1</u>   |             |         |
| Ē         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            | X            | ``.         |         |
| E         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              | X           | Ę       |
| - 20      | 56.4<br><b>20.1</b> | 16<br>1 <b>2</b> F | END OF DYNA                       |                                        |        |        |              |           |         |          |          |                |       | +             |      |         |         |           | $\neg$         | $\dashv$   | $\neg$       | +           | ×       |
|           |                     | 1                  | TEST                              |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| - 21      |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           | $ \rightarrow$ | $\square$  | $\square$    | $\square$   |         |
|           |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
|           |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| - 22      |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       | +             |      |         |         |           |                | +          |              | +           |         |
|           |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| 23        |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           | $\square$      | $\square$  | $\square$    | $\square$   |         |
| Ē         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
|           |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |
| t         |                     |                    |                                   |                                        |        |        |              |           |         |          |          |                |       |               |      |         |         |           |                |            |              |             |         |

|              |                  |                  |                                   |                                              | PR       | OJECT   | : Rabas      | ska Pr           | oject  | (Phase 1)          | ), Levis /          | Beaum    | iont     | ВО              | REHOI    | LE :             | W-0                | )01-          | -04   |          |
|--------------|------------------|------------------|-----------------------------------|----------------------------------------------|----------|---------|--------------|------------------|--------|--------------------|---------------------|----------|----------|-----------------|----------|------------------|--------------------|---------------|-------|----------|
|              |                  |                  | Т                                 | nnata a <b>l</b> a                           | SIT      | Έ:      | West         | Optior           | n Site |                    |                     |          |          | PAG             | 3E:_     | 1                | _ 0                | F_            | 1     |          |
|              |                  |                  | j ie                              | rratecn                                      | FIL      | E NO :  | <u>T-105</u> | 0-A (            | 6033   | 33-RABA            | )                   |          |          | CA              | SING :   | <u> </u>         |                    |               |       |          |
|              |                  | •                |                                   |                                              | во       | RING I  | DATE :       |                  | 2004   | -09-29             | то                  | )        | 2004-09- | 29 <b>CO</b>    | RE BA    | RREL             | .: N               | IQ3           |       |          |
|              |                  | ł                | BORIN                             | G LOG                                        | DA       | TUM :   |              | Geod             | etic   |                    |                     | COOF     |          | 51867           | 43.66    | N                | 261                | 454.          | 50 E  | _        |
| SAN          | /PLE             | CO               |                                   | TYPE OF SAMPLER                              |          |         | LABOF        | RATO             | RY A   | ND IN SIT          | U TEST              |          |          | Field Vane      |          | (Su)             | <u> </u>           | inta          | ct    | _        |
|              | J F              | Remo             | ulded                             | SS Split spoon                               |          |         | GS G         | rain si          | ze an  | alysis             | • -=••              |          |          |                 |          | (Sur)            | •                  | rem           | oulde | ed       |
|              | ∭ ι<br>■ ι       | Jndis            | turbed                            | ST Thin walled Shelby tube                   | е        |         |              | onsoli<br>ait wa | datior | N/m <sup>3</sup> ) |                     |          |          | Swedish co      | ne       | (Cu)             | $\bigtriangledown$ | intad         | ct    |          |
|              | ■ └<br>  F       | Rock             | core                              | DC Diamond core barrel                       |          |         | CP C         | ompre            | essive | strength           | (MPa)               |          |          | Dyn. Cone       | Pen. T   | (Cur)<br>est     | ▼<br>×-·           | rem           | oulde | ed<br>≥d |
|              |                  |                  | STR/                              | ATIGRAPHY                                    |          | c       |              | SAM              | PLE    | 6                  |                     |          |          |                 |          |                  |                    |               |       | :ет      |
| _            | 5                |                  |                                   |                                              |          |         |              |                  | %      |                    | WATE                | RCO      | NTENT    | RY<br>TS        |          | (bl              | ows                | /0.3r         | n)    | .51      |
|              | NO               | -<br>T           |                                   |                                              | Ъ        | EVE     | UN R         | NO               | RY     | ap                 | and                 | LIMIT    | 'S (%)   | ATO<br>d<br>TES |          | 5                | 0                  | 10            | 0     |          |
| L L          | /ATI             | ΕL               |                                   |                                              | MB       | RL      | PE A         | 1<br>1<br>1      | OVE    | or R(              |                     |          |          | an OR/          | u        | NDR              | AINE               | DS            | HEA   | ٩R       |
| ۵ I          | Ē                | ä                | DE                                | SCRIPTION                                    | S        | ATE     | Σ<br>Σ       | 5<br>C           | ы      | z                  | <sup>w</sup> P<br>⊢ | ₩<br>—⊙- |          | LAB<br>N S      |          | STRE             | ENG                | TH (          | kPa)  | )        |
|              | <b>11</b><br>78. | .14              | GROUND SUR                        | FACE                                         |          | Ň       |              |                  | œ      |                    | 20                  | 40 6     | 0 80     |                 |          | 5                | 0                  | 10            | 0     |          |
| Ē            | <b>0.</b><br>78. | <b>00</b><br>.04 | Topsoil.                          | mo silt and gravel                           |          |         | SS-1         | $\geq$           | 83     | 50/15cm            |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            | 0.<br>77         | <b>10</b><br>.91 | Bedrock: Poor                     | quality grey clayey                          |          |         | DC-2         |                  | 100    | 0                  |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē 1          | 0.2              | 23               | limestone with a layers (1 to 10n | 20-25% undulated shale nm thick) at 60° from |          |         | DC-3         |                  | 96     | 0                  |                     | -        |          | -               |          |                  | $\vdash$           | $\rightarrow$ |       | _        |
| Ē            | 76.              | 77               | borehole axis.                    |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            | "                |                  | with 20-25% u                     | ndulated black shale                         |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| <u></u>      |                  |                  | borehole axis.                    | Infinite at our norm                         |          |         | DC-4         |                  | 100    | 82                 |                     |          |          | -               |          |                  |                    |               |       | -        |
| Ē            |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| ŧ,           |                  |                  |                                   |                                              |          | 0-06    |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            |                  |                  |                                   |                                              |          | 004-1   |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            |                  |                  |                                   |                                              |          | on 2    |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē 4          |                  |                  |                                   |                                              |          | 5.64m   | DC-5         |                  | 98     | 91                 |                     | _        |          | -               |          |                  | $\vdash$           | $\rightarrow$ |       | _        |
| ŧ            |                  |                  |                                   |                                              |          | ev. 75  |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            |                  |                  |                                   |                                              |          | l at el |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| 5            |                  |                  |                                   |                                              |          | r leve  |              |                  |        |                    |                     | -        |          | -               | -        |                  |                    |               |       | -        |
| Ē            |                  |                  |                                   |                                              |          | Wate    | DC-6         |                  | 100    | 100                |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē,           | 70               | 00               |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            | 6.               | .02<br>12        | END OF BORE                       | HOLE                                         | (11/2/17 |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| F 7          |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          | -               |          | $\left  \right $ |                    | -             |       | _        |
| Ē            |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| Ē            |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| , <b>−</b> 8 |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          | -               |          |                  |                    |               |       |          |
| 140.0        |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
|              | 1                |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  | ļ                  |               |       |          |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| 10           |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          | -               |          | +                |                    | -             |       |          |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
| 11           |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     | -        |          | -               | $\vdash$ | +                | $ \dashv$          | +             | +     | $\neg$   |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |
|              |                  |                  |                                   |                                              |          |         |              |                  |        |                    |                     |          |          |                 |          |                  |                    |               |       |          |

ec74\StyleT-1050-A-BH.sty\_PLOTTED: 2005-11-23 08:34

|          |          |                     |                                     |                                                     | PR  | OJECT   | : Raba       | ska Pi             | roject  | (Phase 1)   | ), Levis | s / Bea | umont    |          | В           | OREHC    | LE :          | W-                 | 002-             | 04           |
|----------|----------|---------------------|-------------------------------------|-----------------------------------------------------|-----|---------|--------------|--------------------|---------|-------------|----------|---------|----------|----------|-------------|----------|---------------|--------------------|------------------|--------------|
|          |          |                     | То                                  | matach                                              | SIT | Έ:      | West         | Optio              | n Site  |             |          |         |          |          | P/          | AGE :    | 1             | _ c                | )F _             | 2            |
|          |          |                     |                                     | rratech                                             | FIL | E NO :  | <u>T-105</u> | 0-A                | (6033   | 33-RABA     | .)       |         |          |          | C/          | SING     | : <u>NV</u>   | ٧                  |                  |              |
|          |          | •                   |                                     |                                                     | во  | RING I  | DATE :       |                    | 2004    | -09-22      | _ ·      | то      | 200      | )4-09-   | 23 CO       | DRE B    | ARRE          | L: !               | NQ3              |              |
|          |          | I                   | BORIN                               | G LOG                                               | DA  | TUM :   |              | Geod               | letic   |             |          | со      | ORDIN    | IATES    | 5186        | 907.61   | N             | 26                 | 1713.            | 80 E         |
| SAN      | MPI      | LE CO               | NDITION                             | TYPE OF SAMPLER                                     |     |         | LABO         | RATO               | RY A    | ND IN SIT   | TU TES   | ST      |          |          | Field Van   | e        | (Su)          | $\diamond$         | inta             | ct           |
|          |          | Remo                | oulded                              | SS Split spoon                                      | •   |         | GS G         | rain s             | ize an  | alysis      |          |         |          |          |             |          | (Sur)         | •                  | rem              | oulded       |
|          |          | Lost                | aurbed                              | PS Piston sampler                                   | e   |         |              | nit we             | ight (k | ı<br>xN/m³) |          |         |          |          | Swedish o   | one      | (Cu)<br>(Cur) |                    | intao<br>rem     | ct<br>oulded |
|          |          | Rock                | core                                | DC Diamond core barrel                              |     |         | CP C         | ompre              | essive  | strength    | (MPa)    |         |          |          | Dyn. Cone   | Pen.     | Test          | × -                |                  | ×            |
|          |          |                     | STR/                                | ATIGRAPHY                                           |     | ε       |              | SAM                | PLES    | 6           |          |         |          |          |             | נס       | N. C          | ONE                | PEN              | I. TEST      |
| ε        |          | 2 2                 |                                     |                                                     |     | EL      | <u>م</u>     | z                  | %       | •           | WA       | TER (   | CONT     | ENT      | ORY<br>0510 | 010      | (b)<br>,      | iows               | ;/ <b>0.3r</b>   | n)<br>0      |
| Ξ        | Ē        | 탈                   |                                     |                                                     | BOL | ΓEΛ     | ANI<br>BER   | E                  | ERY     | RQD         | a        |         |          | /0)      | RAT         |          |               |                    |                  | U            |
| E E      |          |                     | DE                                  | SCRIPTION                                           | MΥ  | ER      | YPE          |                    | So      | l or        | w        | ΡV      | v        | wL       | BOI         | π, U     |               |                    | ED S             | HEAR<br>kPa) |
|          | ū        |                     |                                     |                                                     | •,  | MA      |              | Ŭ                  | RE      | ~           | ⊢<br>20  | 40      | )        | - <br>80 | 23          | 2        | E I I         | 50                 | 10               | 0            |
| -        | 7        | 6.40                | GROUND SUR                          | FACE                                                |     |         |              | $\geq$             |         |             |          | -       | <u> </u> | +-       |             |          | +             | +                  |                  | -            |
| Ē        |          | 0.25<br>0.15        | Loose to compa<br>to silty sand, so | act brown sand, some silt ome gravel.               | 0.  |         | SS-1         |                    | 33      | 6           |          |         |          |          |             |          |               |                    |                  |              |
| Ē,       |          |                     |                                     | 5                                                   | 0   |         |              | $\triangleright$   |         |             |          |         |          |          |             |          |               |                    |                  |              |
| Ē        | 7        | 5.00                |                                     |                                                     |     | -90     | SS-2         |                    | 42      | 14          |          |         |          |          |             |          |               |                    |                  |              |
| Ē        | 7        | <b>1.40</b><br>4.57 | Dark brown gra                      | ivel and sand, some silt.                           |     | 04-10   |              | $\bigtriangledown$ |         |             |          |         |          |          |             |          |               |                    |                  |              |
| - 2      | 2        | 1.83                | Bedrock: Very  <br>mudstone         | poor quality dark grey                              |     | on 20   | SS-3         |                    | 79      | 34          | $\odot$  |         |          |          | GS          | _        | +             |                    |                  |              |
| Ē        |          |                     |                                     |                                                     |     | 40m     | SS-4         | $\bowtie$          | 81      | 90/25cm     |          |         |          |          | Pyrite      |          |               |                    |                  |              |
| Ē,       | 7        | 3.50                | Deer quelity de                     |                                                     |     | ev. 75  | DC-5         |                    | 75      | 0           |          |         |          |          | detection   |          |               |                    |                  |              |
|          | <b>`</b> | 2.90                | calcareous, lay                     | ers at 40° from borehole                            |     | l at el | DC-6         |                    | 100     | 33          |          |         |          |          |             |          |               |                    |                  |              |
| Ē        |          |                     | axis, readily cle<br>pyrite.        | avable, presence of                                 |     | r leve  | DC-7         |                    | 100     | 53          |          |         |          |          |             |          |               |                    |                  |              |
| F 4      | L        |                     |                                     |                                                     |     | Wate    |              |                    |         |             |          | _       | _        | -        |             | $\vdash$ | +             | <u> </u>           | $\left  \right $ |              |
| Ē        |          |                     |                                     |                                                     |     |         | DC-8         |                    | 100     | 32          |          |         |          |          |             |          |               |                    |                  |              |
| Ē        |          |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          |             |          |               |                    |                  |              |
| - 5      | 7        | 1.04                |                                     |                                                     |     |         | DC-9         |                    | 100     | 32          |          |         |          |          |             |          |               |                    |                  |              |
| Ē        | 1        | 5.36                | Good to excelle<br>mudstone, sligh  | ent quality dark grey<br>ntly calcareous, layers at |     |         | 50.40        |                    | 400     |             |          |         |          |          |             |          |               |                    |                  |              |
| - 6      | ;        |                     | 40° from boreh<br>presence of py    | ole axis, readily cleavable, rite.                  |     |         | DC-10        |                    | 100     | 80          |          | _       | _        | -        |             | $\vdash$ | +             | <u> </u>           | $\left  \right $ |              |
| Ē        |          |                     |                                     |                                                     |     |         |              |                    | 1       |             |          |         |          |          | D = 26.2    |          |               |                    |                  |              |
| Ē.       |          |                     |                                     |                                                     |     |         | DC-11        |                    | 100     | 75          |          |         |          |          | CP=4.5      |          |               |                    |                  |              |
| Ē        |          |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          |             |          |               |                    |                  |              |
| Ē        |          |                     |                                     |                                                     |     |         | DC-12        |                    | 100     | 100         |          |         |          |          |             |          |               |                    |                  |              |
| - 8      | 3        |                     |                                     |                                                     |     |         |              |                    |         |             |          |         | _        | -        |             |          | +             | <u> </u>           |                  |              |
|          |          |                     |                                     |                                                     |     |         | DC-13        |                    | 67      | 28          |          |         |          |          |             |          |               |                    |                  |              |
| 2        |          |                     |                                     |                                                     |     |         | 2010         |                    | 01      | 20          |          |         |          |          |             |          |               |                    |                  |              |
| 9        | 2        |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          |             |          | +             |                    |                  |              |
|          |          |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          |             |          |               |                    |                  |              |
| 10       |          |                     |                                     |                                                     |     |         | DC-14        |                    | 100     | 97          | -        |         |          | -        |             | $\vdash$ | +             | $\left  - \right $ | $\mid \mid$      |              |
|          |          |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          |             |          |               |                    |                  |              |
|          |          |                     |                                     |                                                     |     |         | DC 15        |                    | 22      | 0           |          |         |          |          |             |          |               |                    |                  |              |
| - 11<br> |          |                     |                                     |                                                     |     |         | 00-15        |                    | . 03    | U           |          |         | +        | +        |             |          | +             |                    |                  |              |
|          |          |                     |                                     |                                                     |     |         | DC-16        |                    | 100     | 100         |          |         |          |          |             |          |               |                    |                  |              |
|          |          |                     |                                     |                                                     |     |         |              |                    |         |             |          |         |          |          | D = 26.5    |          |               |                    |                  |              |

|           |            |                    |                   |                            | PR     | OJECT   | : Rabas          | ska Pi | oject   | (Phase 1)     | ), Levi | is / Be | eaumo | ont     |                | BORE   | HOLE           | . 1        | <i>w-oc</i>                        | )2-04           | 1        |
|-----------|------------|--------------------|-------------------|----------------------------|--------|---------|------------------|--------|---------|---------------|---------|---------|-------|---------|----------------|--------|----------------|------------|------------------------------------|-----------------|----------|
|           |            |                    | То                | rratach                    | sn     | ΓE :    | West             | Optio  | n Site  |               |         |         |       |         |                | PAGE   | :              | 2          | OF                                 | 2               |          |
|           |            |                    |                   | rratech                    | FIL    | E NO :  | <u>T-105</u>     | 0-A    | (6033   | 33-RABA       | )       |         |       |         |                | CASIN  | 1G :           | NW         |                                    |                 |          |
|           |            | • /                |                   |                            | вс     | oring i | DATE :           |        | 2004    | 09-22         |         | то      |       | 2004-09 | -23            | CORE   | BARI           | REL :      | : <u>NC</u>                        | 13              |          |
|           |            | ŀ                  | BORINO            | G LOG                      | DA     | TUM :   |                  | Geoc   | letic   |               |         | с       | OOR   | DINATE  | <b>3</b> : _51 | 86907. | .61 N          |            | 2617                               | 13.80           | <u>E</u> |
| SAN       |            |                    |                   | TYPE OF SAMPLER            | 1      |         |                  |        | RY AI   | ND IN SIT     | ΓU ΤΕ   | ST      |       |         | Field V        | ane    | (S             | u)         | 🔷 ir                               | ntact           |          |
|           | ן ד<br>∑ נ | Jndis <sup>.</sup> | uided<br>turbed   | ST Thin walled Shelby tube | е      |         |                  | onsoli | dation  | aiysis        |         |         |       |         | Swedis         | h cone | (S<br>(C       | ur)<br>Cu) | <ul><li>♦ n</li><li>∇ in</li></ul> | emoule<br>ntact | ded      |
|           |            | ost                |                   | PS Piston sampler          |        |         | D U              | nit we | ight (k | N/m³)         |         | 、       |       |         |                | _      | (C             | ur)        | v<br>▼ r                           | emoul           | ded      |
|           | F          | KOCK               | core<br>STRA      |                            |        | _       |                  | SAM    |         | strengtn<br>S | (IVIPa  | )       |       |         | Dyn. Co        | one Pe | n. Tes         | <u>t ×</u> | <u> </u>                           | <u></u>         | - ×      |
|           | ε          |                    |                   |                            |        | Е<br>-  |                  |        | 6       |               | WA      | TER     | col   | NTENT   | RY             | TS     | DYN.           | CO<br>(blo | NE P<br>ws/0                       | EN. T<br>.3m)   | rest     |
|           | NO         | ε<br>-<br>-        |                   |                            | οг     | EVEI    | N<br>N<br>N<br>N | NOI.   | RY %    | g             | a       | nd Ll   | IMIT  | S (%)   | ATO            | TES.   |                | 50         |                                    | 100             | 1        |
| EPT       | VATI       | EPTI               | DE                |                            | /MB(   | R LI    | PE A<br>JMBI     | NDIT   | OVE     | or R(         | v       | v       | w     | w       | SOR/           | , DTi  | UNI            | DRA        | INEC                               | ) SHE           | EAR      |
| □         | Ē          | ā                  | DE                | SCRIPTION                  | S      | IATE    | Σĭ               | CO     | REC     | z             |         | •Р<br>  | •     |         | LAE            | S N    | SI             | RE         | NGT                                | ┨(kPa           | a)       |
|           |            |                    | Excellent quality | v dark grev mudstone       | 7.17.1 | \$      |                  |        | _       |               | 2       | 0 40    | 0 60  | 80      | CP=22          | 0      |                | 50         |                                    | 100             |          |
| Ē         |            |                    | slightly calcared | ous, layers at 40° from    |        |         |                  |        | -       |               |         |         |       |         | 07-22          | .9     |                |            |                                    |                 |          |
| Ē         |            |                    | presence of pyr   | ite.                       |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 13      |            |                    |                   |                            |        |         | DC-17            |        | 100     | 87            |         |         |       |         |                |        |                |            |                                    | _               |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 14      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         | -              |        |                | +          |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         | 50.40            |        |         | 100           |         |         |       |         |                |        |                |            |                                    |                 |          |
| -<br>     |            |                    |                   |                            |        | 8       | DC-18            |        | 100     | 100           |         |         |       |         |                |        |                |            |                                    |                 |          |
| Ē'        | 61.        | .01                |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| Ē         | 15.        | .39                | END OF BORE       | HOLE                       |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 16      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         | _              |        |                | +          |                                    | _               |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| E 17      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         | _              |        |                |            |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 18<br>- |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         | _              | ·      |                | +          |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 19      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         | _              |        | ┢──┼╴          | +          |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| F 20      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                | +          | +                                  | 1               |          |
|           |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 21      |            |                    |                   |                            |        |         |                  |        |         |               |         |         | -+    |         | _              |        | $ \rightarrow$ | +          | +                                  | +               | +        |
|           |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| -         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| F 22      |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                | 1          | ╡                                  |                 |          |
|           |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
| - 23      |            |                    |                   |                            |        |         |                  |        |         |               |         |         | _     |         | _              |        | $ \square +$   | +          | +                                  | +               | +        |
| Ē         |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |
|           |            |                    |                   |                            |        |         |                  |        |         |               |         |         |       |         |                |        |                |            |                                    |                 |          |

|          |                      | _                                    |                                                      | PR           | OJECT   | : Rabas      | ska Pr           | oject             | (Phase 1) | ), Levis | / Bea | umont   |         |                   | BORE    | HOL           | E :           | W-C                | )03-        | 04             | _       |
|----------|----------------------|--------------------------------------|------------------------------------------------------|--------------|---------|--------------|------------------|-------------------|-----------|----------|-------|---------|---------|-------------------|---------|---------------|---------------|--------------------|-------------|----------------|---------|
|          |                      | Т                                    | matach                                               | SIT          | Έ:      | West         | Optio            | n Site            |           |          |       |         |         |                   | PAGE    | : _           | 1             | 0                  | F_          | 2              | _       |
|          | ▼                    |                                      | rratech                                              | FIL          | E NO :  | <u>T-105</u> | 0-A              | 6033              | 33-RABA   | )        |       |         |         |                   | CASIN   | IG :          | NW            |                    |             |                |         |
|          | •                    |                                      |                                                      | во           | RING I  | DATE :       |                  | 2004              | -09-30    | т        | ·o _  | 200     | 04-09-3 | 30                | CORE    | BAF           | REL           | .: N               | IQ3         |                |         |
|          | ]                    | BORIN                                | G LOG                                                | DA           | тим :   |              | Geod             | etic              |           |          | со    | ORDIN   | ATES    | : 51              | 87142.  | .54 N         | 1             | 262                | 011.        | 73 E           |         |
| SAM      | PLE CO               | NDITION                              | TYPE OF SAMPLER                                      |              |         | LABOR        | RATO             | RY A              | ND IN SIT | TU TES   | т     |         |         | Field Va          | ane     | ()            | Su)           | $\diamond$         | inta        | ct             | _       |
| $\geq$   | Remo                 | oulded                               | SS Split spoon                                       |              |         | GS G         | rain si          | ze an             | alysis    |          |       |         |         |                   |         | (?            | Sur)          | ٠<br>ا             | rem         | oulde          | ed      |
|          | Undis                | turbed                               | ST Thin walled Shelby tub<br>PS Piston sampler       | e            |         |              | onsoli<br>nit we | datior<br>iaht (k | N/m³)     |          |       |         |         | Swedis            | h cone  | ((            | Cu)           | $\bigtriangledown$ | intad       | ct             |         |
|          | Rock                 | core                                 | DC Diamond core barrel                               |              |         | CP C         | ompre            | essive            | strength  | (MPa)    |       |         |         | Dyn. Co           | one Pe  | n. Te         | est           | ▼<br>×             | rem         | ouide<br>– – × | ea<br>< |
|          |                      | STRA                                 | ATIGRAPHY                                            |              | ۶       |              | SAM              | PLES              | 6         |          |       |         |         |                   |         |               |               | )NF                |             | J TF           | ST      |
|          | ے <sup>اع</sup>      |                                      |                                                      |              | Ē       |              | -                | %                 |           | WAT      | ER C  | CONT    | ENT     | JRΥ               | STS     |               | (blo          | ows/               | 0.3r        | n)             |         |
| - H      | NOI - H              |                                      |                                                      | Ъ            | EVE     | AND          | 10               | RΥ                | QD        | and      | d LIN | NITS (S | %)      | ATC               | TES     | 1             | 50            | )                  | 10          | 0              |         |
| EPT      | VAT                  | DE                                   |                                                      | ΥMB          | К       | PE /<br>JMB  | Ī                | OVE               | or R      | w        | . v   | N       | w.      | 30R<br>ar         | ITU     | UN            | IDR/          | INE                | DS          | HEA            | R       |
|          |                      | DE                                   | SCRIPTION                                            | Ś            | ATE     | Żĭ           | S                | SEC.              | z         |          |       | •<br>•— | L<br>-  | LAE               | N S     | S             | TRE           | NG                 | <b>ГН (</b> | kPa)           | )       |
|          | 77.53                | GROUND SUR                           | RFACE                                                | ~ ~          | 3       |              |                  | -                 |           | 20       | 40    | 60      | 80      |                   |         | +             | 50            | <b>)</b>           | 10          | 0              |         |
| Ē        | 0.00                 | Fill: Crushed st<br>Fill: Sand, grav | one                                                  |              |         | SS-1         | $\times$         | 58                | 32        |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          | 76.92                | Peat.                                |                                                      |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 1      |                      |                                      |                                                      |              |         | SS-2         | $\ge$            | 58                | 2         |          |       | _       |         |                   |         |               |               | $\rightarrow$      | +           |                |         |
| Ē        |                      |                                      |                                                      |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          | 75.70                | 0                                    |                                                      | ~~<br>Ti 111 |         | SS-3         | $\ge$            | 33                | 1/46cm    |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 2<br>- | 1.05                 | occasional grav                      | silt, trace to some sand,<br>vel.                    | a            |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| Ē        |                      |                                      |                                                      | •            | 0-06    | SS-4         | $\ge$            | 62                | 15        |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 3      |                      |                                      |                                                      | •            | 004-1   |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          |                      |                                      |                                                      | •            | on 2    | SS-5         | $\boxtimes$      | 62                | 16        |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          | 73.83                | Compost arous                        | ailt with some alove                                 | .,           | 5.33m   |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 4      | 0.70                 | Compact grey s                       | siit with some day.                                  | КJ           | ev. 7!  | SS-6         | $\mathbb{N}$     | 79                | 15        | •        |       |         |         | GS                |         |               |               |                    | -           |                |         |
|          | 73.14<br><b>4.39</b> | Dense grey silt                      | , gravel, cobbles and                                |              | l at el |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          |                      | occasional bou                       | lders.                                               |              | r leve  | DC-7         |                  | 0                 |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| 5        |                      |                                      |                                                      | ە<br>ھ ە     | Wate    | DC-8A        |                  | 0                 |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| Ē        | 71.89                |                                      |                                                      |              |         | 200,1        |                  | Ũ                 |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 6      | <b>J.04</b>          | Bedrock: Very<br>mudstone, sligh     | poor quality grey<br>htly calcareous, layers of      |              |         | DC-8B        |                  | 78                | 0         |          | _     | _       |         |                   |         |               |               |                    | _           |                |         |
|          | 71.10                | borehole axis, t                     | trace of pyrite locally.                             |              |         | DC-9         |                  | 100               | 0         |          |       |         |         |                   |         |               |               |                    |             |                |         |
| Ē        | 6.43                 | calcareous, lay                      | ers of light grey mudstone                           |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 7      |                      | (1 to 10mm thic<br>axis, trace of py | ck) at 45° from borehole<br>yrite locally.           |              |         | DC-10        |                  | 88                | 64        |          |       |         |         |                   |         |               |               |                    | $\neg$      |                |         |
| Ē        |                      | ,                                    |                                                      |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| ŧ.       |                      |                                      |                                                      |              |         |              | Т                |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| F °      |                      |                                      |                                                      |              |         | DC-11        |                  | 100               | 77        |          |       |         |         | D - 00            | 0       |               |               |                    |             |                |         |
|          |                      |                                      |                                                      |              |         | DO-III       |                  | 100               | ,,        |          |       |         |         | D = 26.<br>CP=52. | 3<br>.8 |               |               |                    |             |                |         |
| - 9      |                      |                                      |                                                      |              |         |              |                  |                   |           |          |       | _       |         |                   |         |               |               |                    | _           |                |         |
| E        |                      |                                      |                                                      |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          |                      |                                      |                                                      |              |         | DC-12        |                  | 97                | 85        |          |       |         |         |                   |         |               |               |                    |             |                |         |
| - 10     |                      |                                      |                                                      |              |         |              |                  |                   |           |          |       | -       |         |                   |         | $\rightarrow$ | $\rightarrow$ | +                  | +           | $\neg$         |         |
| Ē        | 66.94                |                                      |                                                      |              |         |              | L.               |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| Ē "      | 10.59                | Good to excelle<br>slightly calcared | ent quality grey mudstone, out, layers of light grey |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
|          |                      | mudstone (1 to<br>borehole axis, t   | 10mm thick) at 45° from trace of pyrite locally.     |              |         | DC-13        |                  | 100               | 100       |          |       |         |         |                   |         |               |               |                    | Τ           |                |         |
| Ē        |                      |                                      | -                                                    |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |
| Ē        |                      |                                      |                                                      |              |         |              |                  |                   |           |          |       |         |         |                   |         |               |               |                    |             |                |         |

|           |             |       |                   |                                             | PR   | OJECT  | : Rabas      | ska Pi           | oject (  | Phase 1  | ), Levis / I | Beaum | ont      | BO                      | REHOLE               | : I           | N-00            | 3-04          | _        |
|-----------|-------------|-------|-------------------|---------------------------------------------|------|--------|--------------|------------------|----------|----------|--------------|-------|----------|-------------------------|----------------------|---------------|-----------------|---------------|----------|
|           |             |       | То                | matach                                      | sr   | ſE :   | West         | Optio            | n Site   |          |              |       |          | PA0                     | €:                   | 2             | OF              | 2             | _        |
|           |             |       |                   | rratech                                     | FIL  | E NO : | <u>T-105</u> | 0-A              | (60333   | 33-RABA  | )            |       |          | CA:                     | SING :               | NW            |                 |               |          |
|           |             | •     |                   |                                             | вс   | RING I | DATE :       |                  | 2004-    | 09-30    | то           |       | 2004-09- | . <u>30</u> <b>CO</b> I |                      | REL :         | : <u>NQ</u>     | 3             |          |
|           |             | I     | BORIN             | G LOG                                       | DA   | TUM :  |              | Geoc             | letic    |          |              | COOF  | RDINATES | <b>3</b> : 518714       | 2.54 N               |               | 26201           | 1.73 E        | <u> </u> |
| SAN       | 1PL         | E CO  | NDITION           |                                             |      |        | LABOR        | RATO             | RY A     |          | IU TEST      |       |          | Field Vane              | (S                   | ŝu)           | ♦ in            | tact          |          |
|           |             | Undis | turbed            | SS Split spoon<br>ST Thin walled Shelby tub | е    |        |              | rain s<br>onsoli | dation   | aiysis   |              |       |          | Swedish co              | (S<br>ne (C          | sur)<br>Su)   | ♦ re ∇ in       | mould<br>tact | ed       |
|           |             | Lost  |                   | PS Piston sampler                           |      |        | D UI         | nit we           | ight (k  | N/m³)    |              |       |          |                         | (C                   | Cur)          | ▼ re            | mould         | ed       |
|           |             | Rock  | core<br>STRA      | TIGRAPHY                                    |      |        |              | ompre<br>SAM     | PLES     | strengtn | (мРа)        |       |          | Dyn. Cone               | <sup>2</sup> en. Tes | st ×          | <u> </u>        | >             | ×        |
|           | 5           |       |                   |                                             |      | Е<br>- |              |                  | <b>,</b> |          | WATE         | R CO  | NTENT    | ۲S                      | DYN.                 | . COI<br>(blo | NE PE<br>/ws/0. | ΞΝ. ΤΙ<br>3m) | EST      |
| l ₽<br>¦  | N<br>N<br>C | , E   |                   |                                             | ЭΓ   | EVEI   | N R          | NOI              | RY %     | B        | and          | LIMIT | 'S (%)   | ATOF<br>d<br>TES'       |                      | 50            |                 | 100           | 1        |
| I L       |             | Ш     |                   |                                             | /MB( | R LI   | PE A<br>JMBI |                  | OVE      | or R(    | w/           | w     | \A/      | an an                   | UNI                  | DRA           | INED            | SHE           | AR       |
| □         | Ц<br>Ц      |       | DE                | SCRIPTION                                   | s)   | ATE    | Σĭ           | CO               | REC      | z        | •*P<br>      |       | "L<br>—  | LAB                     | S                    | TREM          | NGTH            | (kPa          | 1)       |
|           |             |       | Cood to overla    | nt quality gray mudatana                    |      | 3      |              |                  | _        |          | 20           | 40 6  | 0 80     |                         |                      | 50            |                 | 100           |          |
| Ē         |             |       | slightly calcared | bus, layers of light grey                   |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| Ē         | 64          | 4.70  | borehole axis, t  | race of pyrite locally.                     |      |        | DO 44        |                  | 100      | 05       |              |       |          |                         |                      |               |                 |               |          |
| - 13      | <i>'</i>    | 2.03  | with layers of g  | rey mudstone and black                      |      |        | DC-14        |                  | 100      | 85       |              |       |          |                         |                      |               | -               |               |          |
| Ē         |             |       | shale, trace of p | pyrite.                                     |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| -<br>14   |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | D = 26.6<br>CP=99.4     |                      |               | _               |               |          |
| Ē         |             |       |                   |                                             |      |        | DC-15        |                  | 100      | 88       |              |       |          |                         |                      |               |                 |               |          |
| Ē.        |             |       |                   |                                             |      |        | 00 10        |                  | 100      | 00       |              |       |          |                         |                      |               |                 |               |          |
| - 15      | 62          | 2.22  |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| Ē         | 1           | 5.32  | END OF BORE       | HOLE                                        |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 16      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | _                       |                      |               | +               |               |          |
| E         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| E 17      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | _                       |                      |               |                 |               |          |
| ĒŰ        |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 18      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | _                       |                      |               | +               |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| -<br>- 19 |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | _                       |                      |               | _               |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 20      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | 1                       |                      | +             | +               |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 21      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | -                       |                      | +             | —               |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
|           |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 22      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | 1                       |                      | +             | $\top$          |               |          |
| Ē         |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
| - 23      |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          | -                       |                      | +             | +               |               | $\vdash$ |
|           |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |
|           |             |       |                   |                                             |      |        |              |                  |          |          |              |       |          |                         |                      |               |                 |               |          |

| Signed Partner         PAGE:         1         OF         2           PIE:         Well-Option Bite         PIE:         2004:03-24         CARNES:         MM           BORNIC LOG         DESCRIPTION         Streamber Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                 |                     | _                                                    |                                                                                  | PF           | ROJECT                                  | : Rabas         | ska Pr            | oject             | (Phase 1) | ), Levis /  | Beaun         | nont          |           | В               | OREI      | HOLE :          | W           | <i>'-004</i> | -04               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|---------------------|------------------------------------------------------|----------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------|-------------------|-------------------|-----------|-------------|---------------|---------------|-----------|-----------------|-----------|-----------------|-------------|--------------|-------------------|
| FLEND:         [1090.4]         (000331.R364)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                 |                     |                                                      |                                                                                  | si           | TE :                                    | West            | Optior            | n Site            |           |             |               |               |           | P/              | ٩GE       | : _1            |             | OF _         | 2                 |
| DRING LOG         DRING ADTE         204-09-21         1         2000 NOT 15:         519886.10 N         20102/51E           ALTUN:         Condition         Statuscole         St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                 |                     | jj ie                                                | erratecn                                                                         | FI           | LE NO :                                 | <u>T-105</u>    | 0-A (             | 6033              | 33-RABA   | )           |               |               |           | C/              | ASIN      | G: <u>H</u>     | W           |              |                   |
| BORING LOG         DATUM:         Concentration         CORRENANCE I:         0100001 (1)         211025.54 E           AMPLE CONDITION         IV VE OF SAMPLER         LOG Contraction         IV VE OF SAMPLER         LOG Contraction         IV VE OF SAMPLER         LOG Contraction         IV VE OF SAMPLER         Vertice IV VE OF SAMPLER         Vertice IV VERON         VertiV VERON         VertiV VERON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                 | •                   |                                                      |                                                                                  | в            |                                         | DATE :          |                   | 2004              | -09-24    | то          | )             | 200           | 4-09-     | 28 <b>C</b> (   | ORE       | BARRE           | EL :        | HQ3          |                   |
| SAMPLE CONDITION         TYPE OF SAMPLER         LABORATORY AND IN STUTIEST         Field Varie         (50)         Initial           Instance         3         Staff spoon         GS         GR         GR<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 | ]                   | BORIN                                                | G LOG                                                                            |              | ATUM :                                  |                 | Geod              | etic              |           |             | 000           |               | ATES      | · 5186          | 686.′     | 10 N            | . <u> </u>  | 61925        | .54 E             |
| Becode         Soft apon         S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SA               | MPI             | LE CO               | NDITION                                              | TYPE OF SAMPLER                                                                  |              | -                                       | LABOR           | RATO              | RY A              | ND IN SIT |             |               |               |           | Field Van       |           | (Su)            |             | ints         |                   |
| C         Constrained<br>PS         ST Thin valies Shelly tube<br>PS         C         Consolidation         Swellshow         Swellshow         Swellshow         Consolidation           Rev core         D         Diamond core barrel         D         Units on participation         D         Units on participation         D         Units on participation         Swellshow         Swellshow         Swellshow         D         Diamond core barrel         D         Units on participation         D         Units on participation         D         Units on participation         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\triangleright$ | $\triangleleft$ | Rem                 | oulded                                               | SS Split spoon                                                                   |              |                                         | GS G            | rain si           | ze an             | alysis    | • -=••      |               |               |           |                 |           | (Sur            | ) 🍝         | ren          | noulded           |
| No.c. core         DC: Damond core barrel         CP         Compressive stronght (MPa)         Dyn. Cone Pen. Test           E         STRATICRAPHY         SAMPLES         WATER CONTENT         E         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           Fig. H         E         E         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         Fig. H         E         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         Sample S         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         OP         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         OP         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         OP         OP         Sample S         Dyn. Cone Pen. Test         Phys. Cone Pen. Test           7         OP         Compact brown and come stand some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 | Undi                | sturbed                                              | ST Thin walled Shelby tu<br>PS Piston sampler                                    | ıbe          |                                         |                 | onsoli<br>nit wei | datior<br>ight (k | N/m³)     |             |               |               |           | Swedish o       | one       | (Cu)            |             | 'inta        | act               |
| STRATIGRAPHY         E         SAMPLES         WATER CONTENT<br>and LIMTS (%)         August<br>biological state         OWN COLE PEN. TES<br>(blows0.3m)           r         DESCRIPTION         00         1         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         00         1         1         00         1         1         00         1         1         00         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                 | Rock                | core                                                 | DC Diamond core barrel                                                           |              |                                         | CP C            | ompre             | essive            | strength  | (MPa)       |               |               |           | Dyn. Cone       | e Per     | נCur<br>ו. Test | ▼ ('<br>× √ | ren          | 10ulded           |
| E         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                     | STR                                                  | ATIGRAPHY                                                                        |              | F                                       |                 | SAM               | PLES              | 3         |             |               |               |           |                 |           | DYN. C          | :ON         | E PE         | N. TES            |
| III Control       G       III Control       III Control       G       G       III Control       G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPTH - m         |                 | EPTH - m            |                                                      |                                                                                  | MBOL         | er level - 1                            | PE AND<br>JMBER | NDITION           | OVERY %           | or RQD    | WATE<br>and | R CC<br>LIMIT | DNTI<br>FS (% | ENT<br>%) | SORATORY<br>and |           | (b<br>UNDF      |             | s/0.3        | m)<br>DO<br>SHEAR |
| 75.15       GROUND SUBFACE       5       C       20       40       60       80       50       100         1       0.040       Fig. Compact brown and reddsh sand, some silt and grave to silt and grav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                     |                                                      | SCRIPTION                                                                        | ŝ            | ATE                                     | Σ<br>Σ          | S                 | SEC.              | z         | ••р<br>     |               |               | L<br>-    |                 | Z         | STR             | ENG         | GTH (        | (kPa)             |
| 1       0.000       Fill: Compact brown and reddish sand, some sill and gravel.       58-1       58       16         1       0.94       Compact brown and reddish sand, some sill and gravel.       58       12       46       12         2       7.8.5       Dense to very dense brown and reddish sand, some sill and gravel.       58       58       16       12         3       Dense to very dense brown and reddish sand, some sill and gravel to sill and gravel.       58       58       58       56         3       Dense to very dense brown and reddish sand, some sill and gravel.       58       56       56       56         4       Dense to very dense brown and reddish sand, some sill and gravel.       58       56       56       56         3       Dense to very dense brown and reddish.       56       56       56       56       56         4       Dense to very dense brown and reddish.       56       56       56       56       57         5       Dec.4       56       57       56       57       56       57       57         6       Dec.4       SS-11       SS-11       54       33       54       33       55         7       Dec.42       SS-13       78       77       71/20m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 7               | 5.15                | GROUND SUF                                           | RFACE                                                                            |              | <b>Š</b>                                |                 |                   |                   |           | 20          | 40 6          | 50 i          | B0        |                 | $\square$ |                 | 50          | 10           | 00                |
| 74.24       Compact brown and reddish sand, some sitt and gravel.       55.2       46       12         73.35       Dense to vary dense brown and reddish sand, some sitt and gravel is sitt and gravel is sitt and reddish and, some sitt and with trace of gravel and trace of clay, accasional cobdes and boulders.       95          3             4             5             6             6             7             8             8             8             9             8             8             8             8 <td></td> <td>  '</td> <td>0.00</td> <td>Fill: Compact b<br/>gravel.</td> <td>prown sand, some silt and</td> <td></td> <td></td> <td>SS-1</td> <td><math>\mid</math></td> <td>58</td> <td>16</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | '               | 0.00                | Fill: Compact b<br>gravel.                           | prown sand, some silt and                                                        |              |                                         | SS-1            | $\mid$            | 58                | 16        |             |               |               |           |                 |           |                 |             |              |                   |
| 1       0.91       Compact brown and reddish sand, some sitt and gravel.         2       1.80       Dense to very dense brown and reddish and with trace of gravel and trace of cley, occasional obbies and boulders.       0.004         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 7               | 4.24                |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| 1       23.55       1.60       Dense to very dense brown and reddish sand with trace of gazwal and boulders.       0.2.3       95          3       1       0.2.4       58        58          4       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4         5       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4         6       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4         6       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4       0.2.4         7       0.2.7       0.2.7       0.2.7       0.2.7       0.2.8       0.2.8         7       0.2.8       0.2.8       0.2.7       0.2.8       0.2.8       0.2.8         8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8         8       0.2.8       0.2.7       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8       0.2.8 <td>-</td> <td>1</td> <td>0.91</td> <td>Compact brow</td> <td>n and reddish sand, some</td> <td></td> <td>-10-06</td> <td>SS-2</td> <td><math>\bowtie</math></td> <td>46</td> <td>12</td> <td></td> <td></td> <td>+</td> <td>-</td> <td>-</td> <td> </td> <td></td> <td>+</td> <td>+</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                | 1               | 0.91                | Compact brow                                         | n and reddish sand, some                                                         |              | -10-06                                  | SS-2            | $\bowtie$         | 46                | 12        |             |               | +             | -         | -               |           |                 | +           | +            |                   |
| 2       7.80<br>sand, some sit and grave to suit and<br>sand, some sit and some sit and<br>sand, some sit and some sit and<br>sand, some sit and grave to suit and<br>sand, some sit and grave to suit and<br>sand, some sit and some sit and<br>sand, some sit and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                     | - and gravel.                                        |                                                                                  | 8            | 2004                                    |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| sand. some att and gravel to att and<br>cisy. occasional cobbies and boulders.       5       0C-3       95          1       5       0C-4       58        58          5       0C-6       91       50/13cm       95          6       0C-7       0C-7       0C-7       91       50/13cm         7       0C-7       0C-7       0C-7       0C-7       0C-7         8        0C-7       0C-7       0C-7       0C-7         9       5        0C-7       0C-7       0C-7         9       0C-7       0C-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | 2               | <u>3.35</u><br>1.80 | Dense to very                                        | dense brown and reddish                                                          |              | D 0 0                                   |                 |                   |                   |           |             |               |               |           | -               |           |                 |             |              |                   |
| 3       3       5       0C-4       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7       5-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     | sand, some sil<br>sand with trace<br>clay, occasiona | t and gravel to silt and<br>e of gravel and trace of<br>al cobbles and boulders. | 0            | 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | DC-3            |                   | 95                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 4       55-5       91       50/13cm         5       0C-7       69          6       69          7       0C-8       78          8       55-9       67       33       0       GS         9       55-9       67       33       0       GS         9       55-9       67       33       0       GS         9       55-13       79       71/23cm       0       0         10       85       50/3cm       0       0       0         11       63.90       55-13       79       71/23cm       0       0         11       53.90       Bedrock: Succession of layers of fair quality red and grey mudstone at 50° motor beak as.       55-13       79       71/23cm       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                | 3               |                     |                                                      |                                                                                  | 9 <b>0</b> 9 | ∀. ∀. ∀<br>₽ 0. ₽<br>evel a             | DC-4            |                   | 58                |           |             |               |               |           | -               | -         |                 | -           |              |                   |
| 4       bC-6       B3          5       bC-7       bC-7       bC-7         6       bC-7       bC-7       bC-7         7       bC-7       bC-7       bC-7         8       bC-7       bC-7       bC-7         9       bC-7       bC-7       bC-7         10       bC-7       bC-7       bC-7         11       bC-7       bC-7       bC-7         12       bC-7       bC-7       bC-7         13       bC-7       bC-7       bC-7         14       bC-7       bC-7       bC-7         15       bC-7       bC-7       bC-7         14       bC-7       bC-7       bC-7         15       bC-7       bC-7       bC-7         16       bC-7       bC-7       bC-7         16       bC-7       bC-7       bC-7         17.25       bC-7       bC-7       bC-7         10       bC-7       bC-7       bC-7         10       bC-7       bC-7       bC-7         100       bC-7       bC-7       bC-7         100       bC-7       bC-7       bC-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     |                                                      |                                                                                  |              | d d d                                   | SS-5            | $\geq$            | 91                | 50/13cm   |             |               |               |           |                 |           |                 |             |              |                   |
| 5       6       69       69       69         7       69       78       78       78         8       54       33       67       33         9       54       33       67       33         9       54       33       67       10         10       58-10       54       33       10         11       63.90       58-11       85       50/3cm         10       58-11       85       50/3cm       10         11       63.90       54       33       10         11       53.90       56       50/3cm       10         10       85       50/3cm       10       85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 4               |                     |                                                      |                                                                                  | e<br>De      | 0 0 0<br>10 00<br>0 0 0 0               |                 |                   | 83                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 5       0C-7       69          6       0C-8       78          7       0C-8       67       33       0       GS         8       55-9       67       33       0       GS         9       55-10       54       33       0       0       0         10       55-11       85       50/3cm       0       0       0         11       63.90       0       10       85       50/3cm       0       0         11       63.90       0       10       85       10       85       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                     |                                                      |                                                                                  |              |                                         | 00-0            |                   | 00                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 6       0C-8       78          7       0C-8       78          8       67       33       0       GS         9       55-10       54       33       0       0         10       55       50/3cm       0       0       0         11       63.90       0       78        0         11       63.90       0       85       0       0       0         10       85       50/3cm       0       0       0       0         10       85       50/3cm       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     |                                                      |                                                                                  | 0<br>0       |                                         | DC-7            |                   | 69                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 6       0C-8       78          7       58-9       67       33       0         8       58-9       54       33          9       58-10       54       33          10       58-11       85       50/3cm          11       63.90       58-13       79       71/23cm          11       63.90       56       100       85       50/3cm          10       0C-12       39             10       65       0C-14       100       85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 5               |                     |                                                      |                                                                                  | 0            |                                         |                 |                   |                   |           |             |               | -             |           | -               | ┝         |                 | +           |              | $\vdash$          |
| 6       7       33       0       65         7       8       67       33       0       65         8       9       67       33       0       65         10       54       33       0       0       0         11       63.90       67       33       0       0         11       63.90       67       33       0       0         10       85       50/3cm       0       0       0         10       85       50/3cm       0       0       0         10       85       50/3cm       0       0       0         10       85       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                     |                                                      |                                                                                  | 0<br>0       |                                         |                 |                   | 70                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 7       33       0       GS         8       54       33       0       GS         9       54       33       0       0         10       54       33       0       0         11       63.00       0       0       67       79         71.25       Bedrock: Succession of layers of fair quality red and grey mudstone at 50° more basis       79       71/23cm       100       85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                 |                     |                                                      |                                                                                  |              |                                         | DC-0            |                   | 70                |           |             |               |               |           |                 |           |                 |             |              |                   |
| 7       8       67       33       0       68         9       55-10       54       33       0       65         10       54       33       0       0       0         11       63.90       67       39        0         11       63.90       54       33       79       71/23cm         10       79       71/23cm       79       71/23cm       100       85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                | °               |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| 7       8       54       33         9       54       33         10       54       33         11       63.90       50/3 cm         11.25       Bedrock: Succession of layers of fair quality red and grey mudstone at 50° from borehole axis.       55-11         10       85       50/3 cm         10       85       50/3 cm         11       63.90       56-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                     |                                                      |                                                                                  | U            |                                         | SS-9            | $\mid$            | 67                | 33        | $\odot$     |               |               |           | GS              |           |                 |             |              |                   |
| 8       54       33         9       54       33         10       55       50/3cm         11       63.90       55       50/3cm         11       63.90       55       50/3cm         11       63.90       55       50/3cm         11       55       50/3cm       50/3cm         10       55       50/3cm       50/3cm         11       55       50/3cm       50/3cm         10       55       50/3cm       50/3cm         11       55       50/3cm       50/3cm         11       55       50/3cm       50/3cm         11       55       50/3cm       50/3cm         10       55       50/3cm       50/3cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 7               |                     |                                                      |                                                                                  | a a a        |                                         |                 |                   |                   |           |             | +             | -             |           | -               | ╞         |                 | +           | +            | $\vdash$          |
| 8       54       33         9       54       33         9       54       33         10       54       54       33         10       55       56       56         11       63.90       56       56       56         11       63.90       56       56       56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| 8       30       30       30       30         9       34       50       35       35         10       39       50       39       50       39         11       63.90       50       50       50       10       10         11       63.90       50       50       50       10       10       85       50/3 cm         11       63.90       50       50       50       50       10       10       85       50         11       63.90       50       50       50       50       10       10       85       10       10       10       85       10       10       10       85       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                 |                     |                                                      |                                                                                  |              |                                         | SS-10           | $\ge$             | 51                | 33        |             |               |               |           |                 |           |                 |             |              |                   |
| 9       39       39       50/3cm         10       39          11       63.90       50/3cm       50/3cm         100       85       60/3cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 8               |                     |                                                      |                                                                                  |              |                                         | 00-10           |                   | 94                | 55        |             |               |               |           |                 |           |                 |             |              |                   |
| 9       10       85       50/3cm         10       10       10       10       10       10         11       63.90       63.90       11.25       Bedrock: Succession of layers of fair quality red and grey mudstone at 50° from borehole axis.       10       10       85       100         11       63.90       11.25       Bedrock: Succession of layers of fair quality red and grey mudstone at 50°       10       85       100       85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                 |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| $10   11   \\ 63.90   \\ \hline 11.25   Bedrock: Succession of layers of fair quality red and grey mudstone at 50° from borehole axis. \\ \hline 11   \\ 63.90   \\ \hline 11.25   Bedrock: Succession of layers of fair quality red and grey mudstone at 50° from borehole axis. \\ \hline 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11   \\ 11 $ |                  | 9               |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           | -               | ╞         |                 | +           | <u> </u>     | $\vdash$          |
| 10       Image: state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     |                                                      |                                                                                  | 9<br>9       |                                         | SS-11           | ¥                 | 85                | 50/3cm    |             |               |               |           |                 |           |                 |             |              |                   |
| 10       Image: state of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| 11     63.90       11.25     Bedrock: Succession of layers of fair quality red and grey mudstone at 50° from borehole axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                | 0               |                     |                                                      |                                                                                  | 0<br>0       |                                         | DC-12           |                   | 39                |           |             | 1             |               |           | -               |           |                 | +           | +            |                   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                 |                     |                                                      |                                                                                  |              |                                         |                 |                   |                   |           |             |               |               |           |                 |           |                 |             |              |                   |
| 63.90     11.25     Bedrock: Succession of layers of fair quality red and grey mudstone at 50°     10     10     85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                | 1               |                     |                                                      |                                                                                  | 9.0<br>9     |                                         | QC 12           | $\searrow$        | 70                | 71/22000  |             | _             |               |           | -               | ļ         |                 | $\perp$     | <u> </u>     | $\square$         |
| quality red and grey mudstone at 50°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                | 6<br>1          | 3.90<br><b>1.25</b> | Bedrock: Succ                                        | ession of layers of fair                                                         |              |                                         | 33-13           | F                 | 79                | / 1/∠3CM  |             |               |               |           |                 |           |                 |             |              |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                 |                     | quality red and from borehole                        | l grey mudstone at 50°<br>axis.                                                  |              |                                         | DC-14           |                   | 100               | 85        |             |               |               |           |                 |           |                 |             |              |                   |

|            |                       |                                 |                               | PR            | OJECT                    | : Raba       | ska Pr          | roject (          | Phase 1           | ), Levi  | s / Be   | eaumo  | ont      |               | BOR        | HOLE         | :: <b>b</b> | N-00           | 4-04           |           |
|------------|-----------------------|---------------------------------|-------------------------------|---------------|--------------------------|--------------|-----------------|-------------------|-------------------|----------|----------|--------|----------|---------------|------------|--------------|-------------|----------------|----------------|-----------|
|            |                       | Т                               | www.ata.ala                   | sn            | ΓE :                     | West         | Optio           | n Site            |                   |          |          |        |          |               | PAGE       | ::           | 2           | OF             | 2              |           |
|            | ▼                     | jj ie                           | rratecn                       | FIL           | E NO :                   | <u>T-105</u> | 0-A (           | (60333            | 3-RABA            | .)       |          |        |          |               | CASI       | NG :         | нw          |                |                |           |
|            |                       |                                 |                               | вс            |                          | DATE :       |                 | 2004-             | 09-24             |          | то       |        | 2004-09- | 28            | CORE       | BARI         | RFI ·       | • но:          | 3              |           |
|            | 1                     | BORIN                           | G LOG                         |               | тим ·                    |              | Geod            | letic             |                   |          | C        | 008    |          | . 5           | 186686     | 10 N         |             | 26192          | 25 54 F        | =         |
| SAN        |                       |                                 |                               |               |                          |              | 2470            |                   |                   |          | ст<br>ет |        | DINATES  |               | /          | .10 14       |             |                |                |           |
|            | Rem                   | oulded                          | SS Split spoon                |               |                          | GS G         | rain si         | ize ana           | alysis            | IUTE     | 51       |        |          | Field         | /ane       | (S<br>(S     | u)<br>sur)  | ♦ in           | tact<br>mould  | led       |
|            | Undi                  | sturbed                         | ST Thin walled Shelby tub     | e             |                          | сс           | onsoli          | dation            |                   |          |          |        |          | Swedi         | sh cone    | ) ÷          | ;u)         | ⊽ in           | tact           |           |
|            | Lost                  | core                            | PS Piston sampler             |               |                          | D U<br>CP C  | nit we<br>ompre | ight (k<br>essive | N/m³)<br>strenath | (MPa)    |          |        |          |               | one Pa     | C)<br>on Tes | ur)         | ▼ re           | mould          | led       |
|            |                       | STR                             | ATIGRAPHY                     |               | _                        | 0. 0         | SAM             | PLES              | )                 | (        |          |        |          | Dyn. C        |            |              | <u>. x</u>  |                | ;              | ×         |
| _          | 8                     |                                 |                               |               | <u>۳</u>                 |              |                 | 、。                |                   | WA       | TER      | co     | NTENT    | 2             | ß          | DYN.         | COI<br>(blo | NE PI<br>ws/0. | ΞΝ. ΤΙ<br>3m)  | EST       |
| 3 <u>-</u> | - u                   |                                 |                               | ۲             | NEL                      | DN R         | NO              | ۲ %               | ð                 | ar       | nd Ll    | міт    | S (%)    | DI.           | ES.        |              | 50          |                | 100            |           |
| HE         | ATI(<br>PTH           |                                 |                               | МВС           | S LE                     | e ai<br>Mbe  | E               | VEF               | r RG              |          |          |        |          | DRA           | anc        |              |             |                |                |           |
| B          | DE                    | DE                              | SCRIPTION                     | SYI           | TEF                      | ΝUI          | NON             | 00                | ō<br>N            | w        | P        | W      | wL       | ABC           | N SI       | UNI<br>S7    |             | NGTH           | SHE/<br>I (kPa | AR<br>3)  |
|            | ш                     |                                 |                               |               | ٨v                       |              |                 | R                 |                   | 20       | ) 40     | )<br>6 | ) 80     |               | =          |              | 50          |                | 100            |           |
| E          |                       | Succession of                   | layers of fair quality red    |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             | -              |                |           |
| Ē          |                       | anu grey muds<br>axis.          | IONE AL SU ITOM DOFENOIE      |               |                          | DC-15        |                 | 100               | 33                |          |          |        |          |               |            |              |             |                |                |           |
| -<br>13    |                       |                                 |                               | XX            |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| Ē          |                       |                                 |                               | XX            |                          | DC-16        |                 | 98                | 71                |          |          |        |          |               |            |              |             |                |                |           |
| Ē          |                       |                                 |                               |               |                          | 20.0         |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| - 14       |                       |                                 |                               |               | D0 D0<br>D0 D0<br>·D0 D0 |              |                 |                   |                   | $\vdash$ | _        |        |          | -             |            |              | +           | +              | +              |           |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          | D = 26        | 5.3        |              |             |                |                |           |
| Ē          |                       |                                 |                               |               |                          | DC-17        |                 | 100               | 82                |          |          |        |          | CP=2          | 2.0        |              |             |                |                |           |
| - 15       |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              | +           | +              | +              |           |
| Ē          | 59.68<br><b>15.47</b> | Succession of                   | lavers of good to excellent   |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| E 16       |                       | quality red and from borehole a | grey mudstone at 50°<br>axis. |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| ŧ "        |                       |                                 |                               |               |                          | DC-18        |                 | 100               | 85                |          |          |        |          |               |            |              |             |                |                |           |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| - 17       |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          | -             |            |              |             | _              | —              |           |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| Ē          |                       |                                 |                               |               |                          | DC-19        |                 | 100               | 100               |          |          |        |          |               |            |              |             |                |                |           |
| - 18       |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              | +           | +              | +              |           |
| Ē          |                       |                                 |                               |               |                          |              | ┝┛              |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| E 10       |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          | D = 2<br>CP=1 | 7.2<br>9.5 |              |             |                |                |           |
|            |                       |                                 |                               |               |                          | DC-20        |                 | 100               | 92                | [        |          |        |          |               |            |              |             |                |                |           |
| ŧ          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| - 20       |                       |                                 |                               |               |                          |              | ┝┛              |                   |                   | $\vdash$ | -+       |        |          | -             |            | $\vdash$     | +           | +              | +              | $\square$ |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| ŧ          |                       |                                 |                               |               |                          | DC-21        |                 | 95                | 95                |          |          |        |          |               |            |              |             |                |                |           |
| 21         |                       |                                 |                               |               |                          |              |                 |                   |                   | $\vdash$ | +        |        |          | 1             |            | $\vdash$     | +           | +              | +              | $\square$ |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| E ,,       |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| ŧ"         |                       |                                 |                               |               |                          | DC-22        |                 | 100               | 100               | [        |          |        |          |               |            |              |             |                |                |           |
| Ē          | 52.20                 |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| 23         | 22.29<br>22.86        | END OF BORE                     | EHOLE                         | <u>111/11</u> | ··· ( ··· ·              |              |                 |                   |                   | $\vdash$ |          |        |          | -             |            | $\vdash$     | +           | +              | +              |           |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| Ē          |                       |                                 |                               |               |                          |              |                 |                   |                   |          |          |        |          |               |            |              |             |                |                |           |
| Ľ          | 1                     |                                 |                               | I             |                          |              | 1               | 1                 |                   |          | 1        |        |          | 1             |            | ┶──└─        |             |                | _              |           |
|           |          |                      |                 |                                                        | PR             | OJECI       | 「: <u>R</u> aba | ska P              | roject             | (Phase 1             | ), Levi  | is / Be  | eaumo | ont      |                | BORE      | EHOL       | .E :          | W-         | <u>005</u>      | -04          |         |
|-----------|----------|----------------------|-----------------|--------------------------------------------------------|----------------|-------------|-----------------|--------------------|--------------------|----------------------|----------|----------|-------|----------|----------------|-----------|------------|---------------|------------|-----------------|--------------|---------|
|           |          |                      | Т               | matach                                                 | SIT            | Е:          | West            | Optio              | n Site             |                      |          |          |       |          |                | PAGE      | E: _       | 1             | _ 0        | F_              | 2            |         |
|           |          | ▼                    |                 | erratech                                               | FIL            | E NO :      | <u>T-105</u>    | 60-A               | (6033              | 33-RABA              | .)       |          |       |          |                | CASI      | NG :       | NW            | 1          |                 |              |         |
|           |          | •                    |                 |                                                        | во             | RING        | DATE :          |                    | 2004               | -09-29               |          | то       |       | 2004-09- | 29             | CORE      | Е ВАГ      | REL           | . 1        | NQ3             |              |         |
|           |          |                      | BORIN           | G LOG                                                  | DA             | тим :       |                 | Geod               | detic              |                      |          | 0        | OOR   |          |                | 186934    | .47 1      | ۰–<br>۱       | 26         | 2210            | .95 E        | _       |
| 9/        | M        |                      |                 |                                                        |                |             |                 | PATO               |                    |                      |          | ст<br>ст |       |          | Eiold V        | /200      |            | ·<br>·        |            | into            |              |         |
| $\square$ | $\leq$   | Ren                  | noulded         | SS Split spoon                                         |                |             | GS G            | irain s            | ize ar             | alysis               |          | 31       |       |          |                | /ane      | (          | Su)<br>Sur)   | $\diamond$ | rem             | ct<br>10uldr | ed      |
|           |          | Und                  | listurbed       | ST Thin walled Shelby tub                              | be             |             | СС              | onsol              | idatior            | 1                    |          |          |       |          | Swedi          | sh cone   | э (        | Cu)           | $\nabla$   | inta            | ct           |         |
|           |          | Lost                 | t<br>k core     | PS Piston sampler<br>DC Diamond core barrel            |                |             |                 | nit we             | eight (I<br>essive | «N/m³)<br>e strenath | (MPa)    | )        |       |          | Dyn (          | one Pr    | )<br>an Te | Cur)          | ▼          | rem             | oulde        | əd      |
|           |          | ] 1.00               | STF             | RATIGRAPHY                                             |                | _           |                 | SAM                | PLE                | S                    | ( u)     | ,        |       |          | Dyn. C         |           |            |               | <u>*-</u>  |                 | ,            | <u></u> |
|           |          | <b>E</b>             |                 |                                                        |                | Е           |                 |                    |                    |                      | WA       | TER      | R COI | NTENT    | ž              | S         | DYN        | 1. CC<br>(bl/ | )NE<br>ows | . PEI<br>;/0.3: | ч. те<br>m)  | EST     |
| ع ا<br>-  |          | NO L                 |                 |                                                        | Ч              | <u>V</u> EI | DZ K            | NO                 | ۲ %                | Q                    | aı       | nd L     | іміт  | S (%)    | ĮŌ.            | LES.      |            | 50            | 0          | 10              | 0            |         |
| L H       |          | PTH                  |                 |                                                        | ИВС            | 2 LE        | E A<br>MBE      | E                  | VEF                | r RG                 |          |          |       |          | ORA            | and<br>TU |            |               |            |                 |              |         |
| 믭         |          |                      | D               | ESCRIPTION                                             | SΥΙ            | Ë           | NUN             | NO<br>NO           |                    | o<br>Z               | N        | P        | W     | wL       | AB(            | N SI.     | S          | TRE           | ENG        | =D S<br>TH (    | kPa          | лк<br>) |
|           |          | <b>□</b>  <br>77.55  |                 |                                                        |                | M           |                 | 10                 | R                  |                      | 20       | 04       | 0 60  | 80       |                | =         |            | 5             | 0          | 10              | 0            |         |
| -         | 1        | 0.00<br>77.25        | Fill: Loose gre | ey sand, gravel and silt.                              | $\otimes$      |             |                 | $\bigtriangledown$ |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          | 0.30                 | Peat.           |                                                        |                |             | SS-1            |                    | 62                 | 4                    |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 | $\geq$             |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 1        | 76.33<br><b>1.22</b> | Loose brown     | and reddish silty and                                  | 1<br>1 - 1 - 1 |             | SS-2            |                    | 25                 | 2                    |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      | gravelly sand   |                                                        | . 6            | -90-        |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 2        |                      |                 |                                                        | 0 9            | 04-10       | SS-3            |                    | 46                 | 8                    | $\odot$  |          |       |          | GS             |           |            |               |            |                 |              |         |
|           | ╞        | 75.26<br><b>2.29</b> | Bedrock: Suc    | cression of layers of very                             |                | on 20       |                 |                    | 7                  |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      | poor quality re | ed and grey mudstone with<br>black clavey shale at 40° |                | 25m         | SS-4            | $\mid$             | 88                 | 100/28cm             |          |          |       |          |                |           |            |               |            |                 |              |         |
| F         | 3        |                      | from borehole   | e axis.                                                |                | . 76.2      |                 |                    | -                  |                      |          |          |       |          | _              |           |            |               |            |                 |              |         |
|           |          |                      |                 |                                                        |                | t elev      | DC-5            |                    | 90                 | 13                   |          |          |       |          | Pyrite         | ion       |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                | evel a      |                 |                    |                    |                      |          |          |       |          | ueleci         |           |            |               |            |                 |              |         |
| Ē         | 4        | 73 01                |                 |                                                        |                | ater le     | DC-6            |                    | 86                 | 10                   |          |          |       |          | -              |           |            |               |            |                 |              |         |
| Ē         | F        | 4.34                 | Succession o    | f layers of poor quality red                           |                | Ě           |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 5        |                      | black clayey s  | shale at 40° from borehole                             |                |             | DC-7            |                    | 100                | 47                   |          |          |       |          | D = 26<br>CP=6 | 5.4<br>5  |            |               |            |                 |              |         |
| Ē         | <b>]</b> | 72.27                | axis.           |                                                        |                |             |                 |                    |                    |                      |          |          |       |          | 01 -01         | .0        |            |               |            |                 |              |         |
| Ē         |          | 5.20                 | and grey muc    | dstone with thin layers of                             |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| È.        | 6        |                      | axis.           | shale at 40 from borehole                              |                |             | DC-8            |                    | 100                | 87                   |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 7        |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          | _              |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             | DC-9            |                    | 100                | 82                   |          |          |       |          |                |           |            |               |            |                 |              |         |
|           |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 8        |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             | DC-10           |                    | 98                 | 60                   |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         | 9        |                      |                 |                                                        |                |             |                 |                    | -                  |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    | 1                  |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| ŧ         |          |                      |                 |                                                        |                |             | DC-11           |                    | 100                | 90                   |          |          |       |          |                |           |            |               |            |                 |              |         |
| ₽ 1       | 0        |                      |                 |                                                        |                |             |                 |                    |                    |                      | $\vdash$ |          |       |          | -              |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    | 1                  |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| ₽ 1       | 1        |                      |                 |                                                        |                |             | DC-12           |                    | 100                | 87                   |          |          |       |          |                |           |            |               |            |                 |              |         |
| Ē         |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |
| E         |          |                      |                 |                                                        |                |             |                 |                    |                    |                      |          |          |       |          |                |           |            |               |            |                 |              |         |

|                  |                    |          |                                    |                           | PR  | OJECT      | : Rabas      | ska Pi           | roject      | (Phase 1 | ), Levis | s / Bea | umon | t              |          | BORE   | HOLE          | : I          | <i>N-0</i> ( | )5-04                | 4          |
|------------------|--------------------|----------|------------------------------------|---------------------------|-----|------------|--------------|------------------|-------------|----------|----------|---------|------|----------------|----------|--------|---------------|--------------|--------------|----------------------|------------|
| 1                |                    | N        | Т                                  | matach                    | sr  | ΓE :       | West         | Optio            | n Site      |          |          |         |      |                |          | PAGE   | :             | 2            | OF           | 2                    | 2          |
|                  |                    |          |                                    | rratecn                   | FIL | E NO :     | <u>T-105</u> | 0-A              | (6033       | 33-RABA  | .)       |         |      |                |          | CASIN  | 1G :          | NW           |              |                      |            |
| 1                |                    |          |                                    |                           | вс  | ORING I    | DATE :       |                  | 2004        | 09-29    | 1        | то      | 20   | 04-09-         | 29       | CORE   | BAR           | REL :        | : <u>N</u> C | 23                   |            |
|                  |                    | E        | BORIN                              | G LOG                     | DA  | TUM :      |              | Geod             | letic       |          |          | со      | ORDI | NATES          | : 51     | 86934. | .47 N         |              | 2622         | 10.95                | Ε          |
| SAN              | IPLE               | CO       | NDITION                            | TYPE OF SAMPLER           |     |            | LABOF        | RATO             | RY A        | ND IN SI | TU TES   | БТ      |      |                | Field Va | ane    | (S            | Su)          | ○ i          | ntact                |            |
|                  | ] R<br>ℤ ⊔         | lemo     | ulded                              | SS Split spoon            | ۵   |            | GS G         | rain s<br>onsoli | ize an      | alysis   |          |         |      |                | Ourselie |        | (S            | Sur)         | ♦ r          | emou                 | lded       |
|                  | L                  | ost      | uibeu                              | PS Piston sampler         | C   |            | D Ui         | nit we           | ight (k     | N/m³)    |          |         |      |                | Sweals   | 1 cone | (C<br>(C      | ;u)<br>Cur)  | ⊽ ii<br>▼ r  | ntact<br>emou        | Ided       |
|                  | R                  | lock     | core                               | DC Diamond core barrel    |     |            | CP C         | ompre            | essive      | strength | (MPa)    |         |      |                | Dyn. Co  | one Pe | n. Tes        | st ×         | <u> </u>     |                      | - ×        |
|                  | ٤                  |          | 5184                               |                           |     | E          |              |                  | PLE         | )        | w۵٦      |         | CONT | FNT            | ~        | S      | DYN.          |              | NE P         | EN.                  | TEST       |
| ε                | - N                | ε        |                                    |                           | _   | VEL        | ₽∝           | z                | Υ%          | Δ        | an       | d LIN   | NITS | (%)            | TOR      | EST    |               | (DIO)<br>50  | ws/u         | .3 <b>m</b> )<br>100 |            |
| H                | ATIC               | PTH      |                                    |                           | ЛВО | ГĒ<br>У ГĒ | e an<br>Mbe  | DITIO            | VER         | RQ       |          |         |      |                | RA.      | 5      |               |              |              |                      |            |
| B                | ΓE                 | Ū        | DE                                 | SCRIPTION                 | SΥΝ | TER        | ΝU           | NOC              | С<br>С<br>С | о<br>И   | w        | P V     | N    | w <sub>L</sub> | ABC      | IS N   |               | DRA<br>[REI  |              | ) SHI<br>H (kP       | EAR<br>'a) |
|                  | ш                  |          |                                    |                           |     | Ŵ          |              |                  | R           |          | 20       | 40      | <br> | 80             | -        | -      |               | 50           |              | 100                  |            |
| _                |                    |          | Succession of la<br>and grey mudst | ayers of good quality red |     |            |              |                  |             |          |          |         |      |                | D - 26   | 5      |               |              |              |                      |            |
| -                |                    |          | black clayey sh                    | ale at 40° from borehole  |     |            | DC-13        |                  | 97          | 85       |          |         |      |                | CP=4.4   | 5      |               |              |              |                      |            |
| - 13             |                    |          |                                    |                           |     |            |              |                  |             |          |          |         | _    |                | -        |        |               |              |              |                      |            |
| -                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| Ē                |                    |          |                                    |                           |     |            | DC-14        |                  | 100         | 91       |          |         |      |                |          |        |               |              |              |                      |            |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| - 15             | 62.<br><b>15</b> . | 54<br>01 | END OF BORE                        | HOLE                      |     |            | -            |                  | -           |          |          |         | -    | _              | -        |        |               | _            | _            | _                    |            |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| E 16             |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| - 17             |                    |          |                                    |                           |     |            |              |                  |             |          |          |         | -    |                | -        | i      |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| E 18             |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| - 19             |                    |          |                                    |                           |     |            |              |                  |             |          | $\vdash$ |         | +    | +              |          |        | $\rightarrow$ | +            | +            | +                    | +          |
| Ē                |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| 20               |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      | _              | -        |        | $\vdash$      | $\perp$      | $\perp$      | $\perp$              |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| 21               |                    |          |                                    |                           |     |            |              |                  |             |          |          | +       | +    |                |          |        | $\rightarrow$ | +            | +            | +                    | +          |
| -<br>-<br>-<br>- |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| 22               |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      | _              | -        |        |               | $\downarrow$ | $\perp$      | $\perp$              |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
| - 23             |                    |          |                                    |                           |     |            |              |                  |             |          |          | +       | +    |                |          |        | $\rightarrow$ | +            | +            | +                    | +          |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |
|                  |                    |          |                                    |                           |     |            |              |                  |             |          |          |         |      |                |          |        |               |              |              |                      |            |

|          |                      |                                  |                                                           | PR  | OJECT  | : Rabas      | ska Pi             | roject  | (Phase 1)   | , Levis /      | Beaum        | ont            | во                 | REHOL   | .E :         | W-(         | 006-          | 04          | _  |
|----------|----------------------|----------------------------------|-----------------------------------------------------------|-----|--------|--------------|--------------------|---------|-------------|----------------|--------------|----------------|--------------------|---------|--------------|-------------|---------------|-------------|----|
|          |                      | То                               | matach                                                    | SIT | Έ:     | West         | Optio              | n Site  |             |                |              |                | PA                 | €:_     | 1            | _ 0         | F _           | 2           | _  |
|          | ▼                    |                                  | rratech                                                   | FIL | E NO : | <u>T-105</u> | 0-A                | (6033   | 33-RABA     | )              |              |                | CA                 | SING :  | NW           | /           |               |             |    |
|          | •                    |                                  |                                                           | во  | RING   | DATE :       |                    | 2004    | -09-28      | то             |              | 2004-09-2      | <sup>29</sup> co   | RE BAI  | RREL         | .: <u>1</u> | VQ3           |             | _  |
|          |                      | BORIN                            | G LOG                                                     | DA  | TUM :  |              | Geod               | letic   |             |                | COOR         | DINATES        | 51863              | 72.84 1 | N            | 26′         | 1810.         | 50 E        |    |
| SAN      | IPLE CO              | ONDITION                         | TYPE OF SAMPLER                                           |     |        | LABOR        | RATO               | RY A    | ND IN SIT   | U TEST         |              |                | Field Vane         | (       | (Su)         | $\diamond$  | intac         | ct          |    |
|          | Rem                  | oulded                           | SS Split spoon                                            | 0   |        | GS G         | rain s             | ize an  | alysis      |                |              |                |                    | (       | Sur)         | ٠           | rem           | oulde       | d  |
|          | Lost                 | siurbeu                          | PS Piston sampler                                         | C   |        |              | nit we             | ight (k | '<br>(N/m³) |                |              |                | Swedish co         | ne (    | Cu)<br>(Cur) | ▽           | intac<br>rem  | ct<br>oulde | ed |
|          | Rocl                 | core                             | DC Diamond core barrel                                    |     |        | CP C         | ompre              | essive  | strength    | (MPa)          |              |                | Dyn. Cone          | Pen. Te | est          | × -         |               | X           |    |
|          | u I                  | STR                              | ATIGRAPHY                                                 |     | Ε      |              | SAM                | PLES    | 6           |                |              |                |                    | DYM     | 1. CC        | ONE         | PEN           | I. TE       | ST |
| ε        | Σ<br>z ε             |                                  |                                                           |     | ĒĽ.    | <u>م</u> م   | z                  | % /     | 0           | and            |              | NIENI<br>S (%) | OR)<br>ESTS        |         | (ble         | ows<br>0    | /0.3n         | n)<br>0     |    |
| Ē        | E H                  |                                  |                                                           | BOL | ΓĒ     | ANBEF        | 0E                 | ER)     | RQI         | unu            |              | e (70)         | RAT<br>and<br>U TE |         |              |             |               | <b>.</b>    |    |
| ШШ       |                      | DE                               | SCRIPTION                                                 | SYM | TER    | YPE<br>NUM   |                    | Sov     | l or        | w <sub>P</sub> | w            | wL             | ABO<br>SIT         | UN      |              | AINE<br>-NG | ED SI         | HEA<br>kPa) | R  |
|          |                      |                                  |                                                           |     | MAT    | F -          | Ŭ                  | RE      | -           | ⊢<br>20        | <del>0</del> | <br>D 80       | ĭ z                |         | 5            | 0           | 10            | 0           |    |
|          | 79.84<br>0.00        | GROUND SUF<br>Topsoil.           | RFACE                                                     |     |        |              | $\bigtriangledown$ |         |             |                | + + +        |                |                    |         | $\vdash$     |             | $\rightarrow$ |             |    |
| Ē        | 0.15                 | Loose brown s<br>occasional grav | and, some silt (to silty),<br>vel.                        |     |        | SS-1         |                    | 75      | 9           |                |              |                |                    |         |              |             |               |             |    |
| Ē,       | 79.00<br><b>0.84</b> | Bedrock: Succ                    | ession of verv poor quality                               |     | -      | SS-2         | $\geq$             | 80      | 50/13cm     |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      | grey mudstone<br>black, red and  | with subordinate layers of light grey, slightly           | X   | 10-06  | DC-3         |                    | 98      | 0           |                |              |                | Pyrite             |         |              |             |               |             |    |
| Ē        |                      | calcareous mu<br>50° from boreh  | dstone. Beddings at 45° to<br>ole axis. Calcite veinlets. |     | 2004-  |              |                    |         |             |                |              |                | detection          |         |              |             |               |             |    |
| ÷ 2      |                      |                                  |                                                           | X   | uo u   |              |                    |         |             |                |              | _              |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     | 78.99  | DC-4         |                    | 100     | 15          |                |              |                |                    |         |              |             |               |             |    |
| Ė,       |                      |                                  |                                                           |     | elev.  |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     | vel at |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     | ter le |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| <b>4</b> |                      |                                  |                                                           |     | Ŵ      | DC-5         |                    | 100     | 18          |                |              |                |                    |         |              |             |               |             | _  |
| Ē        |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē,       | 74 81                |                                  |                                                           |     |        | DC-6         |                    | 100     | 0           |                |              |                |                    |         |              |             |               |             |    |
| Ē        | 5.03                 | Succession of                    | poor quality grey                                         |     |        |              |                    |         |             |                |              |                | D = 26<br>CP=18 7  |         |              |             |               |             |    |
| Ē        |                      | black, red and                   | light grey, slightly                                      |     |        | DC-7         |                    | 100     | 27          |                |              |                | 01 - 10.7          |         |              |             |               |             |    |
| - 6      | 73 50                | 50° from boreh                   | ole axis. Calcite veinlets.                               |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             | _  |
| Ē        | 6.25                 | Succession of                    | good quality grey                                         |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē_       |                      | black and red r                  | nudstone. All layers at 45°                               |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ḗ        |                      |                                  |                                                           |     |        | DC-8         |                    | 100     | 100         |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| - 8      |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             | _  |
| Ē        |                      |                                  |                                                           |     |        | 50.0         |                    | 100     |             |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     |        | DC-9         |                    | 100     | 92          |                |              |                |                    |         |              |             |               |             |    |
| - 9      |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| - 10     |                      |                                  |                                                           |     |        | DC-10        |                    | 100     | 88          |                |              |                | -                  |         |              |             |               |             | _  |
| Ē        |                      |                                  |                                                           |     |        | 00-10        |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| Ē        |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |
| F 11     |                      |                                  |                                                           |     |        |              |                    |         |             |                |              |                |                    |         |              |             | $\uparrow$    |             | -  |
| Ē        |                      |                                  |                                                           |     |        | DC-11        |                    | 100     | 100         |                |              |                |                    |         |              |             |               |             |    |
| E        |                      |                                  |                                                           | ŴŇ  |        |              |                    |         |             |                |              |                |                    |         |              |             |               |             |    |

|            |                       |                               | PRC                | JECT   | : Rabas      | ka Pr            | oject (    | Phase 1  | ), Levis / E | Beaum | ont      | ВС                  | REHOL     | .E :                 | W-0           | 06-0          | 04           |
|------------|-----------------------|-------------------------------|--------------------|--------|--------------|------------------|------------|----------|--------------|-------|----------|---------------------|-----------|----------------------|---------------|---------------|--------------|
|            |                       | Torret                        | site               | Ξ:     | West 0       | Optior           | n Site     |          |              |       |          | PA                  | .GE: _    | 2                    | _ OF          | : _           | 2            |
|            | ▼                     |                               |                    | E NO : | <u>T-105</u> | )-A (            | (60333     | 3-RABA   | )            |       |          | CA                  | SING :    | NW                   | /             |               |              |
|            | •                     |                               | BOF                | RING E | DATE :       |                  | 2004-      | 09-28    | то           |       | 2004-09- | <sup>29</sup> co    | REBA      | RREL                 | .: <u>N</u>   | Q3            |              |
|            | ]                     | BORING LC                     |                    | TUM :  |              | Geod             | letic      |          |              | COOR  |          | <b>5186</b>         | 72.84 I   | N                    | 2618          | 810.5         | 50 E         |
| SAM        | PLE CO                | NDITION TYPE OF               | SAMPLER            |        |              | АТО              | RY AN      |          | TU TEST      |       |          | Field Vane          |           | (Su)                 | $\diamond$    | intac         | t            |
|            | _ Rem<br>∬ Undi       | sturbed ST Thin v             | walled Shelby tube |        | C C          | ain si<br>onsoli | dation     | aiysis   |              |       |          | Swedish c           | one       | (Sur)<br>(Cu)        | ◆<br>▽        | remo<br>intac | oulded       |
|            | Lost                  | PS Pistor                     | n sampler          |        | D Ur         | nit we           | ight (k    | N/m³)    |              |       |          |                     |           | (Cur)                | Ť             | remo          | oulded       |
|            | Rock                  | STRATIGRAPH                   |                    |        |              | SAM              | PLES       | strengtn | (мра)        |       |          | Dyn. Cone           | Pen. Te   | est                  | ×             |               | ×            |
|            | <u></u> ۲             |                               |                    | Е<br>- |              |                  | <b>`</b> 0 |          | WATE         | R CO  | NTENT    | 7<br>2<br>7         |           | <b>۱. CC</b><br>ble) | )NE I<br>ows/ | PEN<br>0.3m   | . TEST<br>1) |
| - m        | NO T                  |                               | Ы                  | EVEI   | UN B         | NOI              | RY %       | B        | and I        |       | S (%)    | ATOF<br>d<br>TES    | 1         | 50                   | 0             | 100           | ָּרָ רַ      |
| EPT        | VATI<br>EPTI          | DECODIDEIO                    | MB                 | R LI   | PE A<br>JMBI | NDIT             | OVE        | or R(    | w            | w     | w        | SOR/                | )<br>: UI | NDR/                 | AINE          | D Sł          | IEAR         |
|            |                       | DESCRIPTIO                    | N ÍS               | IATE   | N            | co               | RC         | z        | "Р<br>       |       |          |                     | ;   \$    | STRE                 | ENGT          | 'H (k         | (Pa)         |
|            |                       |                               |                    | \$     |              |                  | _          |          | 20 4         | 40 6  | 0 80     |                     | _         | 50                   | 0<br>         | 100           | )            |
|            | 67.44                 | Succession of poor quality s  | slightly           |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
|            | 12.40                 | calcareous grey mudstone,     | layers of red      |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 13       |                       | borehole axis. Calcite veinle | ets.               |        | DC-12        |                  | 100        | 33       |              |       |          | D = 26.7<br>CP=44.6 |           |                      |               |               |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 14       | 65.92<br><b>13.92</b> | END OF BOREHOLE               |                    | 8      |              |                  |            |          |              |       |          | -                   |           | +                    |               | -+            |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 15       |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| Ē          |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 16       |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               | _             |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 17       |                       |                               |                    |        |              |                  |            |          |              |       |          | -                   |           |                      |               |               |              |
| -          |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 18       |                       |                               |                    |        |              |                  |            |          |              |       |          | -                   |           |                      |               | -             | _            |
| Ē          |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 19       |                       |                               |                    |        |              |                  |            |          |              |       |          | _                   |           |                      |               | _             |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| -          |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| 20         |                       |                               |                    |        |              |                  |            |          |              |       |          | 1                   |           |                      |               | ╈             |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 21       |                       |                               |                    |        |              |                  |            |          |              |       |          | -                   | -         | $\vdash$             | $\rightarrow$ | +             | +            |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 22       |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| <b>É 1</b> |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      | T             |               |              |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| - 23       |                       |                               |                    |        |              |                  |            |          |              |       |          | -                   | -         | +                    | $\rightarrow$ | +             | +            |
|            |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |
| Ē          |                       |                               |                    |        |              |                  |            |          |              |       |          |                     |           |                      |               |               |              |

|      |                        |                                       |                                                        | PR   | OJECT    | : Rabas      | ska Pr            | oject           | Phase 1  | ), Levi | is / B | eaum   | ont    |       | I        | BORE             | HOLE       | :: <b>I</b>   | N-00         | )8-04          | 1                                            |
|------|------------------------|---------------------------------------|--------------------------------------------------------|------|----------|--------------|-------------------|-----------------|----------|---------|--------|--------|--------|-------|----------|------------------|------------|---------------|--------------|----------------|----------------------------------------------|
|      |                        | То                                    | matach                                                 | SIT  | E :      | West         | Optio             | n Site          |          |         |        |        |        |       | I        | PAGE             | ::         | 1             | OF           | 2              | <u>.                                    </u> |
|      | ▼                      |                                       | rratech                                                | FIL  | E NO :   | <u>T-105</u> | 0-A (             | 60333           | 33-RABA  | .)      |        |        |        |       | (        | CASIN            | NG :       | NW            |              |                |                                              |
|      | •                      |                                       |                                                        | во   | RING I   | DATE :       |                   | 2004-           | 09-23    |         | то     |        | 2004-0 | )9-23 | 3(       | CORE             | BAR        | REL :         | : <u>NC</u>  | 23             |                                              |
|      | ]                      | BORIN                                 | G LOG                                                  | DA   | TUM :    |              | Geod              | etic            |          |         | c      | OOR    | DINAT  | ES :  | 518      | 6310.            | .70 N      |               | 2622         | 88.52          | E                                            |
| SAM  |                        | NDITION                               |                                                        | -    |          | LABO         | RATO              | RY AI           | ND IN SI | TU TE   | ST     |        |        | F     | Field Va | ne               | (S         | su)           | ♦ in         | ntact          |                                              |
|      | Rem<br>Undi:           | oulded<br>sturbed                     | SS Split spoon<br>ST Thin walled Shelby tub            | e    |          |              | rain si<br>onsoli | ze an<br>dation | aiysis   |         |        |        |        | 5     | Swedish  | i cone           | (S<br>+ (C | sur)<br>Su)   | ♦ r<br>⊽ i   | emoul<br>ntact | ided                                         |
|      | Lost                   |                                       | PS Piston sampler                                      |      |          | D U          | nit we            | ight (k         | N/m³)    |         |        |        |        |       |          |                  | (C         | Sur)          | ▼ r          | emoul          | lded                                         |
|      | Rock                   | core                                  | ATIGRAPHY                                              |      |          | CP C         | ompre<br>SAM      |                 | strength | (MPa    | )      |        |        | [     | Dyn. Co  | ne Pe            | n. Tes     | it ×          | <u>;</u>     |                | - ×                                          |
|      | <u>ا</u>               |                                       | -                                                      |      | Е        |              |                   | <b>`</b> 0      |          | WA      | TEF    | s co   | NTEN   | т     | 2        | ΓS               | DYN.       | . COI<br>(blo | NE P<br>ws/0 | 'EN. 1<br>.3m) | TEST                                         |
| - m  | - No<br>- M            |                                       |                                                        | Ч    | IN       | Q H          | ION               | RY %            | g        | a       | nd L   | ІМІТ   | S (%)  |       | 4TOF     | TES <sup>-</sup> |            | 50            | 1            | 100            |                                              |
| ΞΡŢ  | VATI<br>EPTI           |                                       |                                                        | (MB( | RLE      | PE A<br>JMBI |                   | OVE             | or R(    |         | v      | w      | w      |       | an an    | . NTI            | UNI        |               | INE          | ) SHE          | EAR                                          |
| □    | DI                     | DE                                    | SCRIPTION                                              | S    | ATE      | Σĭ           | CO                | REC             | z        |         | ╹Р<br> | ••<br> | ∣      | -     | LAB      | IN S             | S          | <b>FREN</b>   | ١GTI         | ┨ (kP          | 'a)                                          |
|      | 78.60                  | GROUND SUR                            | RFACE                                                  | ~~   | \$       |              |                   | -               |          | 2       | 04     | 06     | 0 80   |       |          |                  |            | 50            | -+-          | 100            |                                              |
| -    | \ <u>78.45</u><br>0.15 | Loose to compa                        | act brown sand, some silt                              |      |          | SS-1         | $\mid$            | 58              | 7        |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| Ē    |                        | (IO SIITY), SOME                      | yiavei.                                                | 0 0  |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 1  | 77.38                  | Bodrock: Succe                        | assion of yony poor quality                            |      |          | SS-2         | $\frown$          | 61              | 22       |         |        |        |        |       |          |                  |            |               | 1            |                |                                              |
| -    |                        | grey mudstone<br>mudstone, lave       | and slightly calcareous<br>ers at 30° to 35° from      |      |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 2  |                        | borehole axis, o                      | cleavable locally.                                     |      |          |              |                   | 40              | 0        |         |        |        |        |       |          |                  | $\vdash$   | +             | +            | +              |                                              |
| -    |                        |                                       |                                                        |      |          | DC-3         |                   | 49              | U        |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 3  |                        |                                       |                                                        |      | و        | 56.4         |                   | 100             |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
|      | 75.40<br><b>3.20</b>   | Succession of v                       | very poor quality grey                                 |      | 4-10-0   | DC-4         |                   | 100             | 0        |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| -    |                        | mudstone and a mudstone, laye         | slightly calcareous<br>ers at 30° to 35° from          |      | n 200    | DC-5         |                   | 100             | 20       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 4  |                        | borehole axis, o                      | cleavable locally.                                     |      | 86m c    |              |                   |                 |          |         |        |        |        |       |          |                  |            | -             | +            |                |                                              |
| -    | 73.88                  |                                       |                                                        |      | ev. 75.  | DC-6         |                   | 100             | 0        |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| 5    | 4.72                   | Succession of p<br>mudstone and       | poor quality grey<br>slightly calcareous               |      | l at ele |              |                   |                 |          |         |        |        |        |       |          |                  | $\vdash$   | _             | +            | _              |                                              |
|      |                        | mudstone, laye<br>borehole axis, o    | ers at 30° to 35° from<br>cleavable locally.           |      | er leve  | DC-7         |                   | 100             | 53       |         |        |        |        | [     | D = 26.4 | Ļ                |            |               |              |                |                                              |
|      |                        |                                       | -                                                      |      | Wate     |              |                   |                 |          |         |        |        |        | (     | CP=5.9   |                  |            |               |              |                |                                              |
| - 6  |                        |                                       |                                                        |      |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| _    |                        |                                       |                                                        |      |          | DC-8         |                   | 100             | 78       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 7  |                        |                                       |                                                        |      |          |              |                   |                 |          |         |        |        |        |       |          |                  | $\vdash$   | +             | +            | +              |                                              |
| -    |                        |                                       |                                                        |      |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 8  |                        |                                       |                                                        |      |          | DC-9         |                   | 100             | 61       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
|      |                        |                                       |                                                        |      |          | 000          |                   | 100             | 01       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| -    |                        |                                       |                                                        |      |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 9  |                        |                                       |                                                        |      |          | DC-10        |                   | 100             | 73       |         |        |        |        |       |          |                  |            | +             | +            | +              | +                                            |
| Ē    | 68.92                  |                                       |                                                        |      |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| - 10 | 9.68                   | Succession of mudstone and            | very poor quality grey                                 |      |          | DC-11        |                   | 100             | 0        |         |        |        |        |       |          |                  | $\mid$     | $\downarrow$  | $\downarrow$ | +              |                                              |
|      | 68.26<br><b>10.34</b>  | mudstone, laye                        | ers at 30° to 35° from<br>cleavable locally.           |      |          | DC 40        | ╞╋                |                 | 44       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
|      |                        | Succession of f<br>and slightly cal   | fair quality grey mudstone<br>careous mudstone, layers |      |          | DC-12        | ┝╋                | 94              | 41       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
|      |                        | at 30° to 35° fro<br>cleavable locall | bri borenole axis,<br>ly.                              |      |          |              |                   | 100             | ~~       |         |        |        |        |       |          |                  |            | +             | +            | $\top$         |                                              |
|      |                        |                                       |                                                        |      |          | DC-13        |                   | 100             | 62       |         |        |        |        |       |          |                  |            |               |              |                |                                              |
| Ē    |                        |                                       |                                                        | XX   |          |              |                   |                 |          |         |        |        |        |       |          |                  |            |               |              |                |                                              |

|           |          |                     |                                  |                                              | PR  | OJECT                   | : Rabas      | ska Pi | roject  | Phase 1       | ), Levi | is / Be | eaumo | ont      |               | BORE      | HOL        | E :            | W-C            | )08-           | 04          | _      |
|-----------|----------|---------------------|----------------------------------|----------------------------------------------|-----|-------------------------|--------------|--------|---------|---------------|---------|---------|-------|----------|---------------|-----------|------------|----------------|----------------|----------------|-------------|--------|
|           |          |                     | То                               | **atoch                                      | SIT | ſE :                    | West         | Optio  | n Site  |               |         |         |       |          |               | PAGE      | : _        | 2              | _ 0            | F _            | 2           | _      |
|           |          |                     |                                  | rratech                                      | FIL | E NO :                  | <u>T-105</u> | 0-A    | (6033   | 33-RABA       | .)      |         |       |          |               | CASI      | NG :       | NW             |                |                |             | _      |
|           |          | •                   |                                  |                                              | во  | RING I                  | DATE :       |        | 2004    | 09-23         |         | то      |       | 2004-09  | -23           | CORE      | BAR        | REL            | .: <u>N</u>    | iQ3            |             |        |
|           |          | ł                   | BORIN                            | G LOG                                        | DA  | TUM :                   |              | Geod   | letic   |               |         | С       | OOR   | DINATES  | <b>S</b> : _5 | 186310    | .70 N      | I              | 262            | .288.5         | 52 E        |        |
| SAN       | IPL      | E CO                |                                  | TYPE OF SAMPLER                              |     |                         |              | RATO   | RY A    |               | ΓU ΤΕ   | ST      |       |          | Field         | /ane      | (\$        | Su)            | $\diamond$     | intac          | ct          |        |
|           |          | Undis               | uided<br>turbed                  | ST Thin walled Shelby tub                    | е   |                         |              | onsoli | idation | aiysis        |         |         |       |          | Swedi         | sh cone   | ;)<br>;) ( | Sur)<br>Cu)    | ◆<br>▽         | remo<br>intac  | oulde<br>ct | ؛d     |
|           |          | Lost                |                                  | PS Piston sampler                            |     |                         |              | nit we | ight (k | N/m³)         |         | 、       |       |          |               |           | _((        | Cur)           | ¥              | remo           | oulde       | ŧd     |
|           |          | ROCK                | core<br>STRA                     |                                              |     | _                       |              | SAM    | PLES    | strengtn<br>S | (IMPa)  | )       |       |          | Dyn. (        | Cone Pe   | en. Te     | st             | <u>×</u>       |                | ×           | ·      |
|           | - m      |                     |                                  |                                              |     | - u<br>-                |              |        | 6       |               | WA      | TER     | CO    | NTENT    | R             | TS        | DYN        | l. CO<br>(blc  | )NE<br>ows/    | PEN<br>/0.3n   | l. TE<br>n) | ST     |
|           | NO       |                     |                                  |                                              | ОГ  | EVEI                    | ND<br>R      | NOI.   | RY %    | g             | aı      | nd Ll   | MIT   | S (%)    | ATOI          | TES       |            | 50             | )              | 100            | 0           |        |
| EPTI      | VAT      | EPTI                | DE                               | SCRIPTION                                    | /MB | ir LI                   | PE A<br>JMB  |        | OVE     | or R          | ~       | v_      | w     | w.       | 30R/          | an<br>iTU | UN         | DR/            | AINE           | D SI           | HEA         | R      |
|           | ELE      |                     | DE                               | SCRIPTION                                    | ŝ   | /ATE                    | Σĭ           | CO     | REC     | z             |         | •Р<br>  | •     |          | LAE           | S<br>N    | S          | TRE            | NG             | Г <b>Н (</b> И | kPa)        | )      |
|           |          |                     | Succession of f                  | air quality grey mudstope                    |     | \$                      |              |        | _       |               | 20      | 0 40    | ) 60  | ) 80<br> |               |           |            | 50             | )<br>—+        | 100            | 0           |        |
| Ē         |          |                     | and slightly cal                 | careous mudstone, layers                     |     |                         |              |        | -       |               |         |         |       |          |               |           |            |                |                |                |             |        |
| Ē         |          |                     | cleavable local                  | y.                                           |     |                         | DC-14        |        | 92      | 65            |         |         |       |          |               |           |            |                |                |                |             |        |
| - 13      |          |                     |                                  |                                              |     |                         | -            |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| Ē         | 65<br>13 | 5.09<br><b>3.51</b> | Succession of g                  | good quality grey                            |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 14      |          |                     | mudstone and s<br>mudstone, laye | slightly calcareous<br>rs at 30° to 35° from |     |                         |              |        |         |               |         |         |       |          | _             |           |            | _              | $\rightarrow$  | _              |             | _      |
| Ē         |          |                     | borenole axis, c                 | licavable locally.                           |     | $\overline{\mathbf{x}}$ | DC-15        |        | 100     | 90            |         |         |       |          | D = 20        | 6.6       |            |                |                |                |             |        |
| E 15      | 63       | 3 54                |                                  |                                              |     |                         |              |        |         |               |         |         |       |          | CP=1          | 5.9       |            |                |                |                |             |        |
| Ē         | 1:       | 5.06                | END OF BORE                      | HOLE                                         |     |                         | -            |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 16      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            | -              | +              | -              |             | -      |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| -<br>- 17 |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          | _             |           |            | $ \rightarrow$ | $ \rightarrow$ | $\square$      |             |        |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 18      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                | -              |                |             |        |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 19      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            | _              | $\rightarrow$  | _              |             | _      |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| Ē         |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          | 1             |           |            | $\neg$         | $\neg$         |                |             |        |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 21      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          | -             |           | $\vdash$   | +              | +              | +              | +           | $\neg$ |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 22      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
| - 23      |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          | 1             |           | $\vdash$   | +              | +              | +              | +           | —      |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |
|           |          |                     |                                  |                                              |     |                         |              |        |         |               |         |         |       |          |               |           |            |                |                |                |             |        |

|                   |                              |                  |                                |                                | PR             | OJECT  | : Rabas      | ska Pr             | oject            | (Phase 3)           | ), Levis,      | Quebe         | C      |       |         | BORE       | HOL    | E:/         | 3H-(          | 501·                  | -05          |
|-------------------|------------------------------|------------------|--------------------------------|--------------------------------|----------------|--------|--------------|--------------------|------------------|---------------------|----------------|---------------|--------|-------|---------|------------|--------|-------------|---------------|-----------------------|--------------|
|                   |                              |                  | Т                              | matash                         | SIT            | E :    | Levis,       | Queb               | ec               |                     |                |               |        |       |         | PAGE       | : _    | 1           | OF            | • _                   | 2            |
|                   |                              |                  |                                | rratech                        | FIL            | E NO : | <u>T-105</u> | 0-C (              | 6042             | 38)                 |                |               |        |       |         | CASI       | NG :   | PW          | <u>, HW</u>   |                       |              |
|                   |                              | •                |                                |                                | во             | RING   | DATE :       |                    | 2005             | -09-30              | т              | o             | 2005-  | -10-0 | 4       | CORE       | BAR    |             | : Р           | Q                     |              |
|                   |                              | I                | BORIN                          | G LOG                          |                | тим :  |              | Geod               | etic             |                     |                | <u> </u>      |        | TES   | . 5     | 186611     | 14 N   |             | 261           | <br>760. <sup>-</sup> | 12 E         |
| SAN               |                              | -                |                                |                                |                |        |              |                    |                  |                     |                | - <del></del> |        | 123   |         | /222       |        |             |               |                       |              |
|                   |                              | Remo             | oulded                         | SS Split spoon                 |                |        | GS G         | rain si            | ze an            | alysis              | 10 123         | 1             |        |       | Field   | vane       | (;     | Su)<br>Sur) | $\diamond$    | rem                   | rt<br>oulded |
|                   | υ                            | Indis            | turbed                         | ST Thin walled Shelby tub      | е              |        | C C          | onsoli             | datior           | 1                   |                |               |        |       | Swed    | ish cone   | e ((   | Cu)         | $\nabla$      | intac                 | ct           |
|                   |                              | ost              | 0070                           | PS Piston sampler              |                |        |              | nit wei            | ight (k<br>ssive | (N/m <sup>3</sup> ) | (MPa)          |               |        |       |         |            | ()<br> | Cur)        | ▼             | remo                  | oulded       |
|                   |                              | COCK             | STR                            |                                |                |        |              | SAM                | PLES             | Suengui             | (IVIF a)       |               |        |       | Dyn. (  | Jone Pe    | en. re | st          | <u>×</u>      |                       | X            |
|                   | ٤                            |                  | INCLINAT                       | ION ANGLE: 90°                 |                | Ē      |              |                    |                  | -                   | WAT            | ER CO         |        | т     | ≿       | Ś          | DYN    | . CC        |               | PEN<br>0 3r           | l. TEST      |
| Ę                 | ż                            | ε                | AZIMUTH                        | : 0°                           | _              | Ъ      | ≘∝           | z                  | γ %              | Δ                   | and            |               | TS (%) | )     | lor     | EST        |        | 50          | )<br>)        | 10.31                 | 0            |
| E                 | 110                          | Ŧ                |                                |                                | BO             | Ē      | IBEI         | I                  | /ER              | RQ                  |                |               |        |       | RA.     | and<br>U T |        |             |               |                       |              |
| Ë                 | EV.                          | Ш                | DE                             | SCRIPTION                      | SΥΝ            | ER     | Y PE         |                    | ŝ                | l or                | w <sub>F</sub> | , w           | w      | L     | ABO     | SIT        | UN     |             |               | D SI                  | HEAR         |
|                   |                              |                  |                                |                                | •••            | MA     | F -          | Ŭ                  | RE               | -                   | ⊢<br>20        | <br>40        |        |       | ב       | Z          |        |             |               | 10                    | n,           |
| _                 | 76.                          | 09<br><b>70</b>  | GROUND SURF.                   | ACE                            | $\sim$         | -      |              |                    |                  |                     |                |               | ++     |       |         |            |        | $\dashv$    | -+            | <u> </u>              |              |
| Ē                 | \ <u>75.</u> 9<br><b>0.1</b> | 94 /<br>15       | Loose to compac                | t brown silty sand, some       | .a             |        | SS-1         | igarpoints         | 79               | 6                   |                |               |        |       |         |            |        |             |               |                       |              |
| -                 |                              |                  | shells. Becoming               | grey at 0.6m and then          |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| - 1               |                              |                  | reduisit at 0.9m.              |                                | ÅR.            |        | SS-2         | igwedge            | 67               | 29                  |                | -             |        |       |         |            |        |             |               |                       |              |
| Ē                 | 74.                          | 57               | 0                              |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| ŧ,                | 1.0                          | ,2               | trace of gravel.               | siit and sand, some clay,      | 1 0<br>/       |        | SS-3         | X                  | 83               | 17                  |                |               |        |       |         |            |        |             |               |                       |              |
| Ē                 |                              |                  |                                |                                | /              |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| Ē                 |                              |                  |                                |                                |                |        | SS-4         | $ \times $         | 79               | 24                  | $\odot$        |               |        |       | GS      |            |        |             |               |                       |              |
| <b>–</b> 3        | 73.                          | 09               |                                |                                | /              |        |              |                    |                  |                     |                |               |        |       |         |            |        |             | $\square$     |                       |              |
| Ē                 | 3.0                          | 00               | Compact grey sill<br>and clay. | t and sand, trace of gravel    | e//            |        | SS-5         | $\boxtimes$        | 67               | 24                  |                |               |        |       |         |            |        |             |               |                       |              |
| Ē                 |                              |                  |                                |                                | A .            |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| - 4               |                              |                  |                                |                                |                |        | SS-6         | $\boxtimes$        | 67               | 20                  |                | _             | + +    |       |         |            |        |             | $\rightarrow$ | $\dashv$              |              |
| Ē                 |                              |                  |                                |                                | 0              |        | 00-0         |                    | 07               | 20                  |                |               |        |       |         |            |        |             |               |                       |              |
| Ē                 |                              |                  |                                |                                | • 2            |        | ee 7         | $\bigtriangledown$ | 02               | 22                  |                |               |        |       | <u></u> |            |        |             |               |                       |              |
| 5                 |                              |                  |                                |                                | × 0            |        | 55-7         | $\square$          | 03               | 22                  |                | _             |        |       | 65      |            |        |             | -             |                       |              |
| Ē                 |                              |                  |                                |                                |                |        |              | $\bigtriangledown$ |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| Ē.                |                              |                  |                                |                                |                |        | SS-8         | $\bigtriangleup$   | 92               | 21                  |                |               |        |       |         |            |        |             |               |                       |              |
| <b>F</b> 6        | <u>69.</u><br>6.1            | 99<br>10         | Dense to very de               | nse reddish silt and sand,     |                |        |              | $\bigtriangledown$ |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| Ē                 |                              |                  | trace of gravel ar             | nd clay.                       |                |        | SS-9         | $\sim$             | 62               | 47                  |                |               |        |       |         |            |        |             |               |                       |              |
| Ę,                |                              |                  |                                |                                |                |        |              | $\bigtriangledown$ |                  |                     |                |               |        |       |         |            |        |             | $\square$     | $\square$             |              |
| Ē                 |                              |                  |                                |                                | / <sub>•</sub> |        | SS-10        | riangle            | 75               | 46                  | $\odot$        |               |        |       | GS      |            |        |             |               |                       |              |
| Ē                 | 68.4<br>7.6                  | 47<br>5 <b>2</b> | Very dense grey                | silt and sand, trace of gravel | , /a           |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| - 8               |                              |                  | and clay.                      |                                | 8              |        | SS-11        | $\square$          | 72               | 136                 |                | _             |        |       |         |            |        |             | +             | $\rightarrow$         |              |
| 17hrs             |                              |                  |                                |                                | • .            |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| -12 13.           |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| 9002-12           |                              |                  |                                |                                | الجر ا         |        |              | $ \vdash $         |                  |                     |                | +             | +      |       |         |            |        | +           | +             | +                     |              |
| TED: 2            |                              |                  |                                |                                |                |        | 55-12        | $\vdash$           | 83               | 65/15cm             |                |               |        |       |         |            |        |             |               |                       |              |
| PLOT              |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
|                   |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             | $\top$        |                       |              |
| 50-C-E            |                              |                  |                                |                                |                |        | DC-13        |                    | 100              |                     |                |               |        |       |         |            |        |             |               |                       |              |
| -19<br>-11<br>-11 |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             | $\downarrow$  | $\square$             |              |
| 74/St             |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |
| Geotec            |                              |                  |                                |                                |                |        | DC-14        |                    | 27               |                     |                |               |        |       |         |            |        |             |               |                       |              |
| Ś                 |                              |                  |                                |                                |                |        |              |                    |                  |                     |                |               |        |       |         |            |        |             |               |                       |              |

|            |         |                                   |                                                         | PR          | ROJECT  | : Rabas       | ka Pr            | oject            | (Phase 3 | ), Levis        | s, Que | ebec |       |      |            | BORE    | HOLI  | E: /          | BH-           | 501          | -05         |         |
|------------|---------|-----------------------------------|---------------------------------------------------------|-------------|---------|---------------|------------------|------------------|----------|-----------------|--------|------|-------|------|------------|---------|-------|---------------|---------------|--------------|-------------|---------|
|            |         | То                                | matach                                                  | sr          | TE :    | Levis,        | Queb             | ec               |          |                 |        |      |       |      |            | PAGE    | :     | 2             | _ 0           | F_           | 2           |         |
|            | ▼       |                                   | Tratech                                                 | FIL         | E NO :  | <u>T-105</u>  | )-C (            | (6042            | 38)      |                 |        |      |       |      |            | CASI    | IG :  | PW            | <u>, HW</u>   | ·            |             |         |
|            | •       |                                   |                                                         | вс          | DRING I | DATE :        |                  | 2005-            | 09-30    | _ ·             | то     |      | 2005- | 10-0 | 4          | CORE    | BAR   | REL           | .: <u>P</u>   | ŶQ           |             |         |
|            | ]       | BORIN                             | G LOG                                                   | DA          | TUM :   |               | Geod             | etic             |          |                 | С      | OOR  | DINA  | res  | : _ 51     | 86611   | .14 N |               | 261           | 760.         | 12 E        |         |
| SAN        | IPLE CO | NDITION                           | TYPE OF SAMPLER                                         |             |         | LABOR         | ATO              | RY AI            | ND IN SI | TU TES          | ST     |      |       |      | Field V    | ane     | (8    | Su)           | $\diamond$    | inta         | ct          |         |
|            | Rem     | oulded<br>sturbed                 | SS Split spoon<br>ST Thin walled Shelby tub             | e           |         | GS GI<br>C Co | ain si<br>onsoli | ze an:<br>dation | alysis   |                 |        |      |       |      | Swedis     | sh cone | (8    | Sur)<br>Cu)   | <b>♦</b>      | rem          | oulde       | əd      |
|            | Lost    |                                   | PS Piston sampler                                       |             |         | D Ur          | nit wei          | ight (k          | N/m³)    |                 |        |      |       |      | onouic     |         | (0    | Sur)          | ▼             | rem          | oulde       | ed      |
|            | Rock    | core                              | DC Diamond core barrel                                  |             |         | CP Co         |                  | essive           | strength | (MPa)           |        |      |       |      | Dyn. C     | one Pe  | n. Te | st            | <u>×</u>      |              | >           | <       |
|            | ε       | INCLINAT                          | TION ANGLE: 90°                                         |             | E       | ```           |                  |                  | •        | WA <sup>-</sup> | TER    | со   | NTEN  | т    | ≿          | လ       | DYN   | . CC          | )NE           | PEN<br>/0.3i | I. ТЕ<br>n) | EST     |
| <u>ع</u>   | NO E    | AZIMUTH                           | : <u>0°</u>                                             | F           | VEL     | 9 2           | NO               | ۲%               | Q        | an              | d Ll   | МΙΤ  | S (%) |      | TOR        | EST     |       | 5             | )             | 10           | 0           |         |
| PTH        | PTH     |                                   |                                                         | MBO         | S LE    | e al<br>MBE   | DITI             | VER              | r RQ     |                 |        |      |       |      | <b>DRA</b> |         |       |               |               |              |             |         |
| B          |         | DE                                | SCRIPTION                                               | SΥΙ         | ATE!    | TΥΡ           | CON              | ECO              | o<br>Z   | w L             | Р      | W    | w     | L    | -AB(       | N SI    | S     | TRE           | NG            | TH (         | kPa         | лк<br>) |
|            | ш       |                                   |                                                         |             | 'n      |               | •                | R                |          | 20              | 40     | 6    | 0 80  | 1    |            | _       | 1     | 50            | )             | 10           | 0           |         |
| Ē          |         | Very dense grey and clay.         | silt and sand, trace of gravel                          | 8<br>1<br>1 |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| Ē          |         | and oldy.                         |                                                         | Þ           |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 13       | 62.89   |                                   |                                                         | 0           |         | DC-15         |                  | 72               |          |                 |        | _    | -     |      |            |         |       | -             | +             |              |             |         |
| Ē          | 13.21   | Bedrock: Layers grey limestone, 4 | of very poor to fair quality<br>0% of dark shale layers |             |         | DC-15A        |                  | 100              | 0        |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| Ē 14       |         | (1-9mm thick). Be borehole axis.  | edding at 30-40° from                                   |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| Ē          |         |                                   |                                                         |             |         | DC-16         |                  | 88               | 48       |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| Ē          |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 15       |         |                                   |                                                         |             |         |               |                  |                  |          |                 | -      |      |       |      |            |         |       | +             | +             |              |             |         |
| Ē          |         |                                   |                                                         |             |         | DC-17         |                  | 100              | 74       |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 16       |         |                                   |                                                         |             |         |               | -                |                  |          |                 |        |      |       |      |            |         |       |               | $\square$     |              |             |         |
| Ē          |         |                                   |                                                         |             |         | DC-18         |                  | 100              | 66       |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| Ē          |         |                                   |                                                         |             |         | DC-19         |                  | 100              | 32       |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 17       |         |                                   |                                                         |             |         |               | _                |                  |          |                 |        |      |       |      |            |         |       |               | +             |              |             |         |
| E          |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 18       |         |                                   |                                                         |             |         | DC-20         |                  | 70               | 27       |                 | _      |      |       |      |            |         |       | $\rightarrow$ | $\rightarrow$ | _            |             |         |
| Ē          |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| ŧ          |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| - 19<br> - |         |                                   |                                                         |             |         | DC-21         |                  | 100              | 18       |                 |        |      |       |      |            |         |       |               | +             |              |             |         |
| Ē          | 56.26   |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 20         | 19.84   | END OF BOREH                      | IOLE                                                    | KITKITI     |         |               |                  |                  |          |                 | _      |      |       |      |            |         |       | -+            | $\rightarrow$ |              |             |         |
| 3:17hrs    |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 2-12 1     |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 1-5002     |         | NOTE:<br>Upon completion          | , the borehole was provided                             |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       | 1             | 1             |              |             |         |
| 011ED:     |         | with a bottom cap                 | pped 63.5mm diameter PVC                                |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 22<br>45   |         | to allow down-ho                  | le seismicity tests.                                    |             |         |               |                  |                  |          | $\vdash$        | -      |      |       |      |            |         |       | $\dashv$      | $\dashv$      | $\dashv$     | -           |         |
| LC-BH      |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| -1-105C    |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 74/Style   |         |                                   |                                                         |             |         |               |                  |                  |          |                 | T      |      |       |      |            |         |       | Ţ             | T             |              |             |         |
| Geotec     |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |
| 5-         |         |                                   |                                                         |             |         |               |                  |                  |          |                 |        |      |       |      |            |         |       |               |               |              |             |         |

|                      |     |              |                                       |                                                          | PR     | OJEC    | T: Rabas       | ska Pr           | oject    | (Phase 3)   | ), Levis | s, Qı | lepec | ;     |      |         | BORE    | HOL    | E:    | BH-                | 502         | -05    |     |
|----------------------|-----|--------------|---------------------------------------|----------------------------------------------------------|--------|---------|----------------|------------------|----------|-------------|----------|-------|-------|-------|------|---------|---------|--------|-------|--------------------|-------------|--------|-----|
|                      |     |              | То                                    | ##atach                                                  | SIT    | E :     | Levis,         | Queb             | ec       |             |          |       |       |       |      |         | PAGE    | ::     | 1     | _ 0                | F _         | 2      |     |
|                      |     |              |                                       | rratech                                                  | FIL    | E NO    | : <u>T-105</u> | 0-C              | (6042    | 38)         |          |       |       |       |      |         | CASI    | NG :   | NW    | /                  |             |        |     |
|                      |     | •            |                                       |                                                          | во     | RING    | DATE :         |                  | 2005     | -09-28      |          | то    |       | 2005- | 09-2 | 29      | CORE    | EBAF   | RREL  | .: <u>1</u>        | 1Q3         |        |     |
|                      |     | ]            | BORIN                                 | G LOG                                                    | DA     | тим :   |                | Geod             | letic    |             |          | c     | OOR   |       | res  | : _5    | 186576  | .98 N  | ١     | 26 <sup>,</sup>    | 1829.       | .00 E  | :   |
| SAI                  | MPL | E CO         | NDITION                               | TYPE OF SAMPLER                                          |        |         | LABOR          | RATO             | RY A     |             |          | ST    |       |       |      | Field \ | /ane    | (      | Su)   | $\diamond$         | inta        | ct     |     |
|                      |     | Remo         | oulded                                | SS Split spoon                                           |        |         | GS G           | rain si          | ize an   | alysis      |          |       |       |       |      |         |         | (      | Sur)  | ٠                  | rem         | ould   | ed  |
|                      |     | Lost         | sturbed                               | PS Piston sampler                                        | e      |         |                | nit we           | ight (l  | ı<br>«N/m³) |          |       |       |       |      | Swedi   | sh cone | e (    | Cur)  | $\bigtriangledown$ | inta<br>rem | ct     | ьd  |
|                      |     | Rock         | core                                  | DC Diamond core barrel                                   |        |         | CP C           | ompre            | essive   | strength    | (MPa)    |       |       |       |      | Dyn. (  | Cone Pe | en. Te | est   | ▼<br>× -           |             | >      | ×   |
|                      |     |              | STRA                                  | ATIGRAPHY                                                |        | ε       | :              | SAM              | PLE      | 5           |          |       |       |       |      |         |         | DYN    | I. CC | ONE                | PE          | N. TI  | EST |
| Ε                    |     | Ξ.           | INCLINAT                              | ION ANGLE: 90°                                           |        | Ë       |                | z                | %        |             | WA       | TEF   |       |       | IT   | овγ     | STS     |        | (ble  | ows                | /0.31       | m)     |     |
| Ξ                    |     | Ē            | AZIMUTH                               | : <u>0°</u>                                              | ЗОГ    | μ       | ANC            | 10               | ERY      | gD          | ar       |       |       | 5 (%) |      | RATC.   | D T T   |        | 50    | )                  | 10          | /0<br> | L   |
| EP                   |     |              | DE                                    | SCRIPTION                                                | ΥME    | ERI     | DE<br>UMI      | Q                | NO<br>NO | or          | w        | P     | w     | w     |      | BOF     | SITL    | UN     |       | AINE               | ED S        | HE/    | ĄR  |
| 1                    | ū   | 3 -          |                                       |                                                          | S      | VAT     | Γz             | ပိ               | REC      | z           | ŀ        |       |       |       | -    | ΓA      | Z       | 2      |       | :NG                | IH (        | кРа    | )   |
|                      | 7   | 5.75         | GROUND SURF                           | ACE                                                      | $\sim$ | ~       |                |                  |          |             | 20       | ) 4   | 06    | 0 80  |      |         |         |        | 50    | )<br>—             | 10          | 0      | -   |
| Ē                    | 7   | 5.60<br>5.15 | Compact to dens                       | e brown reddish silty sand,                              |        |         | SS-1           | $\bowtie$        | 67       | 7           |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              | some gravel and and boulders.         | clay, occasional cobbles                                 | 9      | ¥       |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| E 1                  |     |              |                                       |                                                          |        | 10-14   | SS-2           | $\bowtie$        | 67       | 64          |          |       |       |       |      |         |         |        |       | _                  | _           |        |     |
| Ē                    |     |              |                                       |                                                          |        | 2005-   | SS-3           | $\times$         | 80       | 50/13cm     |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ë,                   |     |              |                                       |                                                          |        | 5       | DC-4           |                  | 96       |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          |        | 5 000   |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          | •/ •   | 7 Vale  | SS-5           | $\square$        | 79       | 47          | 0        | 1     |       |       |      | GS      |         |        |       |                    |             |        |     |
| È 3                  | 3   |              |                                       |                                                          | D<br>A | ol at c |                |                  |          |             |          |       |       |       |      |         |         |        |       | _                  |             |        |     |
| Ē                    |     |              |                                       |                                                          | 0 ₽0   | er lev  | SS-6           | $\bowtie$        | 67       | 36          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē,                   |     |              |                                       |                                                          |        | Wat     |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē '                  |     |              |                                       |                                                          |        |         | SS-7           | $\bigtriangleup$ | 67       | 25          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          | Ĭ.     |         |                | $\times$         |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ę۹                   | 7   | 0.59         |                                       |                                                          | ø =    |         | SS-8           |                  | 17       | 28          |          |       |       |       |      |         |         |        |       | _                  |             |        |     |
| Ē                    | 5   | 5.16         | Bedrock: Layers siltstone, 15% of     | of fair to good quality grey red mudstone, 10% of dark   |        |         | DC-9           |                  | 100      | 38          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              | shale, some calca<br>Bedding at 30-45 | areous millimetric beds.<br>° from borehole axis. Top of |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    | 5   |              | rock severely frac                    | ctured on a meter length.                                |        |         | DC-10          |                  | 100      | 83          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| ŧ,                   | ,   |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       | _                  |             |        |     |
| Ē                    |     |              |                                       |                                                          |        |         | DC-11          |                  | 100      | 92          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| μ<br>- ε             | 8   |              |                                       |                                                          |        |         | DC-12          |                  | 100      | 89          |          |       |       |       |      |         |         |        |       | _                  |             |        |     |
|                      |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
|                      |     |              |                                       |                                                          |        |         | DC-13          |                  | 100      | 82          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| Ē                    |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
|                      |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| - 10                 |     |              |                                       |                                                          |        |         | DC-14          |                  | 100      | 73          | $\vdash$ |       |       |       |      |         |         |        |       | -                  | -           |        |     |
|                      |     |              |                                       |                                                          |        |         |                | ╞╋╋              |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
|                      |     |              |                                       |                                                          |        |         | DC-15          |                  | 100      | 88          |          |       |       |       |      |         |         |        |       |                    |             |        |     |
| 2 - 11<br>2 -<br>2 - |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
|                      |     |              |                                       |                                                          |        |         |                |                  | 1        |             |          |       |       |       |      |         |         |        |       |                    |             |        |     |
|                      |     |              |                                       |                                                          |        |         |                |                  |          |             |          |       |       |       |      |         |         |        |       |                    |             |        | 1   |

|             |     |                       |                                        |                                                          | PR  | ROJECT  | : Rabas      | ska P        | roject  | (Phase 3 | ), Levi | is, Qu             | ebec     |          |               | BORE   | HOL        | E:,             | BH-         | 502          | -05         |        |
|-------------|-----|-----------------------|----------------------------------------|----------------------------------------------------------|-----|---------|--------------|--------------|---------|----------|---------|--------------------|----------|----------|---------------|--------|------------|-----------------|-------------|--------------|-------------|--------|
|             |     |                       | То                                     | ***ataah                                                 | sn  | TE :    | Levis,       | Quel         | bec     |          |         |                    |          |          |               | PAGE   | £: _       | 2               | _ 0         | F _          | 2           | _      |
|             |     | ┛                     |                                        | rratecii                                                 | FIL | E NO :  | <u>T-105</u> | 0-C          | (60423  | 38)      |         |                    |          |          |               | CASI   | NG :       | NW              | <u> </u>    |              |             | _      |
|             |     | •                     |                                        |                                                          | вс  | DRING I | DATE :       |              | 2005    | 09-28    |         | то                 | :        | 2005-09- | 29            | CORE   | E BAF      | REL             | .: <u>۱</u> | 1Q3          |             | _      |
|             |     | ]                     | BORIN                                  | G LOG                                                    | DA  | TUM :   |              | Geod         | letic   |          |         | C                  | OORI     | DINATES  | <b>5</b> : 51 | 86576  | .98 N      | 1               | 261         | 1829.        | 00 E        |        |
| SAN         | ЛР  |                       | NDITION                                |                                                          | 1   |         | LABOR        | RATO         | RY A    |          | ΓU ΤΕ   | ST                 |          |          | Field V       | ane    | (          | Su)             | $\diamond$  | inta         | ct          |        |
|             |     | Rem<br>Undi           | ouided<br>sturbed                      | ST Thin walled Shelby tub                                | e   |         |              | onsol        | idation | alysis   |         |                    |          |          | Swedis        | h cone | ;)<br>€) € | Sur)<br>Cu)     | ◆<br>▽      | rem<br>inta  | oulde<br>ct | əd     |
|             |     | Lost                  |                                        | PS Piston sampler                                        |     |         | D U          | nit we       | ight (k | N/m³)    |         |                    |          |          |               | _      | (          | Cur)            | Ť           | rem          | oulde       | ed     |
|             |     | Rock                  | core                                   | TIGRAPHY                                                 |     |         | CP C         | ompre<br>SAM | PLE     | strength | (MPa    | )                  |          |          | Dyn. C        | one Pe | n. Te      | st              | × - ·       |              | ×           | <      |
|             |     | E                     | INCLINAT                               | ION ANGLE: 90°                                           |     | Е       |              |              |         |          | WA      | TER                | CON      | NTENT    | ¥             | IS     | DYN        | i. CC<br>bl/    | )NE<br>ows  | PEN<br>/0.3i | √. TE<br>m) | EST    |
| l ₽<br>+    | 1   |                       | AZIMUTH                                | : <u>0°</u>                                              | Ъ   |         | Q H          | NO           | RY %    | g        | a       | nd Ll              | мітя     | S (%)    | VIOF          | TES'   |            | 5(              | 0           | 10           | 0           |        |
|             | H N |                       |                                        |                                                          | MB( | RLE     | PE A         |              | OVEI    | or R(    |         |                    | 147      | 14/      | OR4           | E      | UN         |                 | AINE        |              | HE          | AR     |
| <b>a</b>    | ĺ   |                       | DE                                     | SCRIPTION                                                | SΥ  | ATE     | NL TY        | CO           | RECO    | z        |         | <sup>♥</sup> Р<br> | ••<br>•• | L        | LAB           | S NI   | S          | TRE             | ING         | TH (         | kPa)        | )      |
|             |     |                       |                                        |                                                          |     | 3       | DC 16        |              | 100     | 74       | 2       | 0 40               | ) 60     | 80       |               |        | L          | 50              | 0<br>       | 10           | 0           |        |
| Ē           |     |                       | Layers of fair to g<br>15% of red muds | lood quality grey siltstone,<br>tone, 10% of dark shale, |     |         | DC-16        |              | 100     | 74       |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           |     |                       | some calcareous at 30-45° from bc      | millimetric beds. Bedding<br>brehole axis.               |     |         |              |              | -       |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| - 13        |     |                       |                                        |                                                          |     |         | DC-17        |              | 100     | 79       |         |                    |          |          |               |        |            |                 |             | _            | _           |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              | -       |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| - 14        |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    | _        |          | -             |        |            |                 | -           |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         | DC-18        |              | 100     | 83       |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           | 6   | 60.91<br><b>14.84</b> | END OF BOREH                           | OL E                                                     |     |         | -            |              | -       |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| - 15<br>-   |     |                       | END OF BOREI                           |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| E 16        | ;   |                       |                                        |                                                          |     |         |              |              |         |          |         |                    | -        |          | -             |        |            | _               | $\dashv$    | _            | -           | _      |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| E 17        | ,   |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| - 18        |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    | -        |          |               |        |            |                 | -           |              |             | _      |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| E<br>- 19   |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 | _           |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| Ē           |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| - 20<br>⊈   | 1   |                       |                                        |                                                          |     |         |              |              |         |          |         |                    | +        |          | 1             |        | $\square$  |                 | $\neg$      |              | $\neg$      | $\neg$ |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| 21          |     |                       |                                        |                                                          |     |         |              |              |         |          |         | _                  |          |          | -             |        | $\mid$     | $ \rightarrow$  | $\dashv$    | -            | $\dashv$    | -      |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| <b>1</b> 22 |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          | 1             |        |            |                 | $\neg$      |              | $\neg$      |        |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
| 23          |     |                       |                                        |                                                          |     |         |              |              |         |          |         | -+                 |          |          |               |        | $\vdash$   | $ \rightarrow $ | $\dashv$    | -            | $\dashv$    | -      |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |
|             |     |                       |                                        |                                                          |     |         |              |              |         |          |         |                    |          |          |               |        |            |                 |             |              |             |        |

|            |                     |             |                                        |                                             | PR          | OJEC                              | <b>r</b> : <u>Raba</u> | ska Pr              | oject            | (Phase 3    | ), Lev | ris, Qı        | uebec | ;     |       |        | BORE        | HOL       | E: /       | BH-             | -503         | -05         | _       |
|------------|---------------------|-------------|----------------------------------------|---------------------------------------------|-------------|-----------------------------------|------------------------|---------------------|------------------|-------------|--------|----------------|-------|-------|-------|--------|-------------|-----------|------------|-----------------|--------------|-------------|---------|
|            |                     |             | То                                     | matach                                      | si          | TE :                              | Levis                  | , Queb              | ес               |             |        |                |       |       |       |        | PAGE        | : _       | 1          | _ 0             | F_           | 3           |         |
|            |                     |             | j ie                                   | rratech                                     | FIL         | E NO                              | <u>T-105</u>           | 50-C (              | 6042             | 38)         |        |                |       |       |       |        | CASI        | NG :      | NW         | <u> </u>        |              |             | _       |
|            |                     |             |                                        |                                             | вс          | RING                              | DATE :                 |                     | 2005             | -09-30      |        | то             |       | 2005  | -10-0 | 06     | CORE        | E BAF     | REL        | .: <u>1</u>     | VQ3          |             |         |
|            |                     |             | BORIN                                  | G LOG                                       | DA          | TUM :                             |                        | Geod                | etic             |             |        | c              | :006  |       | TES   | : 5    | 186711      | .11 N     | 1          | 26 <sup>-</sup> | 1741.        | 31 E        |         |
| SAN        | IPLE                | co          | NDITION                                | TYPE OF SAMPLER                             |             |                                   | LABO                   | RATO                | RY A             | ND IN SI    | τυ τε  | ST             |       |       |       | Field  | Vane        | (:        | Su)        | $\diamond$      | inta         | ct          |         |
|            | ] Re<br>Ø Un        | emc<br>Idis | oulded<br>sturbed                      | SS Split spoon<br>ST Thin walled Shelby tub | e           |                                   | GS G                   | irain si<br>ionsoli | ze an<br>datior  | alysis<br>1 |        |                |       |       |       | Swod   | ish cone    | ;)        | Sur)       | <b>♦</b>        | rem          | oulde       | эd      |
|            | Lo                  | st          |                                        | PS Piston sampler                           |             |                                   | DU                     | nit we              | ight (ł          | ⟨N/m³)      |        |                |       |       |       | Oweu   |             | · ((      | Cur)       | ▼               | rem          | ci<br>oulde | ed      |
|            | Rc                  | ck          | core                                   | DC Diamond core barrel                      |             | [                                 | CP C                   | ompre               | ssive            | strength    | (MPa   | I)             |       |       |       | Dyn. ( | Cone Pe     | en. Te    | st         | × -             |              | ×           | :       |
|            | εı                  |             |                                        |                                             |             | Ę                                 |                        |                     | PLE              | s<br>       | w      | <b>LTFF</b>    | s CO  | NTE   | т     | ≻      | S           | DYN       | . CC       | )NE             | PEN          | N. TE       | ST      |
| ε          | NO S                | =           | AZIMUTH                                | : 0°                                        | _           | VEL                               | ₽∝                     | z                   | Х %              | ۵           | a      | nd L           | .IMIT | S (%) | )     | TOR    | EST         |           | (Did<br>5( | Dws<br>D        | 70.31<br>10  | п)<br>0     |         |
| HH         |                     |             |                                        |                                             | ABO         | LE<br>L                           | E AN                   | III                 | VER              | RQ          |        |                |       |       |       | RA'    | and<br>TU T |           |            |                 |              | '           |         |
| B          |                     | ב           | DE                                     | SCRIPTION                                   | SYN         | TER                               | IVN                    | NO                  | С<br>Ш<br>С<br>О | ō<br>N      | v      | N <sub>P</sub> | W     | w     | L     | ABC    | IS N        | UN        | DR/        |                 | ED S<br>TH ( | HEA<br>kPa) | \R<br>) |
|            | <b>ш</b>  <br>75.3  | 3           | GROUND SURF                            | ACE                                         |             | Ŵ                                 |                        | ľ                   | R                |             | 2      | 04             | 0 6   | 0 80  |       |        | =           |           | 50         | 0               | 10           | 0           |         |
| Ē          | <b>0.00</b><br>75.1 | )<br>7/     | Topsoil.                               | ilty agend, some gravel                     |             |                                   | SS-1                   | $\boxtimes$         | 62               | 13          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          | 0.15                | 5           | occasional cobble                      | es, shells. Becoming grey at                | 0           |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē 1        |                     |             | 0.011.                                 |                                             | . ¶<br>⊘. ⊘ |                                   | SS-2                   | $\ge$               | 42               | 30          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          | 73.8                | 1           |                                        |                                             | \$<br>•     |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē.         | 1.52                | 2           | Compact grey gra<br>of clay, occasiona | avelly and sandy silt, trace<br>al cobbles. |             |                                   | SS-3                   |                     | 0                | 40          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 2        |                     |             |                                        |                                             |             |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          |                     |             |                                        |                                             |             |                                   | SS-4                   | $ \times $          | 79               | 21          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 3        |                     |             |                                        |                                             |             |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           | _          |                 |              |             |         |
| Ē          |                     |             |                                        |                                             |             |                                   | SS-5                   | $\square$           | 58               | 74          |        |                |       |       |       | GS     |             |           |            |                 |              |             |         |
| Ē          | 71.5                | 2           | Donso to vony do                       | ase (locally compact)                       |             |                                   | DC-6                   |                     | 67               |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 4        | 0.01                | ,<br>       | reddish sand, sor                      | ne silt to silty, some gravel,              | )<br> <br>  |                                   | SS-7                   | $\square$           | 50               | 60          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          |                     |             |                                        |                                             | 0<br>1      |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 5        |                     |             |                                        |                                             | 6           |                                   | SS-8                   | $\square$           | 71               | 52          |        |                |       |       |       |        |             |           | -          |                 |              |             |         |
| Ē          |                     |             |                                        |                                             | 9           |                                   | DC-9                   |                     | 84               |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          |                     |             |                                        |                                             |             | 888                               | SS-10                  |                     | 33               | 54          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| 6          |                     |             | NOTE ON WATE                           | R LEVEL:<br>72m (artesian) on               | ¢           |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          |                     |             | 2005-10-14.                            |                                             | 0<br>0      |                                   | SS-11                  |                     | 62               | 34          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 7        |                     |             |                                        |                                             | Ø           |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           | -          |                 |              |             |         |
| Ē          |                     |             |                                        |                                             | •<br>• ♥    |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| Ē          |                     |             |                                        |                                             | •<br>•      |                                   | CC 12                  | $\square$           | 50               | 31          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 8        |                     |             |                                        |                                             | 0<br>0<br>0 |                                   | 33-12                  |                     | 50               | 51          |        |                |       |       |       |        |             |           |            |                 |              |             |         |
|            |                     |             |                                        |                                             | 4           |                                   | DC-13                  |                     | 24               |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 9        |                     |             |                                        |                                             | 74<br>14    |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           | _          |                 |              |             |         |
|            |                     |             |                                        |                                             | Γ           |                                   | SS-14<br>DC-15         |                     | 0<br>43          | 30/0cm<br>  |        |                |       |       |       |        |             |           |            |                 |              |             |         |
|            |                     |             |                                        |                                             | D<br>D      |                                   | DC-16                  |                     | 84               |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 10<br> - |                     |             |                                        |                                             | <b>a</b>    |                                   | SS-17                  |                     | 50               | 67          |        |                |       |       |       |        |             | $\square$ | $\neg$     |                 |              |             |         |
|            |                     |             |                                        |                                             |             | $\langle \rangle \rangle \langle$ | UC-18                  |                     | 42               |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| - 11       |                     |             |                                        |                                             | ۵<br>۵      | $\langle \rangle \rangle$         | SS-19                  |                     | 46               | 13          |        |                |       |       |       |        |             | -         | $\square$  |                 |              |             |         |
|            |                     |             |                                        |                                             | 2           |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
|            |                     |             |                                        |                                             |             |                                   |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |
| t          |                     |             |                                        |                                             | ¢.          | ////                              |                        |                     |                  |             |        |                |       |       |       |        |             |           |            |                 |              |             |         |

| STE:       Levis, Quebec       PAGE:         FILE NO:       T-1050-C       (604238)       CASING:         BORING LOG       BORING LOG       CORE BAF         DATUM:       Geodetic       COORDINATES:       5186711.11 N         SAMPLE CONDITION       TYPE OF SAMPLER       LABORATORY AND IN SITU TEST       Field Vane       (i)         Cost       SS Split spoon       GS Grain size analysis       Consolidation       Swedish cone       (i)         Lost       DC Diamond core barrel       OC Diamond core barrel       O Unit weight (K/M*)       WATER CONTENT       Xet Super Supe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| FILE NO:       T-1050-C (604238)       CASING:         BORING LOG       CORE BAF         BORING LOG       TYPE OF SAMPLER       LABORATORY AND IN SITU TEST       TO       2005-10-06       CORE BAF         SAMPLE CONDITION       TYPE OF SAMPLER       LABORATORY AND IN SITU TEST       Field Vane       (C)         Remoulded       SS Split spoon       GS Grain size analysis       Coordinates       Sileon (C)         Notification       DE Diamond core barrel       C Compressive strength (MPa)       Dyn. Cone Pen. Te         Notification       Stratigraphy       Matter content       Matter content       Matter content         Undisturbed       STRATIGRAPHY       Notification       Sampler       Dr. Cone Pen. Te         Undistrubal       DESCRIPTION       Notification       Sampler       Dim Name       Sampler         Image: Notification       Dense to very dense (locally compact))       Tedish sand, some sitt to sitly, some gravel, occasional cobbles and boulders.       SS-20       42       35       47         Image: Notification       SS-20       42       35       47       47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NW<br>REL: NQ3<br>261741.31 E<br>Su) $\diamond$ intact<br>Sur) $\diamond$ remoulded<br>Sur) $\forall$ remoulded<br>Sur) $\forall$ remoulded |
| BORING LOG       TO2005-10-06 CORE BAR         BORING DATE :2005-09-30TO2005-10-06CORE BAR         DATUM :GeodeticCOORDINATES :5186711.11 N         SAMPLE CONDITION TYPE OF SAMPLER       LABORATCRY AND IN SITU TEST       Field Vane (()         Remoulded       ST       ST plit spoon       GS       Grain size analysis       GC       Consolidation       Swedish cone (()         Lost       PS       Piston sampler       D       Unit weight (kN/m³)       Dyn. Cone Pen. Te         Nock core       DC Diamond core barrel       Mathematical size analysis       Mathematical size analysis       Mathematical size analysis       Dyn. Cone Pen. Te         TO200*:00 // Diamond core barrel       O Unit weight (kN/m³)       Dyn. Cone Pen. Te         With Hand       Mathematical size analysis       Mathematical size analysis <td>REL: <u>NQ3</u><br/>261741.31 E<br/>Su) ◇ intact<br/>Sur) ◆ remoulded<br/>Cu) ▽ intact</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REL: <u>NQ3</u><br>261741.31 E<br>Su) ◇ intact<br>Sur) ◆ remoulded<br>Cu) ▽ intact                                                          |
| BORING LOG       DATUM:      Gedetic       COORDINATES:      5186711.11 N         SAMPLE CONDITION       TYPE OF SAMPLER       LABORATORY AND IN SITU TEST       Field Vane       (()         Remoulded       SS Split spoon       GS Grain size analysis       C       ()         Undisturbed       ST Thin walled Shelby tube       GS Grain size analysis       Swedish cone       ()         Lost       PS Piston sampler       DC Diamond core barrel       C Consolidation       D Unit weight (kN/m³)       Dyn. Cone Pen. Te         V       STRATIGRAPHY       Unit weight (kN/m³)       CP Compressive strength (MPa)       Dyn. Cone Pen. Te         V       NOLLYAR       DESCRIPTION       NS       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 261741.31 E<br>Su) ◇ intact<br>Sur) ◆ remoulded                                                                                             |
| SAMPLE CONDITION       TYPE OF SAMPLER       LABORATORY AND IN SITU TEST       Field Vane       (()         Remoulded       SS Split spoon       SS Grain size analysis       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       ()       () <th>Su) ◇ intact<br/>Sur) ◆ remoulded</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Su) ◇ intact<br>Sur) ◆ remoulded                                                                                                            |
| Verificatived       SS opin spont       SS opin spont<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sur) ♦ remoulded<br>Cu) ▽ intect                                                                                                            |
| Lost PS Piston sampler<br>DC Diamond core barrel DC Compressive strength (MPa) Dyn. Cone Pen. Te SAMPLES WATER CONTENT and LIMITS (%) Pum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
| Reduction       Concentration       Concentratin Concentration       Concentratin Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cur) <b>v</b> remoulded                                                                                                                     |
| Image: second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | st ××                                                                                                                                       |
| Image: Section of the section of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . CONE PEN. TEX<br>(blows/0.3m)                                                                                                             |
| Lag     DESCRIPTION     No     Lag     No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 100                                                                                                                                      |
| $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 $ | DRAINED SHEAF                                                                                                                               |
| 13     Dense to very dense (locally compact) reddish sand, some silt to silty, some gravel, occasional cobbles and boulders.     SS-20     42     35       13     DC-21     19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TRENGTH (kPa)                                                                                                                               |
| 13       Dense to very dense (locally compact)         reddish sand, some silt to silty, some gravel, occasional cobbles and boulders.       SS-20       42       35         13       DC-21       19        19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| SS-23 67 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| 17 SS-24 58 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| DC-25 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| DC-27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| <b>20</b> SS-28 <b>54</b> 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| 23 SS-30 SS-30 SS-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                     |                                  |                                             | PF         | ROJECT  | : Rabas       | ska Pr           | oject           | (Phase 3) | ), Levis | s, Qu | ebec       |        |          | ВО                 | REHOL   | .E :               | BH-          | 503          | -05      |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|----------------------------------|---------------------------------------------|------------|---------|---------------|------------------|-----------------|-----------|----------|-------|------------|--------|----------|--------------------|---------|--------------------|--------------|--------------|----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                     | Т                                | matach                                      | sr         | TE :    | Levis,        | Queb             | ec              |           |          |       |            |        |          | PA0                | BE:_    | 3                  | _ 0          | F _          | 3        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | ▼                   |                                  | rratech                                     | FI         | LE NO : | <u>T-105</u>  | 0-C              | (6042           | 38)       |          |       |            |        |          | CAS                | SING :  | NM                 | /            |              |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | •                   |                                  |                                             | в          | ORING I | DATE :        |                  | 2005-           | -09-30    |          | то    |            | 2005-1 | 0-06     | coi                | RE BA   | RREL               | _: <u>^</u>  | 1Q3          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | ]                   | BORIN                            | G LOG                                       | DA         | TUM :   |               | Geod             | etic            |           |          | C     | OOR        | DINAT  | ES :     | 51867 <sup>-</sup> | 1.11    | ٧                  | 261          | 1741.        | .31 E    | :        |
| SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MF | PLE CO              | ONDITION                         | TYPE OF SAMPLER                             |            |         | LABOR         | ATO              | RY AI           | ND IN SIT | TU TES   | ST    |            |        | Fie      | ld Vane            |         | (Su)               | $\diamond$   | inta         | ct       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Rem<br>Undi         | oulded<br>sturbed                | SS Split spoon<br>ST Thin walled Shelby tub | e          |         | GS GI<br>C Co | ain si<br>onsoli | ze an<br>dation | alysis    |          |       |            |        | SIM      | edish co           | ne      | (Sur)              | <b>♦</b>     | rem          | oulde    | ed       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Lost                |                                  | PS Piston sampler                           |            |         | D Ur          | nit we           | ight (k         | :N/m³)    |          |       |            |        | 000      | euisii co          |         | (Cur)              | $\mathbf{v}$ | rem          | iould    | ed       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Rock                | core                             | DC Diamond core barrel                      |            | 1       | CP Co         | ompre            | ssive           | strength  | (MPa)    |       |            |        | Dy       | n. Cone            | Pen. Te | est                | ×            |              | >        | ×        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ┢  | εı                  |                                  |                                             |            | Ξ       |               |                  | PLE             | >         | w۵       | TFR   | CO         |        | г >      | - ທ                | DY      | 1. C(              | ONE          | PEN          | N. TR    | EST      |
| Ę                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | z E                 | AZIMUTI                          | H: 0°                                       | _          | ΈL      | ≘∝            | Z                | γ %             | Δ         | an       | d Ll  | MIT        | S (%)  |          | EST                |         | (D)<br>5           | ows<br>0     | /U.31<br>10  | л)<br>)0 |          |
| H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | PTHC                |                                  |                                             | <b>ABO</b> | Ē       | E AN<br>ABE   | DITIC            | VER             | . RQ      |          |       |            |        |          | and<br>T U         |         | l                  |              |              | 1        |          |
| Image: Second se |    |                     | D                                | ESCRIPTION                                  | SYN        | TER     | ΝŪΝ           | NO NI            | CO.             | N or      | w        | Ρ     | W          | wL     |          |                    |         | IDR/<br>STRI       | AINE<br>ENG  | ED S<br>TH ( | HE/      | AR<br>J) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | <b>Ⅲ</b> ↓<br>51.33 |                                  |                                             |            | MA<br>M |               |                  | RI              |           | 20       | 40    | )<br>60    | 080    | -        |                    |         | 5                  | 0            | 10           | 0        |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T  | 24.00               | Bedrock: Laye                    | ers of fair to excellent                    |            |         | SS-33         |                  | 0               | 20/0cm    |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     | limestone and                    | 5% of dark shale. Bedding                   |            |         | DC-34         |                  | 100             | 85        |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5  |                     | except betwee<br>fold pattern wa | en 24.7m and 25m where a as observed.       |            |         |               |                  |                 |           |          |       |            |        | _        |                    |         |                    | <u> </u>     |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     | -                                |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         | DC-35         |                  | 100             | 69        |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6  |                     |                                  |                                             |            |         | ·<br>·        |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         | DC-36         |                  | 100             | 100       |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7  | 48.20               |                                  |                                             |            |         | 0000          |                  | 100             | 100       |          |       |            |        | _        |                    |         |                    | $\vdash$     |              |          | <b> </b> |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 27.13               | END OF BOR                       | EHOLE                                       |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В  |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9  |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        | _        |                    |         |                    | ⊢            | _            |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D  |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| - 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |                     |                                  |                                             |            |         |               |                  |                 |           |          | _     |            |        | _        |                    |         |                    | $\vdash$     |              |          | <u> </u> |
| Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 1.12hrs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 2 - 32<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2  |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3  |                     |                                  |                                             |            |         |               |                  |                 |           |          | _     |            |        | $\dashv$ |                    |         | $\left  - \right $ | ⊢┤           | -            |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| -500 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4  |                     |                                  |                                             |            |         |               |                  |                 |           |          | +     | $\uparrow$ |        |          |                    |         |                    |              |              |          |          |
| 50-C-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5  |                     |                                  |                                             |            |         |               |                  |                 |           |          | _     |            |        |          |                    |         |                    | $\vdash$     | -            |          |          |
| 90/4/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| 7:1Geoft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |
| > -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                     |                                  |                                             |            |         |               |                  |                 |           |          |       |            |        |          |                    |         |                    |              |              |          |          |

|            |                       |            |            |                                             | PR                      | OJECT      | r: <u>Raba</u> s | ska Pr            | oject           | (Phase 3)   | ), Levis       | , Quel       | bec    |          |        | BORE     | HOL      | E: /         | BH-                              | 504          | -05          |
|------------|-----------------------|------------|------------|---------------------------------------------|-------------------------|------------|------------------|-------------------|-----------------|-------------|----------------|--------------|--------|----------|--------|----------|----------|--------------|----------------------------------|--------------|--------------|
|            |                       |            | То         | matach                                      | si                      | ΓE :       | Levis,           | Queb              | ес              |             |                |              |        |          |        | PAGE     | : _      | 1            | _ 0                              | F _          | 1            |
|            | ▼                     | //         | 16         | rratecii                                    | FIL                     | E NO       | <u>T-105</u>     | 0-C (             | 6042            | 38)         |                |              |        |          |        | CASI     | NG :     | NW           | /                                |              |              |
|            | •                     |            |            |                                             | вс                      | RING       | DATE :           |                   | 2005            | -10-06      | _ 1            | r <b>o</b> _ | 2      | 005-10-0 | 07     | CORE     | EBAF     | RREL         | .: <u>۱</u>                      | ١Q           |              |
|            |                       | BOR        | RIN(       | G LOG                                       | DA                      | TUM :      |                  | Geod              | etic            |             |                | со           | ORDI   | INATES   | : _5   | 186591   | .03 N    | 1            | 261                              | 1551.        | 93 E         |
| SAN        |                       | ONDITION   |            | TYPE OF SAMPLER                             |                         |            | LABOR            | RATO              | RY A            | ND IN SIT   | TU TES         | т            |        |          | Field  | Vane     | (        | Su)          | $\diamond$                       | inta         | ct           |
|            | _ Ren<br>∅ Und        | isturbed   |            | SS Split spoon<br>ST Thin walled Shelby tub | e                       |            |                  | rain si<br>onsoli | ze an<br>datior | aiysis<br>1 |                |              |        |          | Swedi  | sh cone  | )<br>e ( | Sur)<br>Cu)  | <ul> <li>♦</li> <li>□</li> </ul> | rem<br>inta  | oulded       |
|            | Losi                  |            |            | PS Piston sampler                           |                         |            | D U              | nit wei           | ght (k          | ⟨N/m³)      |                |              |        |          |        |          | (        | Cur)         | ▼                                | rem          | oulded       |
|            | Roc                   | k core     | STRA       | DC Diamond core barrel                      |                         |            | CP C             | ompre             | ssive           | strength    | (MPa)          |              |        |          | Dyn. ( | Cone Pe  | en. Te   | st           | × - ·                            |              | X            |
|            | ٤                     | IN         |            | ION ANGLE: 90°                              |                         | <b>u</b> - |                  |                   |                 | -           | WAT            | ER (         | CON    | TENT     | ≿      | S        | DYN      | l. CC<br>bla | )NE<br>ows                       | PEN<br>/0.3r | N. TES<br>n) |
| E<br>L     | - u<br>- u<br>-       | A          |            |                                             | Ъ                       | SVEL       | DZ K             | NO                | ۲۶ %            | Q           | an             | d LIN        | IITS   | (%)      | TOF.   | r<br>ES1 |          | 5            | 0                                | 10           | 0            |
| PTH I      | ATI<br>PTH            |            |            |                                             | MBC                     | R LE       | NBE              | EIQ               | OVEF            | or RQ       |                |              |        |          | ORA    | and      |          |              |                                  | -0.5         | HFAR         |
|            |                       |            | DE         | SCRIPTION                                   | SΥ                      | ATE        | TYF<br>NU        | CO                | <b>ECC</b>      | N           | w <sub>l</sub> | р V<br>——(   | v<br>> | w∟<br>   | LAB    | IN SI    | S        | TRE          | ING                              | TH (         | kPa)         |
|            | 75.92                 | GROUN      | D SURF     | ACE                                         |                         | Ň          |                  |                   | <u>u</u>        |             | 20             | 40           | 60     | 80       |        |          |          | 5            | 0                                | 10           | 0            |
| Ē          | 0.00<br>75.61<br>0.30 | Topsoil.   | ddish cla  | vev silt, some sand trace                   | Г~.<br>ГИІ              |            | SS-1             |                   | 83              | 5           |                |              |        |          | GS     |          |          |              |                                  |              |              |
| Ē          | 75.32<br>0.60         | of gravel  | t reddish  | silty sand some gravel                      |                         | <b></b>    |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
|            |                       | trace of o | clay, occa | asional cobbles and                         |                         | 5-10-1     | SS-2             | $\bowtie$         | 54              | 21          |                |              |        |          |        |          |          |              | -                                |              |              |
| Ē          | 74.40<br><b>1.52</b>  | Compac     | t reddish  | silty sand, some gravel.                    | 0<br>0                  | n 200      |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| 2          | 73 73                 |            |            |                                             | 4                       | 0 0 0      | SS-3             | $\bigtriangleup$  | 67              | 24          |                |              |        | _        |        |          |          |              |                                  |              |              |
| Ē          | 2.20                  | Dense to   | very der   | nse reddish silty sand,                     | <u>ه</u>                | v. 75.2    |                  | $\boxtimes$       |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| Ē.         |                       | Some gre   |            |                                             |                         | at ele     | SS-4             |                   | 42              | 34          | Ο              |              |        |          |        |          |          |              |                                  |              |              |
|            |                       |            |            |                                             | ©.ª                     | level      | 88 E             | $\ge$             | 22              | 96          |                |              |        |          |        |          |          |              | $\neg$                           |              |              |
| Ē          |                       |            |            |                                             |                         | Water      | 55-5             |                   | 33<br>71        | 00          |                |              |        |          |        |          |          |              |                                  |              |              |
| <b>4</b>   |                       |            |            |                                             |                         |            | SS-7             | $\geq$            | 45              | 50/13cm     |                | -            | -      | _        |        |          |          |              | -                                |              |              |
| Ē          |                       |            |            |                                             | о<br>С                  |            | DC-8             |                   | 68              |             |                |              |        |          |        |          |          |              |                                  |              |              |
| Ē,         |                       |            |            |                                             | 0                       |            | DC-9             |                   | 100             |             |                |              |        |          |        |          |          |              |                                  |              |              |
| Ē          |                       |            |            |                                             | ()<br>                  |            | SS-10            |                   | 63              | 67/25cm     |                |              |        |          |        |          |          |              |                                  |              |              |
| Ē          |                       |            |            |                                             |                         |            | DC-11            |                   | 100             |             |                |              |        |          |        |          |          |              |                                  |              |              |
| <b>6</b>   |                       |            |            |                                             | 0                       |            | SS-12            | $ \models $       | 83              | 68          |                |              |        | _        |        |          |          |              | -                                |              |              |
| Ē          | 69.39<br>6.53         |            | BOREH      |                                             | .  a.   . ()<br>  .   . |            | SS-13            | $\bowtie$         | 87              | 119/25cm    |                |              |        |          |        |          |          |              |                                  |              |              |
| Ę,         |                       |            | DONER      |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              | $\square$                        | $\square$    |              |
| Ē          |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| E          |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| 8          |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| 1 1 1      |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| 9          |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              | _                                |              |              |
| ED: 20(    |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
|            |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
|            |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          | 1      |          |          |              |                                  |              |              |
| 050-C-1    |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| Style - 11 |                       |            |            |                                             |                         |            |                  |                   |                 |             | $\vdash$       | +            | +      |          |        |          |          |              | $\dashv$                         | $\dashv$     |              |
| otec74.    |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |
| V:\Ge      |                       |            |            |                                             |                         |            |                  |                   |                 |             |                |              |        |          |        |          |          |              |                                  |              |              |

| $\square$ |                      |                  |                                       |                              | PR     | OJECT   | : Rabas      | ska Pr  | oject    | (Phase 3)  | ), Lev | ris, Qı        | uebec        | ;      |         |         | BORE    | HOL      | E: ,      | BH-             | 505         | -05           |         |
|-----------|----------------------|------------------|---------------------------------------|------------------------------|--------|---------|--------------|---------|----------|------------|--------|----------------|--------------|--------|---------|---------|---------|----------|-----------|-----------------|-------------|---------------|---------|
|           |                      |                  | Т                                     | mataah                       | SIT    | E :     | Levis,       | Queb    | ec       |            |        |                |              |        |         |         | PAGE    | :: _     | 1         | _ 0             | F _         | 1             |         |
| <b>1</b>  |                      |                  | j ie                                  | rratecn                      | FIL    | E NO :  | <u>T-105</u> | 0-C     | (6042    | 38)        |        |                |              |        |         |         | CASI    | NG :     | NW        | 1               |             |               |         |
|           |                      |                  |                                       |                              | вс     | RING    | DATE :       |         | 2005     | -10-06     |        | то             |              | 2005   | -10-0   | 06      | CORE    | EBAF     | REL       | ١               | ١Q          |               |         |
|           |                      | ]                | BORIN                                 | G LOG                        | DA     | TUM :   |              | Geod    | letic    |            |        | c              | OOR          |        | TES     | : 5     | 186485  | .00 N    | 1         | 26 <sup>,</sup> | 1656.       | .02 E         |         |
| SAM       | IPLE                 | со               | NDITION                               | TYPE OF SAMPLER              |        |         | LABOF        | RATO    | RY A     | ND IN SIT  | TU TE  | ST             |              |        |         | Field \ | /ane    | (        | Su)       | $\diamond$      | inta        | ct            |         |
|           | ] R                  | emo              | oulded                                | SS Split spoon               | _      |         | GS G         | rain si | ze an    | alysis     |        |                |              |        |         |         |         | (*       | Sur)      | •               | rem         | oulde         | ed      |
|           | UI<br>Lo             | ndis<br>ost      | sturbed                               | PS Piston sampler            | e      |         |              | nit we  | ight (F  | :N/m³)     |        |                |              |        |         | Swedi   | sh cone | ) ÷      | Cur)      | $\nabla$        | inta<br>rem | ct            | he      |
|           | R                    | ock              | core                                  | DC Diamond core barrel       |        |         | CP Co        | ompre   | essive   | strength   | (MPa   | ı)             |              |        |         | Dyn. C  | Cone Pe | en. Te   | st.       | ▼<br>× -        |             | <u> – – ×</u> | ;u<br>( |
|           | ī                    |                  | STRA                                  | TIGRAPHY                     |        | Ε       | :            | SAM     | PLES     | 5          |        |                |              |        |         |         |         | DYN      | I. CC     | ONE             | PEN         | <b>1.</b> ТЕ  | ST      |
| ٤         | u - N                | ε                |                                       | ION ANGLE: <u>90°</u>        |        | EL.     | 0~~          | z       | %        | •          | W/     | ATEF<br>nd I   | к со<br>іміт | NTE    | NT<br>N | огу     | STS     |          | (ble      | ows<br>0        | 10.3r/      | n)            |         |
| Ξ         | TIO                  | Ë                | AZIMUTH                               | <u> </u>                     | BOL    | ГĘ      | ANI<br>BER   | E       | ERY      | RQD        | a      |                |              | 5 ( 70 | ,       | RAT     |         | <u> </u> |           |                 |             | <b>-</b>      |         |
| DEP       | EV<br>A              | ШD               | DE                                    | SCRIPTION                    | λW     | Ë       | YPE<br>IUM   | N N     | No<br>So | l or       | v      | v <sub>P</sub> | w            | w      | L       | BOI     | SITI    | UN       |           |                 | ED S        |               | ١R      |
|           |                      |                  |                                       |                              | "      | VAT     | μZ           | ы<br>С  | RE       | Z          | 2      |                | •<br>•       |        |         | LA      | Z       | 3        | 5         |                 | іп (<br>10  | кга)<br>10    | ,       |
| -         | 77.4<br>0.0          | 14<br>10         | GROUND SURFA                          | ACE                          | $\sim$ |         |              |         |          |            |        |                |              |        |         |         |         | $\vdash$ | $\neg$    |                 |             | -             |         |
|           | ∖ <u>77.2</u><br>0.1 | <u>28</u> /<br>5 | Compact brown s                       | and and gravel, some silt,   | •<br>0 |         | SS-1         |         | 50       | 20         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| Ē,        | 76.6<br><b>0.8</b>   | 64<br>0          | Bedrock: Very set                     | verely fractured and         |        | 0-14    | DC-2<br>SS-3 |         | 100<br>0 | <br>20/0cm |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 1<br>-  |                      |                  | weathered rock.                       |                              |        | 005-1   | DC-4         |         | 47       |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           | 75.9<br><b>1.5</b>   | 91<br>2          | Layers of poor to                     | good quality grey siltstone, |        | on 2    | DC-5         |         | 100      | 27         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 2       |                      |                  | 25% beds of dark<br>from borehole axi | shale. Bedding at 30-40° s.  |        | 6.94m   | DC-3         |         | 100      | 21         |        |                |              |        |         | CP=1(   | 00.1    |          |           |                 |             |               | _       |
|           |                      |                  |                                       |                              |        | lev. 7  |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        | el at e | DC-6         |         | 100      | 40         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 3       |                      |                  |                                       |                              |        | er leve |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| -         |                      |                  |                                       |                              |        | Wate    |              |         | 100      | 84         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 4       |                      |                  |                                       |                              |        |         | 007          |         | 100      | 04         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         | 100      | 62         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           | 72.7<br><b>4.7</b>   | 71<br>2          |                                       |                              |        |         | 000          |         | 100      | 02         |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 5       |                      | _                | END OF BOREH                          |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           | _               |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 6       |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 7       |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           | _               |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| -<br>-    |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| Ē         |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 9       |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         | $\vdash$ | $\dashv$  | _               | -           | $\dashv$      |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| 10        |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             | $\uparrow$    |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
| - 11      |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         | $\mid$   | $\square$ |                 | $\square$   | $\dashv$      |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         |          |           |                 |             |               |         |
|           |                      |                  |                                       |                              |        |         |              |         |          |            |        |                |              |        |         |         |         | ┙        |           |                 |             |               |         |

|     |                     |          |                                          |                                               | PR         | OJECT    | : Rabas      | ska Pr              | oject  | (Phase 3) | ), Lev             | is, Qı         | lepec | ;           |       |        | BORE        | HOL       | E: /       | BH-        | 506          | -05          |
|-----|---------------------|----------|------------------------------------------|-----------------------------------------------|------------|----------|--------------|---------------------|--------|-----------|--------------------|----------------|-------|-------------|-------|--------|-------------|-----------|------------|------------|--------------|--------------|
|     |                     |          | То                                       | matach                                        | SIT        | Е:       | Levis,       | Queb                | ес     |           |                    |                |       |             |       |        | PAGE        | :: _      | 1          | _ 0        | F_           | 1            |
|     |                     |          |                                          | rratech                                       | FIL        | E NO :   | <u>T-105</u> | 0-C (               | 6042   | 38)       |                    |                |       |             |       |        | CASIN       | NG :      | NW         | /          |              |              |
|     |                     |          |                                          |                                               | во         | RING     | DATE :       |                     | 2005   | -10-07    |                    | то             |       | 2005        | -10-1 | 11     | CORE        | BAF       | REL        | .: 1       | 1Q           |              |
|     |                     | ł        | <b>BORIN</b>                             | G LOG                                         | DA         | TUM :    |              | Geod                | etic   |           |                    | С              | OOR   |             | TES   | : _5   | 186491.     | .04 N     | I          | 261        | 1437.        | 02 E         |
| SAN | IPLE (              | 0        | NDITION                                  | TYPE OF SAMPLER                               |            |          | LABOF        | RATO                | RY A   | ND IN SIT | Γυ τε              | ST             |       |             |       | Field  | Vane        | (:        | Su)        | $\diamond$ | inta         | ct           |
|     | Re                  | mo       | oulded                                   | SS Split spoon                                | 0          |          | GS G         | rain si:            | ze an  | alysis    |                    |                |       |             |       |        |             | (\$       | Sur)       | ٠          | rem          | oulded       |
|     | Lo:                 | st       | luibeu                                   | PS Piston sampler                             | C          |          | D U          | nit wei             | ght (k | N/m³)     |                    |                |       |             |       | Swea   | sn cone     | ) :<br>() | Cur)       | $\nabla$   | intao<br>rem | ct<br>oulded |
|     | _<br>Ro             | ck       | core                                     | DC Diamond core barrel                        |            |          | CP C         | ompre               | ssive  | strength  | (MPa               | )              |       |             |       | Dyn. ( | Cone Pe     | n. Te     | st         | <u>×</u>   |              | X            |
|     | E I                 |          | STRA                                     |                                               |            | Ε        | :            | SAM                 | PLES   | 6         |                    |                |       |             |       |        | (0          | DYN       | i. CC      | )NE        | PEN          | I. TEST      |
| ε   | -<br>z              | =        |                                          | ION ANGLE: <u>90°</u>                         |            | ĒĽ.      | <u>م</u> م   | Z                   | ر %    | 0         | w,                 | nd L           |       | NIE<br>S (% |       | OR)    | ESTS        |           | (blo<br>5( | ows.<br>N  | /0.3r/<br>10 | n)<br>0      |
| Ē   |                     | -        | AZIMUTH.                                 | · <u>· · · · · · · · · · · · · · · · · · </u> | BOL        | LEV      | AN           | ITIO                | ER)    | RQI       | ŭ                  |                |       | • (//       | ,<br> | RAT    | and<br>U TE |           |            |            |              |              |
| DEP |                     | ב        | DE                                       | SCRIPTION                                     | SYM        | ler<br>B | YPE          | DND                 | ŝ      | l or      | v                  | ٧ <sub>P</sub> | w     | w           | L     | ABO    | SIT         | UN        |            |            | EDS          | HEAR<br>kPa) |
|     |                     |          |                                          |                                               |            | -MA      |              | Ō                   | RE     | -         | 2                  | 0 4            |       | 0 80        |       | ב      | Z           |           | 50         | ອ<br>ນ     | 10           | 0            |
| -   | 76.7                | 7        | GROUND SURFA<br>Topsoil.                 | ACE                                           | ~~:        |          |              | $\bigtriangledown$  |        |           | 1                  |                |       |             |       |        |             |           | +          | -          | -            |              |
| Ē   | 0.30                | <u> </u> | Compact grey and                         | d reddish sand, some silt                     |            | ¥.,      | SS-1         |                     | 58     | 6         |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē,  |                     |          | layer.                                   |                                               | 6 D        | -10-1    |              | $\bigtriangledown$  |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ę ' | 75.5<br><b>1.22</b> | 5        | Generally dense (                        | (locally compact) reddish                     |            | 2005     | SS-2         | $\langle \ \rangle$ | 62     | 24        |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē   |                     |          | silty sand, trace o<br>occasional cobble | f gravel to gravelly,<br>es and boulders.     | ⊳ø         | u o      |              | $\bigtriangledown$  | 07     |           |                    |                |       |             |       | 00     |             |           |            |            |              |              |
| - 2 |                     |          |                                          |                                               |            | 76.37    | SS-3         |                     | 67     | 36        | •                  |                |       |             |       | GS     |             |           | $\dashv$   | $\neg$     |              |              |
| Ē   |                     |          |                                          |                                               |            | t elev.  | SS-4         | $\geq$              | 61     | 44        |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē,  |                     |          |                                          |                                               | <u>ه</u> و | evela    | DC-5         |                     | 38     |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē   |                     |          |                                          |                                               |            | ater l   | SS-6         |                     | 0      | 20/0cm    |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē   |                     |          |                                          |                                               | •          | Σ        | DC-7         |                     | 27     |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| - 4 |                     |          |                                          |                                               |            |          | SS-8         | $\ge$               | 46     | 32        | $\overline{\odot}$ |                |       |             |       | GS     |             |           | $\dashv$   | $\neg$     | _            |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               | $\sim$     |          | SS-9         |                     | 0      | 22        |                    |                |       |             |       |        |             |           |            |            |              |              |
| ǰ   |                     |          |                                          |                                               | 8          |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               | °€         |          | SS-10        | imes                | 42     | 29        |                    |                |       |             |       |        |             |           |            |            |              |              |
| - 6 |                     |          |                                          |                                               | >          | 8        |              |                     |        |           |                    |                |       |             |       |        |             |           | $\dashv$   | $\neg$     | _            |              |
| Ē   | 70.2                | 1        |                                          |                                               | •          | X        | SS-11        |                     | 39     | 75        |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē.  | 6.55                |          | END OF BOREH                             | OLE                                           |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| E ' |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē   |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| - 8 |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             | $\vdash$  | $\dashv$   | $\dashv$   | $\dashv$     |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| Ē   |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
| 10  |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             | $\vdash$  | $\dashv$   | $\neg$     | $\dashv$     |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |
|     |                     |          |                                          |                                               |            |          |              |                     |        |           |                    |                |       |             |       |        |             |           |            |            |              |              |

ptec74\Style T-1050-C-BH.sty PLOTTED: 2005-12-1

|            |                      |           |                                      |                                                        | PR    | DJECI    | : Rabas      | ska Pr             | oject           | (Phase 3)   | , Levis | s, Qı | lepec                |                |        | ВС         | REHC  | DLE :       | Bŀ           | <b>I-50</b> 7  | 7-05              | 5        |
|------------|----------------------|-----------|--------------------------------------|--------------------------------------------------------|-------|----------|--------------|--------------------|-----------------|-------------|---------|-------|----------------------|----------------|--------|------------|-------|-------------|--------------|----------------|-------------------|----------|
|            |                      |           | То                                   | matach                                                 | SIT   | E :      | Levis,       | Queb               | ec              |             |         |       |                      |                |        | PA         | GE :  | 1           |              | OF _           | 4                 |          |
|            |                      |           |                                      | rratech                                                | FIL   | E NO :   | <u>T-105</u> | 0-C                | (6042           | 38)         |         |       |                      |                |        | CA         | SING  | : <u>N</u>  | W            |                |                   |          |
|            | •                    |           |                                      |                                                        | во    | RING     | DATE :       |                    | 2005            | -10-10      |         | то    |                      | 2005           | -10-1  | 14 CC      | RE B  | ARRI        | EL :         | NQ3            |                   |          |
|            |                      | ł         | BORIN                                | G LOG                                                  | DA    | гим :    |              | Geod               | etic            |             |         | С     | OOR                  | DINA           | TES    | : 51879    | 07.70 | N           | 2            | 31438          | 3.50 E            |          |
| SAN        | MPLE C               | co        | NDITION                              | TYPE OF SAMPLER                                        |       |          | LABOF        | RATO               | RY A            | ND IN SIT   | UTE     | ST    |                      |                |        | Field Vane |       | (Su         | ) 🔷          | inta           | act               |          |
|            | C Rei                | mo<br>dis | oulded<br>turbod                     | SS Split spoon                                         | ۵     |          | GS G         | rain si            | ze an<br>datior | alysis      |         |       |                      |                |        | Our disk a |       | (Su         | r) 🔶         | rem            | nould             | ed       |
|            |                      | st        | luibed                               | PS Piston sampler                                      |       |          | D U          | nit we             | ight (k         | '<br>«N/m³) |         |       |                      |                |        | Swealsh c  | one   | (Cu<br>(Cu  | ) ⊽<br>r) ▼  | inta<br>ren    | act<br>nould      | ed       |
|            | Ro                   | ck        | core                                 | DC Diamond core barrel                                 |       |          | CP C         | ompre              | ssive           | strength    | (MPa)   | )     |                      |                |        | Dyn. Cone  | Pen.  | Test        | ×-           |                | >                 | x        |
|            | ۶ı                   |           | STRA                                 |                                                        |       | ε        |              | SAM                | PLES            | 5           | 14/ 4   | TEE   |                      | NTE            | лт     | ~ "        | וס    | 'N. (       | CON          | E PE           | N. TI             | EST      |
| ε          | ž,                   |           |                                      | • 0°                                                   |       | ĒĻ       | <u>م</u> م   | z                  | ۲ %             | 0           | ar      | nd L  |                      | N I EI<br>S (% | ы<br>) | OR)        |       | (1          | olow<br>50   | s/0.3<br>1(    | - <b>m)</b><br>00 |          |
| E          | ATIO<br>THO          |           |                                      | · <u> </u>                                             | IBOI  | Ē        | E AN         | E                  | /ER             | RQI         |         |       |                      | •              | ,      | RAT<br>and | :  -  | -           |              |                |                   | L        |
| HE I       |                      |           | DE                                   | SCRIPTION                                              | SYN   | TER      | ΓΥΡΕ         | ONIC               | ŝ               | N or        | w       | P     | W                    | w              | L      |            | l     | INDI<br>STF | RAIN<br>REN( | iED S<br>GTH i | 3HE/<br>(kPa      | AR<br>I) |
|            |                      |           |                                      |                                                        |       | MA       |              | 0                  | RE              |             | <br>20  | ) 4   | - <del></del><br>0 6 | 0 80           | )      | 2 4        |       |             | 50           | 1(             | 00                |          |
| F          | 0.00                 | 2         | Topsoil.                             |                                                        | तित्त |          | 00.4         | $\bigtriangledown$ | 00              | 0           |         | _     |                      |                |        |            |       | +           |              | +              |                   |          |
| Ē          | 0.15                 | ;         | Loose brown rede<br>gravel. Presence | dish sand and silt, some of roots on top of the layer. |       |          | 55-1         | $\square$          | 83              | 8           |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē          | 53.26<br>0.91        | 6         | Bedrock: Verv se                     | everely fractured and                                  |       |          | SS-2         | $\ge$              | 82              | 50/13cm     |         |       |                      |                |        |            |       |             |              | <u> </u>       |                   |          |
| Ē          | 52.90<br><b>1.27</b> | 2<br>7    | weathered rock.                      | ality red mudstone and                                 |       | 0-14     |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē          |                      |           | siltstone, 10% of                    | greenish grey mudstone                                 |       | 2005-1   | DC-3         |                    | 26              | 0           |         |       |                      |                |        |            |       |             |              |                |                   |          |
|            | 2                    |           | dark shale beds.                     |                                                        |       | uo u     |              |                    |                 |             |         |       |                      |                |        |            |       | +           |              | +              |                   |          |
| Ē          |                      |           |                                      |                                                        |       | 19.87n   | DC-4         |                    | 55              | 34          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē 3        |                      |           |                                      |                                                        |       | elev. 4  |              |                    |                 |             |         |       |                      |                |        |            |       |             |              | <u> </u>       |                   |          |
| Ē          | 50.82                | 2         |                                      | nt to foir quality rod                                 |       | rel at e |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē          | 0.00                 |           | mudstone and sil                     | tstone, 10% of greenish                                |       | ter lev  | DC-5         |                    | 100             | 100         |         |       |                      |                |        |            |       |             |              |                |                   |          |
| <b>F</b> 4 |                      |           | of millimetric dark                  | shale beds. Bedding at hole axis.                      |       | Mat      |              |                    |                 |             |         |       |                      |                |        |            | _     | +           |              | +              |                   |          |
| Ē          |                      |           |                                      |                                                        |       | -        |              |                    | 100             | 81          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē 5        |                      |           |                                      |                                                        |       |          | 00-0         |                    | 100             | 01          |         |       |                      |                |        |            |       |             |              | <u> </u>       |                   |          |
| Ē          |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē          |                      |           |                                      |                                                        |       |          | DC-7         |                    | 100             | 94          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| F 6        | i                    |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       | +           |              | +              |                   |          |
| Ē          |                      |           |                                      |                                                        |       |          | DC-8         |                    | 100             | 66          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ę,         | ,                    |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              | <u> </u>       |                   |          |
| E          |                      |           |                                      |                                                        |       |          | DC-9         |                    | 100             | 55          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| Ē          |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
| <u>ه</u> ا | ;                    |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              | +              |                   |          |
| 13:18h     |                      |           |                                      |                                                        |       |          | DC-10        |                    | 100             | 58          |         |       |                      |                |        |            |       |             |              |                |                   |          |
| 9          |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       | _           |              | <u> </u>       |                   |          |
| D: 200     |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
|            |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        | CP=12.2    |       |             |              |                |                   |          |
| 10<br>As   | 1                    |           |                                      |                                                        |       |          | DC-11        |                    | 100             | 55          |         |       |                      |                |        |            |       |             |              | +              | $\square$         |          |
| 50-C-B     |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        |            |       |             |              |                |                   |          |
| ₽          |                      |           |                                      |                                                        |       |          |              | ┝╋                 |                 |             |         |       |                      |                |        |            |       |             |              | <u> </u>       | $\square$         |          |
| ec74/St    |                      |           |                                      |                                                        |       |          | DC-12        |                    | 100             | 90          |         |       |                      |                |        | CP=45.1    |       |             |              |                |                   |          |
| /:/Geoft   |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        | CP=14.3    |       |             |              |                |                   |          |
| -<br>-     |                      |           |                                      |                                                        |       |          |              |                    |                 |             |         |       |                      |                |        | CF = 14.5  |       |             |              |                |                   |          |

| Γ        |        |                       |                                         |                                                       | PR  | OJECT  | : Rabas      | ska Pi | oject ( | Phase 3  | ), Levis, G    | luebec | ;       |             | BORE    | HOL      | E: [   | BH-                | 507-   | 05         |
|----------|--------|-----------------------|-----------------------------------------|-------------------------------------------------------|-----|--------|--------------|--------|---------|----------|----------------|--------|---------|-------------|---------|----------|--------|--------------------|--------|------------|
|          |        |                       | Т                                       | matach                                                | SIT | Έ:     | Levis,       | Quet   | bec     |          |                |        |         |             | PAGE    | :: _     | 2      | _ 01               |        | 4          |
|          |        | ▼                     | j ie                                    | rratecn                                               | FIL | E NO : | <u>T-105</u> | D-C    | (60423  | 38)      |                |        |         |             | CASI    | NG :     | NW     |                    |        |            |
|          |        | •                     |                                         |                                                       | во  | RING I | DATE :       |        | 2005-   | 10-10    | то             |        | 2005-10 | -14         | CORE    | E BAF    | ₹REL   | .: N               | Q3     |            |
|          |        | ]                     | BORIN                                   | G LOG                                                 | DA  | TUM :  |              | Geoc   | letic   |          |                | COOF   |         | <b>3:</b> 5 | 187907  | .70 N    | 1      | 261                | 438.5  | 0 E        |
| S        | AM     | PLE CO                | NDITION                                 | TYPE OF SAMPLER                                       |     |        | LABOR        | RATO   | RY AN   | ID IN SI | TU TEST        |        |         | Field \     | /ane    | (;       | Su)    | $\diamond$         | intact | <br>t      |
|          | $\leq$ | ] Rem                 | oulded                                  | SS Split spoon                                        | _   |        | GS Gr        | ain s  | ize ana | alysis   |                |        |         | 1           |         | (        | Sur)   | •                  | remo   | ulded      |
|          |        | Lost                  | sturbed                                 | PS Piston sampler                                     | e   |        | D Ur         | nit we | ight (k | N/m³)    |                |        |         | Swedi       | sh cone | ) ÷      | Cur)   | $\bigtriangledown$ | intact | :<br>ulded |
|          |        | Rock                  | core                                    | DC Diamond core barrel                                |     |        | CP Co        | ompre  | essive  | strength | (MPa)          |        |         | Dyn. C      | Cone Pe | en. Te   | st :   | •<br>*             |        | X          |
|          | -      | <b>C</b>              | STRA                                    | ATIGRAPHY                                             |     | Ε      | 5            | SAM    |         | 5        |                |        |         |             |         | DYN      | I. CO  | DNE                | PEN.   | . TEST     |
| 1        | =      | <u>г</u> Е            | INCLINAT                                | ION ANGLE: <u>90°</u>                                 |     | ЕĽ.    | 0            | z      | %       | -        | WATE           |        |         | ORY         | STS     |          | (blo   | )ws/               | 0.3m   | )          |
|          |        | TIO                   | AZIMUTH                                 | : <u>0°</u>                                           | BOL | LEVI   | ANI          | 110    | ERΥ     | RQD      | anu            |        | 3 (%)   | <b>AT</b>   | D TE    |          | 50     | <b>)</b>           | 100    |            |
|          | 5      | EVA<br>DEP            | DE                                      | SCRIPTION                                             | MΥ  | ĒR     | YPE          | DND    | 20      | lor      | w <sub>P</sub> | w      | wL      | BOF         | SITU    | UN       |        |                    |        |            |
|          | -      |                       |                                         |                                                       |     | VAT    | <u>⊢</u> ∠   | ŭ      | RE      | 2        | 20             |        |         | LA          | Z       | 3        | 50     | 1101               | 100    | Fa)        |
| F        | +      | 41.98                 |                                         |                                                       |     |        |              |        |         |          |                | +      |         |             |         |          | $\neg$ | -+                 | -      | +          |
| Ē        |        | 12.19                 | Layers of fair qua<br>greenish grey mu  | ality grey siltstone. 20% of<br>udstone beds (1-30mm  |     |        |              |        |         |          |                |        |         | CP=54       | 35      |          |        |                    |        |            |
| F        |        |                       | thick), 10% of rec<br>beds (1-20mm th   | d mudstone and siltstone<br>ick), trace of calcite    |     |        |              |        |         |          |                |        |         | 030         | 5.5     |          |        |                    |        |            |
| F        | 13     |                       | veinlets. Bedding                       | at 30° from borehole axis.                            |     |        | DC-13        |        | 100     | 65       |                |        |         |             |         |          |        |                    |        |            |
| Ē        |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| F        | 14     | 40.17<br><b>14.00</b> | Lavers of good g                        | uality red mudstone and                               |     |        |              | _      |         |          |                |        |         | -           |         |          |        | +                  |        |            |
| Ē        |        |                       | siltstone, 10-40%<br>beds, trace of da  | of greenish grey mudstone<br>rk shale. Presence of    |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        |        |                       | slikenside. Beddi<br>axis.              | ng at 30-40° from borehole                            |     |        | DC-14        |        | 100     | 87       |                |        |         |             |         |          |        |                    |        |            |
| Ē        | 15     |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        | 16     |                       |                                         |                                                       |     |        | DC 15        |        | 100     | 77       |                |        |         | -           |         |          |        | _                  |        |            |
| Ē        |        |                       |                                         |                                                       |     |        | DC-13        |        | 100     | //       |                |        |         |             |         |          |        |                    |        |            |
| Ē        |        |                       |                                         |                                                       |     |        |              | _      |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        | 17     |                       |                                         |                                                       |     |        | DC-16        |        | 100     | 91       |                |        |         | 1           |         |          |        | +                  |        |            |
| Ē        |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        | 18     |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         | _           |         |          |        | $\rightarrow$      |        |            |
| Ē        |        |                       |                                         |                                                       |     |        | DC-17        |        | 93      | 71       |                |        |         | CP=3        | 5.0     |          |        |                    |        |            |
| F        |        |                       |                                         |                                                       |     |        | 20 11        |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| Ē        | 19     |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         | -           |         |          |        | +                  |        |            |
| F        |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| E        | 20     |                       |                                         |                                                       |     |        | DC-18        |        | 90      | 77       |                |        |         |             |         |          |        | $ \rightarrow$     |        |            |
| 18hrs    | ╞      | 33.92<br>20.25        | Layers of genera                        | lly poor to good quality                              |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| 12 13:   |        |                       | greenish grey mu<br>siltstone beds (1-  | idstone, 20% of grey<br>100mm thick), 5% of red       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| 005-12-  | 21     |                       | mudstone and sil<br>trace of millimetri | tstone beds (1-30mm thick), c dark shale beds, and of |     |        | DC-19        |        | 76      | 44       |                |        |         | -           |         |          |        | +                  |        |            |
| TED: 2   |        |                       | calcite veinlet.                        | ° from horehole avis                                  |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| PL01     | 22     |                       | Southing at 10-00                       |                                                       |     |        | DC-20        |        | 100     | 97       |                |        |         |             |         | Щ        |        |                    |        |            |
| -BH.stv  |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |
| 1050-C   |        |                       |                                         |                                                       |     |        |              |        | 100     | ~~~      |                |        |         |             |         |          |        |                    |        |            |
| Style T- | 23     |                       |                                         |                                                       |     |        | DC-21        |        | 100     | 68       |                |        |         | -           |         | $\vdash$ | +      | +                  | +      | +          |
| otec74\  |        |                       |                                         |                                                       |     |        | DC-22        |        | 100     | 100      |                |        |         |             |         |          |        |                    |        |            |
| V:\Ge(   |        |                       |                                         |                                                       |     |        |              |        |         |          |                |        |         |             |         |          |        |                    |        |            |

|      |        |           |                                                                                          | PR  | OJECT   | : Rabas       | ska P           | roject             | (Phase 3                       | ), Levis, (    | Quebe        | с                |                      | BORE   | HOL          | E : /           | BH-                | 507          | -05        | _    |
|------|--------|-----------|------------------------------------------------------------------------------------------|-----|---------|---------------|-----------------|--------------------|--------------------------------|----------------|--------------|------------------|----------------------|--------|--------------|-----------------|--------------------|--------------|------------|------|
|      |        |           | Torratach                                                                                | SIT | E :     | Levis,        | Quel            | bec                |                                |                |              |                  |                      | PAGE   | :: _         | 3               | _ 0                | F _          | 4          | _    |
|      |        |           | Terratech                                                                                | FIL | E NO :  | <u>T-105</u>  | 0-C             | (6042              | 38)                            |                |              |                  |                      | CASI   | NG :         | NW              | 1                  |              |            | _    |
|      |        |           |                                                                                          | во  | RING I  | DATE :        |                 | 2005               | -10-10                         | то             | <b>)</b>     | 2005-10          | -14                  | CORE   | E BAR        | REL             | .: <u>N</u>        | IQ3          |            | _    |
|      |        |           | BORING LOG                                                                               | DA  | TUM :   |               | Geod            | detic              |                                |                | cool         | RDINATE          | <b>S</b> : <u>51</u> | 87907  | .70 N        | <u> </u>        | 261                | 438.         | 50 E       |      |
| SAN  | IPLE ( |           | NDITION         TYPE OF SAMPLER           builded         SS         Split spoon         |     |         | GS G          | RATO<br>rain s  | RY A               | ND IN SI<br>alvsis             | TU TEST        |              |                  | Field Va             | ane    | (\$          | Su)             | $\diamond$         | inta         | ct         |      |
|      | Un     | dis       | sturbed ST Thin walled Shelby tube                                                       | е   |         | C Co          | onsol           | idatior            | 1                              |                |              |                  | Swedis               | h cone | ;) €         | Cu)             | $\bigtriangledown$ | inta         | ct         | ;u   |
|      | Lo:    | st<br>ick | PS Piston sampler<br>core DC Diamond core barrel                                         |     |         | D Ur<br>CP Co | nit we<br>ompre | eight (ł<br>essive | N/m <sup>3</sup> )<br>strength | (MPa)          |              |                  | Dvn. Co              | one Pe | (C<br>en. Te | Cur)<br>st      | ▼<br>★             | rem          | oulde      | ed ( |
|      |        | 0.1       | STRATIGRAPHY                                                                             |     | ٤       |               | SAM             | PLE                | 3                              |                |              |                  | Dyn. o.              |        |              |                 |                    |              |            | ST   |
| ε    | E<br>8 | =         | INCLINATION ANGLE: 90°                                                                   |     | י-<br>ב |               | -               | %                  |                                | WATE           | ER CO        | ONTENT           | JRΥ                  | STS    |              | (blo            | ows/               | /0.3r        | n)         | .01  |
| Ē    |        | -         | AZIMUTH: <u>0°</u>                                                                       | Зõ  | ĒVĒ     | AND<br>BER    | TIO             | ERY                | ROD                            | and            | LIMI         | rs (%)           | RATC<br>nd           | 1 E    |              | 50              | )<br>              | 10           | 0          |      |
| E    |        |           | DESCRIPTION                                                                              | XME | ËRL     | YPE           |                 |                    | orF                            | w <sub>P</sub> | w            | wL               | BOR                  | SITU   | UN           | DR/             |                    | D S          | HEA        | ٩R   |
| Γ    |        | -         |                                                                                          | "   | WAT     | μz            | U<br>U<br>U     | REC                | Z                              | ⊢<br>20        | <del>0</del> |                  | LA                   | Z      | 3            | IK⊏<br>5(       | :NG<br>0           | ן) דינ<br>10 | кга)<br>10 | ,    |
|      |        |           | Layers of generally poor to good quality                                                 |     |         | DC-23         |                 | 100                | 54                             |                | +            |                  |                      |        |              | $\dashv$        |                    | $\neg$       | -          | -    |
| Ē    |        |           | greenish grey mudstone, 20% of grey siltstone beds (1-100mm thick), 5% of red            |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 25 |        |           | mudstone and siltstone beds (1-30mm thick), trace of millimetric dark shale beds, and of |     |         |               |                 |                    |                                |                |              |                  | _                    |        |              | $ \rightarrow $ | _                  |              |            |      |
|      |        |           | calcite veinlet.<br>Bedding at 10-60° from borehole axis.                                |     |         | DC-24         |                 | 100                | 86                             |                |              |                  |                      |        |              |                 |                    |              |            |      |
|      |        |           | _                                                                                        |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 26 |        |           |                                                                                          |     |         |               |                 | -                  |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
|      |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 27 |        |           |                                                                                          |     |         | DC-25         |                 | 100                | 95                             |                | -            |                  | _                    |        |              | -               | $\dashv$           |              | _          |      |
| Ē    |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 28 |        |           | From 27.7m to 32.1m: Very poor quality rock,                                             |     |         |               |                 | 1                  |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
|      |        |           |                                                                                          |     |         | DC-26         |                 | 92                 | 9                              |                |              |                  |                      |        |              |                 |                    |              |            |      |
| -    |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 29 |        |           |                                                                                          |     |         | DC-27         |                 | 88                 | 15                             |                |              |                  | -                    |        |              |                 | +                  |              |            |      |
| Ē    |        |           |                                                                                          |     |         |               |                 |                    | -                              |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 30 |        |           |                                                                                          |     |         |               |                 | 1                  |                                |                | -            |                  | _                    |        |              | -               | $\dashv$           | _            | _          |      |
| -    |        |           |                                                                                          |     |         | DC-28         |                 | 86                 | 13                             |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 31 |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| Ē    |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| -    |        |           |                                                                                          |     |         | DC-29         |                 | 98                 | 0                              |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 32 |        |           |                                                                                          |     |         | DC-30         |                 | 100                | 0                              |                |              |                  | _                    |        |              | $\neg$          | +                  |              |            |      |
|      |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| 33   |        |           |                                                                                          |     |         | DC-31         |                 | 100                | 87                             |                |              |                  | _                    |        |              | $\rightarrow$   | $\rightarrow$      |              | _          |      |
|      |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
|      |        |           |                                                                                          |     |         |               |                 | 1                  |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| 34   |        |           |                                                                                          |     |         | DC-32         |                 | 100                | 91                             |                |              |                  | 1                    |        |              | 1               |                    |              |            |      |
|      |        |           |                                                                                          |     |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |
| - 35 |        |           |                                                                                          |     |         |               | ┝               | -                  |                                |                |              | $\left  \right $ | -                    |        | $\vdash$     | +               | +                  | $\dashv$     |            |      |
|      |        |           |                                                                                          |     |         | DC-33         |                 | 100                | 63                             |                |              |                  |                      |        |              |                 |                    |              |            |      |
| -    |        |           |                                                                                          | Ŵ   |         |               |                 |                    |                                |                |              |                  |                      |        |              |                 |                    |              |            |      |

|      |            |           | _                                        |                                                       | PR         | OJECI  | : Rabas      | ska Pi           | roject           | (Phase 3 | ), Levis,      | Quebe | C      |       |          | BORE   | HOL      | E: <b>/</b> | вн-:          | 507.          | -05          |
|------|------------|-----------|------------------------------------------|-------------------------------------------------------|------------|--------|--------------|------------------|------------------|----------|----------------|-------|--------|-------|----------|--------|----------|-------------|---------------|---------------|--------------|
|      |            |           | Т                                        | mataal                                                | SIT        | E :    | Levis,       | Quet             | bec              |          |                |       |        |       |          | PAGE   | : _      | 4           | OF            | : _           | 4            |
|      |            |           | j ie                                     | rratecn                                               | FIL        | E NO : | <u>T-105</u> | 0-C              | (6042            | 38)      |                |       |        |       |          | CASIN  | 1G :     | NW          |               |               |              |
|      |            | •         |                                          |                                                       | во         | RING   | DATE :       |                  | 2005             | 10-10    | т              | o _   | 2005-  | -10-1 | 4        | CORE   | BAR      | REL         | : N           | Q3            |              |
|      |            | ]         | BORIN                                    | G LOG                                                 | DA         | TUM :  |              | Geod             | letic            |          |                | coo   | RDINA  | TES   | : 51     | 87907. | .70 N    |             | 261           | 438.5         | 50 E         |
| SAN  | MPLE       | E CO      | NDITION                                  | TYPE OF SAMPLER                                       |            |        | LABOR        | RATO             | RY A             | ND IN SI | TU TES         | т     |        |       | Field Va | ane    | (٤       | Su)         | $\diamond$    | intac         | xt           |
|      | ] F<br>⊠ I | Remo      | oulded                                   | SS Split spoon                                        | ē          |        | GS G         | rain s<br>onsoli | ize an<br>datior | alysis   |                |       |        |       | Curadia  | h      | (5       | Sur)        | •             | remo          | oulded       |
|      |            | Lost      | suibeu                                   | PS Piston sampler                                     | •          |        | D U          | nit we           | ight (k          | N/m³)    |                |       |        |       | Swedis   | n cone | (C<br>(C | Su)<br>Cur) | $\mathbf{v}$  | remo          | rt<br>oulded |
|      | F          | Rock      | core                                     | DC Diamond core barrel                                |            |        | CP C         | ompre            | essive           | strength | (MPa)          |       |        |       | Dyn. Co  | one Pe | n. Tes   | st          | <u>×</u>      |               | ×            |
|      | ٦          |           |                                          |                                                       |            | E      | ;            |                  | PLE              | 5        | WAT            |       |        | лт    | ≻        | S      | DYN      | . CO        | )NE           | PEN           | . TEST       |
| ε    | - N        | ε         | AZIMUTH                                  | : 0°                                                  | _          | ΈL     | ≘∝           | z                | γ %              | ۵        | and            |       | TS (%) | )     | lor,     | EST:   |          | (DIC)<br>50 | )<br>)        | 0.3n<br>10(   | ה)<br>ס      |
| E    | ATIO       | TH        |                                          |                                                       | <b>IBO</b> | Ľ      | E AN         | DITIC            | VER              | RQ       |                |       |        |       | RAT      | T U    |          |             |               |               |              |
| Ë    |            | DE        | DE                                       | SCRIPTION                                             | SYN        | TER    | IVN          | NO:              | S.               | N or     | w <sub>F</sub> | , w   | w      | L     | ABC      | N SIT  | UN<br>S  | DRA<br>TRE  |               | D SI<br>H (I  | dEAR<br>(Pa) |
|      | Ξ          | 1         |                                          |                                                       |            | Ā      |              |                  | R                |          | 20             | 40    | 60 80  |       | _        | -      |          | 50          | )             | 100           | D            |
| Ē    |            |           | Layers of general                        | lly poor to good quality                              |            |        | DC-34        |                  | 98               | 76       |                |       |        |       |          |        |          |             | +             |               |              |
| Ē    |            |           | siltstone beds (1-                       | 100mm thick), 5% of red                               |            |        | 00 04        |                  |                  | 70       |                |       |        |       |          |        |          |             |               |               |              |
| - 37 | ,          |           | mudstone and sill<br>trace of millimetri | tstone beds (1-30mm thick), c dark shale beds, and of |            |        |              |                  |                  |          |                | _     |        |       |          |        | ┢──┼     |             | $\rightarrow$ | $\rightarrow$ |              |
| Ē    |            |           | calcite veinlet.<br>Bedding at 10-60     | ° from borehole axis.                                 |            |        | DC-35        |                  | 98               | 88       |                |       |        |       |          |        |          |             |               |               |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| - 38 | 8          |           |                                          |                                                       |            |        | DC-36        |                  | 100              | 100      |                |       |        |       |          |        |          |             |               | 1             |              |
| Ē    | 15         | .57<br>60 | Alternation of fair                      | to good quality red and                               |            |        | DC-37        |                  | 100              | 68       |                |       |        |       |          |        |          |             |               |               |              |
| - 39 |            |           | grey mudstone a                          | nd siltstone. Bedding at 30°                          |            |        |              |                  |                  |          |                |       |        |       |          |        | ┢──┼     | _           | -+            | $\downarrow$  |              |
| Ē    |            |           | from borenole axi                        | 15.                                                   |            |        | DC-38        |                  | 100              | 72       |                |       |        |       |          |        |          |             |               |               |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| - 40 | 2          |           |                                          |                                                       |            |        | DC 00        |                  | 100              |          |                |       |        |       |          |        |          |             |               | +             |              |
| Ē    |            |           |                                          |                                                       |            |        | DC-39        |                  | 100              | 88       |                |       |        |       |          |        |          |             |               |               |              |
| - 41 | 13         | .15       |                                          | 015                                                   |            | X      | -            |                  |                  |          |                |       |        |       |          |        | ┝──┼     |             | _             | $\rightarrow$ |              |
| Ē    | 41         | .02       | END OF BOREH                             | OLE                                                   |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| - 42 | 2          |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               | +             |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| - 43 | 5          |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        | $\vdash$ |             |               | +             |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| Ē    |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| - 44 | L.         |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             | -             | 1             |              |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| 45   | 5          |           |                                          |                                                       |            |        |              |                  |                  |          |                | _     |        |       |          |        | $\vdash$ | -+          | +             | +             | +            |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| 46   | 5          |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          | $\square$   | +             | $\uparrow$    |              |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
| 47   | ,          |           |                                          |                                                       |            |        |              |                  |                  |          |                |       | +      |       |          |        | $\vdash$ | -+          | +             | +             | +            |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |
|      |            |           |                                          |                                                       |            |        |              |                  |                  |          |                |       |        |       |          |        |          |             |               |               |              |

eotec74\StyleT-1050-C-BH.sty\_PLOTTED: 2005-12-12 13:18hrs

|                                                                                           | Terratech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | j Fil<br>PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ST PIT: <b>TP-503-05</b><br>E NO.: T-1050-C (604238)<br>GE: 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JECT:<br>Levis,<br>ATION<br>JM:<br>FACE I<br>FACE I<br>RDINA<br>TH: 5'<br>PIT D<br>CRIPTI | Rabaska Project (Phase 3), Levis,<br>Quebec<br>Quebec<br>ELEVATION: 75.3 m<br>TES:<br>186711.1 EAST: 261741.3<br>IMENSIONS: 2.5 m x 1.5 m<br>MBER:<br>ON OF PHOTOGRAPH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ELEV. (m)<br>DEPTH (m)                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BS<br>SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CE<br>E SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3R<br>IPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LABORATORY<br>TESTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 75.3<br>0.0<br>75.2<br>0.1<br>74.0<br>1.3<br>73.6<br>1.7                                  | GROUND SURFACE<br>Topsoil.<br>Brown gravelly sand, trace of silt, 20% of cc<br>and blouders (max. dia. 45cm), shells. Pres<br>oxidation. Becoming grey at 0.7m depth.<br>Grey gravelly and sandy silt, trace of clay,<br>occasional cobbles.<br>END OF TEST PIT                                                                                                                                                                                                                                                                                                                                                                                                                                                   | bbbles<br>sence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GS<br>w = 12.9<br>P, Wopt =8.4, Dmax =20.6<br>CBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LABORATORY TESTS<br>w: Water comtent (%)<br>GS: Grain size analysis<br>D: Unit weight (kN/m <sup>3</sup> )<br>P: Modified Proctor test<br>wOPT: Optimal water content (%)<br>Dmax: Max. Dry unit weight (kN/m <sup>3</sup> )<br>wL: Liquid limit (%)<br>wP: Plastic limit (%)<br>CBR: C.B.R. test<br>TYPE AND CONDITION<br>OF SAMPLE<br>Remoulded<br>Intact<br>BS Bulk sample<br>CBR C.B.R. sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ER LEV<br>DITIONS<br>E OF T<br>DGRAP                                                      | EL: 1.30m (depth) DATE: 2009<br>S: Slight water inflow at 1.3m.<br>ERRAIN: SURFACE SOII<br>HY: DENSITY (<br>VEGETATION: White p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5-10-14<br>L:<br>DF WOODS: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Scattere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ST/<br>EQI<br>REI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ABILITY OF SIDES: Stable<br>UIPMENT USED: Caterpille<br>MARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r 430 backhoe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           | JECT:         Levis,         ATION         JM:         FACE I         RDINA         TO NU         JM:         TO NU         CRIPTI         (m)         TABO         TABO | JECT: Rabaska Project (Phase 3), Levis, Quebec         Levis, Quebec         ATION:         JM: Geodetic         FACE ELEVATION: 75.3 m         RDINATES:         TH: 5186711.1       EAST: 261741.3         PIT DIMENSIONS: 2.5 m x 1.5 m         TO NUMBER:         CRIPTION OF PHOTOGRAPH:         TO SCRIPTION         GROUND SURFACE         0.0         Topsoil.         0.1         Brown gravelly sand, trace of silt, 20% of cc and blouders (max. dia. 45cm), shells. Pres oxidation. Becoming grey at 0.7m depth.         74.0         1.3       Grey gravelly and sandy silt, trace of clay, occasional cobbles.         73.6         1.7       END OF TEST PIT         Silpht water inflow at 1.3m.         E OF TERRAIN:       SURFACE SO DORTORS: Slight water inflow at 1.3m.         E OF TERRAIN:       SURFACE SO DORTORS: Viete:         VEGETATION:       White | JECT: Rabaska Project (Phase 3), Levis, Quebec         Levis, Quebec         ATION:         JM: Geodetic         CACE ELEVATION: 75.3 m         RDINATES:         TH: 5186711.1 EAST: 261741.3         'PIT DIMENSIONS: 2.5 m x 1.5 m         TO NUMBER:         CRIPTION OF PHOTOGRAPH:         Uit of the photographic state of silt, 20% of cobbles and blouders (max, dia, 45cm), shells. Presence of oxidation. Becoming grey at 0.7m depth.         74.0         74.0         74.0         74.0         74.0         75.3         GROUND SURFACE         0.0         76.3         GROUND SURFACE         0.1         3         Grey gravelly sand, trace of silt, 20% of cobbles and blouders (max, dia, 45cm), shells. Presence of oxidation. Becoming grey at 0.7m depth.         74.0         73.3       Grey gravelly and sandy silt, trace of clay, occasional cobbles.         73.6         1.7       END OF TEST PIT         Image: Silght water inflow at 1.3m.         E OF TERRAIN:       SURFACE SOIL:         SIGRAPHY:       DENSITY OF WOODS:         YEIGED EY: H Chowinger St Texton.       DATE: | JECT: Rabaska Project (Phase 3), Levis,<br>Quebec         JECT: Rabaska Project (Phase 3), Levis,<br>Quebec         JECT: Rabaska Project (Phase 3), Levis,<br>Quebec         ATION:         JM: Geodetic         GACE ELEVATION: 75.3 m         RDINATES:<br>Th: 5186711.1 EAST: 261741.3<br>PIT DIMENSIONS: 2.5 m x 1.5 m         TO NUMBER:<br>SRIPTION OF PHOTOGRAPH:         Quebec         Quebec         ATION:         JECT: Rabaska Project (Photograph):         Quebec         Quebec         GROUND SURFACE         0.0         Topsoil.         7.3         Group gravelly sand, trace of silt, 20% of cobbles<br>and blouders (max. dia. 45cm), shells. Presence of<br>oxidation. Becoming grey at 0.7m depth.         7.4         7.5         END OF TEST PIT         DIT         DIT         DOF TEST PIT         DIT         DIT | JECT Rabaska Project (Phase 3), Levis, Quebec         LEVET: Rabaska Project (Phase 3), Levis, Quebec         ATION:         JM: Geodetic         ACCE ELEVATION: 75.3 m         RDIMETS:         Th: 5180711.1 EAST: 261741.3         PIT DIMENSIONS: 2.5 m x 1.5 m         TO NUMBER:         SRIPTION OF PHOTOGRAPH:         III:         III:         OROUND SURFACE         0.0         75.3         CROUND SURFACE         0.1         10.2         0.1         11.3         Croupsoil.         7.3         Croupsoil.         7.4         0.1         1.3         Crey gravely and sandy silt, trace of clay, occasional cobbles.         0.1         1.3         Crey gravely and sandy silt, trace of clay, occasional cobbles.         7.4.0         1.7       END OF TEST PIT         1.8         2.7         2.8         2.9         3.6         7.7         END OF TEST PIT         DETE: 2005-10-14         ZHTM:         Crey Gravely and sandy silt, trace o | Image: Construction       Image: Construction         Image: Construction       Const | Image: State of the second state of | PIETRIECN     IEST PILLOG     PIL       PIC     IEST PILLOG     PIL       PIC     Resolution     PIL       Quebec     Iestic     PIL       Quebec     Iestic     PIL       PIC     Iestic     PIL       PIC     Resolution     PIL       PIC     Iestic     PIL       PIC     Iestic     PIL       PIC     Iestic     PIL       PIL     East     26       PIL     East     25 m x 1.5 m       PID NUMBER:     Iestic     Iestic       RIPTION OF PHOTOGRAPH:     Iestic     Iestic       PIL     DESCRIPTION     Iestic     Iestic       PIL     DESCRIPTI |

|               | ))                 | Terratech                                                                                   | TES        | ΤI     | PIT              | Ľ  | .0             | G        | TE<br>j FIL<br>PA                  | ST PIT: <b>TP-504-05</b><br>E NO.: T-1050-C (604238)<br>GE: 1 OF 1 |
|---------------|--------------------|---------------------------------------------------------------------------------------------|------------|--------|------------------|----|----------------|----------|------------------------------------|--------------------------------------------------------------------|
| PRO           | JECT:              | Rabaska Project (Phase 3), Levis,<br>Quebec                                                 |            |        |                  |    |                |          |                                    |                                                                    |
| SITE          | Levis,             | Quebec                                                                                      |            |        |                  |    |                |          |                                    |                                                                    |
| LOC           | ATION              |                                                                                             |            |        |                  |    |                |          |                                    |                                                                    |
| DAT           | UM:                | Geodetic                                                                                    |            |        |                  |    |                |          |                                    |                                                                    |
| SUR           | FACE               | ELEVATION: 75.9 m                                                                           |            |        |                  |    |                |          |                                    |                                                                    |
|               | RDINA<br>TH: 5     | <b>TES:</b><br>186591.0 <b>EAST:</b> 261551.9                                               |            |        |                  |    |                |          |                                    |                                                                    |
| TES           | T PIT D            | IMENSIONS: 2.5 m x 1.5 m                                                                    |            |        |                  |    |                |          |                                    |                                                                    |
| PHO           |                    |                                                                                             |            |        |                  |    |                |          |                                    |                                                                    |
| DES<br>C      |                    | UN OF PHOTOGRAPH:                                                                           |            |        |                  |    |                |          |                                    |                                                                    |
| DEPTH (n      | DEPTH (n           |                                                                                             | SYMBOL     | WATER  | BS<br>SAMP       | LE | CB<br>SAMI     | R<br>PLE | LABORATORY<br>TESTS                | LEGEND                                                             |
|               | 75.9<br><b>0.0</b> | GROUND SURFACE<br>Topsoil.                                                                  | ~~Z        |        |                  |    |                |          |                                    |                                                                    |
| -             | 75.6               |                                                                                             |            |        |                  |    |                |          |                                    | w: Water comtent (%)                                               |
| -             | 0.3                | Reddish clayey silt, some sand, trace of grav                                               | /el.       |        | $\square$        | 1  |                |          | w = 18.1 , wL = 31.6 , wP =        | <b>GS:</b> Grain size analysis                                     |
| -             | 75.3               |                                                                                             | . 2.       |        | $\left( \right)$ |    | _              |          | 17.3                               | D: Unit weight (kN/m <sup>3</sup> )                                |
| -             | 0.6                | Reddish silty sand, some gravel, trace of clay<br>of cobbles and boulders (max. dia. 60cm). | y, 30%     |        | $\mathbb{N}$     |    | $\setminus$ /  |          |                                    | P: Modified Proctor test                                           |
| -             |                    |                                                                                             | N 9        |        | Ň                | 2  | $\backslash /$ |          | GS<br>w = 10.1 , wL = 17.7 , wP =  | <b>wOPT:</b> Optimal water content (%)                             |
| - 1           |                    |                                                                                             | D.         |        |                  |    | Y              | А        | 12.5<br>P , Wopt =7.8 , Dmax =21.5 | Dmax: Max. Drv unit weight (kN/m <sup>3</sup> )                    |
| -             |                    |                                                                                             | 0          |        | ΝÆ               |    | $\wedge$       |          | CBR                                | wL: Liquid limit (%)                                               |
| -             |                    |                                                                                             | •<br>•     |        | XI               | 3  | $  \rangle$    |          |                                    | wP: Plastic limit (%)                                              |
| -             |                    |                                                                                             |            |        | $  \rangle  $    |    |                |          |                                    | CBP: CBR test                                                      |
| -             | 74.3<br><b>1.6</b> | END OF TEST PIT                                                                             | <u></u>    |        |                  |    |                |          |                                    | ODA: O.D.A. test                                                   |
| -<br>- 2<br>- |                    |                                                                                             |            |        |                  |    |                |          |                                    | TYPE AND CONDITION<br>OF SAMPLE                                    |
| -             |                    |                                                                                             |            |        |                  |    |                |          |                                    | Remoulded                                                          |
| -             |                    |                                                                                             |            |        |                  |    |                |          |                                    | Intact                                                             |
| -             |                    |                                                                                             |            |        |                  |    |                |          |                                    | BS Bulk sample                                                     |
| - 3           |                    |                                                                                             |            |        |                  |    |                |          |                                    | CBR C.B.R. sample                                                  |
| -             |                    |                                                                                             |            |        |                  |    |                |          |                                    |                                                                    |
|               |                    |                                                                                             |            |        |                  |    |                |          |                                    |                                                                    |
| WAT           | ER LEV             | EL: m (depth) DATE:                                                                         | 1          |        |                  |    |                | ST/      | BILITY OF SIDES: Stable            |                                                                    |
| CON           | DITIONS            | S:                                                                                          |            |        |                  |    |                | EQI      | JIPMENT USED: Caterpille           | r 430 backhoe                                                      |
| STA           | re of t            | ERRAIN: SURFACE SOIL:                                                                       | :          |        |                  |    |                | REI      | MARKS:                             |                                                                    |
| TOP           |                    | HY: DENSITY O                                                                               | F WOODS: S |        |                  |    |                |          |                                    |                                                                    |
|               |                    | <b>RV:</b> H Chouinard Sr Tech                                                              | DATE: 200  | 05-10- | 14               |    |                |          |                                    | Bousquet M.A.Sc. Eng                                               |

| Terratech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TES                        | <b>) T</b> | PI٦        | r I      | _0         | G                 | j Fil<br>PA                                             | ST PIT: <b>TP-505-05</b><br>.E NO.: T-1050-C (604238)<br>GE: 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|------------|----------|------------|-------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT: Rabaska Project (Phase 3), Levis, Quebec         SITE: Levis, Quebec         LOCATION:         DATUM: Geodetic         SURFACE ELEVATION: 77.4 m         COORDINATES:         NORTH: 5186485.0         EAST: 261656.0         TEST PIT DIMENSIONS: 2.5 m x 1.3 m         PHOTO NUMBER: TP-505-05.BMP         DESCRIPTION OF PHOTOGRAPH:                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |            |            |          |            |                   |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DEPTH (m)<br>DEPTH (m)<br>DEPTH (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SYMBOL                     | WATER      | BS<br>SAMI | S<br>PLE | CB<br>SAMI | R<br>PLE          | LABORATORY<br>TESTS                                     | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 77.4       GROUND SURFACE         0.0       Topsoil.         77.2       0.2         Brown sand and gravel, some silt. Fragment weathered rock.         76.8         0.6         Bedrock: Very severely fractured and weath rock.         76.0         76.0         76.0         76.0         76.0         76.0         76.0         76.0         76.1         76.0         76.0         76.0         76.1         76.2         76.3         76.4         76.5         76.6         76.7         76.8         76.0         76.1         76.2         76.3         76.4         76.5         76.6         76.7         76.8         76.9         76.1         76.2         76.3         76.4         76.5         76.6         76.7         76.8         77.8         77.9         77.9 | ts of                      | Ţ          |            | 1 2      |            | A                 | GS<br>w = 11.8<br>P , Wopt =8.5 , Dmax =20.4<br>CBR     | LABORATORY TESTS         w: Water comtent (%)         GS: Grain size analysis         D: Unit weight (kN/m³)         P: Modified Proctor test         wOPT: Optimal water content (%)         Dmax: Max. Dry unit weight (kN/m³)         wL: Liquid limit (%)         wP: Plastic limit (%)         CBR: C.B.R. test         TYPE AND CONDITION<br>OF SAMPLE         Remoulded         WIL: BS         Bulk sample         CBR       C.B.R. sample |
| WATER LEVEL: 1.40m (depth)       DATE: 2005         CONDITIONS: Very slight water inflow at 1.4m.         STATE OF TERRAIN:       SURFACE SOIL         TOPOGRAPHY:       DENSITY O         SLOPE:       VERSECUTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-10-14<br>_:<br>DF WOODS: | <u> </u>   | <u> </u>   |          |            | STA<br>EQI<br>REI | ABILITY OF SIDES:<br>JIPMENT USED: Caterpille<br>MARKS: | er 430 backhoe                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DESCRIBED BY: H. Chouinard, Sr. Tech.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>DATE:</b> 20            | 05-10-     | -14        |          |            |                   | APPROVED BY : R                                         | . Bousquet, M.A.Sc., Eng.                                                                                                                                                                                                                                                                                                                                                                                                                          |





## **APPENDIX II**

## Laboratory Testing of Soil, Rock and Groundwater

List of Standards for Soil or Rock Testing

Laboratory Testing of Soil: Grain Size Distribution Atterberg Limits Modified Proctor Tests CBR Tests

Laboratory Testing of Rock: Petrographic Examination Swelling Potential / Petrographic Index

Laboratory Analyses of Groundwater

## List of Standards

| Туре          | Designation                         | ASTM Standards | NQ/BNQ<br>Standards              | LC Standards   |
|---------------|-------------------------------------|----------------|----------------------------------|----------------|
|               | Core drilling                       | D 2113         |                                  |                |
| Subsurface    | Groundwater monitoring              | D 4750         |                                  |                |
| Investigation | Soil sampling                       | D 4220         |                                  |                |
| Investigation | SPT                                 | D 1586         | 2501-140                         |                |
|               | Dynamic cone penetration            |                | 2501-145                         |                |
|               | Atterberg's Limits                  | D 4318         | 2501-090, 2501-<br>092           |                |
|               | CBR / California Bearing Ratio      | D 1883         |                                  |                |
|               | Classification of soils             | D 2487         |                                  |                |
| Soil Testing  | Description of soils                | D 2488         |                                  |                |
| -             | Grain size analysis (sedimentation) | D 422          | 2501-025                         |                |
| l             | Grain size analysis (sieving)       | D 1140         | 2501-025                         | 21-040         |
| 1             | Modified Proctor Density            | D 1557         | 2501-250/251                     |                |
| <u> </u>      | Moisture content                    | D 2216         |                                  | 21-200, 21-201 |
|               | Compressive strength                | D 2938         |                                  |                |
| Rock Testing  | Pyrite detection                    | C 295, C 956   | 2560-500, 2560-<br>510, 2560-900 |                |



2005-04-22 14:58h PLOTTED: stv 74\Style T-1050-B-GRN

| •))                          | ) Т                    | ern         | ate         | ch                      | App<br>Pro  | pendix :<br>ject : <u></u> Ra | II<br>abaska P | roject (Pha                | ase 2), Lev   | Figure   | :2             |  |  |  |
|------------------------------|------------------------|-------------|-------------|-------------------------|-------------|-------------------------------|----------------|----------------------------|---------------|----------|----------------|--|--|--|
|                              | <b>GRA</b>             | IN S        | SIZE        | :<br>N                  | File        | <u>We</u><br>• No : <u>T-</u> | est Optio      | <u>n Site</u><br>(603333-K | ELL)          |          |                |  |  |  |
|                              |                        |             |             |                         |             | SOIL CLASSIFICATION SYSTEM    |                |                            |               |          |                |  |  |  |
| Г                            |                        | GRAVE       | L           |                         | SAN         | D                             |                |                            | FINE PAR      | TICLES   |                |  |  |  |
|                              | COAR                   | SE          | FINE        | COARSE                  | MEDIUM      | FI                            | ١E             |                            | SILT          |          | CLAY           |  |  |  |
| 100.0 -8                     | 60                     | 20          |             | 5                       |             | 0.4                           | 0.08           | 3                          |               |          | 0.002          |  |  |  |
| 100.0                        | I<br>I<br>I            |             | •           |                         |             |                               |                |                            |               |          |                |  |  |  |
| 90.0                         | <br> <br> <br>         |             |             |                         | -           | <br> <br> <br>                |                |                            |               |          | <br> <br> <br> |  |  |  |
| 80.0                         | I<br>I                 |             | <b>√</b>    |                         |             | <br> <br>                     |                |                            |               |          | <br> <br>      |  |  |  |
| 00.0                         | <br> <br>              |             |             |                         |             |                               |                |                            |               |          |                |  |  |  |
| 70.0                         | <br> <br> <br>         |             |             |                         |             |                               |                |                            |               |          | <br> <br> <br> |  |  |  |
| <u>o</u> 60 0                | <br> <br>              |             |             |                         |             |                               |                |                            |               |          | <br> <br>      |  |  |  |
| ASSIN                        | 1<br> <br>             |             |             |                         |             |                               |                |                            |               |          |                |  |  |  |
| 50.0 -                       | <br> <br>              |             |             |                         |             | $\frac{1}{1}$                 | <u>م</u> ا     | •                          |               |          | <br> <br> <br> |  |  |  |
| <b>B</b><br><b>B</b><br>40,0 | <br> <br>              | ;<br>;<br>; |             |                         |             |                               |                |                            |               |          | <br> <br>      |  |  |  |
| <u> </u>                     | 1<br>1<br>1            |             |             |                         |             |                               |                |                            | <u> </u>      |          |                |  |  |  |
| 30.0                         | <br>  <br>             |             |             |                         |             |                               |                |                            | $\rightarrow$ |          |                |  |  |  |
| 20.0                         | 1<br>1<br><del> </del> |             |             |                         |             | <br> <br>                     |                |                            |               |          | <br> <br>      |  |  |  |
| -                            | <br> <br> <br>         |             |             |                         |             |                               |                |                            |               | <b>`</b> | ~              |  |  |  |
| 10.0                         | <br> <br>              |             |             |                         |             |                               |                |                            |               |          |                |  |  |  |
| 0.0                          |                        |             | 10          |                         | 1           |                               | 0.1            |                            | 0.01          |          |                |  |  |  |
|                              |                        |             |             |                         | GRAI        | N DIAMETER                    | (mm)           |                            |               |          |                |  |  |  |
|                              | GF                     | RAVEL (%    | , <b>)</b>  |                         | SAND (      | %)                            |                |                            | FINE PARTIC   | CLES (%) |                |  |  |  |
| <b>5</b> .7<br><b>23.9</b>   |                        |             |             |                         | 42.1        |                               |                |                            | 34.0          | )        |                |  |  |  |
|                              |                        |             |             |                         |             |                               |                |                            |               |          |                |  |  |  |
|                              | 20mm                   | 5mm         | 2mn         | n 0.4mm                 | 0.08mm      | 0.002mm                       | <br>           | D30                        | D60           | Си       | Cc             |  |  |  |
| -                            | 100.0                  | 94.3        | 88.9        | ) 76.4                  | 53.1        | 11.8                          | N/A            | 0.0129                     | 0.1314        | N/A      | N/A            |  |  |  |
|                              | 00.0                   | /0.1        | 75.3        | , 03.5                  |             | N/A                           | N/A            | IN/A                       | 0.3029        | IN/A     |                |  |  |  |
|                              |                        |             |             |                         |             |                               |                |                            |               |          |                |  |  |  |
|                              | BH-102-                | NG SA<br>05 | SS-4        | DEPTH. (m)<br>2.3 - 2.9 | Silt and sa | and, trace of g               | DESCH          | RIPTION                    |               |          | W (%)<br>11.4  |  |  |  |
|                              | BH-102-0               | 05          | <u>SS-9</u> | 6.1 - 6.4               | Sand and    | silt, some gra                | vel            |                            |               |          | 7.8            |  |  |  |

| ♥                           | )) '     | Ter    | rate            | ch      | Proj         | ect : <u>R</u>     | abaska P   | roject (Pha      | ase 2), Le | vis, Quebe | :C           |
|-----------------------------|----------|--------|-----------------|---------|--------------|--------------------|------------|------------------|------------|------------|--------------|
|                             | GR       | AIN    | SIZE            |         |              | W                  | /est Optio | n Site           |            |            |              |
|                             | DIST     | RIB    | UTIO            | N       | File         | No : <u>T</u>      | -1050-B (  | <u>(603333-K</u> | ELL)       |            |              |
|                             | <b>_</b> |        |                 | UNIFIED | SOIL CL      | SOIL CLASSIFICATIO |            |                  | 1          |            |              |
|                             | CO.      |        | FINE            | COARSE  |              | <b>)</b>           | INF        |                  | FINE PAR   | RTICLES    | CLAY         |
|                             |          |        |                 | COARGE  |              |                    |            |                  | - OILT     |            |              |
|                             | . 80     | - 20   |                 | 5 2     |              | 0.4                | 0.08       | 4                |            |            | 0.002        |
| 100                         | .0       |        |                 |         |              | 1                  |            |                  |            |            | 1            |
| 90                          |          |        |                 |         |              | i<br>I             |            |                  |            |            | 1            |
| 50                          | .0 1     | Z      | $\setminus$     |         |              |                    |            |                  |            |            | 1            |
| 80                          | .0       |        |                 |         |              | 1                  | 1          |                  |            |            | 1            |
|                             | - 1      | 1      |                 |         |              |                    |            |                  |            |            |              |
| 70                          | .0       | 1      |                 |         |              | 1                  | I          |                  |            |            | 1            |
|                             |          | 1      |                 |         |              |                    |            |                  |            |            |              |
| 9<br>60                     | .0       | 1      | $ \rightarrow $ |         |              | 1                  | 1          |                  |            |            | 1            |
| IISS                        | - 1      |        |                 |         |              |                    |            |                  |            |            |              |
| <b>⊿</b><br>■ <sup>50</sup> | .0       | <br>   |                 |         | <b>\</b>     | <br>               |            |                  |            |            | <br>         |
| CEN                         |          | i<br>I |                 | N. I    | $\mathbf{X}$ | i<br>I             |            |                  |            |            | l<br>I       |
| <b>Å</b> 40                 | .0 0     | I      |                 |         |              | <br>               |            |                  |            |            | <br>         |
| _                           | - :      | 1      |                 |         |              |                    |            |                  |            |            | 1            |
| 30                          | .0       |        |                 |         |              |                    |            |                  |            |            | <br>         |
|                             | - !      | 1      |                 |         |              |                    |            |                  |            |            |              |
| 20                          | .0       |        |                 |         |              | +                  |            |                  |            |            |              |
|                             | - 1      | 1      |                 |         |              |                    |            |                  |            |            |              |
| 10                          | .0       |        |                 |         |              |                    |            | 7                |            |            | 1            |
|                             |          |        |                 |         |              | 1                  |            |                  |            |            | <b>₽</b> ┤_₽ |
| 0                           | .0 100   |        | 10              |         | 1            |                    | 0.1        |                  | 0.01       |            | 0.0          |
|                             |          |        |                 |         | GRAIN        |                    | R (mm)     |                  |            |            |              |
| GEND                        |          | GRAVEL | (%)             |         | SAND (%      | <b>b</b> )         |            |                  | FINE PARTI | CLES (%)   |              |
|                             |          | 54.9   |                 |         | 36.9         |                    |            |                  | 8.2        | 2          |              |
|                             | •        | 33.7   |                 |         | 47.3         |                    |            |                  | 19.0       | 0          |              |
|                             |          |        |                 |         |              |                    |            |                  |            |            |              |
|                             |          |        |                 |         |              |                    |            |                  |            |            |              |
|                             | 20mm     | 5mn    | n 2mm           | 0.4mm   | 0.08mm       | 0.002mm            | D10        | D30              | D60        | Cu         | Cc           |
| GEND                        | 2011111  | 0111   |                 |         |              |                    | -          |                  |            |            |              |

| LEGEND    | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                 | W (%) |
|-----------|-----------|--------|------------|-----------------------------|-------|
| ••        | BH-103-05 | SS-3   | 1.5 - 2.1  | Sandy gravel, trace of silt | 11.0  |
| <b>BB</b> | BH-103-05 | SS-7   | 4.6 - 5.2  | Sand and gravel, some silt  | 8.4   |
|           |           |        |            |                             |       |
|           |           |        |            |                             |       |
|           |           |        |            |                             |       |

V:\Geotec74\Style T-1050-B-GRN.sty PLOTTED: 2005-04-22 14:57hrs



| LEGEND | 20mm  | 5mm  | 2mm  | 0.4mm | 0.08mm | 0.002mm | D10 | D30    | D60    | Cu  | Cc  |
|--------|-------|------|------|-------|--------|---------|-----|--------|--------|-----|-----|
| ••     | 100.0 | 78.9 | 65.6 | 44.5  | 29.3   | N/A     | N/A | 0.0920 | 1.3007 | N/A | N/A |
|        |       |      |      |       |        |         |     |        |        |     |     |
|        |       |      |      |       |        |         |     |        |        |     |     |
|        |       |      |      |       |        |         |     |        |        |     |     |
|        |       |      |      |       |        |         |     |        |        |     |     |

| LEGEND | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION             | W (%) |
|--------|-----------|--------|------------|-------------------------|-------|
| ••     | BH-104-05 | SS-5   | 3.0 - 3.7  | Gravelly and silty sand | 11.6  |
|        |           |        |            |                         |       |
|        |           |        |            |                         |       |
|        |           |        |            |                         |       |
|        |           |        |            |                         |       |

4\Style T-1050-B-GRN.sty PLOTTED: 2005-04-22 14:55h

|                |            | Te                | rra           | tec          | <b>h</b>     |           |                           |                 |           |           |           |           |           |
|----------------|------------|-------------------|---------------|--------------|--------------|-----------|---------------------------|-----------------|-----------|-----------|-----------|-----------|-----------|
| •              |            |                   |               |              |              | Pro       | West Ontion Site          |                 |           |           |           |           |           |
|                | GR         | AIN               | SI            | ZE           |              | File      | Not                       | T 1050 I        |           | 012222 14 |           |           |           |
|                | DIS        | TRIE              | BUT           | ION          |              |           |                           | 1-1050-1        |           | 00000-1   |           |           |           |
|                |            |                   |               |              | UNIFIED      | SOIL C    | OIL CLASSIFICATION SYSTEM |                 |           |           |           |           |           |
|                |            | GR/               | AVEL          |              |              | SAN       | ID                        |                 |           |           | FINE PAR  | RTICLES   |           |
|                | C          | OARSE             | F             | INE          | COARSE       | MEDIUM    |                           | FINE            |           |           | SILT      |           | CLAY      |
|                |            |                   |               |              |              |           |                           |                 |           |           |           |           |           |
| 100.0          | 80         |                   | 20            | 5            | 5 2          |           | 0.4                       |                 | 0.08      |           |           |           | 0.002     |
|                |            | $\langle \rangle$ |               |              |              |           |                           |                 |           |           |           |           |           |
| 90.0           |            | •                 |               |              |              |           |                           |                 |           |           |           |           |           |
| 80.0           |            |                   | <u> </u>      |              |              |           |                           |                 |           |           |           |           |           |
| 00.0           | - I        |                   |               |              |              |           | 1                         |                 |           |           |           |           |           |
| 70.0           | <br>       |                   | $\frac{1}{1}$ |              |              |           | <br> <br>                 |                 | <br>      |           |           |           |           |
|                | - 1        |                   | 1             | $\mathbb{N}$ | $\mathbf{N}$ |           | i                         |                 | 1         |           |           |           |           |
| <b>SN</b> 60.0 |            |                   | <br> <br>     |              |              |           | <br> <br>                 |                 | <br> <br> |           |           |           | <br> <br> |
| ASS            | - 1        |                   | <br> <br>     |              |              |           |                           |                 |           |           |           |           | <br> <br> |
| 50.0           |            |                   | <br> <br>     |              |              |           | <br> <br>                 |                 | <u> </u>  |           |           |           | <u> </u>  |
| RCE            |            |                   | 1             |              |              |           |                           |                 |           |           |           |           |           |
| <b>4</b> 0.0   |            |                   | 1             |              |              |           |                           |                 | 1         |           |           |           | 1         |
| 30.0           | -          |                   | <br> <br>     |              |              |           |                           |                 |           |           |           |           |           |
|                |            |                   | <br> <br>     |              |              |           |                           |                 |           |           |           |           |           |
| 20.0           | <br>  <br> |                   | <br>          |              |              | •         |                           |                 |           |           |           |           | <br>      |
|                | - :        |                   | 1             |              |              |           |                           |                 |           |           |           |           |           |
| 10.0           |            |                   | <br>          |              |              |           |                           |                 | -         |           |           |           |           |
| 0.0            |            |                   | ;             |              |              |           |                           |                 |           |           |           |           |           |
| 0.0            | 100        | 1 1 1             |               | 10           |              | 1<br>GRAI |                           | 0. <sup>2</sup> | 1         |           | 0.01      |           | 0.        |
|                |            |                   |               |              |              |           |                           | ,               |           |           |           |           |           |
| GEND           |            | GRAVEL (%)        |               |              |              |           | %)                        |                 |           |           | FINE PART | ICLES (%) |           |
|                |            | 42.0              |               |              |              |           |                           |                 |           |           | 18.       | .1        |           |
|                |            |                   |               |              |              |           |                           |                 |           |           |           |           |           |
|                |            |                   |               |              |              |           |                           |                 |           |           |           |           |           |
| GEND           | 20mr       | m 5n              | nm            | 2mm          | 0.4mm        | 0.08mm    | 0.002mr                   | n D10           | )         | D30       | D60       | Cu        | Сс        |
| <u> </u>       | 91.9       |                   | 2.2           | 47.6         | 17.1         | 8.0       | N/A                       | 0.136           | 63        | 0.9891    | 3.1358    | 23.013    | 2.290     |

| LEGEND | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                  | W (%) |
|--------|-----------|--------|------------|------------------------------|-------|
| ••     | BH-106-05 | SS-3   | 1.5 - 2.1  | Gravelly sand, trace of silt | 10.3  |
|        | BH-106-05 | SS-8   | 5.3 - 5.9  | Sand and gravel, some silt   | 8.5   |
|        |           |        |            |                              |       |
|        |           |        |            |                              |       |
|        |           |        |            |                              |       |

3eotec74\StyleT-1050-B-GRN.sty PLOTTED: 2005-04-22 14:56hr



2005-04-22 14:54h PLOTTED: cf. NAD -1050-B-74\StyleT.

|          | Ter       | rate         | ch                | Appen      | uix:                      | 11            | Figu              | . <u> </u> |  |  |
|----------|-----------|--------------|-------------------|------------|---------------------------|---------------|-------------------|------------|--|--|
|          |           |              |                   | Projec     | t: <u>Rabask</u>          | a Project (Ph | ase 2), Levis, Qi | uebec      |  |  |
| G        | BRAIN     | SIZE         |                   |            | West O                    | ption Site    | ition Site        |            |  |  |
| DI       | STRIB     | UTIO         | N                 | File No    | <b>o</b> : <u>T-1050-</u> | B (603333-K   | (ELL)             |            |  |  |
|          |           |              | UNIFIE            | D SOIL CLA | SSIFICATIO                | ON SYSTEM     | Λ                 |            |  |  |
|          | GRA       | /EL          |                   | SAND       |                           |               | FINE PARTICLES    | <b>s</b>   |  |  |
|          | COARSE    | FINE         | COARSE            | MEDIUM     | FINE                      |               | SILT              | CLAY       |  |  |
|          |           |              |                   |            |                           |               |                   |            |  |  |
| 100.0    |           |              | 5 2<br>     <br>  | 0          | .4                        | 0.08          |                   | 0.002      |  |  |
|          |           |              |                   |            | I<br>I                    |               |                   | <br> <br>  |  |  |
| 90.0     |           |              |                   |            | 1                         |               |                   |            |  |  |
| 80.0     |           |              |                   |            | <br>                      |               |                   |            |  |  |
|          |           | <b>\</b>     |                   |            |                           |               |                   |            |  |  |
| 70.0     | <br> <br> | $-\lambda$   | I I<br>I I        |            | 1<br>                     |               |                   | <br> <br>  |  |  |
| <b>,</b> |           | $\mathbf{N}$ |                   |            | <br> <br>                 |               |                   | <br> <br>  |  |  |
|          | <br> <br> | -+           | <br>   <br>       |            | <br> <br>                 |               |                   | <br> <br>  |  |  |
|          |           |              |                   |            | <br>                      |               |                   | <br> <br>  |  |  |
|          |           |              |                   |            |                           |               |                   |            |  |  |
| 40.0     |           |              |                   |            | I<br>I<br>I               |               |                   |            |  |  |
| -        |           |              |                   |            | 1                         |               |                   |            |  |  |
| 30.0     |           |              |                   |            | 1                         |               |                   | <br>       |  |  |
|          |           |              |                   |            | 1                         |               |                   |            |  |  |
| 20.0     |           |              |                   | <u> </u>   | 1                         |               |                   | <br> <br>  |  |  |
| 10.0     |           |              |                   |            |                           |               |                   | <br> <br>  |  |  |
| - 1      |           |              | I I<br>I I<br>I I |            |                           |               |                   | <br> <br>  |  |  |
| 0.0      |           | 10           |                   | 1          | 0.                        |               | 0.01              | 0          |  |  |
|          |           |              |                   | GRAIN DI   | AMETER (mm)               |               |                   |            |  |  |
| END      | GRAVEL    | (%)          |                   | SAND (%)   |                           |               | FINE PARTICLES (  | %)         |  |  |
| -        | 53.4      |              |                   | 38.5       |                           |               | 8.1               |            |  |  |

| LEGEND | 20mm | 5mm  | 2mm  | 0.4mm | 0.08mm | 0.002mm | D10    | D30    | D60    | Cu     | Сс    |
|--------|------|------|------|-------|--------|---------|--------|--------|--------|--------|-------|
| • •    | 83.9 | 46.6 | 30.5 | 14.0  | 8.1    | N/A     | 0.1580 | 1.9533 | 7.8462 | 49.664 | 3.078 |
|        |      |      |      |       |        |         |        |        |        |        |       |
|        |      |      |      |       |        |         |        |        |        |        |       |
|        |      |      |      |       |        |         |        |        |        |        |       |
|        |      |      |      |       |        |         |        |        |        |        |       |

| LEGEND | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                    | W (%) |
|--------|-----------|--------|------------|--------------------------------|-------|
| ••     | BH-108-05 | SS-9   | 5.9 - 6.4  | Gravel and sand, trace of silt | 11.8  |
|        |           |        |            |                                |       |
|        |           |        |            |                                |       |
|        |           |        |            |                                |       |
|        |           |        |            |                                |       |

V:\Geotec74\StyleT-1050-B-GRN.sty\_PLOTTED: 2005-04-22 14:54hrs



| LEGEND   | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                    | W (%) |
|----------|-----------|--------|------------|--------------------------------|-------|
| ••       | BH-109-05 | SS-3   | 1.5 - 2.1  | Sand and silt, trace of gravel | 14.5  |
| <b>—</b> | BH-109-05 | SS-6   | 3.8 - 4.4  | Sand, some gravel and silt     | 9.4   |
|          |           |        |            |                                |       |
|          |           |        |            |                                |       |
|          |           |        |            |                                |       |

74\Style T-1050-B-GRN.sty PLOTTED: 2005-04-22 14:53h

|                  |             | err        | ate   | ch      | Pro    | ject : <u>R</u> a                       | abaska P  | roject (Pha | ase 2), Le | vis, Quebe | c     |  |  |
|------------------|-------------|------------|-------|---------|--------|-----------------------------------------|-----------|-------------|------------|------------|-------|--|--|
|                  | CDA         |            | 2176  |         |        | W                                       | est Optio | n Site      |            |            |       |  |  |
| [                | DIST        | RIBU       |       | N       | File   | File No : <u>T-1050-B (603333-KELL)</u> |           |             |            |            |       |  |  |
|                  |             |            |       | UNIFIED | SOIL C | LASSIFIC                                | CATION    | SYSTEN      | I          |            |       |  |  |
|                  |             | GRAVEL     | L     |         | SAN    | D                                       |           |             | FINE PAR   | TICLES     |       |  |  |
|                  | COAF        | RSE        | FINE  | COARSE  | MEDIUM | FI                                      | NE        |             | SILT       |            | CLAY  |  |  |
|                  |             |            |       |         |        |                                         |           |             |            |            |       |  |  |
| 100.0            | 80          | 20         |       | 5 2     |        | 0.4                                     | 0.08      |             |            |            | 0.002 |  |  |
|                  |             |            | •     |         |        |                                         |           |             |            |            |       |  |  |
| 90.0             |             |            |       |         |        |                                         |           |             |            |            | 1     |  |  |
| 80.0             |             |            |       |         |        | 1                                       |           |             |            |            |       |  |  |
| 00.0             | - 1         | V,         |       |         |        |                                         |           |             |            |            |       |  |  |
| 70.0             |             | <u> </u> } |       |         |        |                                         |           |             |            |            | 1     |  |  |
|                  | - !         |            |       |         |        |                                         |           |             |            |            |       |  |  |
| <b>5</b><br>60.0 | 1<br>1<br>1 | i          |       |         |        |                                         | I<br>I    |             |            |            | <br>  |  |  |
| ASS              |             |            | X     |         |        |                                         |           |             |            |            |       |  |  |
| а 50.0           |             |            | +     |         |        |                                         |           |             |            |            |       |  |  |
| RCE              | -           |            |       |         |        |                                         |           |             |            |            |       |  |  |
| Щ 40.0           | 1           | I<br>I     |       |         |        | <br> <br>                               |           | ٩           |            |            | 1     |  |  |
| 20.0             |             |            |       |         |        |                                         |           | <b>A</b>    |            |            |       |  |  |
| 30.0             |             | 1          |       |         |        |                                         |           | ľ           | R          |            |       |  |  |
| 20.0             |             |            |       |         |        |                                         |           |             | À.         |            |       |  |  |
|                  |             |            |       |         |        |                                         |           |             |            |            |       |  |  |
| 10.0             | -!          |            |       | + +     |        |                                         |           |             |            |            | 1     |  |  |
|                  | - :         |            |       |         |        |                                         |           |             |            | •          |       |  |  |
| 0.0<br>1         |             |            | 10    |         | 1      |                                         | 0.1       |             | 0.01       |            | 0.00  |  |  |
|                  |             |            |       |         | GRAI   |                                         | R (mm)    |             |            |            |       |  |  |
| EGEND            | G           | RAVEL (%)  | )     |         | SAND ( | %)                                      |           |             | FINE PARTI | CLES (%)   |       |  |  |
| •                | 11.4        |            |       |         |        |                                         |           |             | 42.8       | 3          |       |  |  |
|                  |             | 57.1       |       |         | 27.9   |                                         |           |             | 15.0       | )          |       |  |  |
|                  |             |            |       |         |        |                                         |           |             |            |            |       |  |  |
| EGEND            | 20mm        | 5mm        | 2mm   | 0.4mm   | 0.08mm | 0.002mm                                 | D10       | D30         | D60        | Cu         | Cc    |  |  |
|                  |             |            | /11 8 | n// n   |        | n /                                     | 11111611  | 11111000    | 11 7708    | 56 731     |       |  |  |

DEPTH. (m) 2.7 - 3.4 DESCRIPTION W (%) 9.2 LEGEND SOUNDING SAMPLE SS-5 Sand and silt, some gravel • • BH-110-05 -BH-110-05 SS-7 4.3 - 4.9 Sandy gravel, some silt 8.3 

V:\Geotec74\StyleT-1050-B-GRN.sty\_PLOTTED: 2005-04-22 14:53hrs



PLOTTED: 74).Style T-1050-B-GRN sty


 LEGEND
 SOUNDING
 SAMPLE
 DEPTH. (m)
 DESCRIPTION
 W (%)

 BH-116B-05
 SS-3
 I.5 - 2.1
 Sand, some silt and gravel
 I.2.7

 12.7

74\StyleT-1050-B-GRN.sty PLOTTED: 2005-04-22 14:52h

|                | Ter          | rate        | ch     | Appendix   | : <u>II</u>           | Fig                 | jure :1 |
|----------------|--------------|-------------|--------|------------|-----------------------|---------------------|---------|
|                |              | 1           |        | Project :  | Rabaska Project       | (Phase 2), Levis, C | Quebec  |
|                |              | 917E        |        |            | West Option Site      | 9                   |         |
| D              | ISTRIB       | UTIO        | N      | File No :  | <u>T-1050-B (6033</u> | 33-KELL)            |         |
| _              |              |             |        | SOIL CLASS | FICATION SYS          | TEM                 |         |
|                | GRAV         | /EL         |        | SAND       |                       | FINE PARTICLE       | S       |
|                | COARSE       | FINE        | COARSE | MEDIUM     | FINE                  | SILT                | CLAY    |
|                |              |             |        |            |                       |                     |         |
| 100.0          | 80 <u>20</u> |             | 5 2    | 0.4        | 0.08                  |                     | 0.002   |
| -              |              |             |        |            |                       |                     |         |
| 90.0           |              |             |        |            |                       |                     |         |
| -              |              |             |        |            |                       |                     |         |
| 80.0           |              |             |        | 1          |                       |                     |         |
| -              | •            |             |        |            |                       |                     |         |
| 70.0           | ÷ 🔶          |             |        | i          |                       |                     |         |
| -              |              | $\setminus$ |        |            |                       |                     |         |
| <b>50</b> .0 - | <u> </u>     | - ►         |        | 1          |                       |                     | I       |
| ASS            |              |             |        |            |                       |                     |         |
| <b>5</b> 0.0   | <u> </u>     |             |        | i          |                       |                     | I       |
|                |              |             |        |            |                       |                     |         |
| 40.0 -         | <u> </u>     |             | + >    | •          | 1                     |                     | <br>    |
| -              |              |             |        |            |                       |                     |         |
| 30.0           |              |             |        |            |                       |                     |         |
| -              |              |             |        |            |                       |                     |         |
| 20.0           |              |             |        |            |                       |                     |         |
| -              |              |             |        |            |                       |                     |         |
| 10.0           |              |             |        |            |                       |                     |         |
| -              |              |             |        |            |                       |                     |         |
| 0.0 L<br>100   |              | 10          |        | 1          | 0.1                   | 0.01                | 0.      |

| LEGEND | GRAVEL (%) | SAND (%) | FINE PARTICLES (%) |
|--------|------------|----------|--------------------|
| ••     | 51.4       | 22.9     | 25.6               |
|        |            |          |                    |
|        |            |          |                    |
|        |            |          |                    |
|        |            |          |                    |

| LEGEND | 20mm | 5mm  | 2mm  | 0.4mm | 0.08mm | 0.002mm | D10    | D30    | D60     | Cu       | Cc    |
|--------|------|------|------|-------|--------|---------|--------|--------|---------|----------|-------|
| ••     | 69.3 | 48.6 | 41.8 | 30.3  | 25.7   | 6.8     | 0.0066 | 0.3973 | 14.1895 | 2141.394 | 1.679 |
|        |      |      |      |       |        |         |        |        |         |          |       |
|        |      |      |      |       |        |         |        |        |         |          |       |
|        |      |      |      |       |        |         |        |        |         |          |       |
|        |      |      |      |       |        |         |        |        |         |          |       |

| LEGEND | SOUNDING   | SAMPLE | DEPTH. (m) | DESCRIPTION            | W (%) |
|--------|------------|--------|------------|------------------------|-------|
| ••     | BH-117B-05 | SS-5   | 3.0 - 3.7  | Silty and sandy gravel | 11.2  |
|        |            |        |            |                        |       |
|        |            |        |            |                        |       |
|        |            |        |            |                        |       |
|        |            |        |            |                        |       |
|        |            |        |            |                        |       |

V:\Geotec74\StyleT-1050-B-GRN.sty PLOTTED: 2005-04-22 14:51hrs



2005-12-12 12:43h PLOTTED: stv :74\Style T-1050-



| LEGEND | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                        | W (%) |
|--------|-----------|--------|------------|------------------------------------|-------|
| ••     | BH-502-05 | SS-5   | 2.3 - 2.9  | Silty sand, some gravel, some clay | 9.6   |
|        |           |        |            |                                    |       |
|        |           |        |            |                                    |       |
|        |           |        |            |                                    |       |
|        |           |        |            |                                    |       |
|        |           |        |            |                                    |       |

<sup>2</sup>4\StyleT-1050-C-GRN.sty PLOTTED: 2005-12-12 12:43h



| 2202.10 |      | 0    |      | 0    | 0.00 | 0.002 | 2.0 | 200 | 200    | 00  | 00  |
|---------|------|------|------|------|------|-------|-----|-----|--------|-----|-----|
| •       | 95.7 | 75.1 | 69.6 | 63.0 | 54.1 | N/A   | N/A | N/A | 0.2166 | N/A | N/A |
|         |      |      |      |      |      |       |     |     |        |     |     |
|         |      |      |      |      |      |       |     |     |        |     |     |
|         |      |      |      |      |      |       |     |     |        |     |     |
|         |      |      |      |      |      |       |     |     |        |     |     |
|         |      |      |      |      |      |       |     |     |        |     |     |
|         |      |      |      |      |      |       |     |     |        |     |     |

|    | SOUNDING  | SAMPLE | DEPTH. (m) | DESCRIPTION                            | W (%) |
|----|-----------|--------|------------|----------------------------------------|-------|
| •• | BH-503-05 | SS-5   | 3.0 - 3.7  | Gravelly and sandy silt, trace of clay | N/A   |
|    |           |        |            |                                        |       |
|    |           |        |            |                                        |       |
|    |           |        |            |                                        |       |
|    |           |        |            |                                        |       |

\*4Style T-1050-C-GRN.sty PLOTTED: 2005-12-12 12:45h



PLOTTED: stv NAC 74\Style T-1050-C



ec74\StyleT-1050-C-GRN.sty\_PLOTTED: 2005-12-12 12:47



| LEGEND   | SOUNDING | SAMPLE | DEPTH. (m) | DESCRIPTION                    | W (%) |
|----------|----------|--------|------------|--------------------------------|-------|
| ••       | W-002-04 | SS-3   | 1.5 - 2.1  | Gravel and sand, some silt     | 9.5   |
|          | W-003-04 | SS-6   | 3.8 - 4.4  | Silt, some clay                | 19.1  |
| <b>—</b> | W-004-04 | SS-9   | 6.3 - 6.9  | Silt and sand, trace of gravel | 10.1  |
| <b>•</b> | W-005-04 | SS-3   | 1.5 - 2.1  | Silty and gravelly sand        | 11.0  |
|          |          |        |            |                                |       |

:74\StyleT-1050-B-GRN.sty PLOTTED: 2005-12-12 12:56h



74\Style T-1050-C-GRN.sty PLOTTED: 2005-12-12 12:49



LEGEND SOUNDING SAMPLE DEPTH. (m) DESCRIPTION W (%) • -• TP-504-05 BS-2 0.5 - 1.1 10.1 Silty sand, some gravel, trace of clay

2005-12-12 12:50h PLOTTED: stv NAU.

74\Style T-1050-C



74\StyleT-1050-C-GRN.sty PLOTTED: 2005-12-12 12:51h



74\Style T-1050-B-1 IM



005-12-12 12:00 74\Style T-1050-C-1 IM sty



# Terratech

# Essai de compactage Proctor

|               | - the -            | Over the first of the    |      |                          |               |                    |
|---------------|--------------------|--------------------------|------|--------------------------|---------------|--------------------|
| Échantillon : | 1                  | Description :            |      |                          |               |                    |
| Sondage :     | TP-503-05          | Densité relative :       | 2.75 | Estimée                  | Vérifié par : | MB                 |
| Site :        | T-1050-C           | Classification :         |      |                          | Réalisé par : | СТ                 |
| Projet no :   | 604238             | Profondeur :             | 0.15 | m                        | Date :        | 21-5-2004 9:30:00  |
| Projet desc.: | Rabaska Project (P | hase 3), L Levis, Quebec |      | a fair a share a share a | Normes :      | BNQ 2501-250 & 255 |

| Lim            | Limites Granulométrie |             | Norme ASTM (D698/D1557) : | M                   | Norme BNQ 2501-250/251 |                       |
|----------------|-----------------------|-------------|---------------------------|---------------------|------------------------|-----------------------|
| ten. en eau :  | 12.88                 | % < 80 µm : | 13.08                     | Méthode (A/B/C/D) : | С                      | Essai Proctor Modifié |
| liquidité % :  |                       | % > 5 mm :  | 25.76                     |                     |                        |                       |
| plasticité % : |                       | % > 20 mm : | 10.37                     | No moule :          | PR_G1                  |                       |

| Caractéristiques de l'essai Pr | octor              | No                           | rmal :                                   | Mo                               | odifié :                                   | Spé                        | icial :               |   |  |
|--------------------------------|--------------------|------------------------------|------------------------------------------|----------------------------------|--------------------------------------------|----------------------------|-----------------------|---|--|
| Norme BNQ (ASTM) :             |                    | 2501-2                       | 50 (D698)                                | 2501-25                          | 55 (D1557)                                 |                            |                       | 1 |  |
| Méthode :                      | and the states     | A                            | B/C/D                                    | А                                | B/C/D                                      | E                          | F                     |   |  |
| Hauteur du moule :             | cm                 |                              |                                          |                                  | 11.650                                     |                            |                       |   |  |
| Diamètre du moule :            | cm                 |                              |                                          |                                  | 15.260                                     |                            |                       |   |  |
| Volume du moule :              | cm <sup>3</sup>    | - 3 S 5 5 5 5 5 5 5          |                                          | SALAN PARA                       | 2,132.40                                   |                            |                       |   |  |
| Masse du marteau :             | kg                 |                              |                                          | 1                                | 4.540                                      |                            | 12389 201 1           |   |  |
| Hauteur de chute :             | cm                 | 1000                         |                                          |                                  | 45.7                                       |                            | Strand La             |   |  |
| Nombre de coups par couche :   |                    |                              |                                          |                                  | 56                                         |                            | 1                     |   |  |
| Nombre de couches :            |                    |                              |                                          |                                  | 5                                          |                            |                       |   |  |
| Energie spécifique :           | kg/cm <sup>2</sup> |                              |                                          |                                  | 27.400                                     |                            |                       |   |  |
|                                | N. Ge              | Méthodes A e<br>Méthodes C e | et B: Essai effect<br>et D: Essai effect | ué sur le mate<br>tué sur le mat | ériau passant le ta<br>ériau passant le ta | mis de 5 mm<br>mis de 20 m | m (#4)<br>m (3/4 po.) |   |  |

en remplaçant le matériau retenu sur le tamis de 20 mm avec la méthode D

| Essai no :                |   | 1         | 2         | 3         | 4         | 5 | 6 | 7 | 8 |
|---------------------------|---|-----------|-----------|-----------|-----------|---|---|---|---|
| Teneur en eau             |   |           |           |           |           |   |   |   |   |
| Numéro de la tare :       |   | A20       | A8        | A21       | A1        |   |   |   |   |
| Masse de la tare :        | g | 956.000   | 962.000   | 957.000   | 1,013.000 |   |   |   |   |
| Masse sol humide + tare : | g | 5,633.000 | 5,841.000 | 5,727.000 | 5,650.000 |   |   |   |   |
| Masse sol sec + tare :    | g | 5,094.000 | 5,420.000 | 5,406.000 | 5,415.000 |   |   |   |   |
| Teneur en eau :           | % | 13.026    | 9.444     | 7.215     | 5.338     |   |   |   |   |

| Poids volumique           |                   |         |         |         | State of the second |                                          |                 |       |       |
|---------------------------|-------------------|---------|---------|---------|---------------------|------------------------------------------|-----------------|-------|-------|
| Masse du moule :          | kg                | 5.432   | 5.432   | 5.432   | 5.432               | 5.432                                    | 5.432           | 5.432 | 5.432 |
| Masse du moule + sol :    | kg                | 10.110  | 10.316  | 10.224  | 10.101              | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | a second second |       |       |
| Poids volumique sol sec : | kN/m <sup>3</sup> | 19.035  | 20.524  | 20.556  | 20.385              |                                          |                 |       |       |
| Masse volumique sol sec : | kg/m <sup>3</sup> | 1940.95 | 2092.74 | 2096.00 | 2078.59             |                                          |                 |       |       |
| Écart :                   |                   |         |         |         |                     |                                          |                 |       |       |



Teneur en eau (%)

# Essai de compactage Proctor

Terratech

| Site :<br>Sondag<br>Échantil | io :<br>le :<br>llon :                                                                                   | T-1050-C<br>TP-504-05<br>2 |                                                                             | Profondeur :<br>Classification :<br>Densité relative<br>Description : | 9:                                | <br>2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m<br>Estimée                       |                                         | Date :<br>Réalisé par :<br>Vérifié par :  | 2004-05-21 09<br>CT<br>MB                                                                                                           | 1:30:00                                  |
|------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                              | Lim                                                                                                      | ites                       | Granu                                                                       | lométrie                                                              | Norme ASTM (D698/D1557) : M       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | м                                       | Norme BNQ 2501-250/251                    |                                                                                                                                     |                                          |
| ten. en                      | eau :                                                                                                    |                            | % < 80 µm :                                                                 |                                                                       | Méthode (A                        | /B/C/D) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | С                                       | Ess                                       | sai Proctor Mo                                                                                                                      | difié                                    |
| liquidite                    | é%:                                                                                                      |                            | % > 5 mm :                                                                  |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                         |                                           |                                                                                                                                     |                                          |
| plastici                     | te % :                                                                                                   |                            | % > 20 mm :                                                                 |                                                                       | No moule :                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | PR_G1                                   |                                           |                                                                                                                                     |                                          |
| Caracté                      | éristiqu                                                                                                 | les de l'essai             | Proctor                                                                     | Norr                                                                  | nal :                             | Мо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | difié :                            | Spe                                     | écial :                                   | 1                                                                                                                                   |                                          |
| Norme I                      | BNQ (A                                                                                                   | STM) :                     |                                                                             | 2501-250                                                              | ) (D698)                          | 2501-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 (D1557)                          | - Opt                                   |                                           |                                                                                                                                     |                                          |
| Méthode                      | e:                                                                                                       |                            |                                                                             | A                                                                     | B/C/D                             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B/C/D                              | E                                       | F                                         |                                                                                                                                     |                                          |
| Hauteur                      | r du mo                                                                                                  | ule :                      | cm                                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.650                             |                                         |                                           |                                                                                                                                     |                                          |
| Diamètr                      | re du m                                                                                                  | oule :                     | cm                                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.260                             |                                         |                                           |                                                                                                                                     |                                          |
| Volume                       | du mo                                                                                                    | ule :                      | cm <sup>3</sup>                                                             |                                                                       | A. A. B. A. B.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,132.40                           |                                         |                                           |                                                                                                                                     |                                          |
| Masse o                      | du mart                                                                                                  | eau :                      | kg                                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.540                              |                                         |                                           | 1                                                                                                                                   |                                          |
| Hauteur                      | r de chu                                                                                                 | ute :                      | cm                                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.7                               |                                         |                                           |                                                                                                                                     |                                          |
| Nombre                       | de col                                                                                                   | ups par couch              | θ.                                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                 |                                         |                                           |                                                                                                                                     |                                          |
| Energie                      | spécifi                                                                                                  | que :                      | ka/cm <sup>2</sup>                                                          |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 400                             |                                         |                                           |                                                                                                                                     |                                          |
| Linergie                     | specifi                                                                                                  | 440.                       | Ngrolli-                                                                    | Méthodes A et                                                         | B: Essai effec                    | tué sur le maté                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | riau passant le                    | tamis de 5 mm                           | n (#4)                                    |                                                                                                                                     |                                          |
|                              |                                                                                                          |                            |                                                                             | Méthodes C et<br>en remplaçant                                        | D: Essai effec<br>le matériau rel | tué sur le mate<br>tenu sur le tam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ériau passant le<br>is de 20 mm av | e tamis de 20 m<br>vec la méthode       | nm (3/4 po.)<br>D                         |                                                                                                                                     |                                          |
| Essai n                      | 10:                                                                                                      |                            |                                                                             | 1                                                                     | 2                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                  | 5                                       | 6                                         | 7                                                                                                                                   | 8                                        |
| Teneur                       | en eau                                                                                                   | 1                          |                                                                             | D4                                                                    | A 17                              | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                  |                                         |                                           |                                                                                                                                     |                                          |
| Numero                       | de la te                                                                                                 | are :                      |                                                                             | P4                                                                    | A17                               | A30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                  |                                         |                                           |                                                                                                                                     |                                          |
| Masse                        |                                                                                                          | ido , taro :               | g                                                                           | 5 902.000                                                             | 5 949 000                         | 5 800 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 960 000                          |                                         |                                           |                                                                                                                                     |                                          |
| Masse s                      |                                                                                                          | tare :                     | g                                                                           | 5,893.000                                                             | 5,949.000                         | 5,890.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,860.000                          |                                         |                                           |                                                                                                                                     |                                          |
| Teneur                       | en eau                                                                                                   | + laie .                   | %                                                                           | 10.018                                                                | 8,210                             | 7.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,722                              | 1000                                    |                                           |                                                                                                                                     |                                          |
|                              |                                                                                                          |                            |                                                                             |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                         |                                           |                                                                                                                                     |                                          |
| Poids v                      | /olumic                                                                                                  | que                        |                                                                             |                                                                       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                         |                                           |                                                                                                                                     |                                          |
| Masse o                      | du mou                                                                                                   | le :                       | kg                                                                          | 5.432                                                                 | 5.432                             | 5.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.432                              | 5.432                                   | 5.432                                     | 5.432                                                                                                                               | 5.432                                    |
| Masse o                      | du mou                                                                                                   | le + sol :                 | kg                                                                          | 10.381                                                                | 10.486                            | 10.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.314                             |                                         |                                           |                                                                                                                                     |                                          |
| Daida                        | olumia                                                                                                   | le sol sec :               | kN/m <sup>3</sup>                                                           | 20.688                                                                | 21.480                            | 21.476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.440                             |                                         |                                           |                                                                                                                                     |                                          |
| Polds vo                     |                                                                                                          |                            |                                                                             |                                                                       |                                   | 0100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2186 21                            | 100000000000000000000000000000000000000 |                                           |                                                                                                                                     |                                          |
| Masse                        | volum                                                                                                    | ique sol sec               | : kg/m <sup>3</sup>                                                         | 2109.53                                                               | 2190.28                           | 2189.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2100.21                            |                                         |                                           |                                                                                                                                     |                                          |
| Masse<br>Écart :             | volum                                                                                                    | ique sol sec               | : kg/m <sup>3</sup>                                                         | 2109.53                                                               | 2190.28                           | 2189.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2100.21                            |                                         |                                           |                                                                                                                                     |                                          |
| Masse<br>Écart :             | volum                                                                                                    | ique sol sec               | <ul> <li>kg/m<sup>3</sup></li> <li>Points à i</li> <li>Point max</li> </ul> | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | déjà insérés<br>ax. déjà inséré    |                                         |                                           |                                                                                                                                     | 95                                       |
| Masse<br>Écart :             | volum<br>2200.                                                                                           | o                          | <ul> <li>kg/m³</li> <li>Points à i</li> <li>Point ma:</li> </ul>            | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | déjà insérés<br>ax. déjà inséré    |                                         | V                                         | aleurs calculé                                                                                                                      | es                                       |
| Masse<br>Écart :             | volum<br>2200.<br>2190.                                                                                  | o                          | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points (     Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | déjà insérés<br>ax. déjà inséré    |                                         | Va<br>Tene                                | aleurs calculé<br>ur en eau optim                                                                                                   | i <b>es</b><br>ale, %                    |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.                                                                         |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | déjà insérés<br>ax. déjà inséré    |                                         | V:<br>Tene                                | aleurs calculé<br>ur en eau optim                                                                                                   | i <b>es</b><br>ale, %                    |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.                                                                         |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jéjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim                                                                                                   | ale, %                                   |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.<br>2170.                                                                |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points c     Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | léjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec                                                                                | e <b>s</b><br>ale, %<br>: max.           |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.                                                       |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | déjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec                                                                                | es<br>ale, %<br>: max.                   |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.                                              |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points      Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | déjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec                                                                                | es<br>ale, %<br>: max.                   |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.                                              |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points (     Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | léjà insérés<br>ax. déjà inséré    |                                         | Va<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré                                                             | es                                       |
| As volumique sol sec         | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.<br>2140.                                     |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jéjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré                                                             | es<br>ale, %<br>; max.<br>;es            |
| Masse<br>Écart :             | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.<br>2140.<br>2130.                            |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points (     Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jéjà insérés<br>ax. déjà inséré    |                                         | Va<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré<br>ur en eau optin<br>7.80                                  | es<br>ale, %<br>: max.<br>ies<br>nale, % |
| Poids volumique sol sec      | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.<br>2140.<br>2130.<br>2120.                   |                            | Points à i                                                                  | 2109.53                                                               | 2190.28                           | Points of Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Jéjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid<br>Vi<br>Teneu<br>Poid | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré<br>ur en eau optin<br>7.80<br>s volumique sec               | es<br>ale, %<br>max.<br>ies<br>nale, %   |
| Poids volumidue sol sec      | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.<br>2140.<br>2130.<br>2120.<br>2120.<br>2110. |                            | Points à i                                                                  | 2109.53<br>nsérer<br>x. à insérer                                     | 2190.28                           | Points of P | léjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré<br>ur en eau optin<br>7.80<br>s volumique sec<br>2193 kg/m3 | ies<br>ale, %<br>max.<br>ies<br>nale, %  |
| Doids volumidue sol sec      | volum<br>2200.<br>2190.<br>2180.<br>2170.<br>2160.<br>2150.<br>2140.<br>2130.<br>2120.<br>2120.<br>2110. |                            | Points à i                                                                  | 2109.53                                                               | 2190.28                           | Points (     Point m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Jéjà insérés<br>ax. déjà inséré    |                                         | Vi<br>Tene<br>Poid                        | aleurs calculé<br>ur en eau optim<br>s volumique sec<br>aleurs récupéré<br>ur en eau optin<br>7.80<br>s volumique sec<br>2193 kg/m3 | es<br>ale, %<br>max.<br>ies<br>nale, %   |

Teneur en eau (%)

# Terratech

# Essai de compactage Proctor

|                                     |               |                    |                  |                       | -            |                      |                     |                                                |                     |
|-------------------------------------|---------------|--------------------|------------------|-----------------------|--------------|----------------------|---------------------|------------------------------------------------|---------------------|
| Projet desc.:                       |               | 1000 1 1000        |                  |                       | 4.121.353    |                      |                     | Normes :                                       | BNQ 2501-250 & 255  |
| Projet no :                         |               |                    | Profondeur :     |                       |              | m                    |                     | Date :                                         | 2004-05-21 09:30:00 |
| Site :                              | T-1050-C      |                    | Classification : |                       |              |                      |                     | Réalisé par :                                  | СТ                  |
| Sondage :                           | TP-505-05     |                    | Densité relative | :                     | 2.75         | Estimée              |                     | Vérifié par :                                  | MB                  |
| Échantillon :                       | 1             |                    | Description :    |                       |              | A second second      |                     |                                                |                     |
| 1.1.                                | 14            | 1 0                | la m (tota       |                       |              |                      |                     |                                                |                     |
| Limites Grant                       |               | Iometrie           | Norme ASI        | M (D698/D             | 1557):       | M                    | Norme               | BNQ 2501-250/251                               |                     |
| ten. en eau :                       |               | % < 80 µm :        |                  | Méthode (A/B/C/D) : C |              | Es                   | sai Proctor Modifié |                                                |                     |
| liquidité % :                       |               | % > 5 mm :         |                  |                       |              |                      |                     |                                                |                     |
| plasticité % :                      |               | % > 20 mm :        |                  | No moule :            |              |                      | PR_G1               |                                                |                     |
|                                     |               |                    |                  |                       |              |                      |                     |                                                |                     |
| Caractéristiques de l'essai Proctor |               | Norm               | nal :            |                       | Modifié :    | S                    | Spécial :           |                                                |                     |
| Norme BNQ (                         | ASTM) :       |                    | 2501-250         | (D698)                | 2501         | -255 (D1557)         |                     | 8 S. C. S. |                     |
| Méthode :                           |               | Charles States     | A                | B/C/D                 | A            | B/C/D                | E                   | F                                              |                     |
| Hauteur du me                       | oule :        | cm                 |                  |                       |              | 11.650               |                     |                                                |                     |
| Diamètre du n                       | noule :       | cm                 |                  |                       |              | 15.260               |                     |                                                |                     |
| Volume du mo                        | oule :        | cm <sup>3</sup>    |                  |                       |              | 2,132.40             |                     | 1 3000 10                                      |                     |
| Masse du mar                        | teau :        | kg                 |                  |                       |              | 4.540                |                     |                                                |                     |
| Hauteur de ch                       | ute :         | cm                 |                  |                       |              | 45.7                 |                     |                                                |                     |
| Nombre de co                        | ups par couch | ne :               |                  |                       |              | 56                   |                     |                                                |                     |
| Nombre de co                        | uches :       |                    |                  |                       |              | 5                    |                     |                                                |                     |
| Energie spécif                      | ique :        | kg/cm <sup>2</sup> |                  |                       |              | 27.400               |                     |                                                |                     |
|                                     |               |                    | Méthodes A et    | B. Essai effect       | tué sur le m | atóriau naceant le   | tamic do 5 n        | nm (#4)                                        |                     |
|                                     |               |                    | inourou ou not   | D. Loour onco         | uo our io n  | lateriau passarit le | a tannis de 5 n     | (1111 (114)                                    |                     |

en remplaçant le matériau retenu sur le tamis de 20 mm avec la méthode D

| Essai no :                |   | 1         | 2         | 3         | 4         | 5 | 6             | 7 | 8 |
|---------------------------|---|-----------|-----------|-----------|-----------|---|---------------|---|---|
| Teneur en eau             |   |           |           |           |           |   |               |   |   |
| Numéro de la tare :       |   | A2        | 2         | A1        | A21       |   |               |   |   |
| Masse de la tare :        | g | 919.000   | 985.000   | 1,014.000 | 1,013.000 |   |               |   |   |
| Masse sol humide + tare : | g | 5,612.000 | 5,735.000 | 5,742.000 | 5,749.000 |   |               |   |   |
| Masse sol sec + tare :    | g | 5,089.000 | 5,274.000 | 5,355.000 | 5,413.000 |   | 19/18/10/2015 |   |   |
| Teneur en eau :           | % | 12.542    | 10.748    | 8.915     | 7.636     |   |               |   |   |

| Poids volumique           |                   |         |         |         |         |                  |       |       |       |
|---------------------------|-------------------|---------|---------|---------|---------|------------------|-------|-------|-------|
| Masse du moule :          | kg                | 5.432   | 5.432   | 5.432   | 5.432   | 5.432            | 5.432 | 5.432 | 5.432 |
| Masse du moule + sol :    | kg                | 10.164  | 10.252  | 10.249  | 10.186  |                  |       |       |       |
| Poids volumique sol sec : | kN/m <sup>3</sup> | 19.337  | 20.016  | 20.340  | 20.313  |                  |       |       |       |
| Masse volumique sol sec : | kg/m <sup>3</sup> | 1971.79 | 2040.99 | 2074.06 | 2071.25 | Sec. Carlos Sec. |       |       |       |
| Écart :                   |                   |         |         |         |         | 1.1.1.1.1        |       |       |       |



Teneur en eau (%)





PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-503-05 Profondeur: 0.15 à 1.20m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |  |
|-----------------|------------|--------|--------|---------|--|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |  |
| M.TOTALE HUMIDE | 360.80     | 4838   | 166.44 | 5727.43 |  |
| M.TOTALE SECHE  | 325.50     | 4292   | 152.56 | 5243.9  |  |
| TARE No         | 61         |        | 149    | A-2     |  |
| MASSE TARE      | 15.10      |        | 36.83  | 952.03  |  |
| W (%)           | 11.37      | 12.72  | 11.99  | 11.27   |  |

|        | POINCONNEMENT |       |        |          |          |           |  |  |  |  |
|--------|---------------|-------|--------|----------|----------|-----------|--|--|--|--|
| LEC    | TURE          | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |  |  |  |  |
| (0.01m | m)            | (po)  | (Newt) | (psi)    | (MPa)    |           |  |  |  |  |
|        | 0             | 0.000 | 0      | 0.0      | 0.000    |           |  |  |  |  |
|        | 10.2          | 0.004 | 40     | 3.0      | 0.021    |           |  |  |  |  |
|        | 23.8          | 0.009 | 67     | 5.0      | 0.035    |           |  |  |  |  |
|        | 38.5          | 0.015 | 89     | 6.7      | 0.046    |           |  |  |  |  |
|        | 59.4          | 0.023 | 120    | 9.0      | 0.062    |           |  |  |  |  |
|        | 82.6          | 0.033 | 156    | 11.7     | 0.081    |           |  |  |  |  |
| 1      | 01.0          | 0.040 | 175    | 13.1     | 0.091    |           |  |  |  |  |
| 1      | 22.4          | 0.048 | 223    | 16.7     | 0.115    |           |  |  |  |  |
| 1      | 30.1          | 0.051 | 242    | 18.1     | 0.125    |           |  |  |  |  |
| 1      | 50.0          | 0.059 | 286    | 21.4     | 0.148    |           |  |  |  |  |
| 1      | 73.3          | 0.068 | 335    | 25.1     | 0.173    |           |  |  |  |  |
| 2      | 02.5          | 0.080 | 407    | 30.5     | 0.211    |           |  |  |  |  |
| 2      | 51.3          | 0.099 | 534    | 40.0     | 0.276    |           |  |  |  |  |
| 3      | 03.2          | 0.119 | 688    | 51.6     | 0.356    |           |  |  |  |  |
| 3      | 53.4          | 0.139 | 843    | 63.2     | 0.436    |           |  |  |  |  |
| 4      | 05.7          | 0.160 | 1011   | 75.8     | 0.523    |           |  |  |  |  |
| 4      | 49.9          | 0.177 | 1156   | 86.7     | 0.598    |           |  |  |  |  |
| 5      | 08.9          | 0.200 | 1356   | 101.7    | 0.702    |           |  |  |  |  |
| 6      | 01.4          | 0.237 | 1684   | 126.3    | 0.872    |           |  |  |  |  |
| 7      | 03.6          | 0.277 | 2063   | 154.7    | 1.068    |           |  |  |  |  |
| 8      | 02.0          | 0.316 | 2417   | 181.2    | 1.251    |           |  |  |  |  |
| 9      | 05.5          | 0.356 | 2796   | 209.7    | 1.447    |           |  |  |  |  |
| 11     | 00.9          | 0.433 | 3481   | 261.0    | 1.802    |           |  |  |  |  |
| 13     | 00.3          | 0.512 | 4230   | 317.2    | 2.189    |           |  |  |  |  |
| 15     | 25.3          | 0.601 | 5067   | 379.9    | 2.623    |           |  |  |  |  |
| REMA   | RQUES         | :     |        |          |          |           |  |  |  |  |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12330    | 12300      |
| MASSE MOULE       | 7492     | 7492       |
| VOL. SOL          | 2113     | 2113       |
| W %               | 12.72    | 12.03      |
| M.VOL.SECHE       | 2031     | 2031       |
| Sr (%)            | 102.2    | 96.6       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |  |  |
|----------------------------|---------|------|--|--|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2105 |  |  |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.4  |  |  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 96.5 |  |  |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 4.3  |  |  |  |  |  |
|                            |         |      |  |  |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |  |  |  |  |
|--------------------|----------|-------|--|--|--|--|--|
| VITESSE            | (mm/min) | 1.27  |  |  |  |  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |  |  |  |  |
| SURCHARGE          | (kg)     | 4.54  |  |  |  |  |  |
| IMBIBITION         | (hr)     | 96    |  |  |  |  |  |
| GONFLEMENT         | (mm)     | 0.00  |  |  |  |  |  |
|                    |          |       |  |  |  |  |  |

| RESULTATS D'ESSAI        |                |            |  |  |  |  |  |  |
|--------------------------|----------------|------------|--|--|--|--|--|--|
| Correction initiale (mm) |                | 1.26       |  |  |  |  |  |  |
| Poinconnement (mm)       | MPa            | Indice CBR |  |  |  |  |  |  |
| 2.54                     | 0.48           | 7.0        |  |  |  |  |  |  |
| 5.08                     | 0.93           | 9.0        |  |  |  |  |  |  |
| Degre de compactage      | (C%)           |            |  |  |  |  |  |  |
| Ecart p/r Wopt.          | (Dw)           |            |  |  |  |  |  |  |
| Indice de consistance    | (IC)           |            |  |  |  |  |  |  |
| Remarques:               |                |            |  |  |  |  |  |  |
| Compactage : 5 x 10coups | s x 4.54kg x 4 | 57mm       |  |  |  |  |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-503-05 Profondeur: 0.15 à 1.20m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |  |
|-----------------|------------|--------|--------|---------|--|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |  |
| M.TOTALE HUMIDE | 418.40     | 4882   | 187.20 | 5764.19 |  |
| M.TOTALE SECHE  | 377.50     | 4324   | 170.79 | 5270.74 |  |
| TARE No         | 52         |        | 64     | A-17    |  |
| MASSE TARE      | 13.30      |        | 37.28  | 947.14  |  |
| W (%)           | 11.23      | 12.92  | 11.99  | 11.41   |  |

| POINCONNEMENT |       |        |          |          |           |
|---------------|-------|--------|----------|----------|-----------|
| LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |           |
| 0             | 0.000 | 0      | 0.0      | 0.000    |           |
| 6.2           | 0.002 | 20     | 1.5      | 0.010    |           |
| 19.5          | 0.008 | 35     | 2.6      | 0.018    |           |
| 42.7          | 0.017 | 54     | 4.0      | 0.028    |           |
| 57.2          | 0.023 | 65     | 4.9      | 0.034    |           |
| 86.7          | 0.034 | 87     | 6.5      | 0.045    |           |
| 101.0         | 0.040 | 98     | 7.3      | 0.051    |           |
| 122.6         | 0.048 | 114    | 8.5      | 0.059    |           |
| 145.6         | 0.057 | 133    | 10.0     | 0.069    |           |
| 159.7         | 0.063 | 147    | 11.0     | 0.076    |           |
| 180.9         | 0.071 | 164    | 12.3     | 0.085    |           |
| 200.5         | 0.079 | 169    | 12.7     | 0.087    |           |
| 223.7         | 0.088 | 198    | 14.8     | 0.102    |           |
| 251.7         | 0.099 | 228    | 17.1     | 0.118    |           |
| 302.2         | 0.119 | 283    | 21.2     | 0.146    |           |
| 346.2         | 0.136 | 331    | 24.8     | 0.171    |           |
| 405.3         | 0.160 | 397    | 29.8     | 0.205    |           |
| 457.1         | 0.180 | 456    | 34.2     | 0.236    |           |
| 505.6         | 0.199 | 509    | 38.2     | 0.263    |           |
| 602.8         | 0.237 | 616    | 46.2     | 0.319    |           |
| 705.5         | 0.278 | 727    | 54.5     | 0.376    |           |
| 800.9         | 0.315 | 830    | 62.2     | 0.430    |           |
| 902.8         | 0.355 | 937    | 70.3     | 0.485    |           |
| 1302.5        | 0.513 | 1362   | 102.1    | 0.705    |           |
|               |       |        |          |          |           |
| REMARQUES     | :     |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12401    | 12361      |
| MASSE MOULE       | 7519     | 7519       |
| VOL. SOL          | 2135     | 2135       |
| W %               | 12.92    | 11.99      |
| M.VOL.SECHE       | 2025     | 2025       |
| Sr (%)            | 102.5    | 95.1       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |
|----------------------------|---------|------|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2105 |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.4  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |
| % PASSANT 0.08mm           |         |      |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 96.2 |  |  |
| ECART P/R Wopt.            | (Dw)    | 4.5  |  |  |
|                            |         |      |  |  |

| CONDITIONS D'ESSAI |          |       |  |
|--------------------|----------|-------|--|
| VITESSE            | (mm/min) | 1.27  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |
| SURCHARGE          | (kg)     | 4.54  |  |
| IMBIBITION         | (hr)     | 96    |  |
| GONFLEMENT         | (mm)     | 0.00  |  |
|                    |          |       |  |

| RESULTATS D'ESSAI                         |      |            |  |  |
|-------------------------------------------|------|------------|--|--|
| Correction initiale (mm)                  |      | 0.50       |  |  |
| Poinconnement (mm)                        | MPa  | Indice CBR |  |  |
| 2.54                                      | 0.15 | 2.1        |  |  |
| 5.08                                      | 0.29 | 2.8        |  |  |
| Degre de compactage                       | (C%) |            |  |  |
| Ecart p/r Wopt.                           | (Dw) |            |  |  |
| Indice de consistance                     | (IC) |            |  |  |
| Remarques:                                |      |            |  |  |
| Compactage : 5 x 25coups x 4.54kg x 457mm |      |            |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-503-05 Profondeur: 0.15 à 1.20m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 370.50     | 4909   | 169.85 | 5836.68 |
| M.TOTALE SECHE  | 332.50     | 4364   | 154.98 | 5354.43 |
| TARE No         | 15         |        | 107    | A-21    |
| MASSE TARE      | 13.50      |        | 35.62  | 990.62  |
| W (%)           | 11.91      | 12.49  | 11.99  | 11.05   |

| POINCONNEMENT |       |        |          |          |           |
|---------------|-------|--------|----------|----------|-----------|
| LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |           |
| 0             | 0.000 | 0      | 0.0      | 0.000    |           |
| 10.5          | 0.004 | 57     | 4.3      | 0.030    |           |
| 22.4          | 0.009 | 67     | 5.0      | 0.035    |           |
| 44.0          | 0.017 | 82     | 6.1      | 0.042    |           |
| 58.5          | 0.023 | 93     | 7.0      | 0.048    |           |
| 80.9          | 0.032 | 108    | 8.1      | 0.056    |           |
| 102.1         | 0.040 | 123    | 9.2      | 0.064    |           |
| 125.8         | 0.050 | 140    | 10.5     | 0.072    |           |
| 139.9         | 0.055 | 150    | 11.2     | 0.078    |           |
| 160.3         | 0.063 | 166    | 12.4     | 0.086    |           |
| 184.0         | 0.072 | 178    | 13.3     | 0.092    |           |
| 204.7         | 0.081 | 201    | 15.1     | 0.104    |           |
| 251.3         | 0.099 | 245    | 18.4     | 0.127    |           |
| 305.8         | 0.120 | 294    | 22.0     | 0.152    |           |
| 353.6         | 0.139 | 339    | 25.4     | 0.175    |           |
| 405.8         | 0.160 | 391    | 29.3     | 0.202    |           |
| 449.8         | 0.177 | 433    | 32.5     | 0.224    |           |
| 509.0         | 0.200 | 491    | 36.8     | 0.254    |           |
| 603.3         | 0.238 | 586    | 43.9     | 0.303    |           |
| 702.4         | 0.277 | 680    | 51.0     | 0.352    |           |
| 803.0         | 0.316 | 781    | 58.6     | 0.404    |           |
| 905.5         | 0.356 | 870    | 65.2     | 0.450    |           |
| 1101.9        | 0.434 | 1040   | 78.0     | 0.538    |           |
| 1304.2        | 0.513 | 1211   | 90.8     | 0.627    |           |
| 1501.1        | 0.591 | 1367   | 102.5    | 0.708    |           |
| REMARQUES     | :     |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12371    | 12330      |
| MASSE MOULE       | 7462     | 7462       |
| VOL. SOL          | 2125     | 2125       |
| W %               | 12.49    | 11.55      |
| M.VOL.SECHE       | 2054     | 2054       |
| Sr (%)            | 104.8    | 96.9       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |
|----------------------------|---------|------|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2105 |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.4  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |
| % PASSANT 0.08mm           |         |      |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 97.6 |  |  |
| ECART P/R Wopt.            | (Dw)    | 4.1  |  |  |

| CONDITIONS D'ESSAI |          |       |  |
|--------------------|----------|-------|--|
| VITESSE            | (mm/min) | 1.27  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |
| SURCHARGE          | (kg)     | 4.54  |  |
| IMBIBITION         | (hr)     | 96    |  |
| GONFLEMENT         | (mm)     | 0.00  |  |
|                    |          |       |  |

| RESULTATS D'ESSAI                          |      |            |  |  |
|--------------------------------------------|------|------------|--|--|
| Correction initiale (mm)                   | 0.08 |            |  |  |
| Poinconnement (mm)                         | MPa  | Indice CBR |  |  |
| 2.54                                       | 0.13 | 1.9        |  |  |
| 5.08                                       | 0.28 | 2.7        |  |  |
| Degre de compactage                        | (C%) |            |  |  |
| Ecart p/r Wopt.                            | (Dw) |            |  |  |
| Indice de consistance                      | (IC) |            |  |  |
| Remarques:                                 |      |            |  |  |
| Compactage : 5 x 56 coups x 4.54kg x 457mm |      |            |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-504-05 Profondeur: 0.5 à 1.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 419.80     | 4894   | 127.64 | 5860.42 |
| M.TOTALE SECHE  | 388.00     | 4474   | 118.89 | 5455.08 |
| TARE No         | 3001       |        | 31     | A-25    |
| MASSE TARE      | 13.10      |        | 32.18  | 981.26  |
| W (%)           | 8.48       | 9.39   | 10.09  | 9.06    |

| POINCONNEMENT |       |        |          |          |           |
|---------------|-------|--------|----------|----------|-----------|
| LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |           |
| 0             | 0.000 | 0      | 0.0      | 0.000    |           |
| 10.4          | 0.004 | 77     | 5.8      | 0.040    |           |
| 24.1          | 0.009 | 116    | 8.7      | 0.060    |           |
| 45.7          | 0.018 | 166    | 12.4     | 0.086    |           |
| 59.7          | 0.024 | 209    | 15.7     | 0.108    |           |
| 88.2          | 0.035 | 315    | 23.6     | 0.163    |           |
| 102.4         | 0.040 | 379    | 28.4     | 0.196    |           |
| 123.4         | 0.049 | 478    | 35.8     | 0.247    |           |
| 144.3         | 0.057 | 591    | 44.3     | 0.306    |           |
| 159.5         | 0.063 | 674    | 50.5     | 0.349    |           |
| 180.6         | 0.071 | 803    | 60.2     | 0.416    |           |
| 203.8         | 0.080 | 950    | 71.2     | 0.492    |           |
| 254.1         | 0.100 | 1303   | 97.7     | 0.674    |           |
| 307.1         | 0.121 | 1693   | 126.9    | 0.876    |           |
| 350.6         | 0.138 | 2033   | 152.4    | 1.052    |           |
| 406.1         | 0.160 | 2470   | 185.2    | 1.278    |           |
| 456.0         | 0.180 | 2868   | 215.1    | 1.484    |           |
| 508.4         | 0.200 | 3275   | 245.6    | 1.695    |           |
| 599.6         | 0.236 | 4001   | 300.0    | 2.071    |           |
| 707.3         | 0.278 | 4826   | 361.9    | 2.498    |           |
| 807.0         | 0.318 | 5538   | 415.3    | 2.866    |           |
| 906.9         | 0.357 | 6246   | 468.3    | 3.233    |           |
| 1101.3        | 0.434 | 7554   | 566.4    | 3.910    |           |
| 1303.8        | 0.513 | 8898   | 667.2    | 4.606    |           |
| 1500.7        | 0.591 | 10166  | 762.3    | 5.262    |           |
| REMARQUES     | :     |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12425    | 12411      |
| MASSE MOULE       | 7531     | 7531       |
| VOL. SOL          | 2105     | 2105       |
| W %               | 9.39     | 9.08       |
| M.VOL.SECHE       | 2125     | 2125       |
| Sr (%)            | 91.3     | 88.2       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |
|----------------------------|---------|------|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2193 |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 7.8  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |
| % PASSANT 0.08mm           |         |      |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 96.9 |  |  |
| ECART P/R Wopt.            | (Dw)    | 1.6  |  |  |
|                            |         |      |  |  |

| CONDITIONS D'ESSAI |          |       |  |
|--------------------|----------|-------|--|
| VITESSE            | (mm/min) | 1.27  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |
| SURCHARGE          | (kg)     | 4.54  |  |
| IMBIBITION         | (hr)     | 96    |  |
| GONFLEMENT         | (mm)     | 0.00  |  |
|                    |          |       |  |

| RESULTATS D'ESSAI                         |      |            |  |  |
|-------------------------------------------|------|------------|--|--|
| Correction initiale (mm)                  |      | 0.92       |  |  |
| Poinconnement (mm)                        | MPa  | Indice CBR |  |  |
| 2.54                                      | 1.03 | 14.9       |  |  |
| 5.08                                      | 2.07 | 20.0       |  |  |
| Degre de compactage                       | (C%) |            |  |  |
| Ecart p/r Wopt.                           | (Dw) |            |  |  |
| Indice de consistance                     | (IC) |            |  |  |
| Remarques:                                |      |            |  |  |
| Compactage : 5 x 10coups x 4.54kg x 457mm |      |            |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-504-05 Profondeur: 0.5 à 1.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 479.30     | 5002   | 148.48 | 5970.73 |
| M.TOTALE SECHE  | 442.40     | 4589   | 139.15 | 5584.75 |
| TARE No         | 199        |        | 77     | A-5     |
| MASSE TARE      | 13.30      |        | 37.87  | 995.69  |
| W (%)           | 8.60       | 9.00   | 9.21   | 8.41    |

| POINCONNEMENT |       |        |          |          |           |
|---------------|-------|--------|----------|----------|-----------|
| LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |           |
| 0             | 0.000 | 0      | 0.0      | 0.000    |           |
| 7.7           | 0.003 | 77     | 5.8      | 0.040    |           |
| 22.1          | 0.009 | 104    | 7.8      | 0.054    |           |
| 45.7          | 0.018 | 145    | 10.9     | 0.075    |           |
| 59.9          | 0.024 | 169    | 12.7     | 0.087    |           |
| 80.4          | 0.032 | 214    | 16.0     | 0.111    |           |
| 100.7         | 0.040 | 263    | 19.7     | 0.136    |           |
| 120.6         | 0.047 | 315    | 23.6     | 0.163    |           |
| 141.2         | 0.056 | 372    | 27.9     | 0.193    |           |
| 163.3         | 0.064 | 443    | 33.2     | 0.229    |           |
| 183.9         | 0.072 | 514    | 38.5     | 0.266    |           |
| 207.0         | 0.081 | 597    | 44.8     | 0.309    |           |
| 250.5         | 0.099 | 778    | 58.3     | 0.403    |           |
| 308.0         | 0.121 | 1048   | 78.6     | 0.542    |           |
| 352.0         | 0.139 | 1268   | 95.1     | 0.656    |           |
| 399.9         | 0.157 | 1533   | 114.9    | 0.793    |           |
| 449.8         | 0.177 | 1821   | 136.5    | 0.943    |           |
| 507.8         | 0.200 | 2178   | 163.3    | 1.127    |           |
| 601.1         | 0.237 | 2784   | 208.8    | 1.441    |           |
| 703.3         | 0.277 | 3482   | 261.1    | 1.802    |           |
| 803.9         | 0.316 | 4194   | 314.5    | 2.171    |           |
| 905.4         | 0.356 | 4934   | 370.0    | 2.554    |           |
| 1100.8        | 0.433 | 6393   | 479.4    | 3.309    |           |
| 1304.6        | 0.514 | 8022   | 601.5    | 4.152    |           |
|               |       |        |          |          |           |
| REMARQUES     | :     |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12427    | 12392      |
| MASSE MOULE       | 7425     | 7425       |
| VOL. SOL          | 2109     | 2109       |
| W %               | 9.00     | 8.24       |
| M.VOL.SECHE       | 2176     | 2176       |
| Sr (%)            | 97.9     | 89.6       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |
|----------------------------|---------|------|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2193 |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 7.8  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 99.2 |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 1.2  |  |  |  |
|                            |         |      |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |
|--------------------|----------|-------|--|
| VITESSE            | (mm/min) | 1.27  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |
| SURCHARGE          | (kg)     | 4.54  |  |
| IMBIBITION         | (hr)     | 96    |  |
| GONFLEMENT         | (mm)     | 0.00  |  |

| RESULTATS D'ESSAI                         |      |            |  |  |
|-------------------------------------------|------|------------|--|--|
| Correction initiale (mm)                  |      | 2.45       |  |  |
| Poinconnement (mm)                        | MPa  | Indice CBR |  |  |
| 2.54                                      | 1.09 | 15.8       |  |  |
| 5.08                                      | 1.98 | 19.1       |  |  |
| Degre de compactage                       | (C%) |            |  |  |
| Ecart p/r Wopt.                           | (Dw) |            |  |  |
| Indice de consistance                     | (IC) |            |  |  |
| Remarques:                                |      |            |  |  |
| Compactage : 5 x 25coups x 4.54kg x 457mm |      |            |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-504-05 Profondeur: 0.5 à 1.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 588.80     | 4988   | 144.93 | 5936.34 |
| M.TOTALE SECHE  | 543.40     | 4569   | 135.11 | 5553.96 |
| TARE No         | 153        |        | 121    | A-26    |
| MASSE TARE      | 13.80      |        | 36.50  | 984.86  |
| W (%)           | 8.57       | 9.17   | 9.96   | 8.37    |

| POINCONNEMENT |       |        |          |          |           |  |
|---------------|-------|--------|----------|----------|-----------|--|
| LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |  |
| (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |           |  |
| 0             | 0.000 | 0      | 0.0      | 0.000    |           |  |
| 10.7          | 0.004 | 66     | 4.9      | 0.034    |           |  |
| 20.0          | 0.008 | 92     | 6.9      | 0.048    |           |  |
| 41.0          | 0.016 | 151    | 11.3     | 0.078    |           |  |
| 60.6          | 0.024 | 217    | 16.3     | 0.112    |           |  |
| 79.5          | 0.031 | 326    | 24.4     | 0.169    |           |  |
| 101.6         | 0.040 | 452    | 33.9     | 0.234    |           |  |
| 121.8         | 0.048 | 571    | 42.8     | 0.296    |           |  |
| 142.2         | 0.056 | 690    | 51.7     | 0.357    |           |  |
| 163.2         | 0.064 | 806    | 60.4     | 0.417    |           |  |
| 179.7         | 0.071 | 906    | 67.9     | 0.469    |           |  |
| 204.6         | 0.081 | 1057   | 79.3     | 0.547    |           |  |
| 253.3         | 0.100 | 1352   | 101.4    | 0.700    |           |  |
| 300.4         | 0.118 | 1647   | 123.5    | 0.852    |           |  |
| 348.5         | 0.137 | 1951   | 146.3    | 1.010    |           |  |
| 399.9         | 0.157 | 2273   | 170.4    | 1.177    |           |  |
| 451.1         | 0.178 | 2592   | 194.4    | 1.342    |           |  |
| 508.2         | 0.200 | 2956   | 221.6    | 1.530    |           |  |
| 599.5         | 0.236 | 3523   | 264.2    | 1.823    |           |  |
| 702.6         | 0.277 | 4124   | 309.2    | 2.135    |           |  |
| 801.5         | 0.316 | 4734   | 355.0    | 2.450    |           |  |
| 900.6         | 0.355 | 5334   | 400.0    | 2.761    |           |  |
|               |       |        |          |          |           |  |
|               |       |        |          |          |           |  |
|               |       |        |          |          |           |  |
| REMARQUES     | :     |        |          |          |           |  |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12554    | 12515      |
| MASSE MOULE       | 7566     | 7566       |
| VOL. SOL          | 2113     | 2113       |
| W %               | 9.17     | 8.32       |
| M.VOL.SECHE       | 2162     | 2162       |
| Sr (%)            | 96.7     | 87.7       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |
|----------------------------|---------|------|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2193 |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 7.8  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 98.6 |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 1.4  |  |  |  |
|                            |         |      |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |  |
|--------------------|----------|-------|--|--|
| VITESSE            | (mm/min) | 1.27  |  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |  |
| SURCHARGE          | (kg)     | 4.54  |  |  |
| IMBIBITION         | (hr)     | 96    |  |  |
| GONFLEMENT         | (mm)     | 0.00  |  |  |
|                    |          |       |  |  |

| RESULTATS D'ESSAI                          |      |            |  |  |  |
|--------------------------------------------|------|------------|--|--|--|
| Correction initiale (mm)                   |      | 0.37       |  |  |  |
| Poinconnement (mm)                         | MPa  | Indice CBR |  |  |  |
| 2.54                                       | 0.82 | 11.9       |  |  |  |
| 5.08                                       | 1.65 | 16.0       |  |  |  |
| Degre de compactage                        | (C%) |            |  |  |  |
| Ecart p/r Wopt.                            | (Dw) |            |  |  |  |
| Indice de consistance                      | (IC) |            |  |  |  |
| Remarques:                                 |      |            |  |  |  |
| Compactage : 5 x 56 coups x 4.54kg x 457mm |      |            |  |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-505-05 Profondeur: 0.2 à 0.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 415.20     | 4401   | 140.62 | 5537.29 |
| M.TOTALE SECHE  | 378.70     | 4027   | 127.61 | 5020.87 |
| TARE No         | 295        |        | 113    | A-8     |
| MASSE TARE      | 13.40      |        | 37.87  | 994.16  |
| W (%)           | 9.99       | 9.30   | 14.50  | 12.82   |

| L | POINCONNEMENT |       |        |          |          |             |  |  |  |  |  |  |  |
|---|---------------|-------|--------|----------|----------|-------------|--|--|--|--|--|--|--|
| ſ | LECTURE       | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES   |  |  |  |  |  |  |  |
|   | (0.01mm)      | (po)  | (Newt) | (psi)    | (MPa)    |             |  |  |  |  |  |  |  |
| I | 0             | 0.000 | 0      | 0.0      | 0.000    |             |  |  |  |  |  |  |  |
| I | 10.5          | 0.004 | 261    | 19.6     | 0.135    |             |  |  |  |  |  |  |  |
| I | 23.9          | 0.009 | 432    | 32.4     | 0.224    |             |  |  |  |  |  |  |  |
| I | 45.5          | 0.018 | 686    | 51.4     | 0.355    |             |  |  |  |  |  |  |  |
| I | 64.9          | 0.026 | 880    | 66.0     | 0.455    |             |  |  |  |  |  |  |  |
| I | 87.1          | 0.034 | 1081   | 81.1     | 0.560    |             |  |  |  |  |  |  |  |
| I | 101.3         | 0.040 | 1195   | 89.6     | 0.619    |             |  |  |  |  |  |  |  |
| I | 121.3         | 0.048 | 1345   | 100.9    | 0.696    |             |  |  |  |  |  |  |  |
| I | 143.9         | 0.057 | 1494   | 112.0    | 0.773    |             |  |  |  |  |  |  |  |
| I | 163.8         | 0.064 | 1619   | 121.4    | 0.838    |             |  |  |  |  |  |  |  |
| I | 200.7         | 0.079 | 1817   | 136.2    | 0.940    |             |  |  |  |  |  |  |  |
| I | 256.3         | 0.101 | 2094   | 157.0    | 1.084    |             |  |  |  |  |  |  |  |
| I | 305.6         | 0.120 | 2328   | 174.6    | 1.205    |             |  |  |  |  |  |  |  |
| I | 357.5         | 0.141 | 2566   | 192.4    | 1.328    |             |  |  |  |  |  |  |  |
| I | 401.5         | 0.158 | 2757   | 206.7    | 1.427    |             |  |  |  |  |  |  |  |
| I | 450.8         | 0.177 | 2974   | 223.0    | 1.539    |             |  |  |  |  |  |  |  |
| I | 509.4         | 0.201 | 3215   | 241.1    | 1.664    |             |  |  |  |  |  |  |  |
| I | 605.0         | 0.238 | 3590   | 269.2    | 1.858    |             |  |  |  |  |  |  |  |
| I | 700.2         | 0.276 | 3939   | 295.4    | 2.039    |             |  |  |  |  |  |  |  |
| I | 804.0         | 0.317 | 4300   | 322.4    | 2.226    |             |  |  |  |  |  |  |  |
| I | 902.0         | 0.355 | 4624   | 346.7    | 2.393    |             |  |  |  |  |  |  |  |
| I | 1004.3        | 0.395 | 4963   | 372.1    | 2.569    |             |  |  |  |  |  |  |  |
| I | 1107.9        | 0.436 | 5304   | 397.7    | 2.745    |             |  |  |  |  |  |  |  |
| I | 1302.5        | 0.513 | 5961   | 447.0    | 3.085    |             |  |  |  |  |  |  |  |
| 1 | 1501.9        | 0.591 | 6623   | 496.6    | 3.428    |             |  |  |  |  |  |  |  |
| ſ | REMARQUES     | :     |        |          |          | REMARQUES : |  |  |  |  |  |  |  |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 11827    | 11988      |
| MASSE MOULE       | 7426     | 7426       |
| VOL. SOL          | 2106     | 2106       |
| W %               | 9.30     | 13.29      |
| M.VOL.SECHE       | 1912     | 1912       |
| Sr (%)            | 59.9     | 85.7       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |
|----------------------------|---------|------|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2075 |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.5  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 92.1 |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 0.8  |  |  |  |
|                            |         |      |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |  |
|--------------------|----------|-------|--|--|
| VITESSE            | (mm/min) | 1.27  |  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |  |
| SURCHARGE          | (kg)     | 4.54  |  |  |
| IMBIBITION         | (hr)     | 96    |  |  |
| GONFLEMENT         | (mm)     | 0.00  |  |  |
|                    |          |       |  |  |

| RESULTATS D'ESSAI                         |      |            |  |  |  |
|-------------------------------------------|------|------------|--|--|--|
| Correction initiale (mm)                  | 0.00 |            |  |  |  |
| Poinconnement (mm)                        | MPa  | Indice CBR |  |  |  |
| 2.54                                      | 1.25 | 18.2       |  |  |  |
| 5.08                                      | 1.73 | 16.7       |  |  |  |
| Degre de compactage                       | (C%) |            |  |  |  |
| Ecart p/r Wopt.                           | (Dw) |            |  |  |  |
| Indice de consistance                     | (IC) |            |  |  |  |
| Remarques:                                |      |            |  |  |  |
| Compactage : 5 x 10coups x 4.54kg x 457mm |      |            |  |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-505-05 Profondeur: 0.2 à 0.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 360.50     | 4728   | 112.93 | 5761.96 |
| M.TOTALE SECHE  | 328.40     | 4305   | 104.65 | 5291.19 |
| TARE No         | PP         |        | 71     | A-27    |
| MASSE TARE      | 13.70      |        | 36.76  | 986.01  |
| W (%)           | 10.20      | 9.82   | 12.20  | 10.93   |

| POINCONNEMENT |             |       |        |          |          |           |
|---------------|-------------|-------|--------|----------|----------|-----------|
| LECTUR        | RE          | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01mm)      |             | (po)  | (Newt) | (psi)    | (MPa)    |           |
|               | 0           | 0.000 | 0      | 0.0      | 0.000    |           |
| 9             | .5          | 0.004 | 157    | 11.8     | 0.081    |           |
| 18            | .6          | 0.007 | 222    | 16.6     | 0.115    |           |
| 41            | .2          | 0.016 | 359    | 26.9     | 0.186    |           |
| 61            | .2          | 0.024 | 492    | 36.9     | 0.255    |           |
| 84            | .0          | 0.033 | 658    | 49.3     | 0.341    |           |
| 103           | .8          | 0.041 | 828    | 62.1     | 0.429    |           |
| 126           | .2          | 0.050 | 1026   | 76.9     | 0.531    |           |
| 140           | .5          | 0.055 | 1157   | 86.8     | 0.599    |           |
| 158           | .5          | 0.062 | 1335   | 100.1    | 0.691    |           |
| 180           | .2          | 0.071 | 1558   | 116.8    | 0.806    |           |
| 200           | .5          | 0.079 | 1772   | 132.9    | 0.917    |           |
| 256           | .2          | 0.101 | 2396   | 179.7    | 1.240    |           |
| 306           | .1          | 0.121 | 2977   | 223.2    | 1.541    |           |
| 353           | .7          | 0.139 | 3568   | 267.5    | 1.847    |           |
| 401           | .0          | 0.158 | 4149   | 311.1    | 2.148    |           |
| 455           | .9          | 0.179 | 4849   | 363.6    | 2.510    |           |
| 511           | .8          | 0.201 | 5535   | 415.0    | 2.865    |           |
| 601           | .8          | 0.237 | 6668   | 500.0    | 3.451    |           |
| 699           | .6          | 0.275 | 7888   | 591.5    | 4.083    |           |
| 803           | .9          | 0.316 | 9102   | 682.5    | 4.711    |           |
| 903           | .1          | 0.356 | 10190  | 764.1    | 5.274    |           |
| 1100          | .1          | 0.433 | 12205  | 915.2    | 6.317    |           |
| 1300          | .7          | 0.512 | 14081  | 1055.8   | 7.288    |           |
| 1504          | .1          | 0.592 | 15996  | 1199.4   | 8.280    |           |
| REMARQU       | REMARQUES : |       |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12343    | 12400      |
| MASSE MOULE       | 7617     | 7617       |
| VOL. SOL          | 2113     | 2113       |
| W %               | 9.82     | 11.10      |
| M.VOL.SECHE       | 2037     | 2038       |
| Sr (%)            | 79.7     | 90.3       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |  |
|----------------------------|---------|------|--|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2075 |  |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.5  |  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 98.2 |  |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 1.3  |  |  |  |  |
|                            |         |      |  |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |  |  |
|--------------------|----------|-------|--|--|--|
| VITESSE            | (mm/min) | 1.27  |  |  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |  |  |
| SURCHARGE          | (kg)     | 4.54  |  |  |  |
| IMBIBITION         | (hr)     | 96    |  |  |  |
| GONFLEMENT         | (mm)     | 0.00  |  |  |  |
|                    |          |       |  |  |  |

| RESULTATS D'ESSAI                         |      |            |  |  |  |
|-------------------------------------------|------|------------|--|--|--|
| Correction initiale (mm)                  |      | 0.50       |  |  |  |
| Poinconnement (mm)                        | MPa  | Indice CBR |  |  |  |
| 2.54                                      | 1.52 | 22.0       |  |  |  |
| 5.08                                      | 3.16 | 30.5       |  |  |  |
| Degre de compactage                       | (C%) |            |  |  |  |
| Ecart p/r Wopt.                           | (Dw) |            |  |  |  |
| Indice de consistance                     | (IC) |            |  |  |  |
| Remarques:                                |      |            |  |  |  |
| Compactage : 5 x 25coups x 4.54kg x 457mm |      |            |  |  |  |







PROJET : Rabaska DOSSIER No.: 604238-0000 Tranchée: TP-505-05 Profondeur: 0.2 à 0.6m

| TENEURS EN EAU  | INITIALE   |        | FINALE |         |
|-----------------|------------|--------|--------|---------|
|                 | AUXILIAIRE | TOTALE | HAUT   | TOTALE  |
| M.TOTALE HUMIDE | 486.40     | 4748   | 102.91 | 5770.83 |
| M.TOTALE SECHE  | 444.50     | 4324   | 94.28  | 5312.18 |
| TARE No         | 234        |        | 46     | A-20    |
| MASSE TARE      | 13.50      |        | 32.57  | 988.31  |
| W (%)           | 9.72       | 9.81   | 13.98  | 10.61   |

| POINCONNEMENT |             |       |        |          |          |           |
|---------------|-------------|-------|--------|----------|----------|-----------|
| LEC           | TURE        | D.H   | FORCE  | PRESSION | PRESSION | REMARQUES |
| (0.01m        | m)          | (po)  | (Newt) | (psi)    | (MPa)    |           |
|               | 0           | 0.000 | 0      | 0.0      | 0.000    |           |
|               | 14.3        | 0.006 | 160    | 12.0     | 0.083    |           |
|               | 19.6        | 0.008 | 167    | 12.5     | 0.086    |           |
|               | 37.8        | 0.015 | 251    | 18.8     | 0.130    |           |
|               | 59.7        | 0.024 | 326    | 24.4     | 0.169    |           |
|               | 80.3        | 0.032 | 401    | 30.1     | 0.208    |           |
| 1             | 02.4        | 0.040 | 492    | 36.9     | 0.255    |           |
| 1             | 22.2        | 0.048 | 583    | 43.7     | 0.302    |           |
| 1             | 42.8        | 0.056 | 685    | 51.4     | 0.355    |           |
| 1             | 63.3        | 0.064 | 792    | 59.4     | 0.410    |           |
| 1             | 84.5        | 0.073 | 918    | 68.8     | 0.475    |           |
| 2             | 04.8        | 0.081 | 1042   | 78.1     | 0.539    |           |
| 2             | 53.0        | 0.100 | 1359   | 101.9    | 0.703    |           |
| 3             | 01.4        | 0.119 | 1714   | 128.5    | 0.887    |           |
| 3             | 51.9        | 0.139 | 2088   | 156.6    | 1.081    |           |
| 4             | 07.9        | 0.161 | 2551   | 191.3    | 1.320    |           |
| 4             | 49.5        | 0.177 | 2883   | 216.2    | 1.492    |           |
| 5             | 11.7        | 0.201 | 3426   | 256.9    | 1.773    |           |
| 6             | 02.7        | 0.237 | 4187   | 314.0    | 2.167    |           |
| 7             | 01.0        | 0.276 | 5079   | 380.8    | 2.629    |           |
| 8             | 01.6        | 0.316 | 5995   | 449.5    | 3.103    |           |
| 9             | 04.5        | 0.356 | 7008   | 525.5    | 3.627    |           |
| 11            | 03.5        | 0.434 | 8955   | 671.5    | 4.635    |           |
| 13            | 00.3        | 0.512 | 10916  | 818.5    | 5.650    |           |
| 14            | 99.7        | 0.590 | 12910  | 968.0    | 6.682    |           |
| REMA          | REMARQUES : |       |        |          |          |           |

| MASSES VOLUMIQUES | INITIALE | SATURATION |
|-------------------|----------|------------|
| M.T.HUMIDE        | 12403    | 12436      |
| MASSE MOULE       | 7655     | 7655       |
| VOL. SOL          | 2101     | 2101       |
| W %               | 9.81     | 10.57      |
| M.VOL.SECHE       | 2058     | 2058       |
| Sr (%)            | 83.1     | 89.6       |

| CARACTERISTIQUES PHYSIQUES |         |      |  |  |  |
|----------------------------|---------|------|--|--|--|
| MASSE VOL.MAXIMUM          | (kg/m3) | 2075 |  |  |  |
| Wopt. PROCTOR MODIFIE      | (%)     | 8.5  |  |  |  |
| LIMITE DE LIQUIDITE        | (WL)    |      |  |  |  |
| LIMITE DE PLASTICITE       | (WP)    |      |  |  |  |
| INDICE DE PLASTICITE       | (IP)    |      |  |  |  |
| % PASSANT 0.08mm           |         |      |  |  |  |
| DENS.RELAT.PARTICULES      | (Dr)    | 2.73 |  |  |  |
| DEGRE DE COMPACTAGE        | (C%)    | 99.2 |  |  |  |
| ECART P/R Wopt.            | (Dw)    | 1.3  |  |  |  |
|                            |         |      |  |  |  |

| CONDITIONS D'ESSAI |          |       |  |  |  |
|--------------------|----------|-------|--|--|--|
| VITESSE            | (mm/min) | 1.27  |  |  |  |
| SECTION PISTON     | (cm2)    | 19.32 |  |  |  |
| SURCHARGE          | (kg)     | 4.54  |  |  |  |
| IMBIBITION         | (hr)     | 96    |  |  |  |
| GONFLEMENT         | (mm)     | 0.00  |  |  |  |
|                    |          |       |  |  |  |

| RESULTATS D'ESSAI                          |      |            |  |  |  |
|--------------------------------------------|------|------------|--|--|--|
| Correction initiale (mm)                   |      | 2.09       |  |  |  |
| Poinconnement (mm)                         | MPa  | Indice CBR |  |  |  |
| 2.54                                       | 1.55 | 22.4       |  |  |  |
| 5.08                                       | 2.70 | 26.1       |  |  |  |
| Degre de compactage                        | (C%) |            |  |  |  |
| Ecart p/r Wopt.                            | (Dw) |            |  |  |  |
| Indice de consistance (IC)                 |      |            |  |  |  |
| Remarques:                                 |      |            |  |  |  |
| Compactage : 5 x 56 coups x 4.54kg x 457mm |      |            |  |  |  |







| Client  | : Rabaska Limited Partnership | File no     | : 603333-KELL / T-1050-B |
|---------|-------------------------------|-------------|--------------------------|
|         |                               | Sample no   | : 001 to 018             |
| Project | : Rabaska Project – Phase 2   | Client ref. | :                        |
|         | : Levis (Quebec)              | Date        | : 2005-04-19             |

#### 1.0 GENERAL INFORMATION

| Sample              | : | Rock core (DC)                               |
|---------------------|---|----------------------------------------------|
| Equipments          | : | Microscope, coloration, acid etching         |
| Others informations | : | 18 samples identified in Section 2.0-Results |
|                     |   |                                              |

#### 2.0 RESULTS

#### 1.0 MANDATE

The petrographic examination was carried out on 18 rock samples of the Levis site for the determination of the swelling potential due to the presence of iron sulfur (pyrite, pyrrhotite, etc.).

This was carried out in the perspective that the material would eventually be used as granular backfill of would serve as rock foundation of structure.

#### 2.0 METHODOLOGY

Rock cores were selected from nine (9) boreholes. The 18 selected rock cores were crushed to the calibration of a 0-20 mm crushed stone.

The petrographic facies were then identified and the SPPI (Swelling Potential Petrographic Index) was determined in compliance with the Quebec Standard NQ 2560-500.

#### 3.0 RESULTS

The results are summarized in Table 1.





# PETROGRAPHIC EXAMINATION ASTM C295 – ASTM C856

| Client  | : Rabaska Limited Partnership | File no     | : 603333-KELL / T-1050-B |
|---------|-------------------------------|-------------|--------------------------|
| 1999    | :                             | Sample no   | : 001 to 018             |
| Project | : Rabaska Project – Phase 2   | Client ref. | :                        |
|         | : Levis (Quebec)              | Date        | : 2005-04-19             |

#### 2.0 RESULTS (continuation)

| Sample | Borehole  | Depth       | Main facies                        | SPPI | % eq. pyrite |
|--------|-----------|-------------|------------------------------------|------|--------------|
| 1      | BH-101-05 | 10 m        | Light grey calcareous mudstone     | 12   | 0.11         |
| 2      | BH-101-05 | 10-13 m     | Greenish to grey mudstone          | 34   | 0.11         |
| 3      | BH-102-05 | 10.5 m      | Black shale                        | 56   | 2.06         |
| 4      | BH-102-05 | 12.5 m      | Black shale / light grey mudstone  | 39   | 0.54         |
| 5      | BH-104-05 | 9 m         | Mudstone / black shale             | 35   | 0.05         |
| 6      | BH-104-05 | 12 m        | Grey calcareous mudstone           | 18   | 0.02         |
| 7      | BH-106-05 | 7 m         | Grey mudstone / black shale        | 43   | 0.11         |
| 8      | BH-106-05 | 11.5 m      | Black shale / calcareous sandstone | 56   | 0.92         |
| 9      | BH-107-05 | 8.7 m       | Red and grey mudstone              | 44   | 0.03         |
| 10     | BH-107-05 | 11-12.7 m   | Grey mudstone                      | 23   | 0.11         |
| 11     | BH-108-05 | 9 m         | Grey mudstone                      | 17   | 0.03         |
| 12     | BH-108-05 | 12.2 m      | Red and grey mudstone              | 44   | 0.02         |
| 13     | BH-109-05 | 8 m         | Red mudstone                       | 50   | 0.03         |
| 14     | BH-109-05 | 10-13 m     | Grey and red mudstone              | 21   | 0.05         |
| 15     | BH-110-05 | 8 m         | Grey mudstone                      | 28   | 0.07         |
| 16     | BH-110-05 | 12.5 m      | Red mudstone                       | 50   | 0.03         |
| 17     | BH-103-05 | 11.5-11.8 m | Grey mudstone                      | 25   | 0.06         |
| 18     | BH-103-05 | 12.5-12.9 m | Grey mudstone                      | 25   | 0.05         |





| Client  | : Rabaska Limited Partnership | File no     | : 603333-KELL / T-1050-B |
|---------|-------------------------------|-------------|--------------------------|
|         | :                             | Sample no   | : 001 to 018             |
| Project | : Rabaska Project – Phase 2   | Client ref. | :                        |
|         | : Levis (Quebec)              | Date        | : 2005-04-19             |

#### 2.0 RESULTS (continuation)

#### 4.0 CLASSIFICATION

To be classified as having a swelling potential, a sample needs to present a high SPPI and a high percentage of equivalent pyrite.

#### Non swelling

Samples 1 and 2, 5 to 7, and 9 to 18 are classified as stable and are not presenting any swelling potential due to the presence of pyrite. In all these samples, the equivalent pyrite is very low.

#### Potentially swelling

Samples 3 and 4 of Borehole BH-102-05, and sample 8 from Borehole BH-106-05 are classified as having a high swelling potential due to the presence of pyrite.

#### 5.0 CONCLUSION

The rock of Borehole BH-102-05 and BH-106-05 should not be use as granular backfill or as rock foundation.

The rock of the others boreholes analyzed can be use as granular backfill or as rock foundation as long that they meet the physical requirement.

Realized by :

Terratech

Approved by :

Alain Blanchette, geol., M.A.Sc Project manager Material Engineering

Page 3 of 3

UE/GI



Certifiée

## SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 001         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-101-05 at 10 meters   |  |

|         | Weight used |          |      |        |   |  |  |  |  |  |
|---------|-------------|----------|------|--------|---|--|--|--|--|--|
| Passing | mm          | Retained | mm   | Weight | g |  |  |  |  |  |
| Passing | mm          | Retained | mm   | Weight | g |  |  |  |  |  |
| Passing | mm          | Retained | mm   | Weight | g |  |  |  |  |  |
| Passing | mm          | Retained | mm ′ | Weight | g |  |  |  |  |  |

|                                | Results |                   |            |                |      |                |      |                |      |  |
|--------------------------------|---------|-------------------|------------|----------------|------|----------------|------|----------------|------|--|
| Petrographic farcies           | PI      | retained<br>100 % | SPPI       | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |
| Light grey calcareous mudstone | 0.1     | 88                | 8.8        |                |      |                |      |                |      |  |
| Greenish to grey mudstone      | 0.25    | 12                | 3.0        |                | -    |                |      |                |      |  |
|                                |         |                   | C.S. S. S. |                |      |                |      |                |      |  |
|                                |         |                   |            |                |      |                |      |                |      |  |
|                                |         |                   |            |                |      |                |      |                |      |  |
|                                |         |                   |            |                |      |                |      |                |      |  |
| SPPI per fraction              |         |                   | 11.8       |                |      |                |      |                |      |  |
| Final SPPI : <u>12</u>         | _       |                   |            |                |      |                |      |                |      |  |

# REMARQS

- Equivalent pyrite percentage : 0.11%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

01010

ALAIN ANCHETTE # 254

QUÉBE

Sheet

1

of

1



Certifiée ISO 9001

### SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 002         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                                   |  |
|--------------|------------------------------------------------|--|
| Source       | : Rabaska Project: West Option Site            |  |
| Sampling by  | : Terratech                                    |  |
| Localisation | : Borehole BH-101-05, between 10 and 13 meters |  |

| Weight used |    |          |    |        |   |  |  |  |  |  |
|-------------|----|----------|----|--------|---|--|--|--|--|--|
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |

|                                                     | Results    |                   |       |                |      |                |      |                |      |  |
|-----------------------------------------------------|------------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|
| Petrographic farcies                                | PI         | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |
| Greenish to grey mudstone with imbedded black shale | 0.5        | 35                | 17.5  |                | 13   |                |      |                |      |  |
| Greenish to grey mudstone                           | 0.25       | 65                | 16.25 |                |      |                |      |                |      |  |
|                                                     |            |                   |       |                |      |                |      |                |      |  |
|                                                     |            |                   |       |                |      |                |      |                |      |  |
|                                                     | in a start |                   | 21 63 |                |      |                |      |                |      |  |
|                                                     |            |                   |       |                |      |                |      |                |      |  |
| SPPI per fraction                                   |            |                   | 33.75 |                |      |                |      |                |      |  |
| Final SPPI : <u>34</u>                              | _          |                   | -     |                |      |                |      |                |      |  |

#### REMARQS

- Equivalent pyrite percentage : 0.11%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

GEOL

ALAIN BLANCHETTE

QUÉBE

Sheet

of

1

1





#### SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 003         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-102-05 at 10.5 meters |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |  |

| Results                        |      |                   |      |                |      |                |              |                |      |  |  |  |  |
|--------------------------------|------|-------------------|------|----------------|------|----------------|--------------|----------------|------|--|--|--|--|
| Petrographic farcies           | PI   | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI         | retained<br>mm | SPPI |  |  |  |  |
| Black shale                    | 0.75 | 70                | 52.5 |                |      |                |              |                |      |  |  |  |  |
| Light grey calcareous mudstone | 0.1  | 30                | 3.0  |                | 1    |                |              |                |      |  |  |  |  |
|                                |      |                   |      |                |      |                |              |                |      |  |  |  |  |
|                                |      |                   |      |                |      |                |              |                |      |  |  |  |  |
|                                |      |                   |      |                |      |                |              |                |      |  |  |  |  |
|                                |      |                   |      |                |      |                |              |                |      |  |  |  |  |
| SPPI per fraction              |      |                   | 55.5 |                |      |                |              |                |      |  |  |  |  |
| Final SPPI :56                 | -    |                   |      |                |      |                |              |                |      |  |  |  |  |
|                                |      |                   |      |                |      |                | 1989 (A. 198 |                |      |  |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 2.06%

GEO ALAIN QUÉBESheet

of 1 1

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.





### SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | :    | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|------|-----------------------------|-------------|---|-------------|
|         |      |                             | File        | : | 603333-KELL |
| Project | :    | Rabaska Project (Phase 2)   | Labo no     | : | 004         |
|         | 5.03 | Levis (Quebec)              | Client ref. | : |             |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-102-05 at 12.5 meters |

| Weight used |    |          |    |        |   |  |  |  |  |  |  |
|-------------|----|----------|----|--------|---|--|--|--|--|--|--|
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |

| Results                        |                 |                |       |                |      |                |      |                |      |  |  |  |  |
|--------------------------------|-----------------|----------------|-------|----------------|------|----------------|------|----------------|------|--|--|--|--|
| Petrographic farcies           | PI              | retained 100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |  |
| Light grey calcareous mudstone | 0.1             | 55             | 5.5   |                |      |                |      |                |      |  |  |  |  |
| Black shale                    | 0.75            | 45             | 33.75 |                | 4    |                |      |                |      |  |  |  |  |
|                                |                 |                |       |                |      |                |      |                |      |  |  |  |  |
|                                |                 |                |       |                |      |                |      |                |      |  |  |  |  |
|                                |                 |                |       |                |      |                |      |                |      |  |  |  |  |
|                                |                 |                |       |                |      |                |      |                |      |  |  |  |  |
| SPPI per fraction              |                 |                |       |                |      |                |      |                |      |  |  |  |  |
| Final SPPI : <u>39</u>         | Final SPPI : 39 |                |       |                |      |                |      |                |      |  |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.54%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

GF

ALAIN BLANCHETTE

QUÉBE

Sheet

1

of

1





### SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

1

of

1

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 005         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-104-05 at 9 meters    |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                                                |      |                   |      |                |      |                |      |                |      |  |  |  |  |
|--------------------------------------------------------|------|-------------------|------|----------------|------|----------------|------|----------------|------|--|--|--|--|
| Petrographic farcies                                   | PI   | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |  |
| Greenish to grey mudstone with<br>imbedded black shale | 0.5  | 40                | 20.0 |                | . 1  |                |      |                |      |  |  |  |  |
| Greenish to grey mudstone                              | 0.25 | 60                | 15.0 |                |      |                |      |                |      |  |  |  |  |
|                                                        |      |                   |      |                |      |                |      |                |      |  |  |  |  |
|                                                        |      |                   |      |                |      | 1.1            |      |                |      |  |  |  |  |
|                                                        | 39.  |                   |      |                |      |                |      |                |      |  |  |  |  |
|                                                        |      |                   |      |                |      |                |      |                |      |  |  |  |  |
| SPPI per fraction                                      |      | 35.0              |      |                |      |                |      |                |      |  |  |  |  |
| Final SPPI : 35                                        |      |                   |      | 1. 1. 1.       |      |                |      |                |      |  |  |  |  |

#### REMARQS

- Equivalent pyrite percentage : 0.05%

GEO 30 ALAIN #254 QUÉBEC Sheet

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.



Certifiée

## SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 006         |
|         |   | Levis (Quebec)              | Client ref. | : | •           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-104-05 at 12 meters   |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                        |     |                   |      |                |      |                |         |                |      |  |
|--------------------------------|-----|-------------------|------|----------------|------|----------------|---------|----------------|------|--|
| Petrographic farcies           | PI  | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI    | retained<br>mm | SPPI |  |
| Brownish to red mudstone       | 0.5 | 20                | 10.0 |                |      |                |         |                |      |  |
| Light grey calcareous mudstone | 0.1 | 80                | 8.0  |                | *    | 1              |         |                |      |  |
|                                |     |                   |      |                |      |                |         |                |      |  |
|                                |     |                   |      |                |      |                |         |                |      |  |
|                                |     |                   |      |                |      |                |         |                |      |  |
|                                |     |                   |      |                |      |                | 1.26-17 |                |      |  |
| SPPI per fraction              |     | 1211              | 18.0 |                |      | 1.4.18         |         |                |      |  |
| Final SPPI : <u>18</u>         |     |                   |      |                |      |                |         |                |      |  |

# REMARQS

- Equivalent pyrite percentage : 0.02%

BLANCHETTE #954 QUÉBEC Sheet

GEC

1

of

1

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.



Certifiée ISO 9001

# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client       | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|--------------|---|-----------------------------|-------------|---|-------------|
|              |   |                             | File        | : | 603333-KELL |
| Project      | : | Rabaska Project (Phase 2)   | Labo no     | : | 007         |
| 14. 352. 11. |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-106-05 at 7 meters    |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                   |      |                   |       |                |      |                |      |                |      |  |  |
|---------------------------|------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|--|
| Petrographic farcies      | PI   | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |
| Greenish to grey mudstone | 0.25 | 65                | 16.25 |                |      |                |      |                |      |  |  |
| Black shale               | 0.75 | 35                | 26.25 |                | -    |                |      |                |      |  |  |
|                           |      |                   |       |                |      | 1.00           |      |                |      |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |
| SPPI per fraction         |      |                   | 42.5  |                |      |                |      |                |      |  |  |
| Final SPPI :43            |      |                   |       |                |      |                |      |                |      |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.11%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

GEO.

ALAIN

UÉBE

Sheet

1

of

1





### SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
| 1.177   |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 008         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-106-05 at 11.5 meters |  |

| Weight used |    |          |    |        |   |  |  |  |  |  |
|-------------|----|----------|----|--------|---|--|--|--|--|--|
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |

| Results                     |      |                   |       |                |      |                |      |                |      |  |
|-----------------------------|------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|
| Petrographic farcies        | PI   | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |
| Black shale                 | 0.75 | 75                | 56.25 |                |      |                |      |                |      |  |
| Slight calcareous sandstone | 0    | 25                | 0     |                | -    |                |      |                |      |  |
|                             |      |                   |       |                |      |                |      |                |      |  |
|                             |      |                   |       |                |      |                |      |                |      |  |
|                             |      |                   |       |                |      |                |      |                |      |  |
|                             |      |                   |       |                |      |                |      |                |      |  |
| SPPI per fraction           |      | 56.25             |       |                |      |                |      |                |      |  |
| Final SPPI : <u>56</u>      | -    |                   |       |                |      |                |      |                |      |  |
|                             |      | State and         |       |                |      |                |      |                |      |  |

# REMARQS

- Equivalent pyrite percentage : 0.92%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

ALAIN BANCHETTE #254

QUÉBEC

Sheet

1

of

1




# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 009         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-107-05 at 8.75 meters |

|         | Weight used |          |    |        |   |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g | 1 |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |

| Results                   |      |                   |       |                |      |                |      |                |      |  |  |  |
|---------------------------|------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic farcies      | PI   | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Brownish to red mudstone  | 0.5  | 75                | 37.5  |                | -    |                |      |                |      |  |  |  |
| Greenish to grey mudstone | 0.25 | 25                | 6.25  |                | *    |                |      |                |      |  |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |  |
| SPPI per fraction         |      |                   | 43.75 |                |      |                |      |                |      |  |  |  |
| Final SPPI :44            | _    |                   |       |                |      |                |      |                |      |  |  |  |
|                           |      |                   |       |                |      |                |      |                |      |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.03%

Martin Labelle, geol in training Realized by

Approved by: Alan Blanchette geot. M.A.Sc.

JE I GEOLO

ALAIN BLANCHETTE # 254

Sheet

1

of



Certifiée

# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : 2005/04/01  |
|---------|---|-----------------------------|-------------|---------------|
|         |   |                             | File        | : 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : 010         |
|         |   | Levis (Quebec)              | Client ref. | : -           |

| Sample       | : Core drill                                      |  |
|--------------|---------------------------------------------------|--|
| Source       | : Rabaska Project: West Option Site               |  |
| Sampling by  | : Terratech                                       |  |
| Localisation | : Borehole BH-107-05, between 11 and 12.75 meters |  |

|         | Weight used |          |    |        |   |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g | 1 |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |   |  |  |  |  |  |  |

| Results                        |      |                   |       |                |      |                |      |                |      |  |  |  |
|--------------------------------|------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic farcies           | PI   | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Greenish to grey mudstone      | 0.25 | 85                | 21.25 |                |      |                |      |                |      |  |  |  |
| Light grey calcareous mudstone | 0.1  | 15                | 1.5   |                | -    |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
| SPPI per fraction              |      |                   | 22.75 |                |      | Star Land      |      |                |      |  |  |  |
| Final SPPI :23                 |      |                   |       |                |      |                |      |                |      |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.13%

Martin Labelle, geol in training Realized by Approved by: Alam Blanchette geol. M.A.Sc.

ALAIN ALAIN # 284

of

1



Certifiée

# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : 2005/04/01  |
|---------|---|-----------------------------|-------------|---------------|
|         |   |                             | File        | : 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : 011         |
|         |   | Levis (Quebec)              | Client ref. | 1-A           |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-108-05 at 9 meters    |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                        |      |                   |       |                |      |                |      |                |      |  |  |  |
|--------------------------------|------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic farcies           | PI   | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Greenish to grey mudstone      | 0.25 | 45                | 11.25 |                |      |                |      |                |      |  |  |  |
| Light grey calcareous mudstone | 0.1  | 55                | 5.5   |                | -    |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
|                                |      |                   |       |                |      |                |      |                |      |  |  |  |
| SPPI per fraction              |      |                   | 16.75 |                |      |                |      |                |      |  |  |  |
| Final SPPI :17                 | -    |                   |       |                |      |                |      |                |      |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.03%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geot. M.A.Sc.

ALAIN

UÉBE

Sheet

1

of



Certifiée

# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : 2005/04/01  |
|---------|---|-----------------------------|-------------|---------------|
|         |   |                             | File        | : 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : 012         |
| 100.00  |   | Levis (Quebec)              | Client ref. |               |

| Sample       | : Core drill                         |  |
|--------------|--------------------------------------|--|
| Source       | : Rabaska Project: West Option Site  |  |
| Sampling by  | : Terratech                          |  |
| Localisation | : Borehole BH-108-05 at 12.25 meters |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |

|                           | Results                |                   |      |                |      |                |          |                |      |  |  |  |
|---------------------------|------------------------|-------------------|------|----------------|------|----------------|----------|----------------|------|--|--|--|
| Petrographic farcies      | PI                     | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI     | retained<br>mm | SPPI |  |  |  |
| Brownish to red mudstone  | 0.5                    | 75                | 37.5 |                |      |                |          |                |      |  |  |  |
| Greenish to grey mudstone | 0.25                   | 25                | 6.25 |                |      |                |          |                |      |  |  |  |
|                           |                        |                   |      |                |      | 1 carrie       |          |                |      |  |  |  |
|                           |                        |                   |      |                |      |                |          |                |      |  |  |  |
|                           |                        |                   |      |                |      |                |          |                |      |  |  |  |
|                           |                        |                   |      |                |      |                |          |                |      |  |  |  |
| SPPI per fraction         |                        | 43.75             |      |                |      |                |          |                |      |  |  |  |
| Final SPPI :44            | Final SPPI : <u>44</u> |                   |      |                |      | 100            |          |                |      |  |  |  |
|                           |                        | 27 M. A.          |      |                |      |                | 1.1.2.74 |                |      |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.02%

Martin Labelle, geol in training Realized by

Approved by: Alaín Blanchette geol. M.A.Sc.

GEOI

ALAIN BLANCHETTE # 254

QUÉBEC

Sheet

1

of





## SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 013         |
|         |   | Levis (Quebec)              | Client ref. | : | •           |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-109-05 at 8 meters    |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |

| Results                  |     |                   |      |                |      |                |      |                |      |  |  |  |
|--------------------------|-----|-------------------|------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic farcies     | PI  | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Brownish to red mudstone | 0.5 | 100               | 50.0 |                |      |                |      |                |      |  |  |  |
|                          |     |                   |      |                |      |                |      |                |      |  |  |  |
|                          |     |                   |      |                |      |                |      |                |      |  |  |  |
|                          |     |                   |      |                |      |                |      |                |      |  |  |  |
|                          |     |                   |      |                |      |                |      |                |      |  |  |  |
|                          |     |                   |      |                |      |                |      |                |      |  |  |  |
| SPPI per fraction        |     |                   |      |                |      |                |      |                |      |  |  |  |
| Final SPPI : <u>50</u>   | -   |                   |      |                |      |                |      |                |      |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.03%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

ALAIN BLANCHETTE

QUÉBE

Sheet

1

of





# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|---------|---|-----------------------------|-------------|---|-------------|
|         |   |                             | File        | : | 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : | 014         |
|         |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                                   |  |
|--------------|------------------------------------------------|--|
| Source       | : Rabaska Project: West Option Site            |  |
| Sampling by  | : Terratech                                    |  |
| Localisation | : Borehole BH-109-05, between 10 and 13 meters |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |

|                             | Results |                   |       |                |      |                |      |                |      |  |  |  |
|-----------------------------|---------|-------------------|-------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic farcies        | PI      | retained<br>100 % | SPPI  | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Greenish to grey mudstone   | 0.25    | 25                | 6.25  |                |      |                |      |                |      |  |  |  |
| Brownish to red mudstone    | 0.5     | 30                | 15.0  |                |      |                |      |                |      |  |  |  |
| Slight calcareous sandstone | 0       | 45                | 0     |                |      |                |      |                |      |  |  |  |
|                             |         |                   |       |                |      |                |      |                |      |  |  |  |
|                             |         |                   |       |                |      |                |      |                |      |  |  |  |
|                             |         |                   |       |                |      |                |      |                |      |  |  |  |
| SPPI per fraction           |         |                   | 21.25 |                |      |                |      |                |      |  |  |  |
| Final SPPI :21              | _       |                   | 1 44  |                |      |                |      |                | 1111 |  |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.05%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

I GEO

BLANCHETTE

# 254

QUÉBEC

U

-34

Sheet

1

of



Certifide ISTO 9001

# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : 2005/04/01  |
|---------|---|-----------------------------|-------------|---------------|
|         |   |                             | File        | : 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : 015         |
|         |   | Levis (Quebec)              | Client ref. | :-            |

| Sample       | : Core drill                        |
|--------------|-------------------------------------|
| Source       | : Rabaska Project: West Option Site |
| Sampling by  | : Terratech                         |
| Localisation | : Borehole BH-110-05, at 8 meters   |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                     |      |                |         |                |      |                |      |                |      |  |  |
|-----------------------------|------|----------------|---------|----------------|------|----------------|------|----------------|------|--|--|
| Petrographic farcies        | PI   | retained 100 % | SPPI    | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |
| Brownish to red mudstone    | 0.5  | 20             | 10.0    |                |      |                |      |                |      |  |  |
| Greenish to grey mudstone   | 0.25 | 70             | 17.5    |                | *    |                |      |                |      |  |  |
| Slight calcareous sandstone | 0    | 10             | 0       |                |      |                |      |                |      |  |  |
|                             | 1924 |                |         |                |      |                |      |                |      |  |  |
|                             |      |                |         |                | 196  |                |      |                |      |  |  |
|                             |      |                |         |                |      |                |      |                |      |  |  |
| SPPI per fraction           |      |                | 27.5    |                |      | Cry Miles      | 1.22 |                |      |  |  |
| Final SPPI :28              |      | S Gales        | 1.5.2.5 |                |      |                |      |                |      |  |  |

# REMARQS

- Equivalent pyrite percentage : 0.07%

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

ALAIN # 254

Sheet

1

of





# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client    | : | Rabaska Limited Partnership | Date        | : | 2005/04/01  |
|-----------|---|-----------------------------|-------------|---|-------------|
|           |   |                             | File        | : | 603333-KELL |
| Project   | : | Rabaska Project (Phase 2)   | Labo no     | : | 016         |
| Sec. Sec. |   | Levis (Quebec)              | Client ref. | : | -           |

| Sample       | : Core drill                        |  |
|--------------|-------------------------------------|--|
| Source       | : Rabaska Project: West Option Site |  |
| Sampling by  | : Terratech                         |  |
| Localisation | : Borehole BH-110-05 at 12.5 meters |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | g |  |  |  |  |  |  |  |

| Results                                           |     |                   |      |                |          |                |      |                |      |  |  |
|---------------------------------------------------|-----|-------------------|------|----------------|----------|----------------|------|----------------|------|--|--|
| Petrographic farcies                              | PI  | retained<br>100 % | SPPI | retained<br>mm | SPPI     | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |
| Brownish to red mudstone                          | 0.5 | 100               | 50.0 |                |          |                |      |                |      |  |  |
|                                                   |     |                   |      |                |          |                |      |                |      |  |  |
|                                                   |     |                   |      |                |          |                |      |                |      |  |  |
|                                                   |     |                   |      |                |          |                |      |                |      |  |  |
|                                                   |     |                   |      |                |          |                |      |                |      |  |  |
| SPPI per fraction                                 |     |                   | 50.0 |                | 4 - 19 M |                |      |                |      |  |  |
| Final SPPI : <u>50</u>                            |     |                   |      | 1              |          | ,              |      | ,              |      |  |  |
| REMARQS<br>- Equivalent pyrite percentage : 0.03% |     |                   |      |                |          |                |      |                |      |  |  |

Martin Labelle, geol in training Realized by

Approved by: Alain Blanchette geol. M.A.Sc.

ALAIN BLANCHETTE # 254

QUÉBEC

Sheet

1 of



9001

# SWELLING POTENTIAL **PETROGRAPHIC INDEX** DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date        | : 2005/04/01  |
|---------|---|-----------------------------|-------------|---------------|
|         |   |                             | File        | : 603333-KELL |
| Project | : | Rabaska Project (Phase 2)   | Labo no     | : 017         |
|         |   | Levis (Quebec)              | Client ref. | :-            |

| Sample       | : Core drill                                         |  |
|--------------|------------------------------------------------------|--|
| Source       | : Rabaska Project: West Option Site                  |  |
| Sampling by  | : Terratech                                          |  |
| Localisation | : Borehole BH-103-05, between 11.52 and 11.82 meters |  |

| Weight used |    |          |    |        |   |  |  |  |  |  |  |
|-------------|----|----------|----|--------|---|--|--|--|--|--|--|
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | g |  |  |  |  |  |  |

| Results                                                |              |                   |      |                |      |                |      |                |             |  |  |  |  |
|--------------------------------------------------------|--------------|-------------------|------|----------------|------|----------------|------|----------------|-------------|--|--|--|--|
| Petrographic farcies                                   | PI           | retained<br>100 % | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI        |  |  |  |  |
| Greenish to grey mudstone                              | 0.25         | 100               | 25.0 |                | -    |                |      |                |             |  |  |  |  |
|                                                        |              |                   |      |                |      |                |      |                |             |  |  |  |  |
|                                                        |              |                   |      |                |      |                |      |                |             |  |  |  |  |
|                                                        |              |                   |      |                |      |                |      |                |             |  |  |  |  |
|                                                        | -            |                   |      |                |      |                |      |                |             |  |  |  |  |
| SPPI per fraction                                      |              |                   | 25.0 |                |      |                |      |                |             |  |  |  |  |
| Final SPPI :25                                         |              |                   |      | •              |      |                |      |                | ( Secondary |  |  |  |  |
| <u>REMARQS</u><br>- Equivalent pyrite percentage : 0.0 | Final SPPI : |                   |      |                |      |                |      |                |             |  |  |  |  |

Martin Labelle, geol in training Realized by

Approved by: Alain Blanghette geol. M.A.Sc.

#254

QUÉBEC

Sheet

\_1 of





| Client  | : Rabaska Limited Partnership | File no   | : T-1050-A (603333-RABA)           |
|---------|-------------------------------|-----------|------------------------------------|
|         | :                             | Sample no | : W-002-04 (SS-4), W-005-04 (DC-5) |
|         |                               |           | W-006-04 (DC-3)                    |
| Project | : Rabaska Project (Phase 1)   | Lab. no   | : 013, 014, 015                    |
|         | : Levis / Beaumont, Quebec    | Date      | : 3 March 2005                     |

## 1.0 GENERAL INFORMATION

| Samples             | : Split spoon (SS), and core drilled (DC)                                                                                                                                                              |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Equipments          | : Microscope, coloration, acid etching                                                                                                                                                                 |
| Others informations | : Lab. no 013: Split spoon : W-002-04 (SS-4) from 2.29 to 2.69 m<br>Lab. no 014: Core drilled : W-005-04 (DC-5) from 3.02 to 3.81 m<br>Lab. no 015: Core drilled : W-006-04 (DC-3) from 0.99 to 1.73 m |

### 2.0 RESULTS

### 1.0 MANDATE

The petrographic examination was carried out on 3 rock samples of the West Option Site for the determination of the swelling potential due to the presence of pyrite, in the perspective that the materials would eventually be used as granular backfill or would serve as rock foundation of structures.

### 2.0 METHODOLOGY

Megascopic examination was performed on the 3 samples. The petrographic facies were identified and the SPPI values (Swelling Potential Petrographic Index) were determined in compliance to NQ 2560-500 standard.

### 3.0 RESULTS

### 3.1 Sample W-002-04 (SS-4) from 2.29 to 2.69 m

This is a split spoon sample. The material consists of a dark grey or **black shale** (slightly carbonated). The computed SPPI value is 50, and the equivalent pyrite percentage is 2.6%.

Consequently, the tested material is classified as having an average to high swelling potential due to the presence of pyrite.

### 3.2 Sample W-005-04 (DC-5) from 3.02 to 3.81 m

The tested sample is a rock core. The rock was identified as a *red shale* with thin laminations of grey or greenish shale. The computed SPPI value is 50, and the equivalent pyrite percentage is only 0.03%.

Due to its low percentage of pyrite, the tested material was classified as stable and not presenting any swelling potential due to the presence of pyrite.





| Client         | : Rabaska Limited Partnership | File no   | : T-1050-A (603333-RABA)           |
|----------------|-------------------------------|-----------|------------------------------------|
| 194103         |                               | Sample no | : W-002-04 (SS-4), W-005-04 (DC-5) |
| and the second |                               |           | W-006-04 (DC-3)                    |
| Project        | : Rabaska Project (Phase 1)   | Lab. no   | : 013, 014, 015                    |
| 11-11-11-1     | : Levis / Beaumont, Quebec    | Date      | : 3 March 2005                     |
|                |                               |           |                                    |

### 2.0 RESULTS (cont'd)

### 3.3 Sample W-006-04 (DC-3) from 0.99 to 1.73 m

The tested sample is a rock core. The rock was identified as a *grey and red shale* with surficial traces of oxidation. The computed SPPI value is 25, and the equivalent pyrite percentage is only 0.08%.

Due to its low percentage of pyrite, this material was classified as stable and not presenting any swelling potential due to the presence of pyrite.

### 4.0 CONCLUSION

Relatively high SPPI values were obtained on all three tested samples, due to the high content in clay mineral.

However, only the *black shale* (W-002-04) has a high equivalent pyrite percentage, and consequently was found to have an average to high swelling potential.

The *red shale* (W-005-04) and *grey and red shale* (W-006-04) do not contain enough pyrite to cause any swelling, and are thus classified as stable.

Realized by :

Terratech

\_ Approved by :

Alain Blanchette, geol., M.A.Sc. Project manager Material Engineering





# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client  | : | Rabaska Limited Partnership | Date    | : . | 2 November 2004               |
|---------|---|-----------------------------|---------|-----|-------------------------------|
| 111111  |   |                             | File    | : ' | T-1050-A (603333-RABA)        |
| Project | : | Rabaska Project (Phase 1)   | Sample  | :   | W-002-04 (SS-4) 2.29 – 2.69 m |
|         |   | Levis / Beaumont, Quebec    | Lab. no | :   | 013                           |

| Sample     | : Split spoon                        |                                |
|------------|--------------------------------------|--------------------------------|
| Source     | : Rabaska Project : West Option Site |                                |
| Sampled by | : Terratech                          | Date: 22 and 23 September 2004 |
| Location   | : Borehole W-002-04                  |                                |

| Section 199 | Weight used |          |    |        |   |  |  |  |  |  |
|-------------|-------------|----------|----|--------|---|--|--|--|--|--|
| Passing     | mm          | Retained | mm | Weight | G |  |  |  |  |  |
| Passing     | mm          | Retained | mm | Weight | G |  |  |  |  |  |
| Passing     | mm          | Retained | mm | Weight | G |  |  |  |  |  |
| Passing     | mm          | Retained | mm | Weight | G |  |  |  |  |  |

|                     | Results |                   |      |                  |      |                    |      |                |      |
|---------------------|---------|-------------------|------|------------------|------|--------------------|------|----------------|------|
| Petrographic facies | PI      | retained<br>10 mm | SPPI | retained<br>5 mm | SPPI | retained<br>2.5 mm | SPPI | retained<br>mm | SPPI |
| Black clayey shale  | 0.5     | 100               | 50.0 | 100              | 50.0 | 100                | 50.0 |                |      |
|                     |         |                   |      |                  |      |                    |      |                |      |
|                     |         |                   |      |                  |      |                    |      |                |      |
|                     |         |                   |      |                  |      |                    |      |                |      |
|                     |         |                   |      |                  |      |                    |      |                |      |
|                     |         |                   |      |                  |      |                    |      |                |      |
| SPPI per fraction   |         |                   | 50.0 |                  | 50.0 |                    | 50.0 |                |      |
| Final SPPI : 50     |         | S. S. S.          |      |                  |      |                    |      |                |      |

### REMARKS

- The sample breaks down following the thin laminations. This tendency increases after water immersion of the sample.
- Pyrite equivalent percentage: 2.6%

Realized by : Terratech

Approved by :

Alain Blanchette, geol., M.A.Sc. Project manager Material Engineering ALAIN NCHETTE





# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client                | : | Rabaska Limited Partnership | Date    | : 2 November 2004            |
|-----------------------|---|-----------------------------|---------|------------------------------|
| and the second second |   |                             | File    | : T-1050-A (603333-RABA)     |
| Project               | : | Rabaska Project (Phase 1)   | Sample  | : W-005 (DC-5) 3.02 – 3.81 m |
|                       |   | Levis / Beaumont, Quebec    | Lab. no | : 014                        |

| Sample     | : Core drilled                       |                          |  |
|------------|--------------------------------------|--------------------------|--|
| Source     | : Rabaska Project : West Option Site |                          |  |
| Sampled by | : Terratech                          | Date : 29 September 2004 |  |
| Location   | : Borehole W-005-04                  |                          |  |

| Weight used |    |          |    |        |   |  |  |  |  |
|-------------|----|----------|----|--------|---|--|--|--|--|
| Passing     | mm | Retained | mm | Weight | G |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | G |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | G |  |  |  |  |
| Passing     | mm | Retained | mm | Weight | G |  |  |  |  |

| Results                                            |     |                  |      |                |      |                |      |                |      |
|----------------------------------------------------|-----|------------------|------|----------------|------|----------------|------|----------------|------|
| Petrographic facies                                | PI  | retained<br>100% | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |
| Red clayey shale with thin green shale laminations | 0.5 | 100              | 50.0 |                | s 1  |                |      |                |      |
|                                                    |     |                  |      |                |      |                |      |                |      |
|                                                    |     |                  |      |                |      |                |      |                |      |
|                                                    |     |                  |      |                |      |                |      |                |      |
|                                                    |     |                  |      |                |      |                |      |                |      |
| SPPI per fraction                                  |     |                  | 50.0 |                |      |                |      |                |      |
| inal SPPI :50                                      |     |                  |      |                |      |                |      |                |      |

### REMARKS

- The sample breaks down following the thin laminations. This tendency increases after water immersion of the sample.
- Pyrite equivalent percentage: 0.03%

Terratech Realized by :

Approved by :

Alain Blanchette, geol., M.A.Sc. Project manager Material Engineering GE

ME

#254

QUÉBE





# SWELLING POTENTIAL PETROGRAPHIC INDEX DETERMINATION NQ 2560-500

| Client        | :    | Rabaska Limited Partnership | Date    | : | 2 November 2004               |
|---------------|------|-----------------------------|---------|---|-------------------------------|
| and the state | 1.40 |                             | File    | : | T-1050-A (603333-RABA         |
| Project       | :    | Rabaska Project (Phase 1)   | Sample  | : | W-006-04 (DC-3) 0.99 – 1.73 m |
| 1.4.4.4       |      | Levis / Beaumont, Quebec    | Lan. No | : | 015                           |

| Sample       | : Core drilled                       |                          |  |
|--------------|--------------------------------------|--------------------------|--|
| Source       | : Rabaska Project : West Option Site |                          |  |
| Sampling by  | : Terratech                          | Date : 28 September 2004 |  |
| Localisation | : Borehole W-006-04                  |                          |  |

|         | Weight used |          |    |        |   |  |  |  |  |  |  |
|---------|-------------|----------|----|--------|---|--|--|--|--|--|--|
| Passing | mm          | Retained | mm | Weight | G |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | G |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | G |  |  |  |  |  |  |
| Passing | mm          | Retained | mm | Weight | G |  |  |  |  |  |  |

| Results                       |                        |                  |      |                |      |                |      |                |      |  |  |  |
|-------------------------------|------------------------|------------------|------|----------------|------|----------------|------|----------------|------|--|--|--|
| Petrographic facies           | PI                     | retained<br>100% | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI | retained<br>mm | SPPI |  |  |  |
| Grey and reddish clayey shale | 0.25                   | 100              | 25.0 |                | 1    |                |      |                |      |  |  |  |
|                               |                        |                  |      |                |      |                |      |                |      |  |  |  |
|                               |                        |                  |      |                |      |                |      |                |      |  |  |  |
|                               |                        |                  |      |                |      |                |      |                |      |  |  |  |
| SPPI per fraction             | SPPI per fraction 25.0 |                  |      |                |      |                |      |                |      |  |  |  |
| Final SPPI : 25               |                        |                  |      |                | 1.   |                |      |                |      |  |  |  |

### REMARKS

- The sample breaks down following the thin laminations after water immersion.

- Pyrite equivalent percentage: 0.08%

Realized by : Ter

Terratech

Approved by :

Álain Blanchette, geól., M.A.Sc. Project manager Material Engineering IGEO

ALAUA

#254

QUEB

C



TERRATECH ST LAURENT DIV. DE SNC-LAVALIN 275, Benjamin-Hudon Saint-Laurent, PQ Canada H4N 1J1

### Attention: Alain Blanchette

### Report Date: 2005/04/22

Your Project #: LO 3333 T-1050-B Site: RABASKA Your C.O.C. #: 66622

### ANALYTICAL REPORT

### MAXXAM JOB #: A508009 Received: 2005/04/15, 10:30

Sample Matrix: GROUND WATER # Samples Received: 4

|                                        |          | Date       | Date       |                        |                     |
|----------------------------------------|----------|------------|------------|------------------------|---------------------|
| Analyses                               | Quantity | Extracted  | Analyzed   | Laboratory Method      | Analytical Method   |
| Total Alkalinity (pH end point 4.5) () | 4        | 2005/04/21 | 2005/04/21 | SOP III-1003 rév.1     | Titrimetric         |
|                                        |          |            |            | 04/11/22 réf.primaire: |                     |
|                                        |          |            |            | MA.315 Alc.1.0, 2001   |                     |
| Anions ()                              | 4        | 2005/04/22 | 2005/04/22 | III-201 rév.9 03/03/29 | Chromatography      |
| Disposal Charges                       | 4        | N/A        | 2005/04/15 |                        |                     |
| pH                                     | 4        | 2005/04/15 | 2005/04/15 | Que SOP-0054           | pH meter            |
| Sulfide Anions (S=)                    | 4        | 2005/04/15 | 2005/04/15 | Que SOP-0065           | Spectro/Colorimetry |

(1) This test was performed by Maxxam analytique - Anjou

### MAXXAM ANALYTIQUE INC.



### TERRATECH Client Project #: LO 3333 T-1050-B Project name: RABASKA Sampler Initials: HC

# **CONVENTIONAL PARAMETERS (GROUND WATER)**

| Maxxam ID                                                         |       | 796752     | 796752           | 796759     | 796760     | 796761     |      |          |
|-------------------------------------------------------------------|-------|------------|------------------|------------|------------|------------|------|----------|
| Sampling Date                                                     |       | 2005/04/14 | 2005/04/14       | 2005/04/14 | 2005/04/14 | 2005/04/14 |      |          |
| COC Number                                                        |       | 66622      | 66622            | 66622      | 66622      | 66622      |      |          |
|                                                                   | Units | BH-102-05  | BH-102-05<br>Dup | BH-104-05  | BH-106-05  | BH-110-05  | DL   | QC Batch |
| CONVENTIONALS                                                     |       |            | 1                | 1          | Ι          | *          | 1    |          |
| рН                                                                | pН    | 8.6        | N/A              | 8.8        | 8.8        | (11)       | N/A  | 293309   |
| Sulfur anion (S=)                                                 | mg/L  | ND         | N/A              | ND         | ND         | ND         | 0.02 | 293310   |
| Alkalinity (Total as CaCO3) pH 4.5                                | mg/L  | 320        | 320              | 260        | 350        | 200        | 2    | 293957   |
| Bicarbonates (HCO3 as CaCO3)                                      | mg/L  | 300        | 300              | 230        | 320        | ND         | 2    | 293957   |
| Carbonate (CO3 as CaCO3)                                          | mg/L  | 16         | 19               | 29         | 29         | 130        | 2    | 293957   |
| Chloride (Cl)                                                     | mg/L  | 50         | 45               | 180        | 5.5        | 5.6        | 3    | 294192   |
| Sulfates (SO4)                                                    | mg/L  | 11         | 10               | 22         | 34         | 36         | 5    | 294192   |
| ND = Not detected<br>N/A = Not Applicable<br>DL = Detection Limit | *     | loub+fu    | l                |            |            |            |      |          |

QC Batch = Quality Control Batch

Please check for attached comments



TERRATECH Client Project #: LO 3333 T-1050-B Project name: RABASKA Sampler Initials: HC

### GENERAL COMMENTS

Condition of sample(s) upon receipt: GOOD

### CONVENTIONAL PARAMETERS (GROUND WATER)

Veuillez noter que les résultats n'ont pas été corrigés pour la récupération des échantillons de contrôle de qualité. Veuillez noter que les résultats ont été corrigés pour le blanc.

Results relate only to the items tested.

This report dated: 2005/04/22 replaces all previous reports.



TERRATECH Attention: Alain Blanchette Client Project #: LO 3333 T-1050-B P.O. #: Project name: RABASKA

# Quality Assurance Report

Maxxam Job Number: A508009

| QA/QC           |              |                                    | Date       |                |       |
|-----------------|--------------|------------------------------------|------------|----------------|-------|
| Batch           |              |                                    | Analyzed   |                |       |
| Num Init        | QC Type      | Parameter                          | yyyy/mm/dd | Value Recovery | Units |
| 293309 DD1      | QC STANDARD  | рН                                 | 2005/04/15 | 101            | %     |
| 293310 JS2      | QC STANDARD  | Sulfur anion (S=)                  | 2005/04/15 | 98             | %     |
|                 | BLANK        | Sulfur anion (S=)                  | 2005/04/15 | ND, DL=0.02    | mg/L  |
| 293957 FS       | SPIKE        | Alkalinity (Total as CaCO3) pH 4.5 | 2005/04/21 | 103            | %     |
|                 | BLANK        | Alkalinity (Total as CaCO3) pH 4.5 | 2005/04/21 | ND, DL=1       | mg/L  |
|                 |              | Bicarbonates (HCO3 as CaCO3)       | 2005/04/21 | ND, DL=1       | mg/L  |
|                 |              | Carbonate (CO3 as CaCO3)           | 2005/04/21 | ND, DL=1       | mg/L  |
| 294192 FS       | MATRIX SPIKE | Chloride (Cl)                      | 2005/04/22 | 106            | %     |
|                 |              | Sulfates (SO4)                     | 2005/04/22 | 111            | %     |
|                 | SPIKE        | Chloride (Cl)                      | 2005/04/22 | 93             | %     |
|                 |              | Sulfates (SO4)                     | 2005/04/22 | 95             | %     |
|                 | BLANK        | Chloride (Cl)                      | 2005/04/22 | ND, DL=0.06    | mg/L  |
|                 |              | Sulfates (SO4)                     | 2005/04/22 | ND, DL=0.1     | mg/L  |
|                 |              |                                    |            |                |       |
| ND = Not detect | ted          |                                    |            |                |       |
| DL = Detection  | Limit        |                                    |            |                |       |

MATRIX SPIKE = Fortified sample QC Standard = Quality Control Standard SPIKE = Fortified sample





# APPENDIX III Drawings

| Drawing T-1050-C-0000-4GDD-0001: | Location Plan                                 |
|----------------------------------|-----------------------------------------------|
| Drawing T-1050-C-0000-4GDD-0002: | Stratigraphic<br>Sections A-A and<br>B-B      |
| Drawing T-1050-C-0000-4GDD-0003: | Stratigraphic<br>Sections C-C, D-D<br>and E-E |
| Drawing T-1050-C-0000-4GDD-0004: | Stratigraphic<br>Sections F-F, G-G<br>and H-H |
| Drawing T-1050-C-0000-4GDD-0005: | Trial Excavation<br>TE-A-05                   |
| Drawing T-1050-C-0000-4GDD-0006: | Trial Excavation<br>TE-B-05                   |
| Drawing T-1050-C-0000-4GDD-0007: | Stratigraphic<br>Section I-I (1 of 2)         |
| Drawing T-1050-C-0000-4GDD-0008: | Stratigraphic<br>Section I-I (2 of 2)         |



|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3000 E                                                                                                                                                                                                                                                                                                                                                | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |
| 26:                                                                                                                                                                                                                                                                                                                                                   | BH-101-05 VERTICAL BOREHOLE - RECENT INVESTIGATION (NOTE 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |
|                                                                                                                                                                                                                                                                                                                                                       | BH-401-05<br>BOREHOLE AND DYNAMIC PENETRATION TEST- RECENT INVESTIGATION (NOTE 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
| 5188000 N                                                                                                                                                                                                                                                                                                                                             | BH-117A<br>INCLINED BOREHOLE - RECENT INVESTIGATION (NOTE 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|                                                                                                                                                                                                                                                                                                                                                       | BH-102-05<br>BOREHOLE WITH PIEZOMETER (OBSERVATION WELL) - RECENT INVESTIGATION (NOTE 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                             |
|                                                                                                                                                                                                                                                                                                                                                       | BH/TP-501-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>TEST PIT AND VERTICAL BOREHOLE - RECENT INVESTIGATION (NOTE 5)</li> <li>W-001-04</li> <li>VERTICAL BOREHOLE - PREVIOUS INVESTIGATION</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
| ?                                                                                                                                                                                                                                                                                                                                                     | (TERRATECH REPORT T-1050-A DATED MARCH 2005)<br>W-004-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
|                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>BOREHOLE WITH PIEZOMETER (OBSERVATION WELL) - PREVIOUS INVESTIGATION<br/>(TERRATECH REPORT T-1050-A DATED MARCH 2005)</li> <li>TE-B-05</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 22                                                                                                                                                                                                                                                                                                                                                    | TRIAL EXCAVATION (THIS REPORT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                       | RT-1-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|                                                                                                                                                                                                                                                                                                                                                       | RESISTIVITY SOUNDING (THIS REPORT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
| 5187500 <sup>°</sup> N                                                                                                                                                                                                                                                                                                                                | SEISMIC REFRACTION SURVEY LINE (WITH CHAINAGE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                       | POSSIBLE FAULT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                       | (FROM MAP 4 OF GEOLOGICAL REPORT MB-94-40, SEE SAINT-JULIEN, P. 1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |
|                                                                                                                                                                                                                                                                                                                                                       | INC. SURVEY / EXTENSION INTERPRETED BY TERRATECH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
|                                                                                                                                                                                                                                                                                                                                                       | <sup>8</sup> PRIMARY GROUND SURFACE CONTOUR LINE - CONTOUR INTERVAL = 5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |
|                                                                                                                                                                                                                                                                                                                                                       | SECONDARY GROUND SURFACE CONTOUR LINE - CONTOUR INTERVAL = 1m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                       | BEDROCK SURFACE CONTOUR LINE - CONTOUR INTERVAL = 2m (NOTE 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
|                                                                                                                                                                                                                                                                                                                                                       | RIVER BOTTOM CONTOUR LINE - CONTOUR INTERVAL = 1m (NOTE 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
| 65                                                                                                                                                                                                                                                                                                                                                    | . 76.6 GROUND SURFACE SPOT ELEVATION IN METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |
|                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 60                                                                                                                                                                                                                                                                                                                                                    | STREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>-</b> -C                   |
| 60<br>5187000 N                                                                                                                                                                                                                                                                                                                                       | STREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>≺</b> C                    |
| 60<br>5187000 N                                                                                                                                                                                                                                                                                                                                       | STREAM<br>POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < C                           |
| 60<br>5187000 N<br>59                                                                                                                                                                                                                                                                                                                                 | STREAM<br>POND<br>MARSH / INUNDATED GROUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < C                           |
| 60<br>5187000 N<br>59                                                                                                                                                                                                                                                                                                                                 | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ≺ C                           |
| 60<br>5187000 N<br>59                                                                                                                                                                                                                                                                                                                                 | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD<br>EXISTING BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < C                           |
| 60<br>5187000 N<br>99                                                                                                                                                                                                                                                                                                                                 | STREAM   Image: Stream   POND   Image: Stream   MARSH / INUNDATED GROUND   Image: PRIMARY ROAD / HIGHWAY   SECONDARY ROAD   Image: Stream   Image: Stream   Stream   Stream   Stream   Stream   Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < C<br>B                      |
| 60<br>5187000 N<br>69                                                                                                                                                                                                                                                                                                                                 | STREAM   Image: Stream   Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < C<br>B                      |
| 60<br>5187000 N<br>59                                                                                                                                                                                                                                                                                                                                 | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD<br>EXISTING BUILDING<br>STRATIGRAPHIC SECTION (NOTE 4)<br>NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul><li>C</li><li>B</li></ul> |
| 60<br>5187000 N<br>69                                                                                                                                                                                                                                                                                                                                 | STREAM   Image: Stream   POND   Image: Stream   Image: Marsh / INUNDATED GROUND   Image: PRIMARY ROAD / HIGHWAY   SECONDARY ROAD   Image: Stream Road                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < C<br>B                      |
| 5187000 N                                                                                                                                                                                                                                                                                                                                             | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD<br>EXISTING BUILDING<br>EXISTING BUILDING<br>STRATIGRAPHIC SECTION (NOTE 4)<br>STRATIGRAPHIC SECTION (NOTE 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul><li>C</li><li>B</li></ul> |
| 60<br>5187000 N<br>\$9<br>\$9<br>5186500 N                                                                                                                                                                                                                                                                                                            | STREAM         Image: POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B                             |
| 60<br>5187000 N<br>69<br>69<br>69<br>5186500 N                                                                                                                                                                                                                                                                                                        | STREAM         Image: STREAM         Image: POND         Image: STREAM         Image: STRATIGRAPHIC SECTION (NOTE 4)         Image: Stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B                             |
| 60<br>5187000 N<br>59<br>5186500 N                                                                                                                                                                                                                                                                                                                    | STREAM         Image: POND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B                             |
| 60<br>5187000 N<br>69<br>69<br>69<br>5186500 N                                                                                                                                                                                                                                                                                                        | <ul> <li>STREAM</li> <li>POND</li> <li>MARSH / INUNDATED GROUND</li> <li>PRIMARY ROAD / HIGHWAY</li> <li>SECONDARY ROAD</li> <li>EXISTING BUILDING</li> <li>EXISTING BUILDING</li> <li>STRATIGRAPHIC SECTION (NOTE 4)</li> </ul> STRATIGRAPHIC SECTION (NOTE 4) Streating are in reference to SCOPQ - NAD83. All elevations are in meters and refer to geodetic datum. 1. The coordinates shown on this drawing are in reference to SCOPQ - NAD83. All elevations are in meters and refer to geodetic datum. 3. The bedrock surface contours were computer generated based on the bedrock surface elevation encountered at the sounding locations shown in plan. The actual bedrock surface between soundings may vary from that shown. 3. Bathymetric survey carried out by Entreprises Normand Juneau inc. on the dates of October 5 - 7 and November 16 - 17, 2004. 4. See drawings T-1050-C-0002 to 0008 for stratigraphic sections A-A to I-I. 5. "Recent investigation" refers to exploration works carried out during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B                             |
| 60<br>5187000 N<br>69<br>69<br>5186500 N                                                                                                                                                                                                                                                                                                              | <ul> <li>STREAM</li> <li>POND</li> <li>MARSH / INUNDATED GROUND</li> <li>PRIMARY ROAD / HIGHWAY</li> <li>SECONDARY ROAD</li> <li>EXISTING BUILDING</li> <li>EXISTING BUILDING</li> <li>STRATIGRAPHIC SECTION (NOTE 4)</li> </ul> NOTES 1. The coordinates shown on this drawing are in reference to SCOPQ - NAD83. All elevations are in meters and refer to geodetic datum. 2. The bedrock surface contours were computer generated based on the bedrock surface elevation encountered at the sounding locations shown in plan. The actual bedrock surface between soundings may vary from that shown. 3. Bathymetric survey carried out by Entreprises Normand Juneau inc. on the dates of October 5 - 7 and November 16 - 17, 2004. 4. See drawings T-1050-C-0002 to 0008 for stratigraphic sections A-A to I-I. 5. "Recent investigation" refers to exploration works carried out during the period of 30 September to 4 November, 2005 (this report). 6. This drawing is to be read in conjunction with the accompanying report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B                             |
| 5186500 N                                                                                                                                                                                                                                                                                                                                             | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD<br>EXISTING BUILDING<br>EXISTING BUILDING<br>STRATIGRAPHIC SECTION (NOTE 4)<br>STRATIGRAPHIC SECTION (NOTE 4)<br>STRATIGRAPHIC SECTION (NOTE 4)<br>NOTES<br>1. The coordinates shown on this drawing are in reference to SCOPQ - NAD83.<br>All elevations are in meters and refer to geodetic datum.<br>2. The bedrock surface contours were computer generated based on the<br>bedrock surface elevation encountered at the sounding locations shown in<br>plan. The actual bedrock surface between soundings may vary from that<br>shown.<br>3. Bathymetric survey carried out by Entreprises Normand Juneau inc. on the<br>dates of October 5 - 7 and November 16 - 17, 2004.<br>4. See drawings T-1050-C-0002 to 0008 for stratigraphic sections A-A to II.<br>5. "Recent investigation" refers to exploration works carried out during the<br>period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and<br>during the period of 30 September to 4 November, 2005 (this report).<br>6. This drawing is to be read in conjunction with the accompanying report.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B                             |
|                                                                                                                                                                                                                                                                                                                                                       | STREAM<br>POND<br>MARSH / INUNDATED GROUND<br>PRIMARY ROAD / HIGHWAY<br>SECONDARY ROAD<br>EXISTING BUILDING<br>EXISTING BUILDING<br>STRATIGRAPHIC SECTION (NOTE 4)<br>STRATIGRAPHIC SECTION (NOTE 4)<br>NOTES<br>1. The coordinates shown on this drawing are in reference to SCOPQ - NAD83.<br>All elevations are in meters and refer to geodetic datum.<br>2. The bedrock surface contours were computer generated based on the<br>bedrock surface elevation encountered at the sounding locations shown in<br>plan. The actual bedrock surface between soundings may vary from that<br>shown.<br>3. Bathymetric survey carried out by Entreprises Normand Juneau inc. on the<br>dates of October 5 - 7 and November 16 - 17, 2004.<br>4. See drawings T-1050-C-0002 to 0008 for stratigraphic sections A-A to I-I.<br>5. "Recent investigation" refers to exploration works carried out during the<br>period of 8 September to 4 November, 2005 (this report).<br>6. This drawing is to be read in conjunction with the accompanying report.<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>CLENT<br>C | B                             |
| SIGNED<br>R. Bousquet, M.A.Sc                                                                                                                                                                                                                                                                                                                         | STREAM  STREA                                                                                                                                                                                                                                                                                                                                                                  | B                             |
| SIGNED<br>R. Bousquet, M.A.Sc<br>AWN<br>R. Anderson                                                                                                                                                                                                                                                                                                   | STREAM POND POND MARSH / INUNDATED GROUND PRIMARY ROAD / HIGHWAY SECONDARY ROAD PRIMARY ROAD / HIGHWAY SECONDARY ROAD EXISTING BUILDING STRATIGRAPHIC SECTION (NOTE 4) STRATIGRAPHIC SECTION 4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B                             |
| 60         5187000 N         60         5187000 N         60         60         59         5186500 N         5186500 N         5186500 N         5186500 N         5186500 N         SIGNED         R. Bousquet, M.A.Sc         AWN         R. Anderson         ECKED         R. Bousquet, M.A.Sc         TE         CRED         R. Bousquet, M.A.Sc | STREAM         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                             |

A1-HOR-FRAME-EN (SI)



# 6 7 8 9 10 CENTIMETERS 0 1 2 3 4

|                      |              |   |    |        |                                  |              |   |    |                    | PROFESSIONAL SEAL |
|----------------------|--------------|---|----|--------|----------------------------------|--------------|---|----|--------------------|-------------------|
|                      |              |   |    |        |                                  |              |   |    |                    |                   |
|                      |              |   |    |        |                                  |              |   |    |                    |                   |
|                      |              |   |    |        |                                  |              |   |    |                    |                   |
|                      |              |   |    |        |                                  |              |   |    |                    |                   |
|                      |              |   |    |        |                                  |              |   |    |                    |                   |
| PTION                | DATE (Y/M/D) | * | ** | No REV | SION DESCRIPTION                 | DATE (Y/M/D) | * | ** |                    |                   |
| DESIGNED ** APPROVED |              |   |    |        | INITIALS: * DESIGNED ** APPROVED | )            |   |    |                    | ŀ                 |
| SION REGISTER        |              |   |    |        | REVISION REGISTER                |              |   |    | REFERENCE DRAWINGS |                   |
|                      |              |   |    |        |                                  |              |   |    |                    |                   |

| ED<br>. Hébert, Sr. Geol. |       |    |    |    |                  | A-A and B-B |             |         |              |      |  |  |  |
|---------------------------|-------|----|----|----|------------------|-------------|-------------|---------|--------------|------|--|--|--|
|                           | CLIEN | IT |    |    |                  |             |             |         |              |      |  |  |  |
| 5-11-24                   |       | 10 | 20 | 70 | 10.00            | PROJECT No  | SUBDIVISION | SUBJECT | SERIAL       | R    |  |  |  |
| 1:1000 (HOR.)             |       |    | 20 |    | 40m              | T 1050 C    | 0000        |         | 0002         | Γ    |  |  |  |
| <b>1:500 (VERT.)</b> 5    | Ó     | 5  | 10 | 15 | 2 <sup>0</sup> m | 1-1000-0    | 0000        | 40 00   | 0002         |      |  |  |  |
|                           |       |    |    |    |                  |             |             |         | A1-HOR-FRAME | E-EI |  |  |  |
|                           |       |    |    |    |                  | 4           |             |         |              |      |  |  |  |





| FILL                                                        | Contraction of the second seco |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLAY                                                        | SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAND                                                        | ္လွ်္န္္တ္ရွိ GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ${}^{\circ}_{\circ} {}^{\circ}_{\circ}$ COBBLES OR BOULDERS | BEDROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



|                     |              |   |    |    |                              |              |   |    |                    | 1 7 5 1           |
|---------------------|--------------|---|----|----|------------------------------|--------------|---|----|--------------------|-------------------|
|                     |              |   |    |    |                              |              |   |    |                    | PROFESSIONAL SEAL |
|                     |              |   |    |    |                              |              |   |    |                    |                   |
|                     |              |   |    |    |                              |              |   |    |                    |                   |
|                     |              |   |    |    |                              |              |   |    |                    |                   |
|                     |              |   |    |    |                              |              |   |    |                    |                   |
|                     |              |   |    |    |                              |              |   |    |                    |                   |
| PTION               | DATE (Y/M/D) | * | ** | No | REVISION DESCRIPTION         | DATE (Y/M/D) | * | ** |                    |                   |
| DESIGNED ** APPROVE | ĪD           |   |    |    | INITIALS: * DESIGNED ** APPI | ROVED        |   |    |                    |                   |
| SION REGISTER       |              |   |    |    | REVISION REGISTER            | ?            |   |    | REFERENCE DRAWINGS |                   |
|                     |              |   |    |    | <b>^</b>                     |              |   |    |                    |                   |

A1-HOR-FRAME-EN (SI)



- 1. The location of the sections in plan is shown on drawing T-1050-C-0001.
- 3. The stratigraphy shown on the sections has been simplified. For a more
- 4. Data concerning the various strata have been obtained at borehole locations only. The soil stratigraphy between boreholes may vary from that shown.
- 5. "Recent investigation" refers to exploration works carried out during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 30 September to 4 November, 2005 (this report).

|               |    |   |    |    |                               |   |    |                    | PROFESSIONAL SEAL |      |
|---------------|----|---|----|----|-------------------------------|---|----|--------------------|-------------------|------|
|               |    |   |    |    |                               |   |    |                    |                   |      |
|               |    |   |    |    |                               |   |    |                    |                   |      |
|               |    |   |    |    |                               |   |    |                    |                   |      |
|               |    |   |    |    |                               |   |    |                    |                   |      |
|               |    |   |    |    |                               |   |    |                    |                   | DESI |
|               |    |   |    |    |                               |   |    |                    |                   | R.   |
|               |    |   |    |    |                               |   |    |                    |                   | DRAV |
|               |    |   |    |    |                               |   |    |                    |                   | R.   |
|               |    |   |    |    |                               |   |    |                    |                   | CHEC |
|               |    |   |    |    |                               |   |    |                    |                   | R.   |
|               |    | * | ** | No | REVISION DESCRIPTION          | * | ** |                    |                   | DATE |
| DESIGNED ** A |    |   |    |    | INITIALS * * DESIGNED ** APPE |   |    |                    |                   | 20   |
| DESIGNED      |    |   |    |    |                               |   |    |                    | -                 | SCAL |
| SION REGIST   | ER |   |    |    | REVISION REGISTER             |   |    | REFERENCE DRAWINGS |                   |      |
|               |    |   |    | -  | ł                             |   |    |                    |                   |      |
|               |    |   |    |    |                               |   |    | -                  |                   |      |

|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             | с                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|-----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
| BH-101-05                                                                                                                                                                                                                                                                                                                                                                                                               | IVESTIGATION (NO                                                                | TE 5)                                                  |                                                         |                                             |                       |
| BH-401-05<br>BOREHOLE AND DYNAMIC PENETR                                                                                                                                                                                                                                                                                                                                                                                | RATION TEST- REC                                                                | ENT INVEST                                             | GATION (NO                                              | DTE 5)                                      | <del>≺ C</del>        |
| VERTICAL BOREHOLE - PREVIOUS<br>(TERRATECH REPORT T-1050-A DA<br>TE-A-05<br>TRIAL EXCAVATION - RECENT INVE                                                                                                                                                                                                                                                                                                              | INVESTIGATION<br>TED MARCH 2005)<br>ESTIGATION (NOTE                            | 5)                                                     |                                                         |                                             |                       |
| $\begin{vmatrix} 1 \\ 27 \end{vmatrix}$ 27 DISTANCE IN FRONT OF () OR BE                                                                                                                                                                                                                                                                                                                                                | HIND (   ) THE ALIG                                                             | GNMENT OF                                              | THE SECTIO                                              | N (IN METEF                                 | RS)                   |
| ROCK QUALITY DESIGNATION (%)                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 |                                                        |                                                         |                                             |                       |
| 0 50 100<br>RQD - %                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |                                                        |                                                         |                                             | в                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                 |                                                        |                                                         |                                             |                       |
| Vision of NC+LAVALIN<br>Environment Inc.                                                                                                                                                                                                                                                                                                                                                                                | CLIENT<br>Rabaska                                                               | RABASKA                                                | LNG IMPO<br>JEBEC, CA                                   | RT TERMI<br>NADA                            | NAL                   |
| Vision of SNC+LAVALINE ENVIRONMENT       Division of SNC+LAVALINE ENVIRONMENT         PREPARATION       PREPARATION         PREPARATION       APPROVAL         DESIGNED       PROJECT DISCIPLINE ENGINEER         R. Bousquet, M.A.Sc., Eng.       PROJECT DISCIPLINE ENGINEER         H. Madjar, M.A.Sc., Eng.       PROJECT ENGINEERING MANAGER         PROJECT ENGINEERING MANAGER       PROJECT ENGINEERING MANAGER | CLIENT<br>Rabaska<br>PROJECT<br>RABASKA –<br>LEVIS/BEAUN<br>TITLE               | RABASKA<br>QI<br>LNG RI<br>MONT                        | LNG IMPO<br>JEBEC, CA<br>ECEIVING                       | RT TERMI<br>NADA<br>TERMIN<br>QUEB          | NAL<br>A<br>JAL<br>EC |
| PREPARATION       PROJECT DISCIPLINE ENGINEER         R. Bousquet, M.A.Sc., Eng.       PROJECT DISCIPLINE ENGINEER         H. Madjar, M.A.Sc., Eng.       PROJECT DISCIPLINE ENGINEER         DRAWN       PROJECT DISCIPLINE ENGINEER         R. Anderson       PROJECT ENGINEERING MANAGER         CHECKED       R. Bousquet, M.A.Sc., Eng.         DATE       CLIENT                                                  | CLIENT<br>Rabaska<br>PROJECT<br>RABASKA –<br>LEVIS/BEAUM<br>TITLE<br>STRAT<br>F | RABASKA<br>QI<br>LNG RI<br>MONT<br>FIGRAPH<br>F-F, G-G | LNG IMPO<br>JEBEC, CA<br>ECEIVING<br>HIC SEC<br>and H-H | RT TERMI<br>NADA<br>TERMIN<br>QUEB<br>TIONS | NAL<br>A<br>VAL<br>EC |

D

1

A1-HOR-FRAME-EN (SI)



4



| FAMILY<br>JOINT | NUMBER<br>OBSERVED | ORIENTATION<br>(°) |                                |  |  |
|-----------------|--------------------|--------------------|--------------------------------|--|--|
|                 | 5                  | 295 / 39           | Open, regular and smooth sur   |  |  |
|                 | 5                  | 252 / 41           | Open, irregular and rugged su  |  |  |
| 3               | 4                  | 310 / 61           | Open, irregular and rugged sur |  |  |





1

D

С

В

urface, filled with exsudation black mineral, spaced from 10cm to 15cm

| Terrateck                         | Division of<br>SNC+LAVALIN<br>Environment Inc.          | CLIENT                  | RABASKA  <br>QI | LNG IMPO<br>JEBEC, CA | RT TERM<br>NADA | INAL      | , |
|-----------------------------------|---------------------------------------------------------|-------------------------|-----------------|-----------------------|-----------------|-----------|---|
| PREPARATION                       | APPROVAL                                                | PROJECT                 |                 |                       |                 |           |   |
| DESIGNED<br>Y. Boulianne, Eng.    | PROJECT DISCIPLINE ENGINEER<br>H. Madjar, M.A.Sc., Eng. | RABASKA –<br>Levis/beau | LNG RI<br>Mont  | ECEIVING              | TERMI           | NAL       |   |
| DRAWN<br>R. Anderson              | PROJECT ENGINEERING MANAGER                             | TITLE                   |                 |                       | 4022            |           |   |
| CHECKED<br>J-J. Hébert, Sr. Geol. |                                                         | TRIAL                   |                 | ATION TE              | -A-05           |           |   |
| DATE<br>2005-11-22                | CLIENT                                                  |                         |                 |                       |                 |           |   |
|                                   |                                                         | PROJECT No              | SUBDIVISION     | SUBJECT               | SERIAL          | REV.      |   |
| 1:50                              | 0.5 1.0 1.5 2.0m                                        | T-1050-C                | 0000            | 4G <sub> </sub> DD    | 0005            | 0         |   |
|                                   |                                                         |                         |                 |                       | A1-HOR-FRAME    | E-EN (SI) |   |







3

Å Å ξġ 1:38 50-C ΙČ /05/01 \46\T-1 2006/ 4238/ N. LAST PATH: ISSUE REGISTER ISSUE REGISTER

4

4

С

В

2

PHOTO MOSAIC SHOWING WEST FACE OF TRIAL EXCAVATION TE-B-05



1

1. The location of the trial excavation in plan is shown on drawing T-1050-C-0001.

С

В

2. This drawing is to be read in conjunction with the accompanying report.

| Terratecl                          | Division of<br>SNC+LAVALIN<br>Environment Inc.          | CLIENT<br>RABASKA LNG IMPORT TERMINAL<br>QUEBEC, CANADA |
|------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| PREPARATION                        | APPROVAL                                                | PROJECT                                                 |
| DESIGNED<br>J-J. Hébert, Sr. Geol. | PROJECT DISCIPLINE ENGINEER<br>H. Madjar, M.A.Sc., Eng. | RABASKA – LNG RECEIVING TERMINAL                        |
| DRAWN<br>R. Anderson               | PROJECT ENGINEERING MANAGER                             |                                                         |
| CHECKED<br>Y. Boulianne, Eng.      |                                                         | TRIAL EXCAVATION TE-B-05                                |
| DATE<br>2005-1031                  | CLIENT                                                  |                                                         |
|                                    |                                                         | PROJECT No SUBDIVISION SUBJECT SERIAL REV.              |
| 1:75                               | 0 1 2 3m                                                | T-1050-C 0000 4G DD 0006 0                              |
|                                    |                                                         | A1-HOR-FRAME-EN (SI)                                    |



### 6 7 8 9 10 CENTIMETERS 0 1 2 3 4



|                          |                                                                           |                                                             | PROFESSIONAL SEAL | Terratecl                              | Division of<br>SNC+LAVALIN<br>Environment Inc.          | CLIENT<br>RABASKA LNG IMPORT TERMINAL<br>QUEBEC, CANADA |  |  |
|--------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|-------------------|----------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--|--|
|                          |                                                                           |                                                             |                   | PREPARATION                            | APPROVAL                                                | PROJECT                                                 |  |  |
|                          |                                                                           |                                                             |                   | DESIGNED<br>R. Bousquet, M.A.Sc., Eng. | PROJECT DISCIPLINE ENGINEER<br>H. Madjar, M.A.Sc., Eng. | RABASKA – LNG RECEIVING TERMINAL                        |  |  |
|                          |                                                                           |                                                             |                   | DRAWN<br>R. Anderson                   | PROJECT ENGINEERING MANAGER                             |                                                         |  |  |
|                          |                                                                           | SNC-LAVALIN<br>RABASKA – LNG RECEIVING TERMINAL             |                   | CHECKED<br>R. Bousquet, M.A.Sc., Eng.  |                                                         | SECTION I-I                                             |  |  |
| IPTION DATE (Y/M/D) * ** | No         REVISION DESCRIPTION         DATE (Y/M/D)         *         ** | OVERALL SHE PLAN<br>DRAWING: 016267-0000-41-D2-0001, REV. A |                   | DATE                                   | CLIENT                                                  | (2 OF 2)                                                |  |  |
| DESIGNED ** APPROVED     | INITIALS: * DESIGNED ** APPROVED                                          | DATED: 2005-05-31                                           |                   | SCALE 1 · 1 000 (HOP) 10               | 0 10 20 30 40m                                          | PROJECT No SUBDIVISION SUBJECT SERIAL REV.              |  |  |
| SION REGISTER            | REVISION REGISTER                                                         | REFERENCE DRAWINGS                                          |                   | AS SHOWN500 (VERT.) 5                  | 0 5 10 15 20m                                           | T-1050-C 0000 4G DD 0008 0                              |  |  |
|                          |                                                                           |                                                             |                   |                                        |                                                         | A1-HOR-FRAME-EN (S                                      |  |  |

# SPECIAL NOTE

1

The geology shown on the sections does not represent the exact reality. It is based on a geological interpretation and therefore any extrapolation and interpolation should be considered with great caution.

The information provided here is not intended for construction purposes.

- 1. The location of the sections in plan is shown on drawing T-1050-C-0001.
- 2. All elevations are in meters and refer to geodetic datum.
- 3. The stratigraphy shown on the sections has been simplified. For a more precise stratigraphy description, refer to the boring logs.
- 4. Data concerning the various strata have been obtained at borehole locations only. The soil stratigraphy between boreholes may vary from that shown.
- 5. "Recent investigation" refers to exploration works carried out during the period of 8 February to 15 April, 2005 (report T-1050-B of May 2005) and during the period of 30 September to 4 November, 2005 (this report).
- 6. This drawing is to be read in conjunction with the accompanying report.

С

D