VRI from a User's Perspective

David M. Carson, R.P.F.

Introduction to the Vegetation Resources Inventory

Today's Objectives

- Feedback on guidebook
- Define the place of VRI in management
- Identify strengths and weaknesses of the VRI
- For my presentation:
 - Two way communication user to user

User Needs

- Understand the data
 - Strengths
 - Weaknesses
- Identify key attributes
- Use them appropriately
- Leverage them

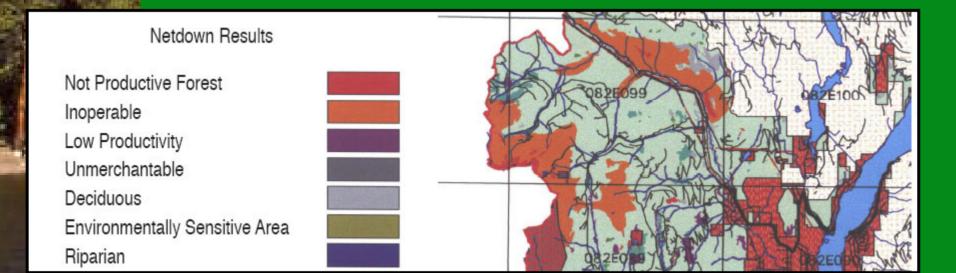
Uses of VRI

- Timber supply review
- Strategic planning
 - Land use
 - Risk assessments
 - Habitat modelling
- Operational planning
- Valuation
- Monitoring for sustainability

Timber Supply Review

- Uses spatial and tabular VRI data
- VRI:
 - Conditions at a particular time
 - Input to modelling

Timber Supply Review


- Land classification (netdown)
- Land zonation for management
- Stand condition for decision making
 - Species for merchantability
 - Age for retention or harvest
 - Height for green-up
- Initial volume estimates
- Inputs to yield estimates

Land Classification

- Case study Arrow TSA
- VRI philosophy is objective and noncultural
- Lacks traditional subjective attributes such as "non-productive forest"
- On Arrow TSA, required re-definition of timber harvesting land base

Land Classification

 "Non-productive forest" -> "Vegetated treed" and "Alpine" and "Inoperable"

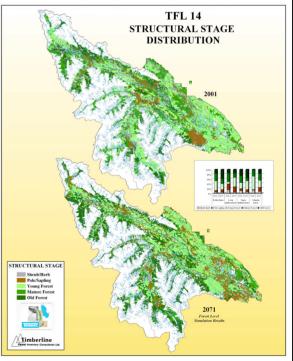
Appropriate Attributes

- Site index
 - Age and height?
 - SIBEC?
 - Growth intercept?
- Age and height
 - Reference?
 - Projected?
 - Adjusted?
 - Adjusted and projected?

Strategic Planning

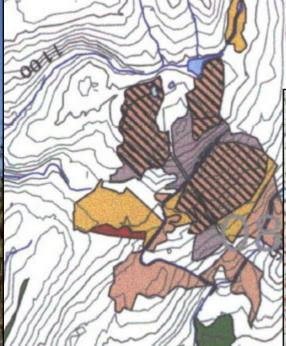
- Land use and zonation
- Harvest planning
- Risk assessments
- Habitat modelling
- Watershed assessments

Integration of Ecology

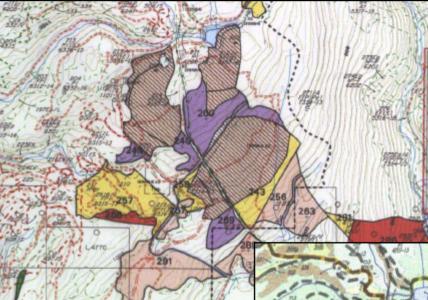

- Case study Arrow TSA
- Both VRI and PEM (or TEM) are foundation inventories
- Data overlay results in an un-necessarily large and fragmented analysis data set
- Merged the two using only VRI linework but maintaining the integrity of the PEM

Integration of Ecology

- VRI linework
- PEM attributes merged into VRI polygon
- Ecological units proportional in polygon


Sustainable Forest Management

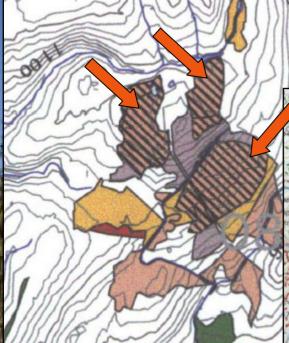
- Identifies and monitors all key resource values
- VRI:
 - Current status
 - Habitat modelling
 - Forecasting future conditions



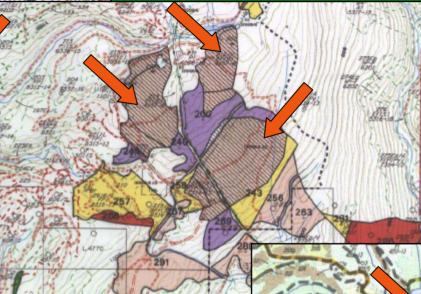
Linking Strategic and Operational

- Case study Westbank Community Forest
- Spatial timber supply
- Twenty-year spatial feasibility report
- Nominated blocks evaluated for FDP
- Know the limitations of the data

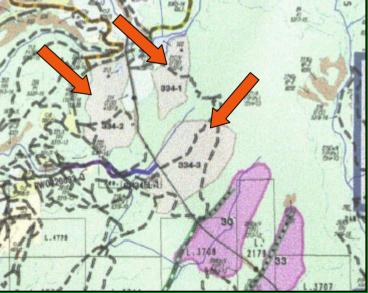
20-year plan map



Reconnaissanc e map


Westbank Community Forest

Development plan map


20-year plan map

Reconnaissance map

Westbank Community Forest

Development plan map

Limitations of the Data

- Case study Westbank Community Forest
- Spatial location
- Spatial resolution
- Polygon attribute accuracy
- Scale of operability mapping

Predictive Mapping

- Use expert knowledge to extract more information from conventional inventories
- Based on understanding relationships between available attributes and the resource of interest
- Application of modelling tools and field verification

Predicting Ecosystems

- VRI attributes:
 - Land cover
 - Soil moisture
 - Soil nutrients
 - Tree species composition
 - Others

Habitat Mapping

- Habitat potential mapping
- Stand structure
- Ecological attributes
 - E.g.: soil moisture
- Landscape context

Botanical Forest Products

- Non-timber forest products inventory
 - Directly inferred, or
 - Modelled using VRI attributes

Non-Timber Values Mapping

- Many non-timber related values can be modelled and mapped using data from VRI
 - Monumental cedar
 - Medicinal plants
 - Berry picking
 - High value mushroom stands

Example – Berry Picking

- Good berry sites related to:
 - Site series
 - Crown closure
 - Stand age
 - Slope and aspect
- Generate models
- Map best sites

Thank You

David M. Carson, R.P.F.