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Introduction

® Submission summarizes new evidence, which derives
from the additional information provided by OPG,
NWMO and by CNSC.

Also draws on recently published public academic
evidence, and evidence and documents provided to this
inquiry before the previous 2013 evidence sessions

Evidence questions the secure short to long-term
performance of this DGR, because the gas generated
within the DGR will provide increased subsurface
pressure sufficient to reactivate existing fractures.



Stress in rocks

If stress is not equal from all
directions then we say that
the stress is a differential
stress. Three kinds of
differential stress occur.
Tensional stress (or _
extensional stress), which Confining Stress
stretches I’OCk; (Stress equal from all directions)
Compressional stress,
which squeezes rock; and
Shear stress, which result
In slippage and translation.

Rock strong if compressed
Weak if tensioned Shear Stress

http://www.tulane.edu/~sanelson/geol111/deform.htm




Increased pore pressure

Increasing pore pressure does not change the stress difference between O 1 and O 3,
but does decrease the mean stress.
Critical stress intersects envelope =» fault reactivates =>rock fails fractures
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Figure 2.15: DGR-4 Formation Pressure and Environmental Head Profiles, April 2009 (Post
Inflation), June 2009, August 2009, November 2009 and February 2010



Gas generation in Repository

Assumes:
Water in waste. And water enters Repository, to restore subsurface pressure
Generates gas by microbial degradation and by anaerobic corrosion

Does gas leave Repository Or, does gas build pressure ?  Add hydrocarbons ?

Table B-1: Estimated Maximum Repository Gas Pressures
Gas Generation Initial Maximum Gas Pressure (MPa)
::31: of Case 1 Case 2 Case 3 Case 4
D:ga:i; Anaarphi:: _Easa 1 Case 1 with Case 1 with
(kg) Corrosion & | with FeCQO, Methano- FeCO, and
Degradation A Formation genic Methano-
Reaction genic
Reactions
H- from metal corrosion 5.8E+07 10.0 8.8 0.0 0.2
CO, from organic
degradation 3.6 0.0 1.2 0.0
CH, from organic 22EH7
. 5.3 5.3 7.8 7.6
degradation
N, from initial air - 0.1 0.1 0.1 0.1
Total 8.0E7 19.0 14.2 9.0 7.9

Gas generation is additional to normal water pressure — in all cases large 7-15 MPa
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Why is gas generation tricky ?

NWMO have assumed that gas will leak from Repository at generation rate

BUT

1)This depends on gas moving through the bentonite backfill, which is designed to
have a very high entry pressure to gas (ie resists gas ingress until gas exceeds
hydrostatic plus clay swelling pressure = 19MPa) ie leakage is blocked

2)This depends on gas generation rate being slower/the same as the gas leakage
rate But gas generation is fast (decades) ie a bubble of gas builds up, creating
pressure

S.T. Horseman et al. / Engineering Geology 54 (1999) 139-149

Compare the times

Re-saturation of bentonite clay - 100yr =» Repository wet soon after closure
Thermal heating by waste — hundreds years - warmth speeds reaction rates
Corrosion of metals - 15,000 to 60,000 yr — plenty of metal to provide hydrogen

Balance between gas generation and leakage RATES




Gas generation fractures bentonite, and rock

Bulk of gas originates by
corrosion of iron

Thus, more iron in waste
produces more gas

Bentonite will fracture before
matrix flow gas escapes

Fracturation

: -~~~ Pore pressure More iron = more gas
_, L;Resorption — Concentration = fractures more

Bonin et al (2000) Journal of Nuclear Materials 281, 1 — 14




Fluid geopressure with depth : conventional

PRESSURE PROFILE, CENTRAL GRABEN, NORTH SEA
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Open connection
— hydrostatic
(water column).
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connection
Lithostatic (rock
column)
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Fluid geopressure : DGR changes

sanaw) yidag

JLele EVVARY: pository is at 1 — approximately hydrostatic
After excavation at 2 - atmospheric

After sealing at 1 — refills groundwater

After gas generation at 3 - 7MPa extra

Bentonite fractures, rock fractures

A fine balance of hydrostatic
PLUS extra gas pressure
PLUS hydrocarbon pressure
= breaks clay and rock
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Since the 1980’s, it
has been apparent
that the earths
crust is in critical

stress

Pre-existing faults,
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reactivated as
small to large
earthquakes. By
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There are 150 years of experience in decreased pressure from extracting fluids.
But only recently is experience accumulating on raised pressure from injected fluids
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Impacts of pressure bubble : CO2
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Modelled injection of
CO2 into Cambrian
sandstones of lllinois
basin. 20 projects 5SMt/yr
X 50yr 5 km?3 fluid

GDR is similar - 2.5km?3

Pressure spreads
through groundwater —
with NO FLOW, like
sound through air

Effects from 4 MPa
excess pressure extend
for 200km, within a 50
year timescale

Bruce DGR may have 7-
15 MPa excess
pressure
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St Lawrence graben CO2 injection reactivates faults at 0.5 — 1.0 km, not at surface.
Accurate prediction depends on orientation and friction on individual faults

Will GDF pressures or CO2 disposal CAUSE fault slip, or small earthquakes ?
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Figure 2.5: Locations of Oil, Gas and Salt Resources (OGSR) Boreholes in

Collingwood and Blue
Mountain shales are gas
prospects, above DGR.
Who safeguards exclusion ?
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Discussion Topics : gas in near field

* Stress in rock

Pressure of the DGR site not well understood
Groundwater content post-closure DGR -
Gas generation after closure — Volume &
More gas generation — depends on waste

Gas overpressure fractures bentonite and rock

e



Discussion TOpiCS . far field pressure consequences

* How will gas pressure be monitored and
controlled ?

Far field effects of gas pressure, extend 100’s km
Pressure causes minor earthquakes and faults
Bruce DGR in a shale gas zone — extra fracking?

X ] X ]

.

1) Pressure increase in the DGR is a major problem

2) Very likely to fracture bentonite and rock =» leaks

3) Pressure buildup is hard to control, difficult to monitor
4) More pressure with decommissioning metal waste

5) Pressure effects extend for 100’s km
6) May cause earthquakes, especially when added to CCS
7) Unconventional gas fracking
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